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ABSTRACT  

Large and complex ontologies lead to usage difficulties, thereby hampering the ontology developers’ 
tasks. Ontology modules have been proposed as a possible solution, which is supported by some 
algorithms and tools. However, the majority of types of modules, including those based on abstraction, 
still rely on manual methods for modularisation. Toward filling this gap in modularisation techniques, we 
systematised abstractions and selected five types of abstractions relevant for modularisation for which we 
created novel algorithms, implemented them, and wrapped it in a GUI, called NOMSA, to facilitate their 
use by ontology developers. The algorithms were evaluated quantitatively by assessing the quality of the 
generated modules. The quality of a module is measured by comparing it to the benchmark metrics from 
an existing framework for ontology modularisation. The results show that module’s quality ranges 
between average to good, whilst also eliminating manual intervention. 

Keywords: Ontology, Semantic Web, Ontology Modularisation, Ontology Module, Ontology Modularity, 
Abstraction 

INTRODUCTION 

An ontology is a logic-based model that is used to represent a subject domain in a machine-processable 
language for Semantic Web applications. There are various formal definitions presented in the literature 
for an ontology. A comprehensive definition for an ontology is as follows: (Guarino, 1998) :  

An ontology is a logical theory accounting for the intended meaning of a formal vocabulary, i.e. 
its ontological commitment to a particular conceptualization of the world. The intended models of 
a logical language using such a vocabulary are constrained by its ontological commitment. An 
ontology indirectly reflects this commitment (and the underlying conceptualization) by 
approximating these intended models. 

 Ontologies are commonly used for some purpose such as enhanced searches across many databases or 
decision-making support for problems. It consists of entities, organised in a hierarchy, with relations 
among them and axioms to define such relations. The entities are often constrained and described using 
the other entities to provide better meaning.   

Ontologies that describe large, well-defined domains are consequently large and complex in nature; e.g., 
the NCBI Taxonomy with its 1,015,206 classes (Federhen, 2012), and likewise SNOMED CT (Donnelly, 



2006) and the FMA (Rosse & Mejino, 2003) are well-known to be challenging due to their size. This 
leads to difficulties for tools and humans alike: tools cannot process them due to computational 
limitations while humans face cognitive overload for understanding them. Over the last few years, there 
has been a growth in using modularity to assist with large ontologies (Amato et al., 2015; d’Aquin et al., 
2006; Del Vescovo, 2011; Grau et al., 2008; Khan & Keet, 2016b). A module has been defined as follows 
(Khan & Keet, 2015): 

 A module M is a subset of a source ontology O, M ⊂ O, either by abstraction, removal or 
decomposition, or module M is an ontology existing in a set of modules such that, when 
combined, make up a larger ontology. Module M is created for some use-case U, and is of a 
particular type T. T is classified by a set of annotation features P, and is created by using a 
specific modularization technique MT, and has a set of evaluation metrics EM which is used to 
assess the quality of module M.  

The general idea of modularisation refers to dividing and separating the components of a large system 
such that it can be recombined into a whole. The purpose of modularity is used to simplify and downsize 
an ontology for the task at hand, i.e., to modularise a large ontology into smaller ontologies, and it is 
required in ontology development and use when one needs to hide or delete knowledge that is not 
required for the use-case (Studer, 2010). Modularisation has been applied to various ontologies to 
improve usability and assist with complexity; e.g., the myExperiment ontology (Newman et al., 2009), 
the Semantic Sensor Net ontology (Janowicz & Compton, 2010), several BioPortal ontologies (Del 
Vescovo et al., 2011), and the FMA ontology (Mikroyannidi et al., 2009). 

There are several modularisation methods and tools (Amato et al., 2015; Chen et al., 2019; d’Aquin et al., 
2006; Hamdi et al., 2010; Kalyanpur et al., 2006; LeClair et al., 2019). For ontologies that are created in a 
modular way, however, many of them are created by manual methods (Khan & Keet, 2015). There is tool 
support for graph partitioning (Kalyanpur et al., 2006), query-based (Natalya Fridman Noy & Musen, 
2000) and locality-based (Grau et al., 2008) techniques. We zoom in on the type of modules obtained 
from abstractions, taken from an existing categorisation of ontology modules (Khan & Keet, 2015). 
Abstraction is the principle of simplifying complex models by removing some unnecessary details based 
on some criteria, such as reducing a class hierarchy’s depth or removing axioms to fit the ontology in a 
language of lower expressiveness. The purpose of abstraction, like modularity, is to have a simplified 
version of an ontology for a specific task or application. 

Seeing that automatic techniques for generating these types of modules are lacking (discussed below), we 
solve this problem by investigating and structuring proposed types of abstractions, which led to the 
creation of a basic theory from the related works. Based on the theory, several abstractions were selected 
to fill in the gaps for the lacking tool support and we propose new algorithms for generating abstraction 
and expressiveness modules. The algorithms have been implemented and are thus the first fully 
automated abstractions for ontologies. They have been evaluated on adequacy with 128 ontologies. The 
generated modules have an average to good quality according to typical modularity metrics. The core 
implementation is also wrapped in a GUI called NOMSA (Novel Ontology Modularisation SoftwAre) for 



ease of used by the ontology engineer. The objective of the work is two-fold: 1) To create a basic theory 
of abstraction for ontology modules, and 2) To provide automated tools for generating such modules. 

The remainder of the chapter is structured as follows. In the background section, we discuss related works 
on modularity. This is followed by a section on structuring abstraction towards a theory, which is 
followed by our new approaches for modularisation. We then present the implementation and 
experimental evaluation of the algorithms section and a discussion section. Lastly, we provide a 
conclusion section. 

