Teaching & Learning — Educational Tools

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

Supporting CS1 Instructors: Design and Evaluation of a Game
Generator

Jecton Tocho Anyango
Department of Computer Science,
University of Cape Town,
Private Bag X3, Rondebosch 7701
Cape Town, South Africa
anyjec001@myuct.ac.za

ABSTRACT

Serious games have shown much promise in education, including
in the teaching of programming. However, instructors who teach
introductory programming often do not have the specialised skills
to create serious games. One way to address this problem is to use
domain-specific game generators to create customised games as
needed. This paper presents the design and empirical evaluation of
a prototype game generator tool - the Recursive Game Generator.
30 programming instructors evaluated the tool and found it useful
(87%), easy to use and learn (80%); and were satisfied with the tool’s
effectiveness and efficiency. Their positive experiences suggest that
such a higher-order tool has the potential to increase the adoption
of serious games in programming education, and broadly meet the
needs of a diverse audience of instructors.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; CS1.

KEYWORDS

Introductory programming; CS1; game design; game generator;
usability; recursion; novices; instructors

ACM Reference Format:

Jecton Tocho Anyango and Hussein Suleman. 2021. Supporting CS1 Instruc-
tors: Design and Evaluation of a Game Generator. In 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (ITiCSE
2021), June 26-July 1, 2021, Virtual Event, Germany. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3430665.3456306

1 INTRODUCTION

Within the Computer Science Education(CSE) community, research
has shown that programming novices and teachers continue to face
serious difficulties and challenges [14] [17]. We use the recursion
topic as a case study in this paper given its difficulty among stu-
dents and the demonstrated potential of using games to teach the
concept [5] [6]. Educators often look to technology to support their
teaching. To this end, some scholars have suggested Technology

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8214-4/21/06.

https://doi.org/10.1145/3430665.3456306

115

Hussein Suleman
Department of Computer Science,
University of Cape Town
Private bag X3, Rondebosch 7701
Cape Town, South Africa
hussein@cs.ac.za

Enhanced Interventions (TEI) such as game authoring platforms
[18] [24]. However, most current game authoring tools and tech-
nology platforms are commercial and target specialised developers
or game programmers [32]. Meanwhile, developing serious games
is time consuming, difficult and expensive - hindering teachers
who may wish to adopt GBL in their mainstream teaching [31].
Serious games are games designed for use in contexts other than
entertainment or to achieve goals other than entertainment such
as education, health, cultural heritage e.t.c [12, 19]. They are games
designed to educate, train, and inform [11]

The purpose of the current study is to explore the user experi-
ences of programming instructors when using a prototype game
generator tool - the Recursive Game Generator (RGG) as a means
of creating serious games. The focus is on a prototype to support
CS1 educators. It is not about evaluating improvement in student
learning outcome or knowledge gained. Consequently, the primary
respondents in the study are higher education programming in-
structors who are the target beneficiaries of the proposed idea of
the tool.

To address the study purpose, this paper reports on evaluation
of the usability of a prototype game generator tool - the Recursive
Game Generator (RGG) with local teachers by answering three
research questions:

(1) How useful and easy to use do programming instructors
from Kenya and South Africa find the RGG generator tool?

(2) What is the opinion of programming instructors from Kenya
and South Africa about the RGG tool’s learnability?

(3) How satisfied are programming instructors from Kenya and
South Africa with the RGG generator tool?

According to Sauro and Lewis [27], usability refers to the extent
to which a system can be used by specified users (programming in-
structors in this study) to achieve specified goals with effectiveness,
efficiency and satisfaction in a given context of use. To these, a
leading scholar in usability studies adds memorability, learnability,
and few errors [21]. This work is guided by these 2 definitions.

The main contribution of this paper is therefore that it provides
empirical evidence of the suitability of a prototype game generator
tool for supporting instructors to easily create games to teach CS1.

The rest of the paper is organised as follows: Section 2 presents
related work. Section 3 describes the tool’s prototype design and
development. Experimental design is presented in section 4 while
results are in section 5. Discussion is in section 6. Lastly, section 7
presents conclusions and future work.

https://doi.org/10.1145/3430665.3456306
https://doi.org/10.1145/3430665.3456306

Teaching & Learning — Educational Tools

2 RELATED WORK

Studies on serious games authoring tools are becoming increasingly
relevant among different education research communities. For in-
stance, Bouzid et al. [4] suggested a game generator tool capable of
authoring several instances of the MemoSign game for deaf learn-
ers. On the other hand, a semi automatic generator of tactile video
games to help visually impaired children was proposed by Sepchat
et al. [28]. Recently, the SHARE-IT project was designed to support
parents and teachers of autistic children [24]. Although both the
MemoSign game generator and the SHARE-IT project were worthy
efforts in the right direction, they were not empirically evaluated.
The uAdventure toolkit [25] is an improvement of the e-adventure
platform [30] and is built on top of the Unity game engine. Both are
instructor oriented tools for authoring video games for e-learning
materials like books. Consequently, they may not be adapted for
programming games. We extend the work by Perez-Colado et al.
[25] by building RGG on top of the Unity game engine but the
proposed tool authors programming games.

