Bootstrapping the Development of Services for
Wireless Community Networks

Keegan White*, David Johnson*, Melissa Densmore*, Hafeni Mthoko!
*Department of Computer Science, University of Cape Town, South Africa
1keeganthomaswhite(@gmai1 .com
2david. lloyd. johnson@gmail.com
3melissa.densmore@uct.ac.za
TOﬁ‘ice of the Pro-Vice Chancellor: Research, Innovation and Development, University of Namibia, Namibia
‘haf enimthoko@gmail.com

Abstract—Affordable Internet access has been critical for
continued remote education and work-from-home environments
during the COVID-19 pandemic. However, localized services
made available through a community network can also provide
high value for education, work and entertainment in com-
munities that lack affordable access. Creating these localized
services is technically challenging and in this paper, we take the
first attempt at describing the development issues faced when
creating these services as well as the first attempt at fostering
a collaborative approach to developing community networks in
Africa. We examine a case study relating to the development of a
localized service followed by detailing an improved containerised
architecture for easily bootstrapping new localized services using
a combination of a virtual machine, Docker containers and the
Traefik HTTP reverse proxy. Through the creation and subse-
quent sharing of our codebase and containerised architecture,
we aim to set a precedent for resource sharing and collaboration
amongst developers in the African wireless community network
space.

Index Terms—Wireless Community Networks, Open Source
Development, Virtualisation

I. INTRODUCTION

As South Africa continues to develop, access to the internet
has become an ever more pivotal tool and resource for many
population members. However, mobile data usage in low-
income areas in South Africa is limited. This is due to the high
cost of data relative to the per capita income in these areas
and variable mobile signal coverage, which results in low-
quality connections [1]] [2] [3]]. As a result, a large portion of
the country’s population is left with limited or no access to
the internet.

To rectify the above disparities, there has been an increase
in the creation of Wireless Community Networks (WCNs)
throughout South Africa. WCNs are created to connect com-
munities to the internet while also offering zero-rated local
services [4]]. However, this movement struggles from a lack
of collaboration and subsequently a lack of shared resources to
educate and build off of. Rey-Moreno et al. [5] examined over
thirty WCNs based in Africa, where more than sixty percent
were based in South Africa and found that the majority
of parties involved in the creation of WCNs were unaware
of other projects similar to their own. He concluded that
there is the need for collaboration and resource sharing to
facilitate a collective movement towards bringing communi-

cation technology to resource-constrained environments [35].
Creating a starting point for collaborative development in this
space is the main contribution of this paper. By sharing our
entire codebase we aim to set a precedent and motivate other
WCN owners to do the same, thus forming a collaborative
ecosystem for WCN development. While there have been
numerous papers addressing the benefits of WCNs in Africa
and examining their architecture [S]] 6] [7] [8], to the best
of our knowledge, this is the first attempt at examining the
development process taken on by contributors to an open
source WCN platform and a first attempt at documenting a
freely available containerised WCN server. Thus, there is no
relevant related work to our project.

This paper will focus on the iNethi project, an open
source platform that allows communities to quickly bootstrap
a community-built internet service provider (ISP) developed
with Docker containers. iNethi was started by a group of
researchers, developers, entrepreneurs, and community ac-
tivists. It aims to facilitate the development of WCNs simply
and intuitively while also abstracting the complex networking
knowledge needed to carry out such a task. Furthermore, by
facilitating an easier and more efficient way to produce a
WCN, these networks can become community-owned entities
and, thus, create a sense of ownership and control over users’
services and data. There is an active deployment of iNethi in
Ocean View (OV), a low-income area in Cape Town, South
Africa. There are currently ten Libremesh WiFi access points
in the community, which roughly three-hundred residents use
to access local services or the internet at R20 per gigabyte.

The open source nature of this project means that the code
for the system is openly available online, with anyone able
to contribute to the project. Students at the University of
Cape Town have been actively participating in the expansion
of iNethi, with numerous postgraduate projects being based
on the OV network and the university’s Developers’ Society
actively recruiting members to participate in iNethi. Such
projects have shown a need for a simple and efficient way to
set up a development environment that contributors can work
on individually and test their services before adding them to
the code base. We will examine a case study developed using
the original HAProxy architecture to illustrate the Docker
container architecture development process and challenges
encountered, followed by an improved architecture that sim-

plifies configuration complexity. This case study outlines the
need for a testing environment that nullifies the expansive
knowledge of networking needed to participate in WCN
service development while also emphasising the importance
of WCNss in addressing the digital divide in low-income areas
in South Africa. Additionally, it highlights the complex nature
services can adopt when catering for the needs of members
of low-income areas.