BACKGROUND 

There are three broad techniques for creating modules from a larger ontology, including techniques such 
as graph partitioning, logic-based approaches for locality, and queries. Yet, there is also a heavy reliance 
on manual methods for module creation: manual methods were used for module creation for 9 out of the 
14 module types identified in the framework for ontology modularisation (Khan & Keet, 2015). One well-
known approach to create modules, which is also heavily reliant on manual methods, is abstraction, which 
looks at simplifying an ontology in some way. Several different types of abstraction have been identified 
and formalised for logical theories and ontologies, notably (Ghidini & Giunchiglia, 2004; Keet, 2005, 
2007; Mani, 1998; Pandurang Nayak & Y. Levy, 1995). For instance, one can generalise by exploiting 
subsumption along the class hierarchy (Ghidini & Giunchiglia, 2004; Keet, 2007; Pandurang Nayak & Y. 
Levy, 1995), or along a partonomy, among other relations, and ‘relevance’-based deletions, however 
‘relevance’ may be specified (Keet, 2007). These types are promising for achieving abstraction, executing 
it and evaluating whether the resultant module is indeed a good one, but they either require additional user 
input or have not been implemented. 

The notion of abstracting models also has been looked into for managing large conceptual models, such 
as for Object-Role Modeling (Campbell et al., 1996; Keet, 2005) and Entity-Relationship diagrams 
(Jaeschke et al., 1994). Their core approach is to use ‘relevance’ measures by weighting language 
features. This cannot be reused directly for ontologies, as there are differences in language features and 
also those rules have not been implemented. To a certain extent related to weighting the language 
features, is the interplay between an ontology in, say OWL 2 DL and simplifying it into one represented 
in an OWL Profile (sub-language), or any combination of more/less expressive languages, giving rise to 
(OWL) ‘profile modules’ (e.g., (Krötzsch, 2012) ) and Protégé v5 has a feature for generating modules in 
some OWL Profiles1. The recently standardised DOL has taken this notion for expressiveness-based 
networks of modules as its core feature (Mossakowski et al., 2015). 

Abstractions for other types of models and languages have been proposed as well (see (de Lara et al., 
2013) for an overview), but they have even less features in common with ontologies. De Lara et al.’s (de 
Lara et al., 2013) four high-level types of abstraction—aggregation, merge, deletion, and view 
generation—have been proposed also for ontologies and conceptual models, but not the metamodel 
approach with “structural concepts”, for there is less heterogeneity in ontology languages.  

                                                
1 https://protegewiki.stanford.edu/wiki/P4MoveAxioms#Refactor 



Thus what abstraction entails for ontologies varies in the literature, and little has been implemented so as 
to examine the outcome of such abstraction operations beyond the manual examples given. 

STRUCTURING ABSTRACTIONS TOWARD A THEORY FOR ABSTRACTION 

Informed by the related works, we structure, clarify, and refine those notions of abstraction. Description 
Logics (DLs) is a formalization that may be used for representing ontologies which is used in the 
remainder of the Chapter. We assume that the reader is familiar with DLs. 

We do not claim that this is an exhaustive list ontologically, but is exhaustive with respect to current 
proposals. Also, we cast the net for ‘abstraction’ wide, as in (Fridman et al., 2015): the outcome of an 
abstraction operation is a simpler artefact (ontology/ logical theory/ conceptual model), or view thereof, 
that retains certain elements or features of the original one but not all. Cognitively, in the general case, the 
‘simpler’ is expected to be easier to understand because of the lower complexity and should be in some 
way a smaller artefact than the original. Ontologically, one intentionally removes or ignores certain finer-
grained details of the representation of reality, or one’s conceptualization thereof, in the abstraction 
process, i.e., it does not involve denying that certain details exist, but concerns the choice not to deal with 
that for some reason. We identified the following abstractions with respect to ontologies and related 
artefacts at the same stratum2. 

1. Abstraction along a hierarchy: 

a. Along a subsumption/class taxonomy: an entity is abstracted into its parent entity (e.g., 
(Ghidini & Giunchiglia, 2004; Keet, 2007; Pandurang Nayak & Y. Levy, 1995)); 

b. Along a partonomy (mereology): an entity is abstracted away into the whole that it is part 
of (Keet, 2007); 

c. Along a meronymic relation that is not parthood: an entity is abstracted away into the 
whole that it is part of, such as participation, membership, and constitution (Keet, 2007; 
Mani, 1998); 

d. Along an arbitrary transitive relation in a domain ontology; 

2. Abstraction along axioms with relations: 

a. Along relation chains or composition: this ‘shortcuts’ a chain/joins; e.g., for R ○ S ⊑	T, to 
keep T and ignore or delete R and S (where R ≠ S ≠ T); 

b. Along  a  class  definition,  also  called  folding  (Keet, 2007; Mani, 1998),  such  as  
removing  a class’s attributes and relations to other classes; 

3. Abstraction based on ‘relevance’, for which there are various ways in which certain entities are 
deemed more important than others: 

                                                
2 That is, we exclude other notions of abstractions in different contexts, e.g., those when needing to deal with going from object in reality to its computerised representation or 
from individual to its class or set. 