Within the CSE community too, authoring toolkits have started
featuring prominently as a useful area of research as illustrated in
the Framework for Gamified Programming Education (FGPE) [23].
However, the project seems to be at the conceptual stage. Khenissi
et al. implemented the Learning version of Pacman Game Genera-
tor (LPG) and the Instruction Right Place Game Generator (IRPG)
for teachers [11]. Although the generated games were aimed at
teaching programming, the focus was on the Mapple programming
language. The games generated in the current work allow students
to practice programming in Python - the most popular language
for teaching CS1 [29].

Regarding evaluating serious game authoring tools, some au-
thors have suggested that empirical evaluation should be based on
how well the generated games score against the generation criteria
[22]. These criteria include the targets set by the tool designers
such as: (i) game quality; (ii) game inventiveness; (iii) game video/
audio excellence; (iv) game length; (v) constraints on solvability;
(vi) game mechanics or (vii) any other design parameters. Another
study identified usability evaluation criteria for game authoring
tools for teachers as: (i) easy of learning; (ii) error rate; (iii) efficacy;
and (iv) efficiency [3].

The work by Machiori et al. presents the Writing Environment
for Educational Video games (WEEV) system - an instructor ori-
ented game authoring tool [18]. Two formative evaluations - one
with 9 teachers and another with 20 students revealed that the tool
was complex to use. Particulary, users singled out understandability
and learnability usability problems. The study by Gaeta et al. [7]
evaluated the usability of an authoring tool for creating Storytelling
Complex Learning Objects (SCLOs) in the ALICE project. A System
Usability Score (SUS) of 60.625 was reported, which could be con-
sidered relatively lower than the satisfactory threshold of 68 with
minimum score 45 and maximum 77.5. In computing education,
Khenissi et al. [11] conducted an experiment with 167 first grade
students to evaluate the effectiveness of serious games created us-
ing the IRPG and LPG generators compared to learning versions
of existing games. Results suggested a positive impact on student
knowledge gain when using the generated serious games. However,

116

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

students cannot practice coding with the games generated by the
LPG tool.

In summary, despite the educational potential of serious games,
not much work has been done in the area of game authoring in
computing education. Particularly, it appears limited empirical eval-
uation has been conducted with educators (primary users). The
current study extends existing works by proposing the idea of a
programming game authoring tool and evaluates a prototype with
CS educators.

3 TOOL DESIGN AND DEVELOPMENT

3.1 Design Goal

The design goal of this project was to develop a usable prototype
to support programming instructors with no game programming
skills to easily create serious games to teach novices programming
in CS1.

3.2 Design theory

The design of the proposed tool is guided by two theories: (i) dif-
ferentiating interfaces theory; and (ii) the complexity theory [10].
Differentiating interfaces ensures the design of different interfaces/
user profiles for different users (novices and advanced users). On
the other hand, complexity theory hides the complexities of the
underlying technologies from the users (teachers).

3.3 Design Method

Some previous works have explored methods to guide development
of serious games [8] [26] . For instance, Ibrahim and Jaar [8] pro-
posed a model comprising game design, pedagogy and learning
content modelling. On the other hand, Saavedra [26] suggested a
software process to game design comprising 5 steps: (i) require-
ments gathering - setting learning goals; (ii) design - creating digital
resources; (iii) development - creating the game; (iv) testing; and
(v) postmortem. This proposal best suits large scale commercial
serious games but may not be practical for learning institutions.
The design process of the prototype game generator tool followed
the User Centered Design (UCD) method. We adopted three key
UCD design elements:

(1) User participation
Two types of users (primary and secondary) are suggested
by Maguire et al. [16]. In this study, CS1 instructors are the
primary users (participants) while students are secondary
users.

—
N
~

Contextual inquiry

This involves considering the users’work needs in context.
We considered contextual elements such as difficult CS1 top-
ics, time allocated to the topic of recursion by the curriculum,
diversity among CS1 learners in the context of Kenya and
South Africa, recursion topic teaching scenarios, instructor
game programming skills and game duration.

Iterative design

We established early contacts with primary users through
a needs assessment study with CS1 lecturers [2]. This was
followed by a conceptual qualitative user requirements study.