To solve the aforementioned issues, we modified our de-
ployment environment’s architecture and built an Ubuntu-
based Virtual Machine (VM), that is freely available on-
line and mirrors the OV deployment environment. The pre-
configured nature of the VM allows contributors to start
developing immediately and nullifies the need for a complex
understanding of the deployment environment. Therefore,
the VM facilitates collaboration through simplification and
improves the chances of successful deployments by mitigating
potential differences between development and deployment
environments. Additionally, the open source nature of the
configuration files and code used to create this VM makes
the process of creating a functional WCN server as simple as
running pre-existing build scripts. The VM uses Dnsmasq and
Traefik Docker containers to route traffic and create the links
needed throughout the Docker network to build a working
environment.

The remainder of this paper is organised as follows: Section
IT outlines the background of the iNethi project, Section III
motivates the need for the VM system in open source projects
like iNethi, Section IV presents an iNethi case-study that
exemplifies the need for the VM, Section V describes the
VM framework, and section VI concludes the paper.

II. BACKGROUND

This paper focuses on the iNethi deployment in OV, which
launched in 2018. The network is owned by OVCOMM Dy-
namic, an entirely community-owned cooperative. The direc-
tors of OVCOMM Dynamic come from various backgrounds,
including education, art and media, youth development, and
radio communication. In addition, they live in OV and are
therefore representative of the community.

The iNethi infrastructure consists of several Libremesh-
based WiFi access points located in the community. Li-
bremesh allows the network to make use of layer-two and
layer-three mesh protocols. This makes it possible for users to
move between access points without losing their connection.
Additionally, it creates room for network expansion and
accommodates scalability as the mixture of the two routing
approaches allows inter-cluster links to be established over
dedicated radio links. The aforementioned community access
points allow users to utilise the iNethi network and internet
through a voucher-based system. Vouchers cost R20 per
gigabyte, making them at least five times cheaper than the
lowest one-gigabyte data bundle offered by South African
mobile service providers [9].

WCNs, such as the deployment of the iNethi in OV, are
important pillars in societal communication architecture. The

creation of WCNs lessens the digital divide by establishing
more affordable internet access and communication technolo-
gies. This has become even more important in under-resourced
areas in light of the COVID-19 pandemic. E-learning has
become an important tool in combating the spread of COVID-
19 in South Africa. At OV secondary school, a staggering
36 percent of respondents to a school-wide survey could
not access online learning material during the nationwide
lockdown [9]]. This led to the creation of the iNethi NextCloud
platform, an open source cloud hosting service similar to
Dropbox that can be hosted on Linux servers, such as the
server located in OV. iNethi runs a global and local instance
of NextCloud that allows teachers to upload content to the
global server even when they are not within the confines of
the community. This content is synced with the local instance
on NextCloud, and students can access it via an app or through
a browser-based interface.

The creation of iNethi NextCloud stemmed from a need
within the community and was expanded upon in community-
led workshops with OV-based educators. This is an important
aspect of iNethi and its principles; all service creation and
additions to the network must stem from a need identified by
those within the community rather than a project which an
outside source deems interesting or useful.

The creation of iNethi and the local content distributed
within the community draws on the concept of locality of
sharing that Phokeer et al. [[1] found apparent in low-income
areas, with OV being one of the areas they examined. This
concept highlights how members of such communities com-
municate with people within their locality. This has motivated
iNethi to be a means of access to the global internet and
offer locally-hosted messaging, file sharing, video streaming,
music sharing, and the aforementioned e-learning platform
to community members. Instead of using the most popular
mainstream applications to message a neighbour via an inter-
national expanse of networks, users’ can use a locally-hosted
service. This thereby nullifies the need for a message to be
sent via expensive external data links. This is a key factor in
reducing the cost of communication and media consumption
within low-income areas. Therefore, sharing the code and
framework used to create and host features such as iNethi
NextCloud will allow other WCNs to adopt such a service,
thus benefiting the global WCN ecosystem as a whole.