 



a. Manual identification of important entities for the subject domain that must remain in the 
ontology; e.g., in an ontology of pets, the popular ones—cats, dogs—are more important 
than, say, geckos and snakes (Schulz & Boeker, 2013); 

b. Relative well-connected important entities in the ontology, i.e., those entities 
participating in a lot of axioms, receive higher weighting cf. the less used ones and 
orphan entities that are then abstracted away (Natalya F Noy & Musen, 2009); 

c. Syntax-based rules where one language feature is deemed more important for the 
represented knowledge than another (Campbell et al., 1996; Jaeschke et al., 1994; Keet, 
2005); e.g., to provide more weight to existentially quantified relations over universally 
quantified ones, and therewith the classes involved in it obtain more points as being more 
important and thus survive the abstraction process; 

d. Hierarchy depth where entities higher up in the hierarchy are deemed more relevant and, 
e.g., removing everything below a specified depth (de Lara et al., 2013); 

4. Abstraction motivated by language expressiveness, i.e., driven by some ontology language’s 
features: 

a. Language feature deletion: simply delete any axiom that uses the offending language 
features to obtain a module in a less expressive language (Krötzsch, 2012); 

b. Approximation: use a set of rewriting rules to approximate the subject domain semantics 
of the axiom(s) that is(are) deleted, which typically increases the number of axioms 
(Botoeva et al., 2010); 

c. Language vocabulary elements: this involves removing certain elements that may be 
unnecessary for a certain use-case; e.g., data properties. 

For this work, we focus on designing algorithms to match those that are lacking for certain module types 
from an existing ontology modularisation framework and experiment (Khan & Keet, 2015). From the 
experiment, it was found that for several module types, manual methods were used. We wish to automate 
the methods for abstraction and expressiveness type modules by selecting the following abstractions to 
design algorithms for: 2.Generalisation along axioms (b), 3. ‘Relevance’-based abstraction (b, d), and 
4.Language expressiveness (a, c). 

MODULARISATION METHODS INVOLVING ABSTRACTIONS  

Within the scope of methods for modularisation, we focus on automating the methods used for generating 
abstraction modules, based on the types of modules identified in (Khan & Keet, 2015).There are four 
types of abstraction modules and one type of expressiveness module. To fill this gap, we create 
algorithms for five types of abstraction, which are listed in Table 1. 

We now define and introduce the algorithms for these types. We formally define each of the types of 
modules together with its corresponding algorithm. The class of an ontology is mentioned in several 
definitions, and we are referring to the set of axioms describing a class; the same holds for the object 
property and data property of an ontology. 



Table 1: The algorithms that are created for each of the abstractions 

Algorithm Abstraction 

AxAbs 2b. Generalisation along axioms with relations: Along a class definition 

VocAbs 4c. Language expressiveness: Along vocabulary elements 

HLAbs 3d. Relevance -based abstraction: Hierarchy depth 

WeiAbs 3b. Relevance -based abstraction: Relative well-connected important entities 

FeatExp 4a. Language expressiveness: Language feature deletion 

 

Axiom abstraction (Algorithm 1 (AxAbs)) generates a module without relations between entities; 
therefore, the technique decreases the horizontal structure of the ontology and makes it a bare taxonomy. 
Axiom abstraction is formally defined as follows:  

Definition 1 (Axiom Abstraction) Let 𝒪, 𝒪′ be two ontologies. 𝒮 = {α1,…,αk} a set of axioms involving at 
least two classes or a class and a data type, and either at least one object property or data property from 
𝒪 (i.e., GCIs). We say that 𝒪′ is an axiom abstraction module of	𝒪, if 𝒪′ ∪ 	𝒮 = 𝒪 such that there exists 
no element of 𝒮 in 𝒪′ (i.e., 𝒮 ∩	𝒪′ = Ø, hence ′	 ⊂ 𝒪. 
  
For instance, if Professor ⊑ ∃teaches.Course ∈	𝒮 (as it is not a simple subsumption between 
named classes nor is it a declaration of the Professor class; line 4 of AxAbs), then the axiom will be 
removed (lines 8-10) resulting in module 𝒪′		that will contain just the classes Professor and Course. 
Algorithm 1: Axiom abstraction to compute module M (AxAbs). 

1:Input Ontology O 

2:Output Module M 

3:for all axiom ∈	O do 

4: if axiom.type==subclass_axiom or axiom.type==declaration_axiom then 

5:  cExpression←axiom.getNestedClassExpressions() 

6:  cExpressionSet←cExpressionSet+cExpression 

// cExpressionSet is a data structure where we store all the 
class expressions 

7:   for all cExpression ∈	cExpressionSet do 

8:    if cExpression.type ≠class then 
9:     remove axiom 

10:    end if 

11:   end for 

12: else 

13:  remove axiom 

14: end if 

15:end for 

16:M←O 



Applying vocabulary abstraction to an ontology generates a module where a certain vocabulary element is 
removed from the ontology. 

Definition 2 (Vocabulary abstraction) Let 𝒪, 𝒪′  be two ontologies, 𝒞 ={	𝒞 1,...,	𝒞 k} the  set  of  classes  
in 𝒪, 𝒪𝒫 ={	𝒪𝒫1,...,	𝒪𝒫k} the  set  of  object  properties  in 𝒪,  and 𝒟𝒫 ={	𝒟𝒫 1,...,	𝒟𝒫k} the set of data 
properties in 𝒪. We say that 𝒪′ is a vocabulary abstraction module of	𝒪, if 𝒪′∪ 𝒞 = 𝒪	or 𝒪′	∪ 𝒪𝒫 = 𝒪 or 
𝒪′ ∪ 𝒟𝒫 = 𝒪 such that there exists no element of 𝒞, 𝒪𝒫, or 𝒟𝒫 in 𝒪′ (i.e., 𝒞 ∩ 𝒪 = 	Ø, 𝒪𝒫	∩ 𝒪 = 	Ø, 
𝒟𝒫	 ∩ 	𝒪	 = 	Ø), ℎ𝑒𝑛𝑐𝑒	𝒪′ ⊂ 𝒪. 
Algorithm 2: Vocabulary abstraction to compute module M (VocAbs).  