—
&S
=

Teaching & Learning — Educational Tools

During development, we continuously focused on user re-
quirements and iteratively tested the tool with 2 experienced
volunteer CS1 educators from the department of computer
science of the university. The two acted as co-developers by
means of cooperation in a non-linear and iterative manner
[33].

We adapted a game design methodology from the early works by
the Game Development for Computer Science Education working
group of Innovation and Technology in Computer Science Educa-
tion 2016 (ITiCSE 2016) [9] and Saavedra [26] in the design of the
prototype of a Web-based game generator tool called RGG!.

3.4 Game generation
Game generation process occurs in 9 steps as follows:

e Step 1: Select how you want to create a game (using an
existing example or from scratch or using a progress file)
Step 2: Select how the player will view the game

Step 3: Select the scene you want in the game environment
Step 4: Add assets such as ground and wall sprites

Step 5: Select the background image that will be displayed
in the game

Steps 6 and 7: Add, edit or delete a game level

e Step 8: Give the game a tittle and a brief description

e Step 9: Download the generated game

Figure 1 (a) shows the first step of the generation process. Figure 1
(b) illustrates level 3 game play interface of a sample game built from
the Mushroom picker game. It is worth noting that the generated
games present players (students) with a pedagogical goal (learning
outcome/ task) and an Integrated Development Environment (IDE)
where students complete python code snippets. For instance, Table
1 illustrates the alignment of the Mushroom Picker game levels to
pedagogy in CS1. For each level completed successfully, trophies
and health points are awarded.

4 EXPERIMENTAL DESIGN

The proposed tool is evaluated next in an online experiment with
educators in terms of its usability.

4.1 Participants

30 CS1 instructors from higher learning institutions from Kenya and
South Africa participated in the evaluation. Kenya and South Africa
were chosen mostly for convenience purposes. The subjects from
South Africa were recruited from a list of programming lecturers
created during the Southern African Computer Lecturer’s Associa-
tion (SACLA) conference in 2018. On the other hand, respondents
from Kenya were recruited by snowball sampling through recom-
mendations by instructors since the first author (a programming
lecturer from Kenya) had already established a few contacts. The
sample was stratified by age, highest education attained, institution,
experience, gamers verses non gamers, and lastly use of GBL in
teaching. 60% of the respondents considered themselves as gamers
while only 20% had used games in teaching. Other demographic
information is summarised in Table 2.

!https://programmingwithfun.net/

117

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

4.2 Procedure

Ethical clearance was sought from the University of Cape Town
and other relevant institutions. Next, a pilot study was conducted
with 5 instructors from the University of Cape Town to: (i) ensure
that respondents understood the questionnaire terminology; (ii)
reduce chances of bias due to leading questions; and (iii) ensure that
the questionnaire could be completed in a reasonable amount of
time. Once this was done, invitation emails were sent to potential
participants for the main study. Willing participants signed up
and completed a consent form. This was followed by sending a
pretest survey. Upon receiving a completed pretest survey from
each participant, a post test survey was then sent out. In addition, a
link to the tool, a video tutorial and a task sheet were provided. The
design approach adopted reduced chances of social desirability bias
[20] and gave users a reasonable exposure to the tool (1 month). This
reduced chances of variability in the usefulness dimension ratings
[15]. Upon completing the posttest survey, interested participants
entered into a draw for a chance to win a prize worth 500 South
Africa Rand as compensation for their time and Internet data. In
total, 10 prizes were available.

4.3 Data collection

Quantitative UX data was collected through user self-reported data.
Likert scales were used to collect both pretest and posttest study
data. The standard Usefulness, Satisfaction, and Ease of use (USE)
questionnaire [15] was adopted, given the recent evidence of it’s
reliability and validity [13]. The pretest survey contained questions
about demographics. On the other hand, the posttest survey had
questions on the user task experience; RGG’s usability and one
last overall question on final comments about the tool. Data on the
final user comments was collected through an open ended question.
All responses were collected and stored using the LimeSurvey tool.
This ensured reliability of the given answers as each participant
only answered once using a given token.

4.4 Analysis and Presentation

Statistical Package for Social Scientists (SPSS) software was used
to perform descriptive analysis on collected data. USE was then
scored separately for each of the four dimensions (usefulness, ease
of use, ease of learning, and user satisfaction) by calculating the
percentages of respondents in each category of the Likert scale
for each item in the dimension. Stacked bar charts were used to
analyse and present the percentage of users who fall into each cat-
egory or level [1]. These percentages were then compared across
the categories or tasks. For the estimated time on task and per-
ceived task success, histograms were used to present frequencies.
Meanwhile, text responses from final user comments were cate-
gorised, coded and analysed thematically [34]. Emerging themes
were discussed and agreed upon by the first and second authors.
Only results from respondents who completed both the pretest and
posttest questionnaires were included in the analysis.

