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ABSTRACT
Clustering is frequently used in the energy domain to identify dominant electricity consumption patterns of
households, which can be used to construct customer archetypes for long term energy planning. Selecting a useful
set of clusters however requires extensive experimentation and domain knowledge. While internal clustering
validation measures are well established in the electricity domain, they are limited for selecting useful clusters.
Based on an application case study in South Africa, we present an approach for formalising implicit expert
knowledge as external evaluation measures to create customer archetypes that capture variability in residential
electricity consumption behaviour. By combining internal and external validation measures in a structured
manner, we were able to evaluate clustering structures based on the utility they present for our application.
We validate the selected clusters in a use case where we successfully reconstruct customer archetypes previously
developed by experts. Our approach shows promise for transparent and repeatable cluster ranking and selection
by data scientists, even if they have limited domain knowledge.
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1 INTRODUCTION

Energy planning requires insights into the electricity consumption behaviour of customers to
predict long term demand. Unlike commercial and industrial customers who consume electri-
city predictably, the daily consumption behaviour of residential households is highly variable
(Swan & Ugursal, 2009). In South Africa economic volatility, income inequality, geographic
and social diversity contribute to increased variability of daily household consumption be-
haviour (Heunis & Dekenah, 2014). Understanding this variability is important for policy
and planning decisions such as tariff design, network planning and operation, and demand
response programmes (Yilmaz et al., 2019).

The aggregate consumption behaviour, or representative load profiles, of residential cus-
tomers has been modelled extensively to yield standard consumption patterns, or archetypes,
for dominant groups of households that have common attributes (Swan & Ugursal, 2009).
These archetypes consolidate expert knowledge and represent the electricity consumption of
typical customer classes. They are an essential tool for demand planning, but are difficult
and tedious to construct and do not cater for changes in household behaviour. This is a seri-
ous limitation that impacts energy demand planning. Daily consumption behaviour can vary
drastically for individual households over time (Dent et al., 2014b). In addition, several years
may pass before archetypes are updated. The dominant customer classes can become outdated
as new groups of households emerge which may not correspond to the current archetypes. An
example of this is households in rural areas in South Africa, where thatch roof huts with limited
appliances have gradually transitioned to brick buildings with modern appliances, resulting
in a significant change in electricity consumption.

Cluster analysis can be used to identify dominant daily energy consumption patterns for
different types of households. Current approaches usually aggregate households (Dang-Ha
et al., 2017; McLoughlin et al., 2015) or assume that their consumption behaviour is static.
This limits them in their ability to create archetypes that consider variability in daily con-
sumption patterns over time. Another challenge is cluster validation. As acknowledged in the
data mining community, clustering problems are notoriously difficult to evaluate. Internal
validation measures are frequently limited to specific application scenarios, and insufficient
on their own (Liu et al., 2010). External evaluation measures can be used instead, but they
require ground-truth labels that indicate true clusters (Song & Zhang, 2008). These are often
not available because clustering is an unsupervised learning problem and true clusters are typ-
ically unknown. Evaluation by visual inspection is thus relied on, but can be biased by the
interpretation of the visual representation (Gogolou et al., 2019). In the electricity domain
these challenges are evident. While internal metrics are well established, cluster rankings
produced by internal metrics yield conflicting results and are usually insufficient for discrim-
inating between different cluster sets (Jin et al., 2017). Cluster selection is thus typically done
through visual inspection, which can be time consuming, adhoc, subjective and difficult to re-
produce. When archetypes are updated, the visual evaluation process also has to be repeated.
External validation measures based on domain knowledge are sometimes used to rank and
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guide the selection of a useful cluster set (Xu et al., 2017). However, there are no standard
external metrics or guidelines for choosing such measures.

The data mining literature suggests that cluster quality is best evaluated against the spe-
cific objectives of the application (Aggarwal, 2015). Even so, data scientists often have lim-
ited domain knowledge, which can hinder them from identifying useful clustering structures.
The field of ontology engineering provides structured methods for acquiring and representing
knowledge from domain experts. One such method, competency questions, is widely used by
ontology engineers to acquire application requirements and to compare and evaluate candid-
ate conceptualisations of domain knowledge for a specified context (Grüninger & Fox, 1995).
Using an application case study in South Africa, we present an approach that uses informal
interviews to derive competency questions, which we operationalise as external evaluation
measures to identify a cluster set that represents the most useful daily consumption patterns
in our dataset for analysing variability in household behaviour. This cluster set then presents
a library of dominant daily consumption patterns that can be used to generate customer ar-
chetypes and analyse variability in national residential electricity demand in South Africa.

We build on previous work where we compared and analysed different clustering tech-
niques for generating daily electricity consumption patterns (Toussaint & Moodley, 2019) and
developed external clustering evaluation measures from competency questions (Toussaint &
Moodley, 2020). We validate our results in a use case where we use the pattern library to
create customer archetypes for South African households. The archetypes generated by the
approach are compared against equivalent benchmark archetypes developed by experts. We
show that combining internal and external cluster validation measures enables the selection
of a cluster set that is useful for our application. In particular, we found competency questions
to be a promising technique for eliciting and representing application requirements. Our ap-
proach has potential to enable transparent and repeatable cluster selection by data scientists
with limited domain knowledge.

The paper reviews relevant literature in Section 2, and presents the dataset and clustering
experiments in Section 3. In Section 4 we outline our approach to elicit competency questions
and formalise application requirements to specify the clustering objective. The clustering
results are presented in Section 5. In Section 6 we demonstrate how the pattern library can
be applied in a use case to create customer archetypes. Finally, we discuss our findings in
Section 7 and conclude in Section 8.

2 LITERATURE REVIEW

This section describes previous work on data processing, algorithms and evaluation measures
for clustering electricity consumption patterns, based on the systematic analysis and compar-
ison of clustering approaches in 25 load profile clustering studies published before and in
2018, listed in Table 12 in Appendix A. We discuss internal and external clustering measures
used in the domain, present and discuss the limitations of existing work on cluster analysis for
constructing customer archetypes, and introduce competency questions as a method to illicit
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and specify domain knowledge and application requirements.

2.1 Clustering Residential Load Profiles
Long term energy end-use models in the electricity sector are based on information about cus-
tomers and the dynamics of change (Feinberg & Genethliou, 2006). Customer behaviour is
frequently approximated with load profiles or load curves, which are time-varying electricity
consumption patterns. A daily load profile describes the electricity consumption pattern of a
household over a 24 hour period. A representative daily load profile (RDLP) characterises the
electricity consumption of a customer archetype (Chicco et al., n.d.), e.g. a rural household
on a weekday in winter. RDLPs are obtained by aggregating individual household load pro-
files that share common attributes, such as socio-demographic characteristics and temporal
attributes at varying granularity like a year, season, month and daytype.

Table 1: Frequency of use and performance of clustering algorithms for clustering domestic load profiles,
based on 25 studies captured in Appendix A Table 12.

Abbreviation Algorithm Frequency of use Best
k-means 19 4

HC Hierarchical Clustering 12 2
SOM Self-Organising Maps 7 2

kmedoids 4 2
MFTL Modified Follow-The-Leader 4 2

fuzzy k-means 4
SOM+k-means 3 1
AKM+HC 3
fuzzy c-means 2

AKM Adaptive kmeans 1 1
WFAKM Weighted Fuzzy Averages kmeans 1 1
IRC Iterative Refinement Clustering 1 1
MKM Modified kmeans 1

SAX k-means 1
Spherical k-means 1

AVQ Adaptive Vector Quantisation 1
DBSCAN 1

FTL Follow-The-Leader 1
GMM Gaussian Mixture Model 1

Random Forests 1
Voronoi decomposition 1
SOM+HC 1

Cluster analysis is an unsupervised machine learning approach that partitions data points into
groups of similar data points (Aggarwal, 2015). It is widely used in the electricity domain
to generate RDLPs and construct customer archetypes. We performed an extensive literature
survey to find the most widely used and most effective algorithms for clustering electricity
consumption patterns. Table 1 summarises common clustering algorithms, how frequently
they have been used to cluster load profiles and how often they were found to be the best
algorithm when multiple algorithms were evaluated, based on the 25 studies that we surveyed.
16 studies compared different algorithms, but 4 of them did not identify the algorithm that was
best suited for their application. We assume that this was due to challenges with evaluating
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clustering structures. For our context and application we concluded that variants of kmeans,
self-organising maps (SOM) and hierarchical clustering are the most widely used algorithms.
We implemented three of the algorithms: kmeans, SOM, and a combination of the two. We
selected the Euclidean distance measure, which was used as similarity measure in the majority
of studies and is appropriate in our application where sequences have the same length and a
one-to-one mapping between data points.

Clustering residential load profiles has been well explored to understand customer beha-
viour (Jin et al., 2017), for demand side management (Yilmaz et al., 2019), and to create
customer archetypes for tariff development (Chicco et al., 2002) and small scale renewable
generation (Xu et al., 2017) in the electricity sector. Many studies from developed countries in
the northern hemisphere cluster relatively homogeneous populations, where domain experts
expect that the variability in electricity demand is primarily influenced by seasonal and week-
day effects, rather than by extreme variance in consumption between households. Splitting the
input data along temporal dimensions prior to clustering is thus common in the literature, for
example Cao et al. (2013) split data for summer and winter seasons, and Dang-Ha et al. (2017)
additionally split data for weekdays and weekends. Xu et al. (2017) cluster highly variable
households spread across the United States. They found pre-binning along a consumer demand
dimension, first clustering load profiles by overall consumption and then by load shape, an
effective method to improve clustering results in this context. We use a similar two-stage pre-
binning with integral kmeans to stratify our variable population along a consumer demand
dimension before clustering.

2.2 Cluster Evaluation
Despite the practical potential of cluster analysis, evaluating clustering structures remains
a challenge for applications in the residential electricity sector. Over 18 different validity
metrics were used across the studies we reviewed. Most of them are internal measures, but 3
studies used external measures.