There are currently few contributors to the iNethi project,
meaning that there are numerous important services that the
community has requested that have not been started and
numerous projects that have been started but never reached de-
ployment. The lack of continued involvement by contributors
and the number of unfinished projects can be attributed to the
skill gap that many contributors face and a general tendency
towards a lack of commitment. These are issues that have
already been documented in many other open source projects
[1o] (1] [12].

III. MOTIVATION

Up until now, there have only been a handful of long-
term contributors to the iNethi project. There have been many

students from the University of Cape Town that have tried to
contribute. However, the complex nature of the network has
led to a skill gap that many have not been able to overcome.
To set up an adequate test environment, contributors need
to have experience with low-level network configuration and
a good understanding of traffic routing within a network.
This is the main issue students, and other contributors face
when trying to help contribute to iNethi. In turn, this has
made collaborating with new contributors very difficult as the
few active contributors have to answer a myriad of questions
before these developers can start on projects. While this
is possible, active contributors do not always have time to
upskill new developers. These issues are best exemplified
by examining previous student contributions. In 2020, four
honours students attempted to create bespoke services for the
iNethi project. Considerable time investment was required
for integration and this was only achieved by one student.
Another student then was able to leverage this work to
create a plausible iNethi-hosted service, while the other two
students failed to integrate their solution with the deployment
environment.

The aforementioned issues have led to the development of
a fully functional VM replica of the iNethi server in OV. The
VM uses Dnsmasq and Traefik Docker containers to make up
the networking architecture. In addition, the scripts used to
set up the VM are also available online so that contributors
can build an iNethi environment on their own servers, VMs
or machines. While this not only equips contributors with an
adequate test environment, it also allows the iNethi project
to be easily reproducible. This allows more people to adopt
this architecture and thereby is a step towards addressing the
lack of shared resources amongst African WCN owners and
developers [J5].

Traefik is a Hypertext Transfer Protocol (HTTP) reverse
proxy and a load balancer designed to deploy microservices,
such as Docker containers [13]]. It configures itself auto-
matically and dynamically, abstracting the complex network
knowledge needed to set up a WCN test environment. Dns-
masq further simplifies this process by acting as a Domain
Name Server (DNS) within the VM, resolving requests for
services hosted by the VM. In addition, Dnsmasq is pre-
configured in the VM and does not require user intervention
to run even when new services are added.

Thus, using Traefik in conjunction with Dnsmasq allows
a contributor that is new to Docker and networking to start
a hosted service with a Docker compose file easily. Conse-
quently reducing the skill gap required to contribute to iNethi.

IV. INETHI CASE STUDY

In 2020 we conducted an honours project that focused on
creating a tailor-made music sharing service for the iNethi
architecture in a co-design fashion. This project was proposed
by members of the OV community and aimed to create the
aforementioned music sharing service with specific features
to allow local artists to share their music with residents
of their community and people residing outside of OV in
a simple, cost-effective and data-efficient way. The purpose

of this website was not only to encourage local content
creation and celebrate the local talent but also to stimulate
the local economy by providing the musicians with a way
of making money and marketing themselves online. This
was addressed by incorporating social media style profiles
where artists can advertise themselves, accept donations and
share contact details. Additionally, the platform included an e-
commerce component that allowed users to purchase coupons
to access restricted content or download music marked as
freely downloadable.

Background research was done before interviews with OV-
based musicians to gather context and design well-refined
questions. Three musicians were interviewed, and an OV-
COMM Dynamic director who has a passion for music and
interacts with the artists regularly.

This project set out to solve an important problem spe-
cific to low-income areas in South Africa, exemplifying the
significance of not only iNethi but WCNs in general.

A. Background and Community Insights

From interviews with the musicians based in OV, it was
apparent that the biggest issue faced by South African mu-
sicians in low-income areas is their inability to share their
music. This is due to a lack of an established platform that
aligns with the data restraints they and their fellow community
members face.

This has lead to music sharing in low-income areas being
dominated by Bluetooth and WhatsApp file sharing [14]
[15]]. There has only been one previous attempt to facilitate
music sharing in these communities, which resulted in the
development of a website called KasiMP3. It was designed
for use on feature phones with data constrained users in mind
[15] [16]. At its peak, KasiMP3 had over fifty-thousand artists
on their platform. However, this platform is no longer running.