5 RESULTS

For all the post task rating figures, the tasks are: Task 1 - creating
an account and logging in, Task 2 - creating a custom game using a

Teaching & Learning — Educational Tools

Recursive Game Generator - RGG

Home My Account Generate Help
Welcome to the Game Generator Tool

Select an example game you'd like to load to custom or build your own game from:

DandD Text-Based Game =

OR

Create own game from scratch

OR

Select a previously saved progress file from your computer to load:

Browse for progress file..

Stage 1 out of 9

(a) Game generation - step 1

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

Python IDE
File Edit Options Help
Speed (x1):

lealth: 950 points

Complete the recursive function to pickup all
mushrooms

global commands, y
commands += "u"
up()

y-=1

def DOWN():

global commands, y
commands += "d"
down()

y+=1

def PICKUP()

global commands, x, y
commands += "p"
maplyl[x] = "OPEN"
updateMap()

def pickUpAllMushRooms():
#insert code here

Output Clear Output

(b) Mushroom picker game Level 2 play interface

Figure 1: Examples of generated games

Table 1: Alignment of the Mushroom picker game levels to pedagogy in CS1

Level ‘ Learning outcome/ task

‘ Programming concept

Python code snippet

1 Complete the given code to pick up all mushrooms in
the level

Function

def pickUpAllMushrooms():
#insert commands here
#available commands:

RIGHT()

LEFT()

UP()

DOWN()

PICKUP()

2 Complete the given code snippet by entering a stopping
condition for the algorithm

Recursion - Stopping condition

def pickUpAllMushrooms():
#insert stopping condition below

if():

return:

RIGHT()

PICKUP()

RIGHT()

pickUpAllMushrooms ()

3 Complete the recursive function to pick up all the mush-
rooms

Full Recursion

def pickUpAllMushrooms():
#insert code here

given example, Task 3 - Customising the created game, and Task 4 -
downloading the created game.

5.1 Task difficulty experience

To understand the level of difficulty users experienced when per-
forming different tasks, participants were asked to rate the extent
to which they agreed or disagreed with the statements on task
easiness. Figure 2 shows a visualisation of the results in a stacked
bar chart.

Overall, the findings suggest that most users found the tasks easy
to perform with the RGG tool with creating user account/ logging
in (94%) and downloading the created games (91%) being ranked as
the easiest. This was followed by creating a custom game using a
given example (74%) and lastly customising the game (71%). In total,
another 20% found creating a game using an example difficult.

5.2 Task success

To evaluate the effectiveness of the tool in supporting educators

118

when using it to create games to teach programming, we asked
respondents to perform the four tasks and rate their levels of suc-
cess. We measured task success on three levels (complete success,
partial success and failure). Complete success and partial success
were further broken down into success with or without assistance.
On the other hand, failure was further categorised into two: (i)
thought the task was easy but it was not; and (ii) failure - gave
up. These levels were clearly explained to participants before us-
ing the tool [1]. Figure 3 is a visualisation of the results - where
‘failure 2’stands for failure thought the task was easy but it was
not, ‘success 1’stands for partial success with assistance, ‘success
2’stands for partial success without assistance, ‘success 3’stands for
complete success with assistance and ‘success 4’stands for complete
success without assistance. The findings suggest that participants
were successful in most tasks. Considering the sum of participants
who successfully completed the tasks with or without assistance,
27 (90%) successfully created a user account and logged in. This
was followed by downloading the created game 25 (83%), creating a
game using an example 23 (77%), and lastly customising the created

Teaching & Learning — Educational Tools

Table 2: Demographic information

Variable Category Freq Percentage
%
Age 25 - 30 years 2 6
31 -35 years 5 16
36 -40 years 8 27
41 -45 years 11 38
46 -50 years 3 10
Above 50 years 1 3
Education Bachelor degree 2 6
Masters degree 20 67
PhD. or higher 8 27
Institution High school 2 6
Tertiary college 14
University 24 80
Experience Less than 5 years 2 6
5 -10 years 12 40
11 -15 years 11 38
16 -20 years 3 10
Over 20 years 2 6

game 20 (66%). Two participants (6%) reported failure in tasks 2 and
task 3. Finally, no failure was reported in task 1 and task 4.