1:Input Ontology O, element e, element type t  

// e is a named class, object property, or data property and t is the type of 
e in O 

2:Output Module M 

3: if t==class then 

4:  remove e 

5: else if t==object property then 

6:  remove e 

7: else if t==data property then 

8:  remove e 

9: else if t==individual then 

10:  remove e 

11: end if 

12:M←O 

For instance, consider a version of the Infectious Disease Ontology (IDO) (Cowell & Smith, 2009) that is 
linked  to  the  BFO  foundational  ontology  and  the  developers  want  to  change  that  to DOLCE for 
interoperability in a heterogeneous system. Since the domain ontology does not contain any object 
properties, one could be interested in removing the object properties from the DOLCE-aligned version of 
the IDO ontology using the vocabulary abstraction algorithm. 

High-level abstraction generates a module where entities at a higher level are regarded more important 
than others (Algorithm 3 (HLAbs)), and is defined as follows, specifying the notion of depth in a 
taxonomy first: 

Definition 3 (Depth) Let 𝒪 be an ontology. A depth in the hierarchy of 𝒪 represents the subclass distance 
between the asserted hierarchy’s top-level entity and a given entity; e.g., depth 1 refers only to the top-
level classes, depth 2 refers to the top 2 layers of classes (the parent classes and its direct subclasses) and 
so on. 

Definition 4 (High-level abstraction) Let	𝒪, 𝒪′ be two ontologies, n be a depth where n is an integer ≥ 1. 
We say that 𝒪′ is a High-level abstraction module of	𝒪, if the entities with a depth > n are removed, 
hence, 𝒪′ ⊂		𝒪. 
Algorithm 3: High-level abstraction to compute module M (HLAbs). 

1:Input Ontology O, levelNumber 

2:Output Module M  

3:oldSet←ontology.getAxioms() 



4:for all class ∈		O do 

5: if class.superclasses() is empty then 

6:  topLevelClassSet←topLevelClassSet+class 

7: end if 

8:end for 

9:counter←0 

10:while counter ≠ levelNumber do 

11: for all topclass ∈	topLevelClassSet do 
12:  newset←newset+topclass.getAxioms() 

13:   if topclass.subclasses()≠ empty then 

14:    temp←topclass.subclasses() 

15:   end if 

//Repeat lines 3 - 13 for object properties and data 
properties. 

16: topLevelClassSet.clear() 

17: topLevelClassSet←temp 

18: end for 

19:end while 

20:for all axiom ∈	oldAxioms do 
21: if newAxioms does not contain axiom then 

22:  ontology.remove(axiom) 

23: end if 

24:end for 

25:M←O 

For  instance,  the  GFO-abstract-top  module  of  the  GFO  ontology  in  the  ROMULUS repository 
(Khan & Keet, 2016a) is based on the Abstract Top Level layer of GFO which contains mainly two  meta-
categories:  set  and  item. This module can be generated automatically with HLAbs by setting the depth 
to 2 (see Figure 1).  

Weighted abstraction deals with removing entities from an ontology that are deemed less important than 
others by assigning weight to the classes, properties, and individuals in an ontology. Our approach for 
determining this is based on examining entities that other entities are highly dependent on. For instance, 
in the pizza ontology, the class TomatoTopping is the most widely used, being referenced 61 times by 
other entities. Weighted abstraction is formally defined in Definition 7, availing of the notions of relative 
and absolute thresholds, which are introduced first. 

 



 
Figure 1: Generating a high-level abstraction module with depth = 2 from the GFO ontology. 

Definition 5 (Relative threshold) Let 𝒪 be an ontology, ℰ = {	ℰ1,...,ℰk} be the set of classes, object 
properties, data properties, and individuals in	𝒪. A relative threshold θ is a percentage value to decide 
which elements of ℰ are to be removed from	𝒪. Each element of ℰ is weighted according to the number of 
axioms it participates in and ordered according to a position p. If p(ℰi) < θ, ℰi is removed from 𝒪. 

Definition 6 (Absolute threshold) Let 𝒪 be an ontology, ℰ = {ℰ1,...,ℰk} be the set of classes, object 
properties, data properties, and individuals in 𝒪. An absolute threshold θ is a numerical value to decide 
which elements of ℰ are to be removed from	𝒪. Each element of ℰ is weighted according to the number of 
axioms it participates in and ordered according to a position p, If p(ℰi) < θ,	ℰi is removed from 𝒪. 

Definition 7 (Weighted abstraction) Let	𝒪,	𝒪 ′be two ontologies,	ℰ = {ℰ1,...,ℰk} be the set classes, object 
properties, data properties, and individuals in 𝒪. We say that 𝒪′ is a weighted abstraction module of 𝒪, if 
elements of ℰ are removed from 𝒪	according to some absolute threshold or relative threshold, hence, 𝒪′⊂	
𝒪. 

Algorithm 4 (WeiAbs) generates weighted abstraction modules. For instance, consider modularising the 
BioTop ontology (Beisswanger et al., 2008) using the weighted abstraction algorithm with θ = 4. For the 
class Phosphate, it has two referencing axioms: a declaration axiom and the axiom Phosphate ⊑ 
InorganicMolecularEntity. Since the number of referencing axioms (p(ℰ) =2) is less than the 
absolute threshold value (4), the Phosphate class is removed from the ontology. 

 

Algorithm 4: Weighted abstraction to compute module M (WeiAbs).  