During the feature selection process, the OV-based musi-
cians suggested that the music sharing system incorporated
a feature that allowed them to sell access codes, referred
to as coupons, for the music they chose to place behind a
paywall. This would replace their need to sell compact discs at
live performances, which they said had become less lucrative
over the years as digital music consumption has become more
prevalent.

B. Implementation

To allow musicians to grow their audience outside of OV,
two instances of the music sharing website were created. The
first was a version that would only be seen when someone
accessed the website using a wireless access point within
the community. The second was hosted on an Amazon Web
Services (AWS) server and was accessible by anyone. These
two versions will be referred to as the local and global
deployments, respectively. Each site only differed in terms of
feature accessibility. The global website only allowed users
to sign up as a customer and download music. In contrast,
the local website allowed users to sign up as customers or
musicians and upload their music.

\ /4———HTTPS
Internet

AWS Cloudlet
Server

{—HTTPS

[Docker Bridge Network]

HTTPS

[HAProxy]

A
HTTP Response
HTTP Requ Y HTTP };equest

Processes

t HTTP Wordpress

-« —
<—I—M:SQL¢Reques\

MySQL Response
Mounted

Volumes

Fig. 1. Architecture of the global music sharing website

+———————HTTP

VLAN l
Server
T ET RN -.) SRR .
Local Cloudlet T
Server HTTP-
[Docker Bridge Network]
Docker
HTTP
[HAProxy J

HTTP Response HTTP Request

HTTP Request—»-

A_yrre Response-| SRt MAi;)l}agement

Wordpress

T

4—J_M:SQL Request
¢ M

Mounted

Volumes

[«HTTP Response—

ySQL Response MySQL Request

MariaDB

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 R
|| Processes HIERRT
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 2. Architecture of the local music sharing website

These websites were built using various Docker containers.
The website front-end was built using WordPress to allow for
easy customisation from someone without computer science
knowledge. This aligns with the goal of iNethi to build
community-owned networks. In essence, much of this project
was built in the simplest way possible to allow for community
maintenance and ownership. The system consists of a Word-
Press Docker container, a MariaDB Docker container, and
a custom-built Python flask-based Application Programming
Interface (API) housed within a Docker container, known as
the system management API. The system management API
handles the coupon creation process and updates the download
statistics for each song.

When the system is built, the Docker containers are con-
nected to a Docker bridge network, which allows them to
communicate with each other. An HAProxy Docker container
was run as a reverse proxy server on both the AWS and
local servers. This takes in Hypertext Transfer Protocol Secure
(HTTPS) requests for the AWS server, verifies and decrypts
them and then passes them to the WordPress Docker container
as an HTTP message, see Fig. 1. In the local network, the
HAProxy container routes HTTP messages to the WordPress
container or system management API, see Fig. 2.

On both servers, the WordPress container carries out the
request and returns an HTTP response to the HAProxy
container, which is then encrypted in the case of the AWS
server and sent as an HTTPS response back to the user. In
the case of the local server, the process is the same, except the
response is sent in HTTP format. Optionally, the WordPress
container queries the connected MySQL database, hosted in
a MariaDB container, if data is needed from it.

The aforementioned request pattern includes actions like
downloading music and browsing the site. These requests
are handled by the containers and are thus architecture-
independent and run on any server that can run Docker.
However, in more complex cases where custom-built solutions
are needed to handle user requests, the system management
API or server will play a role in carrying out a portion
of the request. The two core features of the website fall
into these categories. Both the music upload process and
coupon creation process are handled by the server and API,
respectively.

The music upload process uses backend processes run on
the server to coordinate product creation between the local
and global server, i.e. creating an entry for a song in the e-
commerce store that acts as the music library. These processes
include updating the file name, moving the file into a perma-
nent location, syncing files between the servers, reading from
the database to get the user’s submitted information and then
using the WordPress WooCommerce API, the e-commerce
store used on the website, to create the product locally and
globally.

The coupon generation process uses the system man-
agement API to process user input and coordinate coupon
creation between the local and global servers. The API uses
calls to the WordPress WooCommerce API and information
gathered from the local database to create a coupon.