2.2.1 Internal Clustering Validation Measures
Internal metrics rely only on information in the data to measure the quality of a clustering and
typically evaluate clusters for their compactness and distinctness (Liu et al., 2010). The five
internal metrics that have been used most frequently in the studies we surveyed are listed in
Table 2.

Jin et al. (2017) have found that the ranking of experiments can be inconsistent across
internal metrics. They also present a trade-off in their ability to capture both the distinctness
and compactness of clusters. Dang-Ha et al. (2017) compare a number of metrics including
the CDI, MIA and DBI, and have found that these indicators do not penalise the formation
of large, noisy clusters sufficiently, while also tending to create unique clusters for outliers.
These limitations have been studied extensively in the data mining literature (Liu et al., 2010),
where it is well known that internal metrics tend to be biased towards an algorithm, and that
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Table 2: Frequency count of the five most used clustering metrics for clustering domestic load profiles,
based on the 25 studies captured in Appendix A Table 12.

Abbreviation Clustering index Frequency count
DBI Davies-Bouldin Index 13
CDI Cluster Dispersion Index 11
MIA Mean Index Adequacy 11
SMI Similarity Matrix Indicator 5
SilhI Silhouette Index 4

outliers affect clustering outcomes (Aggarwal, 2015). Furthermore, a single metric on its
own is insufficient to adequately measure the performance of clustering algorithms (Bezdek &
Pal, 1998). We selected the Davies-Bouldin Index (Davies & Bouldin, 1979), the Mean Index
Adequacy described in Chicco et al. (n.d.) and the Silhouette Index (Jiawei Han et al., 2012)
as internal metrics based on their frequency of use in the domain and ease of implementation
for the evaluation of a large dataset.

2.2.2 External Clustering Validation Measures
External evaluation measures can be used for additional evaluation when ground truth of the
true clusters is known (Aggarwal, 2015). Entropy is a widely used external clustering eval-
uation measure which intuitively measures how class labels are distributed across clusters.
Song and Zhang (2008) define two types of entropy: cluster-based cross-entropy measures
the consistency of class labels with respect to clusters; and class-based cross-entropy measures
clustering consistency with respect to classes. In the electricity domain Kwac et al. (2014) use
entropy as a metric for capturing the daily variability in electricity consumption of households.
To evaluate the result of segmenting a large number of daily load profiles into interpretable
consumption patterns, Xu et al. (2017) use peak overlap, percentage error in overall consump-
tion and entropy as metrics. We use cluster-based cross-entropy, peak overlap and percentage
error to specify the clustering objective for our application. Unlike Kwac et al. (2014) and
Xu et al. (2017) who use entropy to measure demand variability within a household, we use
entropy to evaluate how consistently clusters are used at specific times and for specific con-
sumption groups.

2.3 From Clusters to Customer Archetypes
To associate consumption patterns with characteristic household attributes, current approaches
use a two stage process that first clusters load profiles, and then classifies the resultant rep-
resentative load profiles according to the socio-demographic characteristics of the households
that use them (McLoughlin et al., 2015; Rhodes et al., 2014; Viegas et al., 2016). Viegas et al.
(2016) and Rhodes et al. (2014) apply context filtering and cluster the average seasonal load
profiles of households to derive seasonal patterns. They then perform binary regression to
classify the seasonal load curves based on survey data. The study by Rhodes et al. (2014) only
considered a small population of 103 college-educated households, with the majority of house-
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holds earning well above the national mean income. The study by Viegas et al. (2016) was
much larger and considered 1972 households from the Irish CER dataset. The same dataset
was also used by McLoughlin et al. (2015), who used a different approach to cluster the daily
hourly load profiles of 3941 households and derive consumption patterns by averaging the
load profiles of cluster members. They then captured the consumption pattern used by every
household on every day in a Customer Class Index (CCI), and assigned the most frequently
occurring pattern of the CCI to each household. Finally, they used multinomial logistic regres-
sion to classify the CCI by household attributes.

These approaches for creating customer archetypes capture a very coarse grained temporal
dynamic, which does not represent the variability in electricity consumption of households
across days, weeks and months. Cao et al. (2013), Jin et al. (2017) and Yilmaz et al. (2019)
present approaches that cluster households’ individual daily load profiles, and are thus able
to observe variability of household electricity consumption across time and across households.
Kwac et al. (2014) cluster individual daily load profiles and build a pattern library to charac-
terise individual household consumption as variable or stable, but the study does exclude low
consuming households. While these studies aim to create patterns that can be used to create
customer archetypes or identify households with particular attributes, they do not extend the
work to characterise the patterns and evaluate the extent to which they are able to achieve
this. This is a typical challenge, as socio-demographic survey data is often unavailable and
costly to obtain. We draw on the work of Jin et al. (2017) to capture consumption variability
and McLoughlin et al. (2015) to characterise the selected clustering structure in our case study
application.

2.4 Specifying Application Requirements for External Validation
It is commonly known that the performance of clustering algorithms depends on both the
data characteristics and the clustering objective (Aghabozorgi et al., 2015). Aligning cluster
evaluation measures with the goal of the specific application thus makes intuitive sense, and
is important to generate clusters that are useful (Aggarwal, 2015). Ultimately, the cluster-
ing process must yield a cluster set that is useful for creating customer archetypes which
represent distinguishing socio-demographic attributes of households in the country and the
temporal variation in energy consumption. The choice and granularity of these properties
are informed by the current practises of experts in the energy sector and the diversity in the
population. While some external metrics such as peak overlap, percentage error in overall
consumption and entropy have been proposed (see section 2.2.2), visual inspection by do-
main experts is commonly suggested and applied as an additional validation step (Dang-Ha
et al., 2017). Visual inspection has inherent challenges as suggested by Gogolou et al. (2019),
who have found that the assessment of time series similarity is subjective and depends on its
visual representation. Moreover, the application requirements and expert knowledge that are
used to evaluate and guide cluster set selection may be implicit and qualitative and difficult to
specify explicitly. It would be useful to evaluate clustering structures against the qualitative re-
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quirements of domain experts that understand the nuances of the population being clustered,
even if they are not familiar with the technicalities of clustering. To do this, methods for
formalising qualitative expert knowledge are required.

The ontology engineering community uses competency questions to acquire context-specific
requirements and to compare candidate ontologies (Grüninger & Fox, 1995). Competency
questions can be used to represent a set of problems that characterise microtheories in a rigor-
ous manner, enabling more precise evaluation of different conceptualisations of a domain (Fox
& Grüninger, 1994). Brainstorming, expert interviews and consulting established sources of
domain knowledge can be used to identify competency questions (De Nicola et al., 2009). The
techniques for developing competency questions and the questions themselves can be formal
or informal. Informal competency questions can be expressed in natural language and connect
a proposed ontology to its application scenarios, thus providing an informal justification for
the ontology (Uschold & Gruninger, 1996). In this study we propose to use unstructured expert
interviews to derive competency questions and elicit application requirements. The require-
ments are then used to guide the evaluation of clustering structures based on their ability to
represent the variable daily load profiles of households for the purpose of creating customer
archetypes.

3 LOAD PROFILE CLUSTERING

In this section we compare and analyse different clustering techniques for generating daily
electricity consumption patterns in South Africa. We provide an overview of the application
case study and the dataset, the experimental setup which includes clustering algorithms, para-
meters and preprocessing, and internal clustering validation measures.

3.1 Application Case Study and Dataset
The Domestic Electrical Load Metering Hourly (DELMH) dataset (Toussaint, 2019a) is the
largest andmost comprehensive database of household electricity consumption in South Africa.
South Africa’s electricity utility uses this dataset for long term residential electricity planning.
It contains 3 295 194 daily load profiles for South African households over a period of 20
years from 1994 to 2014 (Toussaint, 2020).

The daily load profile h for a particular household j on a given day d is a 24 element array
containing the mean electricity consumption of the household for each hour of the day. For
example, the first element, l0, is the household’s mean consumption for the first hour of the
day, i.e. 00:00:00 - 00:59:59.

h
(j)
d =

[
l0 l1 . . . l23

] (1)
H(j) is a two-dimensional array (n_days × 24) that contains all daily load profiles, h(j)

d , for all
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days, n_daysj, where data is available for household j.

H(j) =


h
(j)
0

h
(j)
1...

h
(j)
n_daysj

 (2)

Y is a two dimensional array (3 295 194 × 24) which concatenates H(j) for all 14 945 house-
holds observed over the 20 year period.

Y =


H(1)

H(2)

...
H(14 945)

 (3)

Each row, yi, in Y represents one of the 3 295 194 daily load profiles, h(j)
d , across all households

j in the data set. We can then use clustering to find an optimal clustering structure k, given
the input dataset Y . A single cluster kx is representative of individual daily load profiles that
capture similar daily energy consumption behaviour. The centroid of kx is used to construct the
representative daily load profile (RDLP) of kx, which represents the mean daily consumption
pattern of all yi assigned to the cluster. Collectively, the RDLPs of a cluster set represent the
dominant daily consumption patterns across all households in the data set and can be used to
generate customer archetypes for long term energy modelling applications.

3.1.1 Zero Consumption Values and Outliers
A significant percentage of households in our dataset are low income and rural consumers. In
South Africa as in many developing countries, energy access is a priority and must be con-
sidered alongside energy security. Through conversations with experts we gathered that the
treatment of outlier and extremely low-valued profiles should be reconsidered when cluster-
ing electricity consumers in this context. Very low consumption profiles that are close to zero
typically belong to consumers living in rural or informal settings. The reasons for low or no
consumption are not necessarily due to technical errors, as is assumed in other studies, but
because households cannot afford to buy electricity or they choose a different fuel type. The
inclusion of these households is important if energy access is a concern.

3.2 Experiment Setup
An experiment run n takes input array Y to produce cluster set k(n) and assigns each normalised
daily load profile y′i to a cluster k(n)

x . The RDLP of each cluster, r(n)x , is the mean of all de-
normalised daily load profiles (i.e. yi) assigned to k

(n)
x . A pattern library {r(n)1 ...r

(n)
xn } is the
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set of RDLPs for all clusters in k(n). The objective of the load profile clustering experiments
is to select the clustering structure k(n) for Y that produces the most useful pattern library
for creating customer archetypes. Given the high variance in our dataset, preprocessing was
an important component of the clustering process. Different normalisation and pre-binning
algorithms were set up for comparison alongside clustering algorithms.