1:Input Ontology O, thresholdPercentage, Weight_array, Class_array 

2:Output Module M 

3:i←0 

4:for all class ∈	O do 



5: Weight_array←Num_of_referencing_axioms 

6: Class_array(i)←class 

7: i←i+1 

8:end for 

9:Sort(Weight_array,Class_array) //Sort Weight_array from low to high, with 
Class_array corresponding to Weight_array 

10:limit←thresholdPercentage∗|Class_array| 
11:for i←0,limit do 

12: remove Class_array(i) from O 

13:end for //repeat lines 4-12 for ObjectProperty_array, 
DataProperty_array,Individual_array 

14:M←O 

Feature expressiveness modules deal with removing some axioms of the ontology based on the language 
features, e.g., cardinality constraints, disjointness, object property features etc. By manipulating complex 
constructs of the ontology language features, the feature expressiveness algorithm results in a simplified 
model of the ontology that maybe more suitable for scalability of the ontology-driven information system. 
We have designed seven rules for this to demonstrate it (discussed below). The algorithm takes these 
seven rules and removes them from the least important to the most important. At each rule removal, a 
‘layer’ of the ontology is produced where that ontology is represented in a language of lower expressivity 
than the previous layer. Once the algorithm is complete, seven modules (layers) are produced, each 
having a lower level of expressivity than the previous. Feature expressiveness is formally defined as 
follows: 

Definition 8 (Feature expressiveness) Let	𝒪, 𝒪′ be two ontologies, ℛ = {ℛ1,...,ℛk} a set of rules 
describing various OWL language features. We say that 𝒪′ is a feature expressiveness module of 𝒪, if we 
remove axioms that follow ℛ from 𝒪, hence 𝒪′⊂	𝒪. 

We decided to assign lower  points  to  those  OWL  ontology  features  that  serve  to  restrict and refine 
entities such as cardinality and property characteristics. We assign higher points to disjointness, equality 
and inequality, and complex classes since they can be used in conjunction to define new classes. Rule 7 
and rule 6 are concerned with OWL features pertaining to class creation, which is why we weight them as 
the most important; classes are the building blocks in an ontology. Rule 5 is concerned with instance data 
in an ontology which follows in terms of weighting. Rules 4 to rule 1 are concerned with specialising or 
refining the existing concepts in the ontology. This weighting is subjective and motivated by the 
modelling perspective on language features. It is conceivable, and possible if desired, to assign different 
weights to them; e.g., such that they are motivated by, and aligned with, the various OWL profiles. 

In the notation of the rules that follow for the axiom types, C, D, E are class descriptions that may be 
simple (named classes) or complex, R, S are object properties, U, V are data properties, and a, b, c 
individuals in the vocabulary of the ontology, n is a non-negative integer, and all declared knowledge 
adheres to the OWL 2 DL syntax. 

• R1:  Qualified cardinality in an ontology has an assigned weight of 1 point. Rules: Remove 
axioms of the following axiom type, if present:  C ⊑ ≤ n  R.D, C ⊑ ≥ n R.D, C ⊑	= n R.D, C ⊑	≤ n 
U.D, C ⊑	≥ n U.D, C ⊑	=n U.D. 



• R2:  Domain and range weigh 2 points. Rule: Remove axioms of the following axiom type, if 
present: ∃R.⊤ > ⊑ C,	⊤	⊑∀R.C. 

• R3: Object Property characteristics weighs 3 points. Rule: Remove axioms of the following 
axiom type, if present (in SROIQ’s shorthand notation): Func(R), Func(R−), Sym(R), Asym(R), 
Trans(R), Ref(R), Irr(R). 

• R4: Disjointness weighs 4 points. Rule: Remove axioms of the following axiom type, if present: C 
⊓	D ⊑	⊥, C ⊑	¬D. 

• R5: Assertions weigh 5 points. Rule: Remove axioms of the following axiom patterns, if present:  
a: C, R(a,b), U(a,c). 

• R6:  Atomic equivalence and equality weighs 6 points. Rule:  Remove axioms of the following 
axiom type, if present: C ≡ D, R ≡ S, U ≡ V, a = b, a ≠ b. 

• R7: Complex classes are the most important of the seven rules, which we weigh with 7 points. 
Rule: Remove axioms of the following axiom patterns, if present: C ⊑	D ⊓	E, C ≡ D ⊓	E, C ⊑	D 
⊔	E, C ≡ D ⊔	E. 

Algorithm 5 (FeatExp) uses these rules to generate feature expressiveness modules. For  instance,  when  
modularising  the  BioTop  ontology  (Beisswanger et al., 2008),  for  rule  2,  concerning  the domain,  
the axiom ∃processualQuality.⊤ ⊑ Quality is removed from the module, whilst keeping the 
entities Quality and processualQuality in the module.Algorithm 5: Feature 
Expressiveness to compute module M (FeatExp). 

1:Input Ontology O, ruleSet{r1,..r7} 

2:Output Module moduleSet{M1,..M7} 

3:i←1 

4:for all axiom ∈	O do 

5: for all ri ∈	ruleSet do 

6:  if axiom.type is ri then 

7:   remove axiom 

8:  end if 

9: end for 

10:Mi←O 

11:i←i+1 

12:end for 

Finally, note that the algorithms are linear for VocAbs and WeiAbs, and quadratic for AxAbs, HLAbs and 
FeatExp. 

 

ILLUSTRATION OF ALGORITHMS 

We now illustrate the algorithms introduced in the previous section with a sample ontology, where we 
focus on the WeiAbs and FeatExp algorithms. Consider the following axioms in a toy Burger ontology in 
Figure 2 (entity declaration axioms omitted). 