C. Deployment Issues

Although the system was successfully tested throughout
development within a local environment, the architecture-
dependent nature of the song upload process meant the de-
ployment on the local server was unsuccessful. This was due
to compatibility issues with the libraries used for the backend
processes. In addition to this, integrating the service’s Docker
containers, which were architecture-independent, into the de-
ployment environment was difficult and time-consuming. The
manual and environment-specific configuration that HAProxy
required led to friction when trying to deploy this service be-

fore testing could take place. When this phase was completed,
the testing phase brought to light the library compatibility
issues.

V. VIRTUAL MACHINE FRAMEWORK

Host Machine

Virtual

Machine Request ?

Response

Request

Response

Netfilter
Docker

HTTP Response
Response

HTTP Request
[dnsmasq] [Traefik]
DNS Request Request ‘ Request
DNS Response R

U Docker Bridge Network

1 |

DNS Request

DNS Response

Host Machine
DNS

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! Host Browser
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 3. Architecture of the VM

After the conclusion of the music sharing project, we had
seen the shortcomings of the current software development
life cycle employed in the iNethi project. It was noted that the
chance of an unsuccessful deployment of the music sharing
service could have been significantly reduced if we had a
development environment that mimicked that of the iNethi
deployment environment. To stop projects from experiencing
issues similar to those observed during this honours project,
the aforementioned VM was created.

The VM is built using Oracle’s VirtualBox, a free and
open source hosted hypervisor for x86 and AMDG64/Intel64
virtualisation [[17]. The VM itself runs the same OS as the
OV server, a 64-bit Ubuntu 18.0.4 long term support OS. By
mirroring the OS and the rest of the network within the VM,
we ensure that there will be no unexpected software or library
incompatibilities when deploying a new service.

Docker is pre-installed on the VM, and the architec-
ture is pre-configured. When Docker is installed, it creates
two custom Iptables chains named 'DOCKER-USER’ and
’DOCKER’ [18]. It also ensures that incoming packets are
always initially checked by these two chains. This allows the
host machine and the VM to access the services hosted on
the VM without any complex manual configuration. Iptables
is a pre-installed firewall system that interfaces with the
kernel’s Netfilter packet filtering framework. It interacts with
traffic through packet filtering hooks in the Linux kernel’s
networking stacks. Whether incoming or outgoing, every
packet will trigger these hooks allowing specific associated
programs to interact with these packets at key points in the
networking process.

Two Docker containers are pre-configured on the VM
to facilitate the networking needed to use the VM as a

development environment. Traefik is set up as a reverse proxy,
and Dnsmasq acts as the DNS.

Traefik was chosen as it is a simple and easily configurable
reverse proxy that eliminates the need for configuration of
each route to connect paths and subdomains to their mi-
croservices. Instead, this is done automatically as services
are started and removed. It intercepts and routes incoming
requests to the corresponding backend services using service
discovery to configure itself dynamically from these services.
Additionally, Traefik does not need to restart every time a
service is added, thereby minimising the overhead of adding
new services to the development environment. Furthermore,
this choice was motivated by the shortcomings of the old
HAProxy architecture as it was difficult to use and required
manual configuration to deploy a new service successfully.

Dnsmasq is used as it is a lightweight application that
is suitable for resource-constrained environments. Thus, the
DNS virtualisation will not take up computing power that
can otherwise be used for development [19]. Furthermore,
using Dnsmasq means that the VM can act as a self-contained
development environment because the hosted services can be
accessed from the VM’s browser. It also allows the host device
to access the VM’s hosted services with minimal configuration
on the host machine. The Dnsmasq configuration file does
not need to be edited by users, which abstracts knowledge of
DNS services and network traffic routing that a contributor
may otherwise need.