3.2.1 Normalisation
We compared four normalisation techniques from the literature (Table 3) against a baseline
with no normalisation.

Table 3: Data normalisation algorithms and descriptions
Normalisation Equation Comments
Unit norm y′i =

yi
|yi| Scales input vectors individually to unit norm

De-minning y′i =
yi−yi

min

|yi−yimin| Subtracts daily minimum demand from each hourly value,
then divides each value by deminned daily total; proposed
by Jin et al. (2017)

Zero-one y′i =
yi

yimax Scales all values to a range [0, 1]; retains profile shape but is
very sensitive to outliers; also known as min-max scaler

SA norm y′i =
yi

1
24

×
∑23

t=0 yi[t]
Normalises all input vectors to mean of 1; retains profile shape
but very sensitive to outliers; introduced for comparison, as it
is frequently used by South African domain experts

3.2.2 Pre-binning
We implemented two different approaches to pre-bin all daily load profiles in Y . To pre-bin
by average monthly consumption (AMC), we selected 8 expert-approved bin ranges based on
South African electricity tariff ranges (see Appendix A for ranges). All the daily load profiles
H(j) of household j were assigned to one of the 8 bins based on the value of the household’s
average monthly consumption, AMC(j). Individual household identifiers were removed from
Y after pre-binning. AMC for household j over one year is:

AMC(j) =
1

12

12∑
month=1

monthend∑
d=1

23∑
t=0

230× h
(j)
d [t] kWh (4)

Pre-binning by integral k-means followed these steps:
1. For each h

(j)
d :

(a) Normalise with unit norm and construct a 24 element vector of the cumulative sum
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(b) Append the daily maximum consumption value h
(j)
d peak

2. Concatenate all vectors constructed in step 1 into an array Y ′ (dim 3 295 194 x 25)
3. Cluster Y ′ into k = 8 bins (same as bins created for AMC) with kmeans
4. Assign all yi in Y to bins to replicate the clustering structure of Y ′

i.e. a daily load profile h
(j)
d of household j on day d should share cluster membership

with the same daily load profiles in Y and Y ′

3.2.3 Clustering Algorithms
Variations of kmeans, self-organising maps (SOM) and a combination of the two algorithms
were implemented to cluster Y . The kmeans algorithm was initialised with a range of m
clusters. The SOM algorithm was initialised as a square map with dimensions si × si for si
in range s. Combining SOM and kmeans first creates a s × s map, which acts as a form of
dimensionality reduction on Y . For each s, kmeans then clusters the map into m clusters. The
mapping only makes sense if s2 is greater than m. m and s are the algorithm parameters.

3.2.4 Summary of Clustering Experiments
Table 4 summarises the algorithms, parameters and pre-processing steps for each experiment.
Each experiment was executed with all normalisation approaches. Experiments with pre-
binning were clustered independently in each bin. Zeros = True indicates that zero con-
sumption values were retained in the input dataset.

Table 4: Summary of experiments.
Exp. Algorithm Parameters Pre-bin Zeros
1 kmeans m{5, 8, 11, ...136} none True

SOM s{5, 7, 9, ...29} none True
SOM+kmeans s{30, 40, ...90},m{5, 8, 11, ...136} none True

2 kmeans m{5, 8, 11, ...136} none False
SOM s{5, 7, 9, ...29} none False
SOM+kmeans s{30, 40, ...90},m{5, 8, 11, ...136} none False

3 kmeans m{2, 3, ...10} AMC True
SOM s{2, 3, 4, 5} AMC True
SOM+kmeans s{4, 7, 11, ...20},m{2, 3, ...10} AMC True

4 kmeans m{2, 3, ...19} AMC True
SOM+kmeans s{4, 7, 11, ...20},m{2, 3, ...19} AMC True

5 kmeans m{2, 3, ...19} AMC False
6 kmeans m{2, 3, ...19} integral kmeans True
7 kmeans m{2, 3, ...19} integral kmeans False

3.3 Internal Evaluation Measures and the CI Score
The Mean Index Adequacy (MIA), Davies-Bouldin Index (DBI) and the Silhouette Index were
combined into a Combined Index (CI) score so that clustering performance can be evaluated
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across these internal metrics (see Appendix B for details on the metrics). CI is used as a
relative index to enable simultaneous interpretation of multiple metrics. Distances between
cluster centroids and cluster members were computed using Euclidean distance. The CI is the
weighted average Ix score for all bins and calculated as follows:

CI = log
( bins∑
bin=1

(
Ixbin ×

Nbin

N

)) (5)

where Nbin is the number of daily load profiles in a bin (as specified in Section 3.2.2), and N
is the total number of daily load profiles in Y .

Ixbin =


undefined if DBIbin,MIAbin or Silhouette Indexbin ≤ 0

DBIbin ×MIAbin

Silhouette Indexbin

otherwise
(6)

Ixbin is an interim score that computes the product of the DBI, MIA and inverse Silhouette
Index in each bin. CI is the log of the weighted sum of Ixbin across all bins. DBI and MIA
measure cluster compactness. Both metrics increase as cluster compactness deteriorates, thus
increasing Ixbin and CI if this is the case. The Silhouette Index has a range between {-1, 1} and
is a measure of cluster distinctness and compactness. The Silhouette Index is close to 1 when
clusters are both distinct and compact. The closer the Silhouette Index is to 0, the greater Ixbin

and CI become. A lower CI score is desirable and an indication of a better clustering structure.
The logarithmic relationship between Ixbin and CI means that CI is negative when Ixbin is
between 0 and 1, 0 when Ixbin = 1 and greater than 0 otherwise. For experiments with pre-
binning, the experiment with the lowest Ixbin score in each bin was selected, as it represents
the best clustering structure for that bin. For experiments without pre-binning, bins = 1 and
Nbin = N . We weighted the Ixbin of each bin to account for the cluster membership size in
that bin.

4 FORMALISING APPLICATION REQUIREMENTS

In this section we describe how we elicited and formalised implicit domain knowledge from
experts who understand the application objective but have limited technical knowledge about
clustering techniques. We formulated competency questions from domain knowledge and op-
erationalised them as external evaluationmeasures, which we implemented as a cluster scoring
matrix to provide a qualitative ranking of cluster sets in terms of the application requirements
and clustering objective.

4.1 Competency Questions and Clustering Objective
We analysed existing standards and conducted unstructured interviews with domain experts to
formulate informal competency questions expressed in natural language. The Geo-based Load
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Forecasting Standard (2012) is used as design standard by South Africa’s electricity utility
and contains manually constructed load profiles and guiding principles for load forecasting
in the country. The competency questions were developed after analysis of this standard and
continuous engagement with a panel of five industry experts. There were initial interviews
with all experts to elicit the usage requirements. Preliminary competency questions were
presented at a workshop with key stakeholders in the community. The final version of the
competency questions incorporated the feedback from the stakeholders. The following five
competency questions were identified and expressed in natural language:

1. Does the load shape deduced from clusters represent expected energy demand?
2. Do clusters distinguish between low, medium and high demand consumers?
3. Can clusters represent specific loading conditions for different day types and months?
4. Can a zero-consumption profile be represented in the cluster set1?
5. Is the number of households assigned to clusters reasonable, given the sample popula-

tion?
Based on these questions, we define a good cluster set as having expressive clusters and being
usable within the context of the intended application. An expressive cluster must convey
specific information related to particular socio-economic and temporal energy consumption
behaviour. A usable cluster set must represent energy consumption behaviour that makes
sense in relation to the application context, and carry the necessary information to make it
pertinent to domain users.

4.1.1 Cluster Expressivity
Current domain knowledge suggests that daily electricity consumption behaviour is strongly
influenced by daily routines, seasonal climatic variability and the quantity of electricity con-
sumption (low, medium, high) of a household. Beyond producing patterns that exhibit spe-
cific features typically associated with load profiles (question 1), it is desirable that individual
clusters convey specific information about the demand profiles of different types of consumers
(question 2), on different days of the week and months (question 3). Expressivity thus requires
firstly that the RDLP that a cluster produces is representative of the energy consumption beha-
viour of the individual daily load profiles that are members of that cluster. Secondly, clusters
must be specific to known temporal and consumption contexts, e.g. low demand households
on Sundays in June. The choice and granularity of the temporal and consumption features
for enumerating the different contexts must be aligned with and support the accepted practise
in the expert community for categorising and analysing the daily load demand of residential
households.

1Important for energy access in low income contexts (see Section 3.1.1)
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4.1.2 Cluster Usability
The attribute of cluster usability was derived from competency questions 4 and 5. Question 4
is evaluated as being either true or false. Question 5 is calculated as the percentage of clusters
whose membership exceeds a threshold value. Moreover, while we anticipate a relatively
large number of clusters to represent the large variety of consumers, the following two factors
should also be considered:

1. Fewer clusters typically ease interpretation and are thus preferable to larger numbers of
clusters

2. The maximum number of clusters is limited to 220, based on population diversity and
existing expert models which account for 11 socio-demographic groups, 2 seasons, 2
daytypes and 5 climatic zones

4.2 External Cluster Evaluation Measures
We now translate the clustering objectives into quantifiable external evaluation measures. For
representative clusters the mean demand errors of the total and peak consumption values measure
the average deviation between the RDLP and the cluster members’ load profiles. The mean
peak coincidence ratiomeasures the deviation of the peak usage time between the RDLP and the
daily load profiles in the cluster. Together these measures express the extent to which a RDLP
is representative of the shape and demand of the cluster’s member profiles. To measure the
degree to which a cluster maps to a specific context, cluster entropy can be used to establish
the information embedded in a cluster and thus its specificity. We calculate day type and
monthly entropy to establish temporal specificity, and total and peak daily consumption entropy to
establish demand specificity.