 

Figure 2: The burger ontology to which the algorithms are applied; see text for details. 

To generate a weighted abstraction module, we apply WeiAbs. Let us assume we wish to create a module 
whereby we remove 25% of the entities. To achieve this, we set the threshold value to 25%. First, we 
apply lines 4-8 of WeiAbs, where we weigh each class in the ontology with its number of referencing 
axioms and we store both the number of referencing axioms and each class in two arrays with 
corresponding indices. For line 9 of the algorithm, we sort the weight array values from low to high and 
the class array such that it matches the weight array. In line 10, a limit variable is calculated as the 
product of the threshold percentage (.25) and the number of classes in the ontology (21) which is rounded 
off to a value of 5. In lines 11-13, the classes with the 5 lowest values are removed, as displayed in 
Table 2. The classes in bold font are the 25% of the classes that are deemed less-important than the rest 
and are to be removed due to having the least number of referencing axioms in the ontology. 

Table 2: The classes of the burger ontology with the number of referencing 
axioms. Those in bold font are the classes to be removed for the resulting 
module 

WhiteBun 2 Medium 3 Patty 4 
Customer 2 Lettuce 3 BeefBurger 4 
Cheese 2 HealthyBurger 3 BurgerBun 4 
Sauce 2 BeefPatty 3 Hamburger 4 
Chef 2 Tomato 3 Filling 5 
WholeWheatBun 2 WellDone 3 PattyCook 6 
Person 3 Rare 3 Burger 7 

 
For the expressiveness feature module, each rule is applied according to the order in FeatExp. For each 
axiom in the ontology, lines 4-9 of the algorithm are executed, therefore each rule is applied as follows. 
Applying R1 results in the removal of Axiom 4, R2 removes Axioms 24-29, R3 removes Axiom 23 and 
R4 removes Axiom 22, and then the assertions in axioms 31-36 are removed (R5), and finally those for 
equivalence and equality (R6, Axioms 2, 9, and 30) and complex classes (R7), being Axioms 11 and 15. 

IMPLEMENTATION AND EVALUATION OF THE ALGORITHMS  



To solve the problem of laborious  manual  modularisation,  we  have  created  the  tool NOMSA to 
modularise ontologies, which incorporates the abstraction and expressiveness algorithms presented in 
Section 4. NOMSA allows the user to upload an ontology (including its imports), and select one of five 
approaches to modularise it. A module is then generated. NOMSA is a stand-alone Java application and 
can be downloaded from 
https://www.dropbox.com/sh/7a1ohvrn705upre/AACcqlFc3Ycd8kcYVTB4OTsFa?d
l=0 together with its screencast demonstrating usage and the test files.  

We have conducted a performance evaluation against other techniques that create other types of modules 
and it compared favourably to them, or at least in a similar timeframe. More interesting in the current 
scope is whether the new modules are any ‘good’ or ‘useful’. For instance, if a certain type of abstraction 
always generates a module that is about the same size as the original, this is neither a good way of 
abstracting to generate a module nor useful for the ontology developer; vv., it is. Module quality is 
difficult to assess, however, and the current evaluation is, to the best of our knowledge, the first attempt to 
assess it quantitatively. 

The selected metrics all have been proposed elsewhere and have been implemented in the TOMM tool 
that will be used for automated evaluation. Its metrics are summarized here so as to keep the chapter self-
contained; see the TOMM documentation (Khan & Keet, 2016b) for longer descriptions and references 
where they have been proposed first: 

• Size is the number of entities in a module |M|, counting classes, object and data properties, and 
individuals;  

• Relative size of the module compared to the original ontology; 

• Atomic size is the average size of a group of inter-dependent axioms in a module;  

• Appropriateness is measured by mapping the size of an ontology module to some appropriateness 
function value between 0 and 1 where a module with an optimal size is of value 1; 

• Intra-module distance is the distance between all entities in a module by counting the number of 
relations in the shortest path from one entity to another 

• Relative intra-module distance is the difference between distances of entities in a module M to a 
source ontology O;  

• Cohesion refers to the extent to which entities in a module are related to each other;  

• Attribute richness is the average number of attributes per class;  

• Inheritance richness describes how the knowledge is distributed across the ontology and is 
defined as the number of subclasses per class in an ontology;  

• Correctness states that every axiom that exists in the module also exists in the original ontology; 
nothing new should be added to the module; and  

• Completeness holds if the meaning of every entity is preserved as in the source ontology. 

The method for the experiment is as follows:  

1. Take a set of ontologies;  

2. Run each modularisation tool’s algorithm with a subset of 10 randomly selected ontologies from 
the test files to compare its features to NOMSA; 



3. Run the NOMSA tool for each ontology from the test files for all five algorithms; 

4. Run the Tool for Ontology Module Metrics (TOMM) (Khan & Keet, 2016b) for NOMSA’s 
modules to acquire metrics; and  

5. Conduct an analysis from the metrics for each module.  

The materials used for the experiment were as follows: Protégé v4.3 (Musen, 2015), SWOOP (Kalyanpur 
et al., 2006) , OWL Module Extractor (Grau et al., 2008),PROMPT (Natalya Fridman Noy & Musen, 
2004), PATO (Stuckenschmidt & Schlicht, 2009), TaxoPart (Hamdi et al., 2010), NOMSA using the 
default parameters, TOMM (Khan & Keet, 2016b), and 128 ontologies experimentation (Gardiner et al., 
2006; Lawrynowicz & Keet, 2016). The default parameters for each algorithm in NOMSA are as follows: 
element type = object properties in VocAbs, level = 3 in HLAbs, and relative threshold = 50% value in 
WeiAbs. The set of 128 ontologies were from various domains, and derived from the set of ontologies 
described elsewhere for experimentation (Gardiner et al., 2006; Lawrynowicz & Keet, 2016).The 
ontologies in the data set ranged in size from with 0 to 10 520 number of entities. Our tests were carried 
out on a 3.00 GHz Intel Core 2 Duo PC with 4 GB of memory running Windows 7 Enterprise. 