5.3 Estimated time on tasks

We asked participants to give an estimate of the time they spent
while performing each of the four tasks to measure the tool’s ef-
ficiency. This was done on a 5 point scale. Time ranges (discrete
time intervals) were used, where 1 represented 10 to 13 minutes.
2 represented 7 to 10 minutes, 3 represented 5 to 7 minutes, 4 rep-
resented 3 to 5 minutes and 5 represented 0 to 3 minutes. Figure
4 is a visualisation of the spread of completion times by all users
presented as frequencies of participants in each scale. Results sug-
gest that 23 (77%) users spent 0-3 minutes in task 1 followed by 15
(50%) in task 4 in the same time category. Comparing task 2 and
task 3 under the category of users who estimated spending 10 - 13
minutes, task 2 had 5 (17%) of the respondents while task3 had 4
(13%). No participant spent more than 7 minutes in task 4.

Creating account and logging in is casy

Creating a game using an example is easy

Customising the created game is easy

Downloading the created game is casy

I I I I I I I I I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

B Strongly disagree El Disagree CISlightly disagree Bl Neutral
O slightly agree B Agree B Strongly Agree

100 %

Figure 2: Task Difficulty Rating

5.4 Usability

To further evaluate the usability of the RGG tool, respondents an-
swered the USE questionnaire [15], which has four dimensions:

119

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

24
22
. 20
T
<
£
5
B 12
K 1l 10 10
£ 10
[=}
(<] 5
z) 3 , 5 3 D 3 , 3|3
1 11
G o =Ml ool el Il o ol
T T T T
Task1 Task2 Task3 Task4
| D0 Failure gave up D0 Failure 200 Success 108 Success 28 Success 3 1 Success 4 |
Figure 3: Task Success Rating
23

20 -
2
g 15
£
g
g u 12
£ 1 9 g
% 7 7
S .5 55

S I [[Jo o]

T T T T
Task1 Task2 Task3 Task4

‘ 000-3 mins 0 03-5 mins 1 05-7 mins B8 7-10 mins B0 10-13 mins ‘

Figure 4: Estimated Time on Task Rating

Usefulness, Ease of use, Ease of learning and Satisfaction. Partici-
pants’ratings of the tool’s usability on these dimensions were scored
from 1 for strongly disagree to 7 for strongly agree.

5.4.1 Usefulness.

Results obtained suggest that most CS1 lecturers surveyed answered
affirming the usefulness of the RGG tool. As can be seen in the
stacked bar chart in Figure 5a, overall, 87% agreed that the tool
would be useful for helping programming instructors to create
games to teach the recursion topic in CSI. Another 94% of the par-
ticipants agreed that the tool would make the things programming
instructors want to accomplish with the tool easier to get done. On
the other hand, 84% said that the tool would save them time when
creating games to teach programming. Lastly, 81% reported that
the RGG tool would either make instructors more productive in
their teaching, more effective or give them control over their teach-
ing activities. However, some 10% of the users found the tool not
useful in saving time, suggesting possible improvements in future.
These results demonstrate the pedagogical promise of the RGG
game generator tool in teaching programming in higher education.
54.2 Ease of Use.

Figure 5b presents the subjective rating of the tool’s ease of use by
participants. Clearly, most participants found the tool easy to use
(87%), simple to use (81%), usable (80%) and requiring the fewest
steps to accomplish tasks (74%).

5.4.3 Ease of Learning.

When asked to evaluate the usability of the tool on the learnability
dimension, results suggest that, overall, participants found RGG
easy to learn. In total, about 80% of the respondents said that they
either learnt the tool quickly or that they could easily remember

Teaching & Learning — Educational Tools

Tool would make me more effective
Tool would make me more productive

Tool would be useful in creating CS1 games
‘Tool would give me more control

Tool would make things easier get done

Tool would save me Time

n n n n n n n
20% 30% 40% 50% 60% 70% 80% 90 %

B strongly disagree E Disagree I Slightly disagree B Neutral

O Slightly agree B Agree B Strongly Agree

I
0% 10% 100%

(a) Tool Usefulness Rating

Tool is casy to use

Tool is simple to use

Tool is user friendly

Requires fewest steps to do tasks

I I I I I I I I
20% 30% 40% 50 % 60 % 70 % 80% 90 %

M Strongly disagree I Disagree [Slightly disagree B Neutral
O slightly agree B Agree B Strongly Agree

(b) Ease Of Use Rating

I
0% 10% 100 %

I am satisfied with the tool

T would recommend the tool to a friend
It is fun to use the tool

Tool works the way [want it to

‘The tool is wonderful

Inced to have tool at my work

n n n n n n n n n
0% 10% 20% 30% 40% 50 % 60 % 70% 80% 90 %
B Strongly disagree B Disagree [Slightly disagree B Neutral

O Slightly agree B Agree B Strongly Agree

100 %

(c) Satisfaction Rating

Figure 5: Tool Usability Ratings

how to use it. Another 77% reported that it was easy to learn how
to use it. Generally, these results suggest learnability of the tool.
Among the participants who disagreed, 13% reported that it was
neither quick nor easy to learn to use the tool.