4.2.1 Mean Demand Error
The total daily demand htotal and peak daily demand hpeak of a daily load profile are its sum
and maximum value respectively. Thus, the total demand r

(n)
x total and peak demand r

(n)
x peak of

a RDLP r
(n)
x are its sum and maximum value. Likewise, hx,n

l total and hx,n
l peak are the total and

peak daily demand of the member profiles hx,n
l in k

(n)
x , with l and index counting through all

cluster member profiles. Four error metrics are used to calculate the mean deviation between
a RDLP’s peak and total demand, and that of the member profiles. Mean absolute percentage
error (MAPE) and median absolute percentage error (MdAPE) are well known error metrics.
The median log accuracy ratio (MdLQ) (Morley, 2016) overcomes some of the drawbacks of
the absolute percentage errors. The median symmetric accuracy (MdSymA) can be interpreted
as a percentage error similar to MAPE, making it more intuitive than MdLQ. The equations
for calculating the total demand errors are shown below. Both mean and median values are
calculated across all N (n)

x cluster members. Equivalent equations are used to calculate peak
demand error.
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Absolute Percentage Error

mape = 100× 1

N
(n)
x

l=N
(n)
x∑

l=1

|hx,n
l total − r

(n)
x total|

hx,n
l total

(7)

mdape = 100×medianl

(
|hx,n

l total − r
(n)
x total|

hx,n
l total

)
(8)

Median Log Accuracy ratio

Q =
r
(n)
x total

hx,n
l total

(9)
mdlq = medianl

(
log(Q)

) (10)

Median Symmetric Accuracy

mdsyma = 100× (exp (medianl

(
|log(Q)|

)
)− 1) (11)

4.2.2 Mean Peak Coincidence Ratio
We defined peaks as all those values that are greater than half the maximum daily load profile
value hpeak. Peak coincidence is the count that the time of hx,n

l peak coincides with the time of
r
(n)
x peak, the peak demand of the RDLP. Mean peak coincidence averages peak coincidence for
all member profiles of k(n)

x . The mean peak coincidence ratio is the fraction of mean peak
coincidence over the count of peaks in r

(n)
x . It has a value between 0 and 1. The magnitude of

the peak is not considered in the mean peak coincidence ratio.

4.2.3 Entropy as a Measure of Cluster Specificity
Entropy S is used to quantify the specificity of clusters and is calculated as follows:

Sx(F ) = −
n∑

i=1

p(fi) log2(p(fi)) (12)

F is a feature vector with possible values f1, ..., fn. p(fi) is the probability that daily load
profiles with value fi are assigned to cluster kx. For day type entropy Sx(daytype) expresses the
specificity of a cluster with regards to day of the week. Thus F = daytype has possible values
fi = {Mon, Tues,Wed, Thurs, Fri, Sat, Sun}. p(Sun) is the likelihood that daily load profiles
that are used on a Sunday are assigned to cluster kx. F = month has possible values fi =
{January, ..., December} and is used to calculate monthly entropy Sx(month). To calculate
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peak and total daily demand entropy, we created percentile demand bins. Thus the possible
values of feature F = peak_demand are fi = {1, ..., 100}. p(60) is the likelihood that daily
load profiles with peak demand corresponding to that of the 60th peak demand percentile are
assigned to cluster kx. The lower the entropy, the more information is embedded in the cluster,
the more specific the cluster, the better the cluster.

4.3 Cluster Scoring Matrix
The external evaluation measures operationalise the clustering objectives and competency
questions as quantifiable scores that can be used to rank experiments. We ranked experiments
by each measure and weighted the ranks by the relative importance that experts assigned
to that measure. We then calculated a cumulative score for each experiment by summing
its weighted ranks. The lower the total score, the better the cluster set meets our application
requirements. Table 5 summarises the objectives, competency questions, qualitative measures
and corresponding weights, which we implemented as a cluster scoring matrix. The total score
of an external measure for cluster set k is the mean of the individual measures of all clusters
kx with more than 10490 members2. Clusters with a small member size were excluded when
calculating mean measures, as they tend to overestimate the performance of poor clusters.
Moreover, cluster scores were weighted by cluster size to account for the overall effect that a
particular cluster has on the set. For the mean demand error, experiments were ranked against
all four error metrics and themean rank used in the cluster scoringmatrix was calculated across
all of them.
Table 5: Clustering objectives, competency questions and external clustering evaluation measures

Objective CQ External measure Weight
usable 4 zero-profile representation 1

5 membership threshold ratio 2
expressive 1 mean demand error total 6
representative 1 peak 6

1 mean peak coincidence 3
expressive 3 temporal entropy day type 4
specific 3 monthly 4

2 demand entropy total daily 5
2 peak daily 5

5 EVALUATION OF CLUSTERING RESULTS

Experiment runs were conducted using the parameter values in Table 4. Each run was first
evaluated with the CI score. The best runs of the best experiments were then further evalu-
ated with the external evaluation measures in the cluster scoring matrix. We implemented

2Threshold selected as a value approximately equal to 5% of households using a particular cluster for 14 days.
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our experiments in python 3.6.5 using k-means algorithms from scikit-learn (0.19.1) and self-
organising maps from the SOMOCLU (1.7.5) libraries3.

5.1 Clustering Validation with Internal Measures
The CI scores for all experiments range from 2.282 to 9.627. Lower scores are better. Almost
two thirds (65.5%) of experiments have a score below 4. These experiments have been norm-
alised with unit norm, de-minning or zero-one. The remaining experiments have scores above
5 and have not been normalised, or normalised with SA norm. The top 10 ranked experiment
runs based on the CI score are shown in Table 6. The percentage point difference between the
scores of the first and tenth experiment is only 3.2%, making it difficult to conclusively select
an experiment that is useful for our application.

Table 6: Top 10 runs ranked by CI score

Rank CI DBI MIA Sil. Exp. Alg. m Norm.
1 2.282 2.125 0.438 0.095 1 kmeans 47 unit
2 2.289 1.616 1.220 0.262 4 kmeans 17 0-1
3 2.296 1.616 1.220 0.260 3 kmeans 17 0-1
4 2.301 2.152 0.485 0.119 5 kmeans 82 unit
5 2.316 2.115 0.447 0.093 1 kmeans 35 unit
6 2.320 2.199 0.486 0.121 4 kmeans 71 unit
7 2.349 2.152 0.481 0.143 6 kmeans 49 unit
8 2.351 2.189 0.434 0.090 1 kmeans 50 unit
9 2.354 2.111 0.476 0.128 7 kmeans 59 unit
10 2.355 2.173 0.453 0.093 1 kmeans 32 unit

Closer analysis of the results confirms that normalisation significantly impacts cluster-
ing results. Almost all of the top experiments have been normalised with unit norm, with
the exception of two experiments normalised with zero-one. The effects of pre-binning are
less clear. Both pre-binning approaches and runs without pre-binning are represented in
the top results. Kmeans is the uncontested best clustering algorithm. Four runs belong to
Experiment 1 (kmeans, unit norm), but were initialised with different numbers of clusters
(m = {32, 35, 47, 50}). For both the kmeans and SOM algorithms the batch fit time increases
linearly with dimensionality. For SOM+kmeans the SOM is used for dimensionality reduc-
tion and the dimensions explored are thus considerably greater. This significantly increases
experiment run times, as shown in Table 7.

5.2 Clustering Validation with External Measures
The results after external evaluation with the cluster scoring matrix are presented in Table 8
for the top runs of the top experiments. The lower the score, the better. The rank by CI
score is shown in the last column for comparison. Despite being ranked 9th by CI score,

3The codebase is available online at https://github.com/wiebket/delarchetypes
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Table 7: Summary of algorithm CI scores and run times

Algorithm Mean CI score Mean run time (s)
k-means 2.59 44.79
SOM 4.11 39.42

SOM + k-means 3.17 1498.77

Experiment 7 (kmeans, unit norm) is now ranked 1st. Table 9 shows a detailed view of the
cluster scoring matrix, with rankings for individual external measures. The second best run,
Experiment 4 (kmeans, unit norm), ranks highly for entropy and demand error measures, but
has a poorer peak coincidence ratio. Experiment 5 (kmeans, unit norm) ranks third for most
measures. While the top two runs lie only 8 points apart, they comfortably outperform the
third best run, which has double the score.

Table 8: Top runs ranked by the total score obtained through validation with external measures

Rank Score Exp. Norm. Pre-binning Zeros CI rank
1 57.0 7 unit int. kmeans False 9
2 65.0 4 unit AMC True 6
3 117.5 5 unit AMC False 4
4 143.5 6 unit int. kmeans True 7
5 150.0 1 unit none True 1
6 205.0 4 0-1 AMC True 2
7 208.0 3 0-1 AMC True 3

Table 9: Cluster Scoring Matrix that ranks experiments by each external evaluation measure

Experiment 1 3 4 4 5 6 7
Normalisation unit 0-1 unit 0-1 unit unit unit
Qualitative measures Weight

threshold ratio 2 1 5 3 5 7 4 1
peak coincidence ratio 3 1 7 4 6 2 5 3
peak demand error 6 5.50 5.50 2.00 5.05 4.00 3.00 1.50
total demand error 6 5.00 6.25 2.00 6.00 3.25 3.75 1.00
peak demand entropy 5 5 7 2 6 3 4 1
total demand entropy 5 5 6 1 6 3 4 2
day type entropy 4 4 6 1 6 3 5 2
monthly entropy 4 4 6 1 6 3 5 2
SCORE 150.0 214.5 65.0 205.0 117.5 143.5 57.0

Figure 1 visualises the likelihood (p(fi)) that the clusters of Experiment 7 (kmeans, unit norm)
are used on a particular day of the week. This is indicative of the entropy (see Eq. 12) and
gives an intuition of the expressivity and usability of the cluster set. The higher the peak of
a line, the more likely that profiles assigned to that cluster are used on that day of the week.
The lower the peak, the less likely that this is the case. Cluster 15 (C15) is a good example
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of a cluster that has a very high likelihood of being used on a Sunday, and a lower likelihood
of being used on a Saturday or weekday. This cluster is thus specific to the Sunday day type,
which is desirable.