RESULTS 

The results of comparing NOMSA's features to the existing modularisation tools are shown in Table 3. 
For most of the features, NOMSA performs as well as or better than the other tools, with the benefit of 
full automation of the process. For the level of interaction, NOMSA is automatic; it is possible to run 
NOMSA without the user providing any initial input parameters. NOMSA includes the greatest number 
of algorithms in a tool (five) compared to the other tools. Each tool was classified by techniques from the 
existing framework for modularisation (Khan & Keet, 2015). For techniques, NOMSA used semantic-
based abstraction and language simplification techniques; semantic-based abstraction has not been 
applied in other tools to-date. NOMSA's algorithms take between 2-4 seconds to modularise. The 
locality-based algorithms have the quickest time (1 second) while partitioning algorithms take longer (6-
16 seconds). It was not possible to test PROMPT for time as it was completely user-driven. We do not 
compare the resultant modules of the other modularisation tools because they all generate different types 
of modules and their underlying techniques differ. 

All 128 ontologies were successfully modularised using all five algorithms in NOMSA and their metrics 
were generated using the TOMM module metrics tool (Khan & Keet, 2016b). The numerical metrics for 
the modules are displayed in Table 4 and we discuss the notable metrics here. For the data set in use, all 
five algorithms result in a reduction of the size of the original ontology, ranging from modules that have a 
relative size of 0.26 (WeiAbs) to modules that have a size of 0.85 (VocAbs) meaning that WeiAbs and 
VocAbs results in modules that are 26% and 85% the size of the original ontology, respectively. For the 
relative intra module distance, the modules of HLAbs and WeiAbs have values greater than 1 (18.66 and 
3.96 respectively) meaning that the entities in the module are to that degree closer than in the original 
ontology; this could aid in human comprehension of an ontology. The rest of the algorithms have values 
less than 1, meaning that the entities are to that degree further away than in the original ontology. For 
instance, removing axioms that describe equality between classes simplifies the expressivity of the 
module for easier tool processing, but increases the distance between classes. 

Table 3: Comparison of three features of the main modularisation tools against 
NOMSA and the average running times of the respective algorithms for 



the test set of ontologies (excluding the time of manual modularisation 
tasks of the other tools, such as loading the ontology and setting the 
parameters) 

 Level of 
interaction 

Algorithm 
complexity 

Technique Time 
(s.) 

SWOOP algorithm 1 Semi-automatic Quadratic Locality 1 

SWOOP algorithm 2 Automatic Quadratic Graph partition 6 

OWL module extractor Semi-automatic Quadratic Locality 1 

PROMPT User driven Unknown Query - 

PATO Automatic Unknown Graph partition 16 

Protégé algorithm 1 Semi-automatic Unknown Locality 1 

Protégé algorithm 2 Automatic Unknown Language based 1 

Protégé algorithm 3 Semi-automatic Unknown Locality 1 

Protégé algorithm 4 Semi-automatic Unknown Language based 1 

TaxoPart Automatic Linear Graph partition 15 

NOMSA AxAbs Automatic Linear Semantic based abstraction 3 

NOMSA VocABs Automatic Linear Semantic based abstraction 2 

NOMSA HLAbs Automatic Quadratic Semantic based abstraction 2 

NOMSA WeiAbs Automatic Linear Semantic based abstraction 4 

NOMSA FeatExp Automatic Quadratic Language based 3 

 

In order to determine whether the modules are of good quality, we can compare the results obtained from 
the generated modules, to what is expected (we refer to the benchmark dependencies between modularity 
metrics of the framework for ontology modularity (Khan & Keet, 2016b). Comparing the modules to the 
dependencies, for WeiAbs and FeatExp modules, all the metric values for the generated modules 
correspond with what is expected; these modules are of ‘good’ quality. For AxAbs, VocAbs, and HLAbs, 
some of the metrics do not correspond to the dependencies. For the 128 modules, AxAbs and HLAbs 
succeeds to meet 1 out of the 2 expected values for the modules. WeiAbs succeeds to meet 2 out of the 2 
expected values for the modules and FeatExp succeeds to meet the 1 expected value for the modules. 

Table 4: The average values for the metadata for all the generated modules; app. 
= appropriateness, IMD =intra module distance, coh. = cohesion, AR = 
attribute richness, IR = inheritance richness, rel. = relative, T(s.)= time 
in seconds. The metrics that count toward ‘good’ quality modules are in 
bold font, the remainder are ‘average’ 

 Size Atomic  App. IMD Coh. AR IR Rel. Rel. T(s.) 