5.4.4 User Satisfaction.

We asked the participants the extent to which they agreed or dis-
agreed that they were satisfied with the tool based on the satisfac-
tion items in the USE questionnaire. Figure 5¢ presents a summary
of responses as a percentage. In total, results obtained show that
83% of programming instructors agree that they would recommend
the RGG generator tool to a friend with 56% strongly agreeing.
Another 81% agreed that they both needed to have the tool at their
work place and that it was wonderful. On the other hand, 77% felt
that the tool was fun to use. Lastly, approximately 75% of the re-
spondents were either satisfied with RGG or thought it worked the
way they wanted it to.

5.5 Final user comments

Lastly, we asked respondents to give one final comment about the
RGG tool to gain more insight about their impressions. Respondents
were of the opinion that RGG was a useful and noble tool for
supporting teaching programming in higher education (80%). In
addition, a majority (75%) strongly recommended it’s adoption in

120

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

teaching programming in higher education. Below are some direct
exemplars:

e “Its a useful learning tool to us lecturers and students.”
e “I strongly recommend it for adoption in teaching Recursion
in Computer Programming.”

6 DISCUSSION

Overall, findings from this study’s usability evaluation with edu-
cators agree with those of previous similar work [30]. The finding
that the prototype can generate games that can allow students to
practice coding is in line with the design principle for programming
games [5]. For games generated from the Mushroom picker and
Runner top down maze examples - upon completing the code snip-
pet, students can visualise the execution of their code/ algorithm
through a character moving recursively as recommended by Chaffin
etal. [5]. Additionally, the games created from the mushroom picker
example use simple commands (LEFT(), RIGHT(), UP(), DOWN())
for novices in sync with the ALICE programming game [6]. The
game generator prototype not only extends these design principles,
it also authors customisable games inline with recommendations
in [18]. One limitation of the current study is the missing feedback
from students. However, the primary users of the proposed tool are
CS1 educators who interact directly with it. Students are merely
secondary users who are affected by the capability of the primary
users to carry out tasks with the tool [16]. None the less, a follow
up study will attempt to address this issue. Consequently, by testing
the idea of a game generator tool using a prototype and evaluat-
ing it with instructors, positive findings on usability and general
comments potentially demonstrate that the tool could be suitable
for adoption by CS1 instructors to support teaching novices. We
therefore argue that the evidence is valid and useful for advancing
GBL in the context of Africa but could also be tested globally by
the wider CSE research community to further GBL research.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented findings from design and usability evalu-
ation of a prototype game generator tool called RGG. We evaluated
the prototype with 30 CS1 instructors from Kenya and South Africa
who answered a survey on the usability. Results demonstrate that
the prototype is effective, efficient, useful, and easy to use and learn.
Additionally, instructors are satisfied with the prototype and highly
recommend adoption of a game generator tool idea for teaching
programming. Future research direction will involve testing the
prototype with an instructor and CS1 students in a semester course
offering to provide preliminary insights on how it would practically
work in a learning set up.

8 ACKNOWLEDGEMENTS

This research was financially supported by Hasso Plattner Institute
for Digital Engineering HPI, the National Research Foundation of
South Africa (Grant numbers: 85470 and 88209) and University of
Cape Town. The authors acknowledge that opinions, findings and
conclusions or recommendations expressed in this publication are
that of the authors, and that the NRF accepts no liability whatsoever
in this regard.

Teaching & Learning — Educational Tools

REFERENCES

(1]
(2]

(3]

[10]

[11]

[12

[13]

[14]

[15

[17]

(18]

William Albert and Thomas Tullis. 2013. Measuring the user experience: collecting,
analyzing, and presenting usability metrics. Newnes.

Jecton Tocho Anyango and Hussein Suleman. 2018. Teaching Programming in
Kenya and South Africa: What is difficult and is it universal?. In Proceedings of
the 18th Koli Calling International Conference on Computing Education Research.
1-2.

Johan Baldeén, Anna Puig, Inmaculada Rodriguez, Cristian Muriel, and Leandro
Zardain. 2017. A Conceptual Model for Educational Game Authoring: A Showcase
in Math Games. In Design, User Experience, and Usability: Designing Pleasurable
Experiences, Aaron Marcus and Wentao Wang (Eds.). Springer International
Publishing, Cham, 347-361.