Figure 1: Likelihood of day type assignment for Experiment 7 (kmeans, unit norm): the higher (lower)
the peak, the more (less) likely that a cluster is used on that day of the week

5.3 Contrasting Results of Internal and External Measures
The internal metrics provide a useful tool for identifying the most distinct and compact cluster
sets, but the CI score is limited for analysis and comparison within the application context.
We visually illustrate the strength of the external measures for application-specific evaluation
by contrasting the patterns of Experiment 4 (kmeans, zero-one) with those of Experiment 7
(kmeans, unit norm). Experiment 4 (kmeans, zero-one) ranked 2nd based on the CI score, but
6th based on the cluster scoring matrix. Experiment 7 (kmeans, unit norm) on the other hand
ranked 9th by CI score, yet ranked 1st after evaluation with external measures. Comparing the
patterns in Figures 2 and 3 clearly shows that the latter have greater potential for generating
customer archetypes that represent variability in daily electricity consumption behaviour.

Figure 2: RDLPs (top) and cluster membership (bottom) of Experiment 4 (kmeans, zero-one)
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Figure 3: RDLPs (top) and cluster membership (bottom) of Experiment 7 (kmeans, unit norm)

Experiment 4 (kmeans, zero-one) has only 18 clusters. The five smallest clusters combined
have fewer than 1500 member profiles and appear invisible in the bar chart at the bottom of
Figure 2. The ragged shapes of the patterns of cluster 16 (C16), C17 and C18 are an indication
that very few profiles were aggregated in these RDLPs. Over half of all load profiles belong
to only three clusters: C5, C6 and C9. As a whole, the individual RDLPs lack distinguishing
features, making them neither expressive nor useable, and thus poor candidates for creating
customer archetypes. Experiment 7 (kmeans, unit norm) on the other hand has 59 clusters.
With the exception of C33 which accounts for roughly 15% of all daily load profiles, cluster
membership for the remaining clusters varies in a range from 15 000 to 100 000 members.
C33 is one of only two clusters in a bin with large membership, due to the high number of low
consumption households represented in our dataset. Collectively, the individual patterns are
representative and specific, which promises that they will be useful for constructing customer
archetypes.

6 APPLICATION OF CLUSTERS TO CONSTRUCT CUSTOMER ARCHETYPES

To validate our selected clustering structure and pattern library for constructing customer ar-
chetypes, we benchmark it against customer archetypes currently used by experts in industry.
First we describe the benchmark, then we show how our system can be used to create equi-
valent archetypes. Finally, we illustrate how our pattern library can be used to develop new
customer archetypes that capture changing household behaviour.

6.1 Benchmark archetype created by experts
The benchmark customer archetypes represent the aggregated, average electricity consump-
tion of a given type of household, distinguished by its building structure and socio-demographic
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characteristics. These archetypes are used by South Africa’s electricity utility to model the res-
idential load observed at the medium-voltage substation level. We use the archetype of a
lower middle class, long term electrified household in KwaZulu-Natal (KZN), South Africa for
demonstration purposes. Figure 4 depicts a customer archetype developed by experts for such
a household. KZN lies in the East of South Africa, and subsequently has an earlier sunrise and
sunset than most other parts of the country. Work day morning peaks are expected between
5am and 7am, and evening peaks between 5pm and 7pm. The climate is subtropical, with
humid summers and warm winters.

Figure 4: Expert archetype for medium-term electrified lower middle class households in KwaZulu-
Natal

Table 10 shows the specific characteristics of different household types identified by experts.
The lower middle class household described above will be a household that has piped water
access (tap in house), a floor area between 80m2 and 150m2 with walls constructed from
asbestos, blocks or bricks and a monthly income between R7 800 and R11 600.
Table 10: Attributes of South African residential electricity customer archetypes defined by experts

Archetype Water Wall material Floor area Income
rural river/dam daub/mud/clay 0-50 R0-R1.8k
informal street taps, tap in yard corr.iron/zinc 0-50 R1.8-R3.2k
township tap in house asbestos, blocks, brick 50-80 R3.2k-R7.8k
lower middle tap in house asbestos, blocks, brick 80-150 R7.8k-R11.6k
upper middle tap in house brick 150-250 R19k-R24.5k

6.2 Archetype reconstructed with pattern library
We used the clusters from Experiment 7 (k-means, unit norm) to reconstruct the above arche-
type with a simple multi-class regression model that maps socio-demographic attributes4 of
cluster members to their clusters. To train the model, we created a feature input vector of
the socio-demographic and temporal attributes (i.e. day type and season) for each daily load
profile belonging to a cluster. The socio-demographic household data was discretised into the
ranges recommended by domain experts as shown in Table 10. Each input vector was labelled

4The socio-demographic attributes were obtained from the DELSKV (Toussaint, 2019b) dataset
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with the cluster to which the daily load profile was assigned. The model outputs odds ratios
that indicate the likelihood that a particular feature value (i.e. socio-demographic or temporal
attribute) is correlated with a cluster. We associated attributes with clusters if the odds ratio
was equal to or greater than 1.05. The model was trained with WEKA’s5 multinomial logistic
regression algorithm, but any appropriate classification method can be used. The full imple-
mentation details and additional archetypes have been presented in previous work (Toussaint,
2019c).

Figure 5: RDLPs (top) and cluster membership (bottom) for medium-term electrified lower middle class
households in KwaZulu-Natal

Table 11: Temporal attributes of clusters in Fig 5
Winter Summer
Cluster Daytype Cluster Daytype

3 weekday 1 Saturday, Sunday
35 weekday 4 weekday, Friday
36 Saturday, Sunday 5 Saturday, Sunday
38 weekday, Friday

Seven clusters showed a strong correlation with the socio-demographic attributes of this ar-
chetype. Table 11 shows the day type and seasonal attributes of the 7 clusters. Each day
type in each season is represented by at least one cluster. Full temporal coverage like this
is desirable. Work day and weekend clusters, and winter and summer clusters are mutually
exclusive. There are 3 winter weekday clusters (C3, C35, C38), one summer weekday cluster
(C4), 1 winter weekend cluster (C36) and two summer weekend clusters (C1 and C5). Figure 5
shows the RDLPs for the clusters. All weekday patterns resemble a typical ‘out of home’ shape,
with either a high morning or evening peak and lower consumption throughout the day. This
is expected for a lower middle class household, where adults are typically blue collar workers
that have a fixed work routine. The patterns of C1, C5 and C36 show a strong correlation

5https://www.cs.waikato.ac.nz/ml/weka/
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with weekends. C1 and C36 are indicative of a slow starting day when there is no job to rush
to. C5 with its peak at 12pm is typical for families that have a strong tradition of a shared
family lunch on weekends. The summer weekday pattern of C4 has an earlier morning peak
than those of the winter weekday clusters. The weekday patterns of C3, C4, and C35, show
an earlier evening peak. With the exception of C3, the winter patterns have a higher energy
demand throughout the day than the summer patterns.

As a whole, the patterns of this archetype were found to resemble expected customer be-
haviour. However, some discrepancies exist in relation to the expert archetype. In contrast to
the expert RDLPs in Figure 4, the shapes of our patterns have only one distinct peak, either in
the morning or evening. While the peak times correspond between the archetypes, the peak
demand values of the expert archetype are approximately half the value of those of our pat-
terns. A plausible explanation for this is that the expert archetype represents the aggregate
consumption of a group of households and has only one RDLP for each temporal energy usage
context. If we were to aggregate all our patterns for common temporal contexts, for example
the three winter weekday RDLPs, the single resultant profile shape and its peak demand would
more closely resemble those of the expert archetype.

6.3 Towards an understanding of dynamic household behaviour
Themethod presented in this paper lays the foundation for analysing changing household beha-
viour and developing new customer archetypes that can inform long term electricity planning
and policy interventions. Consider four hypothetical clusters, C1, C2, C3 and C4. After cluster
analysis, in a random week, let us assume that household j is assigned to C1 on day d1 and d5,
to C2 on d2, d3 and d4, and to C3 on d6 and d7, based on its historical consumption data. A year
later, the electricity consumption pattern of household j changes on weekdays, and C4 is now
assigned to replace C1 and C2 for d1 to d5. This shift in electricity consumption behaviour is
meaningful. Depending on the pattern represented by C1, C2 and C4, it could, for example, be
indicative of a high consumption household installing PV panels and reducing grid demand,
or of a low consumption household having purchased additional appliances and becoming a
medium consumption household.

The duration and frequency of the shift in consumption is also important and can be used
as further evidence to reason about the cause of the change. Do pattern changes happen
sporadically, for short periods of time in a season? This may point to extreme weather con-
ditions, like a heat wave. Do they happen consistently at the end of the month? This may
be indicative of a household cutting costs due to financial circumstances. Do they coincide
with the national lockdown due to Covid-19 that shut down businesses and forced people to
stay at home? This could show changes in consumption behaviour that indicate job-loss, or
the work-from-home phenomenon. In this manner, external climatic, economic and social cir-
cumstances can be linked to the electricity consumption of an individual household using the
clusters and pattern library. Exploring this in more detail is an interesting avenue for future
work.
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7 DISCUSSION

This study combines internal and external validation metrics in the cluster evaluation process
to identify a cluster set that represents the daily electricity consumption patterns that best
capture variability in behaviour of households in South Africa. As observed in related stud-
ies in the electricity domain, we found internal clustering evaluation measures insufficient to
capture the nuances and implicit knowledge of domain experts that are needed to identify a
useful cluster set. Even though some previous studies have incorporated external validation
measures, like entropy, domain knowledge and visual inspection by experts was still required
for effective cluster evaluation. Drawing from these studies and the use of competency ques-
tions for knowledge elicitation in the ontology engineering community, we operationalised
competency questions as external evaluation measures to identify a cluster set that satisfies
the expressivity and usability criteria set by domain experts.