The first step in interacting with the VM’s services involves
domain name resolution, whether that be for a request sent
from the browser of the host machine or from within the VM,
see Fig. 3. Incoming requests on port 53 will be sent to the
internal Internet Protocol (IP) address of Dnsmasq. This will
act as a DNS and confirm that the request has reached the
VM. Any request on port 83 or 8080 is forwarded to Traefik,
which uses a wild card configuration to ensure that any
Uniform Resource Locator (URL) ending in ’.inethihome.net’
is forwarded to the relevant Docker container’s internal IP
address where the request will be processed. For example, if a
user were to search for ’splash.inethihome.net’ in the internet
browser on their host machine, the request would be sent to
their local DNS and resolve to the IP address of the VM, see
Fig. 3. This request is then be sent to the VM via its Network
Interface Card (NIC). The incoming packets will activate the
hook for port 53 in the Docker chain. This packet will be sent
to Dnsmasq, which sends a confirmation response packet to
the host machine via the NIC. Following this, the subsequent
packets will activate the port 80 hooks in the Docker chain
and be sent to the internal IP address of Traefik, which will
subsequently send them to the Nginx Docker container. The
Nginx Docker container is used to host the ’splash’ page - the
web page a member of the OV community would see when
they first connect to an access point.

This means developers only need to add Traefik labels
to their Docker compose file to integrate a service with the
environment. Once these are added, the above processes will
facilitate their service’s networking requirements, and they
will be able to test their services in a quasi-iNethi deployment

environment. Once the service has been tested on the VM, it
can easily be deployed on the local or global instance without
modification.

The VM is also pre-loaded with shell scripts used to
build the iNethi environment. A ’build all’ script allows
the user to select what services they wish to have running
on their machine. This script then automatically configures
the network and other settings needed to mirror the iNethi
deployment environment. Furthermore, these services can
be stopped and resumed with other scripts that are freely
available online. Therefore the creation of the VM is more
than just an effort to allow contributors to test their services.
It is a fully configured containerised version of iNethi and
allows the machine running it to utilise the VM as a pseudo
access point. Because the scripts to build this system are made
available to the public, this will allow people to build an
iNethi server effortlessly with no manual configuration. This
is a significant step in making iNethi a product rather than
just a project in the eyes of potential network administrators,
as the code that was used to set up the VM can be run on
any Ubuntu-based machine to set up a replica of the OV
deployment server. Therefore, we are facilitating the first step
towards creating a collaborative WCN ecosystem in Africa by
facilitating simple external deployments of our framework.

VI. CONCLUSIONS

Open source projects can struggle to gain traction and
contributors when there is a significant learning curve needed
to understand the codebase and deployment environment. Due
to the complex networking knowledge and understanding of
Docker that is needed to grasp the intricacies of iNethi,
there has been an issue in maintaining long-term contribu-
tors’ interest in the platform and deploying projects. This
has led to a small team of contributors and a slow code
output rate compared to other open source projects. These
factors motivated the development of a VM that imitates the
deployment environment of iNethi in OV. This will allow con-
tributors to focus on their individual projects without spending
time configuring a suitable development environment. By
abstracting the networking knowledge that would otherwise
be needed, the skills required to work on iNethi are less
specific, and projects that work on a developer’s local machine
have an increased chance of successfully integrating with the
deployment environment in OV.

Additionally, making this code freely available online facil-
itates the creation of more WCNs similar to iNethi and allows
other networks to use our code in pre-existing infrastruc-
tures. Ultimately this will allow for developers and network
administrators from different WCNs to create collaborative
relationships. This is a vital step in addressing the lack of
resource sharing and tools available in the African landscape
for deploying WCNSs and building services for them.

ACKNOWLEDGEMENTS

This work was supported in part by the Telkom Centre of
Excellence for Broadband Networks and Applications as well
as the Telecom Infra Project.

REFERENCES

[1] A. Phokeer, M. Densmore, D. Johnson, and N. Feamster, “A first look
at mobile internet use in township communities in south africa,” in Pro-
ceedings of the 7th Annual Symposium on Computing for Development,
2016, pp. 1-10.

[2] A. Phokeer, D. Johnson, and M. Densmore, “Characterisation of mobile
data usage in township communities,” Southern Africa Telecommunica-
tion Networks and Applications Conference (SATNAC), 2016.

[3] S. Hadzic, A. Phokeer, and D. Johnson, “Townshipnet: A localized hy-
brid tvws-wifi and cloud services network,” in 2016 IEEE International
Symposium on Technology and Society (ISTAS). 1EEE, 2016, pp. 1-6.

[4] L. Maccari and R. Lo Cigno, “A week in the life of three large wireless
community networks,” Ad Hoc Networks, vol. 24, pp. 175-190, 2015,
modeling and Performance Evaluation of Wireless Ad-Hoc Networks.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1570870514001474

[5] C. Rey-Moreno and M. Graaf, “Map of the community network
initiatives in africa,” L. Belli, Community connectivity: building the
internet from scratch, pp. 149-169, 2016.