Yosra Bouzid, Mohamed Ali Khenissi, and Mohamed Jemni. 2015. Designing a
game generator as an educational technology for the deaf learners. In Information
& Communication Technology and Accessibility (ICTA), 2015 5th International
Conference on. IEEE, 1-6.

A Chaffin, Katelyn Doran, Drew Hicks, and Tiffany Barnes. 2009. Experimental
evaluation of teaching recursion in a video game. In In Proceedings of the 2009
ACM SIGGRAPH Symposium on Video Games, Sandbox '09. ACM, 79-86.
Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D tool for
introductory programming concepts. Journal of computing sciences in colleges 15,
5 (2000), 107-116.

Matteo Gaeta, Vincenzo Loia, Giuseppina Rita Mangione, Francesco Orciuoli,
Pierluigi Ritrovato, and Saverio Salerno. 2014. A methodology and an authoring
tool for creating Complex Learning Objects to support interactive storytelling.
Computers in Human Behavior 31 (2014), 620-637.

Roslina Ibrahim and Azizah Jaafar. 2009. Educational games (EG) design frame-
work: Combination of game design, pedagogy and content modeling. In 2009
International Conference on Electrical Engineering and Informatics, Vol. 1. IEEE,
293-298.

Chris Johnson, Monica McGill, Durell Bouchard, Michael K. Bradshaw, Victor A.
Bucheli, Laurence D. Merkle, Michael James Scott, Z. Sweedyk, J. Angel Velazquez-
Iturbide, Zhiping Xiao, and Ming Zhang. 2016. Game Development for Computer
Science Education. In Proceedings of the 2016 ITiCSE Working Group Reports
(Arequipa, Peru) (ITiCSE ’16). Association for Computing Machinery, New York,
NY, USA, 23-44. https://doi.org/10.1145/3024906.3024908

Aous Karoui, Iza Marfisi-Schottman, and Sébastien George. 2017. A Nested
Design Approach for Mobile Learning Games. In Proceedings of the 16th World
Conference on Mobile and Contextual Learning (Larnaca, Cyprus) (mLearn 2017).
Association for Computing Machinery, New York, NY, USA, Article 4, 4 pages.
https://doi.org/10.1145/3136907.3136923

Mohamed Ali Khenissi, Fathi Essalmi, and Mohamed Jemni. 2015. Comparison
between serious games and learning version of existing games. Procedia-Social
and Behavioral Sciences 191 (2015), 487-494.

Devorah Kletenik and Deborah Sturm. 2018. Game Development with a Serious
Focus (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,
652-657. https://doi.org/10.1145/3159450.3159588

Gao M Kortum P and Oswald F. 2018. Psychometric Evaluation of the USE
(Usefulness, Satisfaction, and Ease of use) Questionnaire for Reliability and
Validity. In Proceedings of the Human Factors and Ergonomics Society Annual
Meeting. 1414-1418.

Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen. 2005. A study of the
difficulties of novice programmers. Acm sigcse bulletin 37, 3 (2005), 14-18.
Arnold M Lund. 2001. Measuring usability with the use questionnaire12. Usability
interface 8, 2 (2001), 3-6.

Martin Maguire. 2001. Context of use within usability activities. International
Journal of Human-Computer Studies 55, 4 (2001), 453-483.

Sohail Igbal Malik and Jo Coldwell-Neilson. 2017. A model for teaching an intro-
ductory programming course using ADRI. Education and Information Technologies
22,3(2017), 1089-1120.

Eugenio] Marchiori, Javier Torrente, Angel del Blanco, Pablo Moreno-Ger, Pilar
Sancho, and Baltasar Fernandez-Manjon. 2012. A narrative metaphor to facilitate

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

educational game authoring. Computers & Education 58, 1 (2012), 590-599.
Florian Mehm. 2010. Authoring Serious Games. In Proceedings of the Fifth Inter-
national Conference on the Foundations of Digital Games (Monterey, California)
(FDG °10). Association for Computing Machinery, New York, NY, USA, 271-273.
https://doi.org/10.1145/1822348.1822390

Clive Nancarrow and Jan Brace. 2000. Saying the “right thing”: Coping with
social desirability bias in marketing research. Bristol Business School Teaching
and Research Review 3, 11 (2000), 1-11.

Jakob Nielsen. 1994. Usability engineering. Morgan Kaufmann.

Joseph C Osborn, Melanie Dickinson, Barrett Anderson, Adam Summerville,
Jill Denner, David Torres, Noah Wardrip-Fruin, and Michael Mateas. 2019. Is
Your Game Generator Working? Evaluating Gemini, an Intentional Generator.
In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, Vol. 15. 59-65.