We conducted unstructured interviews with experts to identify essential characteristics of
daily load profiles and customer archetypes for comparing and analysing different cluster sets.
The informal nature of unstructured interviews was a good approach for eliciting expert know-
ledge, as this facilitated an inherently exploratory process through which the pertinent charac-
teristics of RDLPs emerged. We distilled these characteristics into five competency questions
for identifying the required expressivity and usability requirements of the application. The
competency questions were highly effective for engaging with domain experts, but they lack
intrinsic support for specifying the clustering objective. We therefore introduced a collection
of external evaluation measures and a cluster scoring matrix to translate the competency ques-
tions into a ranking system for evaluating and comparing cluster sets. Unlike previous studies
that conducted secondary evaluation steps informally through visual inspection or with eval-
uation measures that the authors found interesting, the use of competency questions justified
our choice of objective external evaluation measures and grounded them in the application
requirements. As a whole, the competency questions made assumptions explicit, the external
evaluation measures made the clustering objective explicit, and the cluster selection matrix
made it easy to apply and repeat the method. By applying the cluster selection matrix during
the evaluation step, a data scientist with limited domain knowledge could produce more useful
clusters, with limited involvement of domain experts.

To validate that the clusters selected through our method align with residential load pro-
files that would be accepted and used by domain experts, we evaluated them in a use case. The
use case shows that our clusters can be used successfully to produce customer archetypes that
are equivalent to those created by experts. A notable distinction between the RDLPs produced
by experts and the RDLPs we derived from our clusters, is that we frequently obtained several
patterns for a single day type and season. Each pattern has a distinct shape, peak time and
peak demand value. This is a strong indication that our load profiles are more fine grained
than the expert ones and better capture the variability in daily consumption of individual
households. The profiles of the expert archetypes on the other hand tend to have a morning
and evening peak, and lower maximum demand. This is indicative of the aggregate nature
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of these patterns, which average electricity consumption over a large number of households
with different consumption patterns. We observe that our profiles can reconstruct the essential
patterns represented in the expert archetypes, which gives us confidence in their usefulness.
Additionally, they offer insights about the variability of individual household demand, which
opens the door to understanding changing daily consumption behaviour in the residential elec-
tricity sector. To our knowledge this paper presents the first end-to-end approach for creating
customer archetypes from electricity consumption and survey data in a highly heterogeneous
population. The daily consumption pattern library that we have produced provides a mech-
anism for domain experts to further study the dynamics of household consumption behaviour
in relation to household characteristics, like the transition from low to medium electricity
consumption, the shift to off-grid renewable generation and potential connections between
volatility in electricity use and vulnerability due to social and economic circumstances.

The competency questions, weights and threshold values are subjective, but as our aim
was to formalise the domain knowledge that experts use to select clusters and not to create
an objective evaluation process, we do not consider this as a constraint. A limitation of the
approach however is that eliciting competency questions through unstructured interviews and
existing knowledge artifacts requires the synthesis of a large amount of information, which
can be tedious and challenging. The initial time investment for creating competency questions
and associating them with external evaluation measures is high, and subject to the experts and
knowledge sources consulted. However, as utility companies require ongoing insights into
customer behaviour on a quarterly or annual basis, this time investment is well spent, as it
reduces inconsistencies and the repeated effort required for manually evaluating and selecting
clusters. While the audio recordings and notes taken during the informal interviews were
sufficient for gathering expert knowledge, it would be worth exploring alternative approaches
for eliciting domain knowledge and distilling it into competency questions. Our approach is
promising for similar applications in different geographic locations and adjacent domains such
as residential water consumption, though the competency questions and external evaluation
measures will need to be adapted to suit their objectives.

8 CONCLUSION

In this paper we use an application case study to illustrate an approach for eliciting and repres-
enting expert domain knowledge and application requirements to formalise clustering object-
ives and guide the evaluation and selection of clustering structures. We conducted unstruc-
tured interviews with experts to identify essential characteristics of daily load profiles and
customer archetypes, which we distilled into competency questions. The competency ques-
tions were operationalised as external evaluation measures and a cluster scoring matrix. By
combining internal and external validation measures we were able to evaluate clustering struc-
tures against application requirements to select the clustering structure that best represents
the variable daily electricity consumption behaviour of South African households. The selec-
ted cluster set was used to create a pattern library and generate customer archetypes that we
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evaluated against an expert benchmark. Our approach has potential to enable transparent and
repeatable cluster ranking and selection by data scientists with limited domain knowledge.

References

Aggarwal, C. C. (2015). Data Mining: The Textbook. Springer.
Aghabozorgi, S., Shirkhorshidi, A. S. & Wah, Y. (2015). Time-series clustering—A decade re-

view. Information Systems, 53, 16–38. https://doi.org/10.1016/j.is.2015.04.007
Batrinu, F., Chicco, G., Napoli, R., Piglione, F., Postolache, P., Scutariu, M. & Toader, C. (2005).

Efficient iterative refinement clustering for electricity customer classification. 2005
IEEE Russia Power Tech, 1–7. https://doi.org/10.1109/PTC.2005.4524366

Bezdek, J. C. & Pal, N. R. (1998). Some New Indexes of Cluster Validity. 28(3), 301–315.
Bidoki, S. M., Mahmoudi-Kohan, N., Sadreddini, M. H., Jahromi, M. Z. & Moghaddam, M. P.

(2010). Evaluating different clustering techniques for electricity customer classification.
IEEE PES T&D 2010, 1–5. https://doi.org/10.1109/TDC.2010.5484234

Cao, H. A., Beckel, C. & Staake, T. (2013). Are domestic load profiles stable over time? An
attempt to identify target households for demand side management campaigns. IECON
2013—39th Annual Conference of the IEEE Industrial Electronics Society, 4733–4738. https:
//doi.org/10.1109/IECON.2013.6699900

Chelmis, C. (2015). Big data analytics for demand response: Clustering over space and time.
2015 IEEE International Conference on Big Data (Big Data), 2223–2232. https://doi.org/
10.1109/BigData.2015.7364011

Chicco, G., Napoli, R., Postolache, P., Scutariu, M. & Toader, C. (2002). Customer characteriz-
ation options for improving the tariff offer. IEEE Power Engineering Review, 22(11), 60.
https://doi.org/10.1109/MPER.2002.4311841

Chicco, G., Napoli, R. & Piglione, F. (2003). Application of clustering algorithms and Self Or-
ganisingMaps to classify electricity customers. 2003 IEEE Bologna Power Tech Conference
Proceedings, 1, 373–379. https://doi.org/10.1109/PTC.2003.1304160

Chicco, G., Napoli, R. & Piglione, F. (2006). Comparison among clustering techniques for
electricity customer classification. IEEE Transactions on Power Systems, 21(2), 1–7. https:
//doi.org/10.1109/TPWRS.2006.873122

Chicco, G., Napoli, R. & Piglione, F. (n.d.). A review of concepts and techniques for emergent
customer categorisation. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
194.7270&rep=rep1&type=pdf

Dang-Ha, T.-H., Olsson, R. & Wang, H. (2017). Clustering methods for electricity consumers:
An empirical study in Hvaler-Norway. NIK-2017. http://arxiv.org/abs/1703.02502

Davies, D. L. & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence, (2), 224–227. https : //doi .org/10 .1109/
TPAMI.1979.4766909

De Nicola, A., Missikoff, M. & Navigli, R. (2009). A software engineering approach to ontology
building. Inf. Syst., 34(2), 258–275. https://doi.org/10.1016/j.is.2008.07.002

https://doi.org/10.18489/sacj.v32i2.845

https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1109/PTC.2005.4524366
https://doi.org/10.1109/TDC.2010.5484234
https://doi.org/10.1109/IECON.2013.6699900
https://doi.org/10.1109/IECON.2013.6699900
https://doi.org/10.1109/BigData.2015.7364011
https://doi.org/10.1109/BigData.2015.7364011
https://doi.org/10.1109/MPER.2002.4311841
https://doi.org/10.1109/PTC.2003.1304160
https://doi.org/10.1109/TPWRS.2006.873122
https://doi.org/10.1109/TPWRS.2006.873122
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.194.7270&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.194.7270&rep=rep1&type=pdf
http://arxiv.org/abs/1703.02502
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1016/j.is.2008.07.002
https://doi.org/10.18489/sacj.v32i2.845


Toussaint, W. and Moodley, D.: Clustering Residential Electricity Consumption Data to Create Archetypes 27

Dent, I., Craig, T., Aickelin, U. & Rodden, T. (2014a). An approach for assessing clustering of
households by electricity usage. https://doi.org/10.2139/ssrn.2828465

Dent, I., Craig, T., Aickelin, U. & Rodden, T. (2014b). Variability of behaviour in electricity
load profile clustering; Who does things at the same time each day? Advances in Data
Mining. Applications and Theoretical Aspects, 70–84. https://doi.org/10.1007/978-3-
319-08976-8_6

Du Toit, J., Davimes, R., Mohamed, A., Patel, K. & Nye, J. M. (2016). Customer segmenta-
tion using unsupervised learning on daily energy load profiles. Journal of Advances in
Information Technology, 7(2), 69–75. https://doi.org/10.12720/jait.7.2.69-75

Feinberg, E. A. & Genethliou, D. (2006). Load forecasting. Applied mathematics for restructured
electric power systems (pp. 269–285). https://doi.org/10.1007/0-387-23471-3_12

Figueiredo, V., Rodrigues, F., Vale, Z. & Gouveia, J. B. (2005). An electric energy consumer
characterization framework based on data mining techniques. IEEE Transactions on
Power Systems, 20(2), 596–602. https://doi.org/10.1109/TPWRS.2005.846234

Fox, M. S. & Grüninger, M. (1994). Ontologies for enterprise integration. CoopIS, 82–89.
Gogolou, A., Tsandilas, T., Palpanas, T. & Bezerianos, A. (2019). Comparing similarity per-

ception in time series visualizations. IEEE Transactions on Visualization and Computer
Graphics, 25(1), 523–533. https://doi.org/10.1109/TVCG.2018.2865077

Grüninger, M. & Fox, M. S. (1995). The role of competency questions in enterprise engineering.
In A. Rolstadås (Ed.), Benchmarking — theory and practice (pp. 22–31). Springer US.
10.1007/978-0-387-34847-6_3

Heunis, S. & Dekenah, M. (2014). Manual for Eskom Distribution Pre-Electrification Tool
(DPET). https://doi.org/10.25375/uct.7246673.v1

Jiawei Han, Kamber, M. & Pei, J. (2012). Data Mining Concepts & Techniques (3rd). Morgan
Kaufmann Publishers. https://doi.org/10.1016/B978-0-12-381479-1.00001-0

Jin, L., Lee, D., Sim, A., Borgeson, S., Wu, K., Spurlock, C. A. & Todd, A. (2017). Comparison
of clustering techniques for residential energy behavior using smart meter data. AAAI
Workshops—Artificial Intelligence for Smart Grids and Buildings, 260–266.