Size Size IMD 

AxAbs 

Modules 

238.04 2.34 0.19 866345.6 0.06 0.49 4.84 0.71 0.68 3.83 

VocAbs 

Modules 

443.38 3.24 0.19 848372.2 0.06 0.45 4.78 0.85 0.79 2.47 

HLAbs 

Modules 

202.77 3.48 0.24 166797.1 0.03 0.47 4.86 0.67 18.66 2.40 

WeiAbs 

Modules 

138.58 3.40 0.30 142698.4 0.07 0.39 2.72 0.26 3.96 3.53 

FeatExp 

Modules 

291.89 2.44 0.18 757305.1 0.06 0.25 4.80 0.72 0.70 2.83 

Original 464.67 3.80 0.15 1866430 0.04 1.04 4.78 - - - 

 

We now examine why some of the metrics fail for the algorithms.  VocAbs and HLAbs modules are 
expected to have a large appropriateness value (>0.75) according to the benchmark dependencies. 
However, based on the calculation of the appropriateness value (Khan & Keet, 2016b), this is only 
possible where a module has between 167-333 axioms and in some cases a source ontology may have 
fewer axioms than 167; hence, the source ontology was already not in range and modularising it causes a 
further decrease in the axioms. For the ontologies of this experiment, for 50 of the 128 source ontologies, 
the number of axioms were less than 167, which would not result in the optimal appropriateness values. 
Following these finding, it appears that the appropriateness value needs to be potentially omitted from the 
dependency diagram for expected metrics. For AxAbs, the correctness measure needs to be true, but it 
fails meaning that some ‘new’ axioms were added to the module. Upon examining the TOMM metrics 
log files, it was found that, by the algorithm removing object properties, other entities have to be changed 
to be represented in the module. For instance, in the source Pizza ontology, ‘France’ is represented as 
using an object property, as follows: MozarellaTopping ⊑ ∃hasCountryOfOrigin.{Italy} 
and {Italy} ≠ {France} whereas, in the module using the AxAbs algorithm, ‘France’ is 
represented using a named individual, as follows: {France}: Country. TOMM recognizes this 
axiom as a new axiom in the module. 

DISCUSSION  

We have inventarised and structured notions of abstraction in the context of ontologies and related 
artefacts, which encompasses all the known notions of abstraction from the literature. Several categories 
from the theory were selected to use for automating modularisation ideas that were identified elsewhere 
(Khan & Keet, 2015) and hitherto could be carried out only manually. Their automation opens the road to 
examine quantitatively whether such methods are actually effective or not as process of abstraction. 
Given the results presented in the previous section, it is worthwhile to investigate the success of 
automating the remaining types of abstraction listed in Section 3. 



The algorithms and tool designed for abstraction solve the problems of users’ reliance on manual methods 
for modularity and the lack of abstraction techniques in existing tools.  Our  experiments  show  that  our  
algorithms  can  be  used  to  automatically modularise ontologies thus, it both broadens the scope of the 
extant set of algorithms for  automated  modularisation  (Grau et al., 2008; Hamdi et al., 2010; Kalyanpur 
et al., 2006; Musen, 2015; Natalya Fridman Noy & Musen, 2004; Stuckenschmidt & Schlicht, 2009)  to  
enable  generation  of  more  types of modules, and it refines and realises theory-based approaches, such 
as presented in (Ghidini & Giunchiglia, 2004; Keet, 2005, 2007; Mani, 1998; Pandurang Nayak & Y. 
Levy, 1995) so that it is usable by ontology engineers.  

The performance for the algorithms is good; the time taken to modularise the ontologies is fast for all five 
algorithms (under 5 seconds on average for each ontology). Assessing the quality of the metrics of the 
modules reveal that for this test set of ontologies, WeiAbs and FeatExp algorithms generate modules of 
‘good’ quality for all its modules according to the expected dependencies. For the remaining three 
algorithms, they generate some ‘good’ quality modules, but it is not possible to meet the expected metric 
values for all the modules; for some of the metrics depend on the source ontology. The resulting modules, 
are, however, still an improvement compared to the original ontologies; the sizes of the modules have 
been reduced considerably, and other metrics such as attribute richness, etc., are notably different when 
compared to the original ontologies, as displayed in Table 2. 

The use of existing module metrics uncovered interesting results. The metrics, and the tool that 
implements them, TOMM, were evaluated on a set of 189 existing ontology modules (Khan & Keet, 
2016b). This is slightly different from evaluating the process of generating modules. One may, however, 
extrapolate from the quality of a module to the process it has created: if the module is not good, then 
either neither was the process good or neither was the source ontology good, or both. For instance, instead 
of Schlicht and Stuckenschmidt’s appropriateness value having been informed by software modules 
(Schlicht & Stuckenschmidt, 2006) (and integrated in TOMM as such), this could also be judged or 
specified upfront by the user or by type of ontology or by more data on the size of current ontologies and 
modules. Regarding the latter, the quality of the ontology that will be subjected to some abstraction 
operation: if it has representation issues then the resultant smaller ontology may also have them; OWL’s 
enumerations/one-of—i.e., pretending that an instance is a class (universal/concept/type)—is one such 
modelling construct that is subject to debate. 

CONCLUSION 

Fourteen types of abstractions were identified and categorised, which may assist with the understanding 
of abstraction for achieving ontology modularisation. For five of them, new algorithms were designed to 
generate abstraction-based modules. They have been implemented in the NOMSA tool to modularise 
ontologies accordingly, which are the first fully-automated abstractions for ontologies. The quantitative 
evaluation of the modules’ quality with TOMM showed that for the weighted abstractions (WeiAbs) and 
feature expressiveness (FeatExp) algorithms, the modules match the expected values from the framework 
for modularity for ‘good’ quality modules. For the axiom (AxAbs), vocabulary (VocAbs), and high level 
(HLAbs) abstraction algorithms, some of its modules match the expected values and some fail to match 
all the values due to the source ontology. All the generated modules, however, are notably different from 
the source ontologies according to their metrics. 



 
For future work, it is worthwhile to investigate the design and implementation of algorithms and 
formalisations for the other categories of abstraction structured in Section 3 for ontology modularisation 
and to examine further the notion of ‘good’ abstractions and module metrics. 
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