[6] S. J. N. Noutat, T. D. Ndié, and C. Tangha, “Wireless community
network services: Opportunities and challenges for dcs: Case of rural
cameroon,” in International Conference on e-Infrastructure and e-
Services for Developing Countries. Springer, 2012, pp. 308-317.

[71 K. Sibanda, H. N. Muyingi, and N. Mabanza, “Building wireless
community networks with 802.16 standard,” in 2008 Third International
Conference on Broadband Communications, Information Technology
Biomedical Applications, 2008, pp. 384-388.

[8] A. Phokeer, S. Hadzic, E. Nitschke, A. Van Zyl, D. Johnson, M. Dens-
more, and J. Chavula, “inethi community network: A first look at local
and internet traffic usage,” in Proceedings of the 3rd ACM SIGCAS
Conference on Computing and Sustainable Societies, 2020, pp. 342—
344.

[9]1 A.van Zyl and D. L. Johnson, “inethi: locked down but not locked out,”

XRDS: Crossroads, The ACM Magazine for Students, vol. 27, no. 2, pp.

54-57, 2020.

I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost there:

A study on quasi-contributors in open-source software projects,” in 2018

IEEE/ACM 40th International Conference on Software Engineering

(ICSE). 1EEE, 2018, pp. 256-266.

G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software devel-

opers in open source projects: an internet-based survey of contributors

to the linux kernel,” Research policy, vol. 32, no. 7, pp. 1159-1177,

2003.

J. Coelho and M. T. Valente, “Why modern open source projects fail,” in

Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, 2017, pp. 186-196.

T. Labs. (2021, jun) traefik proxy.

[/traefik.io/traefik/

A. Schoon, “Digital hustling: Ict practices of hip hop artists in graham-

stown,” Technoetic Arts, vol. 12, no. 2-3, pp. 207-217, 2014.

——, “Distributing hip-hop in a south african town: From the digital

backyard studio to the translocal ghetto internet,” in Proceedings of

the First African Conference on Human Computer Interaction, 2016, p.

104-113.

M. Mapaya, “Download currency - the kasimp3 story,” Johannesburg,

2018. [Online]. Available: https://www.iafrikan.com/publications/

DownloadCurrency.pdf]

Oracle. (2021, jun) Virtualbox. [Online]. Available: https://www.

virtualbox.org/

[18] D. Inc. (2021, jun) Docker and iptables.

https://docs.docker.com/network/iptables/

S. Kelley. (2021, jun) Dnsmasq. [Online]. Available: https://thekelleys.

org.uk/dnsmasq/doc.html

[10]

(11]

[12]

[13] [Online]. Available: |https:
[14]

[15]

[16]

[17]
[Online]. Available:

[19]

Keegan White is studying his MSc. Computer Science at the University of
Cape Town, focusing his research on machine learning in software defined
networks.

David Johnson is an adjunct senior lecturer in computer science at the
University of Cape Town and the director and founder of iNethi.

Melissa Densmore is an associate professor in computer science at the
University of Cape Town and a co-founder of iNethi.

Hafeni Mthoko is a researcher in the Office of the Pro-Vice Chancellor:
Research, Innovation and Development at the University of Namibia.

https://www.sciencedirect.com/science/article/pii/S1570870514001474
https://www.sciencedirect.com/science/article/pii/S1570870514001474
https://traefik.io/traefik/
https://traefik.io/traefik/
https://www.iafrikan.com/publications/DownloadCurrency.pdf
https://www.iafrikan.com/publications/DownloadCurrency.pdf
https://www.virtualbox.org/
https://www.virtualbox.org/
https://docs.docker.com/network/iptables/
https://thekelleys.org.uk/dnsmasq/doc.html
https://thekelleys.org.uk/dnsmasq/doc.html

	Introduction
	Background
	Motivation
	iNethi Case Study
	Background and Community Insights
	Implementation
	Deployment Issues

	Virtual Machine Framework
	Conclusions
	References
	Biographies
	Keegan White
	David Johnson
	Melissa Densmore
	Hafeni Mthoko