Jin, L., Spurlock, A., Borgeson, S., Fredman, D., Hans, L., Patel, S. & Todd, A. (2016). Load
shape clustering using residential smart meter data: A technical memorandum. https:
//emp.lbl.gov/publications/load-shape-clustering-using

Kwac, J., Flora, J. & Rajagopal, R. (2014). Household energy consumption segmentation using
hourly data. IEEE Transactions on Smart Grid, 5(1), 420–430. https://doi.org/10.1109/
TSG.2013.2278477

Kwac, J., Tan, C.-W., Sintov, N., Flora, J. & Rajagopal, R. (2013). Utility customer segmentation
based on smart meter data: Empirical study. 2013 IEEE Int. Conf. Smart Grid Commun.,
(October), 720–725. https://doi.org/10.1109/SmartGridComm.2013.6688044

Liu, Y., Li, Z., Xiong, H., Gao, X. & Wu, J. (2010). Understanding of internal clustering val-
idation measures. 2010 IEEE International Conference on Data Mining, 911–916. https:
//doi.org/10.1109/ICDM.2010.35

https://doi.org/10.18489/sacj.v32i2.845

https://doi.org/10.2139/ssrn.2828465
https://doi.org/10.1007/978-3-319-08976-8_6
https://doi.org/10.1007/978-3-319-08976-8_6
https://doi.org/10.12720/jait.7.2.69-75
https://doi.org/10.1007/0-387-23471-3_12
https://doi.org/10.1109/TPWRS.2005.846234
https://doi.org/10.1109/TVCG.2018.2865077
https://doi.org/10.25375/uct.7246673.v1
https://doi.org/10.1016/B978-0-12-381479-1.00001-0
https://emp.lbl.gov/publications/load-shape-clustering-using
https://emp.lbl.gov/publications/load-shape-clustering-using
https://doi.org/10.1109/TSG.2013.2278477
https://doi.org/10.1109/TSG.2013.2278477
https://doi.org/10.1109/SmartGridComm.2013.6688044
https://doi.org/10.1109/ICDM.2010.35
https://doi.org/10.1109/ICDM.2010.35
https://doi.org/10.18489/sacj.v32i2.845


Toussaint, W. and Moodley, D.: Clustering Residential Electricity Consumption Data to Create Archetypes 28

McLoughlin, F., Duffy, A. & Conlon, M. (2015). A clustering approach to domestic electricity
load profile characterisation using smart metering data. Applied Energy, 141, 190–199.
https://doi.org/10.1016/j.apenergy.2014.12.039

Morley, S. K. (2016). Alternatives to accuracy and bias metrics based on percentage errors for
radiation belt modeling applications. https://doi.org/10.2172/1260362

Panapakidis, I. P. & Christoforidis, G. C. (2018). Optimal selection of clustering algorithm via
Multi-Criteria Decision Analysis (MCDA) for load profiling applications.Applied Sciences,
8(2), 237. https://doi.org/10.3390/app8020237

Ramos, S., Duarte, J. M. M., Soares, J., Vale, Z. & Duarte, F. J. (2012). Typical load profiles in
the smart grid context: A clustering methods comparison. 2012 IEEE Power and Energy
Society General Meeting, 1–8. https://doi.org/10.1109/PESGM.2012.6345565

Räsänen, T., Voukantsis, D., Niska, H., Karatzas, K. & Kolehmainen, M. (2010). Data-based
method for creating electricity use load profiles using large amount of customer-specific
hourly measured electricity use data. Applied Energy, 87(11), 3538–3545. https://doi.
org/10.1016/j.apenergy.2010.05.015

Rhodes, J. D., Cole, W. J., Upshaw, C. R., Edgar, T. F. & Webber, M. E. (2014). Clustering
analysis of residential electricity demand profiles. Applied Energy, 135, 461–471. https:
//doi.org/10.1016/j.apenergy.2014.08.111

Song, M. J. & Zhang, L. (2008). Comparison of cluster representations from partial second-
to full fourth-order cross moments for data stream clustering. Eighth IEEE International
Conference on Data Mining, 560–569. https://doi.org/10.1109/ICDM.2008.143

Swan, L. G. & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residen-
tial sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews,
13(8), 1819–1835. https://doi.org/10.1016/j.rser.2008.09.033
excellent overview of residential sector energy modelling!

Teeraratkul, T., O’Neill, D. & Lall, S. (2018). Shape-based approach to household electric load
curve clustering and prediction. IEEE Transactions on Smart Grid, 9(5). https://doi.org/
10.1109/TSG.2017.2683461

Toussaint, W. (2019a). Domestic Electrical Load Metering, Hourly Data 1994-2014. version 1.
https://doi.org/10.25828/56nh-fw77

Toussaint, W. (2019b). Domestic Electrical Load Survey - Key Variables 1994-2014. version 1.
https://doi.org/10.25828/mf8s-hh79

Toussaint, W. (2019c). Evaluation of clustering techniques for generating household energy
consumption patterns in a developing country. http://hdl.handle.net/11427/30905

Toussaint, W. (2020). Domestic Electrical Load Data Descriptor. https://doi.org/10.25375/
uct.11774691.v1

Toussaint, W. & Moodley, D. (2019). Comparison of clustering techniques for residential load
profiles in South Africa. Proceedings of the South African Forum for AI Research. CEUR-
WS.org/Vol-1//Vol-2540/FAIR2019_paper_55.pdf

Toussaint, W. & Moodley, D. (2020). Identifying optimal clustering structures for residen-
tial energy consumption patterns using competency questions. Conference of the South

https://doi.org/10.18489/sacj.v32i2.845

https://doi.org/10.1016/j.apenergy.2014.12.039
https://doi.org/10.2172/1260362
https://doi.org/10.3390/app8020237
https://doi.org/10.1109/PESGM.2012.6345565
https://doi.org/10.1016/j.apenergy.2010.05.015
https://doi.org/10.1016/j.apenergy.2010.05.015
https://doi.org/10.1016/j.apenergy.2014.08.111
https://doi.org/10.1016/j.apenergy.2014.08.111
https://doi.org/10.1109/ICDM.2008.143
https://doi.org/10.1016/j.rser.2008.09.033
https://doi.org/10.1109/TSG.2017.2683461
https://doi.org/10.1109/TSG.2017.2683461
https://doi.org/10.25828/56nh-fw77
https://doi.org/10.25828/mf8s-hh79
http://hdl.handle.net/11427/30905
https://doi.org/10.25375/uct.11774691.v1
https://doi.org/10.25375/uct.11774691.v1
CEUR-WS.org/Vol-1//Vol-2540/FAIR2019_paper_55.pdf
CEUR-WS.org/Vol-1//Vol-2540/FAIR2019_paper_55.pdf
https://doi.org/10.18489/sacj.v32i2.845


Toussaint, W. and Moodley, D.: Clustering Residential Electricity Consumption Data to Create Archetypes 29

African Institute of Computer Scientists and Information Technologists 2020, 66–73. https:
//doi.org/10.1145/3410886.3410887

Tsekouras, G. J., Hatziargyriou, N. D. & Dialynas, E. N. (2007). Two-stage pattern recognition
of load curves for classification of electricity customers. IEEE Transactions on Power
Systems, 22(3), 1120–1128. https://doi.org/10.1109/TPWRS.2007.901287

Uschold, M. & Gruninger, M. (1996). Ontologies: Principles, methods and applications. Know-
ledge Engineering Review, 11, 93–136.

Viegas, J. L., Vieira, S. M., Melício, R., Mendes, V. M. & Sousa, J. M. (2016). Classification
of new electricity customers based on surveys and smart metering data. Energy, 107,
804–817. https://doi.org/10.1016/j.energy.2016.04.065

Viegas, J. L., Vieira, S. M., Sousa, J. M., Melício, R. & Mendes, V. M. (2015). Electricity demand
profile prediction based on household characteristics. 2015 12th International Conference
on the European Energy Market (EEM), 2015-Augus, 0–4. https://doi.org/10.1109/EEM.
2015.7216746

Xu, S., Barbour, E. & González, M. C. (2017). Household segmentation by load shape and daily
consumption. Proceedings of ACM SigKDD 2017 Conference, 1–9. https://doi.org/10.
475/123_4

Yilmaz, S., Chambers, J. & Patel, M. (2019). Comparison of clustering approaches for domestic
electricity load profile characterisation—Implications for demand side management.
Energy, 180, 665–677. https://doi.org/10.1016/j.energy.2019.05.124

https://doi.org/10.18489/sacj.v32i2.845

https://doi.org/10.1145/3410886.3410887
https://doi.org/10.1145/3410886.3410887
https://doi.org/10.1109/TPWRS.2007.901287
https://doi.org/10.1016/j.energy.2016.04.065
https://doi.org/10.1109/EEM.2015.7216746
https://doi.org/10.1109/EEM.2015.7216746
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.1016/j.energy.2019.05.124
https://doi.org/10.18489/sacj.v32i2.845


Toussaint, W. and Moodley, D.: Clustering Residential Electricity Consumption Data to Create Archetypes 30