José Carlos Paiva, Ricardo Queiros, José Paulo Leal, and Jakub Swacha. 2020. FGPE
AuthorKit - A Tool for Authoring Gamified Programming Educational Content. In
Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer
Science Education (Trondheim, Norway) (ITiCSE "20). Association for Computing
Machinery, New York, NY, USA, 564. https://doi.org/10.1145/3341525.3393978
Kaska Porayska-Pomsta, Keith Anderson, Sara Bernardini, Karen Guldberg, Tim
Smith, Lila Kossivaki, Scott Hodgins, and Ian Lowe. 2013. Building an intelligent,
authorable serious game for autistic children and their carers. In International
Conference on Advances in Computer Entertainment Technology. Springer, 456—
475.

V. M. Pérez-Colado, L. J. Pérez-Colado, M. Freire-Moran, 1. Martinez-Ortiz, and
B. Fernandez-Manjon. 2019. uAdventure: Simplifying Narrative Serious Games
Development. In 2019 IEEE 19th International Conference on Advanced Learning
Technologies (ICALT), Vol. 2161-377X. 119-123.

Arturo Barajas Saavedra, Francisco J. Alvarez Rodriguez, Jaime Muifioz Arteaga,
René Santaolaya Salgado, and César A. Collazos Ordofiez. 2014. A Serious Game
Development Process Using Competency Approach: Case Study: Elementary
School Math. In Proceedings of the XV International Conference on Human Com-
puter Interaction (Puerto de la Cruz, Tenerife, Spain) (Interacción '14). ACM,
New York, NY, USA, Article 99, 9 pages. https://doi.org/10.1145/2662253.2662352

[27] Jeff Sauro and James R Lewis. 2016. Quantifying the user experience: Practical

statistics for user research. Morgan Kaufmann.

Alexis Sepchat, Nicolas Monmarché, Mohamed Slimane, and Dominique Ar-
chambault. 2006. Semi automatic generator of tactile video games for visually
impaired children. In International Conference on Computers for Handicapped
Persons. Springer, 372-379.

Esther Shein. 2015. Python for beginners.

Javier Torrente, Angel Del Blanco, Eugenio] Marchiori, Pablo Moreno-Ger, and
Baltasar Fernandez-Manjén. 2010. < e-Adventure>: Introducing educational
games in the learning process. In IEEE EDUCON 2010 Conference. IEEE, 1121—
1126.

[31] Javier Torrente, Pablo Moreno-Ger, Baltasar Fernandez-Manjon, and José Luis

Sierra. 2008. Instructor-oriented authoring tools for educational videogames.
In 2008 Eighth IEEE International Conference on Advanced Learning Technologies.
IEEE, 516-518.

Javier Torrente, Angel Serrano-Laguna, Conor Fisk, Breid O’Brien, Wanda Alesky,
Baltasar Fernandez-Manjon, and Patty Kostkova. 2015. Introducing Mokap: A
Novel Approach to Creating Serious Games. In Proceedings of the 5th International
Conference on Digital Health 2015 (Florence, Italy) (DH ’15). ACM, New York, NY,
USA, 17-24. https://doi.org/10.1145/2750511.2750529

Irene Visscher-Voerman and Kent L Gustafson. 2004. Paradigms in the theory
and practice of education and training design. Educational Technology Research
and Development 52, 2 (2004), 69-89.

Rebekah Willson. 2019. Analysing Qualitative Data: You Asked Them, Now What
to Do With What They Said. In Proceedings of the 2019 Conference on Human
Information Interaction and Retrieval (Glasgow, Scotland UK) (CHIIR ’19). ACM,
New York, NY, USA, 385-387. https://doi.org/10.1145/3295750.3298964

https://doi.org/10.1145/3024906.3024908
https://doi.org/10.1145/3136907.3136923
https://doi.org/10.1145/3159450.3159588
https://doi.org/10.1145/1822348.1822390
https://doi.org/10.1145/3341525.3393978
https://doi.org/10.1145/2662253.2662352
https://doi.org/10.1145/2750511.2750529
https://doi.org/10.1145/3295750.3298964

	Abstract
	1 Introduction
	2 Related work
	3 Tool Design and Development
	3.1 Design Goal
	3.2 Design theory
	3.3 Design Method
	3.4 Game generation

	4 Experimental Design
	4.1 Participants
	4.2 Procedure
	4.3 Data collection
	4.4 Analysis and Presentation

	5 Results
	5.1 Task difficulty experience
	5.2 Task success
	5.3 Estimated time on tasks
	5.4 Usability
	5.5 Final user comments

	6 Discussion
	7 Conclusions and Future Work
	8 Acknowledgements
	References