A LOAD RESEARCH LITERATURE

Over twenty different algorithms are used for clustering daily load profiles. Many studies
have found a particular algorithm to perform better than others. Algorithm abbreviations,
their frequency counts and the number of studies that indicate the algorithm as one of the
best are listed in Table 1. Best performing algorithms have been denoted with a * in Table 12.
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Authors Input
patterns

Customers Dataset Notes

Batrinu et al. (2005) 234 234 non-residential unspecified IRC developed by
authors, builds on Chicco
(2003)

Bidoki et al. (2010) 127 127 non-residential unspecified performance objective
dependent

Cao et al. (2013) 4225 households Irish CER dataset k-means pre-binning
Chelmis (2015) 115 buildings USC campus microgrid

data
EVI developed by authors

Chicco et al. (2002) 471 471 non-residential Romanian national
electricity distribution
company

Chicco et al. (2003) 234 non-residential unspecified suggests potential for
pre-binning

Chicco et al. (2006) 234 non-residential unspecified
Dang-Ha et al. (2017) 3 090 3090 households Hvaler dataset
Dent et al. (2014a) 180 180 households NESEMP clusters & segments by

peak time flexibility
Dent et al. (2014b) 204 204 households NESEMP assesses variability of

energy demand
Du Toit et al. (2016) 11kV & 22kV feeders Eskom shows that PCA dim

reduction & NUBS
centroids improve results
& run time

Figueiredo et al. (2005) 165 small consumers Portuguese Distribution
Company

Jin et al. (2016) 32 611 421 residential unspecified
Jin et al. (2017) 104 673 325 households unspecified clustering for

preprocessing & data
reduction to segment
customers

Kwac et al. (2013) 85 households PG&E investigates consistency
of consumption

Kwac et al. (2014) 44 949 750 123 150 households PG&E AKM developed by
authors

McLoughlin et al. (2015) 3941 households Irish CER dataset
Panapakidis and
Christoforidis (2018)

365 1 small industrial user unspecified develops a cluster
algorithm selection
framework

Ramos et al. (2012) 208 non-residential Portuguese Distribution
Company

Räsänen et al. (2010) 3989 3989 small consumers unspecified
Rhodes et al. (2014) 103 103 households Pecan Street Project
Teeraratkul et al. (2018) 23 254 1057 households Opower Corporation

(Oracle)
Tsekouras et al. (2007) 94 non-residential Greek Public Power

Cooperation
applies two-stage
clustering

Viegas et al. (2015) 1972 households Irish CER dataset
Xu et al. (2017) 19 070 residential Pecan Street Project best results when

applying two-stage
clustering

Table 12: Overview of literature on clustering electricity consumers
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Data representation Data variability
Authors RDLP aggregation Dimensions Interval Norm Time range Spatial cover
Batrinu et al. (2005) weekday (spring) 96 15min [0,1]
Bidoki et al. (2010) annual 96 15min [0,1] 1 year
Cao et al. (2013) weekday 48, 18 30min, fea-

tures
[0,1] 4 weeks Ireland

Chelmis (2015) none 96 15min spring
semester
Monday

University of
Southern
California, US

Chicco et al. (2002) weekday (winter) 4 features [0,1] 3 weeks
Chicco et al. (2003) weekday (spring) 96 15min [0,1]
Chicco et al. (2006) weekday (spring) 2 - 6 features
Dang-Ha et al.
(2017)

summer, winter,
weekday, weekend

96 60min [0,1] 1 year Hvaler,
Norway

Dent et al. (2014a) weekday evening peak 2 - 8 features [0,1] North East
Scottland

Dent et al. (2014b) spring weekday
evening peak

48, 42 5min, mo-
tifs

[0,1] 3 months North East
Scottland

Du Toit et al. (2016) none 48, 8 30min, fea-
tures

standardise 2 summer
months x 8
years

Figueiredo et al.
(2005)

summer, winter,
weekday, weekend

96 15min [0,1]

Jin et al. (2016) none 24 60min de-
minning

1 year California, US

Jin et al. (2017) none 24 60min de-
minning

1 year California, US

Kwac et al. (2013) none 96, 24 15min,
60min

unit norm 3 summer/
autumn
months

City in San
Francisco Bay
Area, US

Kwac et al. (2014) none 24 60min unit norm 13 months California, US
McLoughlin et al.
(2015)

none 24 60min 6 months

Panapakidis and
Christoforidis (2018)

none 24 60min [0,1]
custom

1 year

Ramos et al. (2012) weekday 96 15min [0,1] 6 months
Räsänen et al. (2010) 489 features 1 year Northern

Savo, Finland
Rhodes et al. (2014) summer, autumn,

winter spring
24 60min [0,1] 1 year Austin, US

Teeraratkul et al.
(2018)

none 24 60min unit norm 22 days

Tsekouras et al.
(2007)

96 15min [0,1]
custom

10 months

Viegas et al. (2015) summer, autumn,
winter spring

48 30min 18 months

Xu et al. (2017) none 96 15min unit norm 1 month 18 cities, US
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Clustering

Authors Distance
measure

Algorithms Cluster range Evaluation

* is best
performing

Batrinu et al. (2005) Euclidean *IRC, HC, k-means, fuzzy k-means,
MFTL

2-15 ScatI, VRC, MIA, CDI

Bidoki et al. (2010) Euclidean k-means, *WFAKM, MFTL, SOM,
HC

MIA, CDI

Cao et al. (2013) Manhatten,
Euclidean,
*correlation,
cos

HC, *k-means, SOM+k-means 5- *14 peak overlap, Hamming
distance, Wiener filter

Chelmis (2015) Euclidean,
Hausdorff

k-means, HC, k-medoids, Voronoi
decomposition

inconclusive DI, EVI, VRC

Chicco et al. (2002) w-Euclidean FTL 7, 9 MIA, CDI
Chicco et al. (2003) Euclidean,

w-Euclidean
k-means, *MFTL, SOM, HC(ward),
HC(avg), fuzzy k-means

10-20;
inconclusive

MIA, SMI, CDI, DBI

Chicco et al. (2006) Euclidean,
w-Euclidean

k-means, *MFTL, SOM, HC(comp),
HC(ward), *HC(avg), fuzzy
k-means

10-30;
inconclusive

CDI, DBI, MDI, ScatI

Dang-Ha et al. (2017) Euclidean, cos,
Minkowski

k-means, SKM, *SOM, HC (ward),
HC(avg), HC(single)

2-50;
inconclusive

CDI, DBI, MDI, MIA

Dent et al. (2014a) k-means 2-10 CDI, DBI, MIA, SMI, BH
Dent et al. (2014b) Euclidean k-means, fuzzy c-means, SOM, HC,

Random Forests
8 MIA, CDI

Du Toit et al. (2016) Euclidean2,
DTW, PCC, cos

k-means *5 DBI, SilhI

Figueiredo et al.
(2005)

SOM+k-means 6-9 MIA

Jin et al. (2016) AKM+HC DBI
Jin et al. (2017) Chebyshev,

Euclidean
*k-means, *kmedoids, *AKM,
*HC(ward), HC(avg), HC(comp),
GMM, DBSCAN

10-500 CDI, DBI, MIA, SilhI, SMI,
VRSE

Kwac et al. (2013) AKM+HC threshold
Kwac et al. (2014) AKM+HC threshold, entropy
McLoughlin et al.
(2015)

k-means, kmedoid, *SOM 2-16 DBI

Panapakidis and Chris-
toforidis (2018)

k-means, MKM(1), MKM(2),
various HC, fuzzy c-means, SOM,
others

2-30 CDI, DBI, MIA, SMI, ScatI,
VRC, others

Ramos et al. (2012) Euclidean *k-means, HC (ward), HC (avg),
HC(comp), HC(norm cut)

2-30 DBI, DI, SilhI, J, others

Räsänen et al. (2010) Euclidean *SOM+k-means,
SOM+HC(comp)

2-30 DBI, IA

Rhodes et al. (2014) Euclidean k-means *2
Teeraratkul et al.
(2018)

Euclidean,
*DTW

k-means, *kmedoids, E&M WCS, WB, WCBCR

Tsekouras et al.
(2007)

Euclidean k-means, AVQ, fuzzy k-means, HC 5-25 CDI, MIA, SMI, DBI,
WCBCR, J

Viegas et al. (2015) k-means *2-7 DBI, DI, SilhI
Xu et al. (2017) Euclidean *k-means, AKM+HC, SAX

k-means
3 (stage 1), 4
(stage 2)

peak overlap,
consumption error,
entropy, WCSS
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B SUPPLEMENTARY TABLES FOR CLUSTERING EXPERIMENTS

B.1 Bin ranges AMC pre-binning

bin AMC
1 0 - 1 kWh no consumption
2 2 - 50 kWh lifeline tariff - free basic electricity
3 51 - 150 kWh
4 151 - 400 kWh
5 401 - 600 kWh
6 601 - 1200 kWh
7 1201 - 2500 kWh
8 2501 - 4000 kWh
Table 13: AMC bins based on South African electricity tariffs

B.2 Clustering metrics
The Silhouette Index for an individual pattern p in the dataset is:

silhouette(p) =
distinctness(p)− compactness(p)

max{distinctness(p), compactness(p)}
(13)

Compactness is the average distance between p and all other patterns in the same cluster.
Distinctness is the average distance between p and all remaining patterns that are not in the
same cluster.

The Davies Bouldin Index (DBI) for two clusters is calculated as the ratio of the sum of
cluster dispersions, and the distance between the two cluster centroids.

DBI(i, j) =
dispersion(i) + dispersion(j)

distance(i, j)
(14)

Cluster dispersion can be calculated using different measures. A simple method for computing
it is as the average distance between the centroid of a cluster and each pattern in the cluster.
The DBI for the dataset is obtained by averaging the similarity measure of each cluster and
its most similar cluster, DBI(i, j)max, for all clusters. A small DBI value indicates that cluster
dispersions are small and distances between clusters are large, which is desirable. When plot-
ting the DBI against the number of clusters, the optimal number of clusters can be visually
identified. It is possible for the DBI to have several local minima (Davies & Bouldin, 1979).
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