
Noname manuscript No.
(will be inserted by the editor)

Preventing, Detecting, and Revising Flaws in Object Property
Expressions

C. Maria Keet

Received: date / Accepted: date

Abstract The OWL 2 DL ontology language is very

expressive and has many features for declaring complex

object property expressions. Standard reasoning ser-

vices for OWL ontologies take these expressions as cor-

rect and according to the ontologist’s intention. How-

ever, the more one can do, the higher the chance mod-

elling flaws are introduced; hence, an unexpected or

undesired classification or inconsistency in the class hi-

erarchy may actually be due to a mistake in the ‘ob-

ject property box’, not the class axioms. We analyse

the principles of subsumption in object property hier-

archies, and use it to identify the types of flaws that

can occur in object property expressions. We propose

the compatibility services SubProS and ProChainS that

check for meaningful property hierarchies and property

chaining and propose how to revise a flaw. These in-
sights can also be used to prevent flaws and to choose

the best option, which we demonstrate with the chain

pattern for upward and downward distributivity over

parthood relations. SubProS and ProChainS were eval-

uated with several ontologies, which demonstrates that

such flaws do exist, that they can be isolated effectively,

and useful suggestions for revisions can be proposed.

Keywords OWL · Role Inclusion Axioms · Property

Chains · Property Hierarchy · Ontology Quality

CR Subject Classification Ontology engineering

C. Maria Keet
School of Mathematics, Statistics, and Computer Science,
University of KwaZulu-Natal, and UKZN/CSIR-Meraka Cen-
tre for Artificial Intelligence Research, South Africa
Tel.: +27-31-2601035
Fax: +27-31-2607001
E-mail: keet@ukzn.ac.za

1 Introduction

There are multiple ongoing ontology development ef-

forts and an increasing amount of projects that require

ontology-driven information systems in various subject

domains, such as the life sciences, medicine, e-learning,

and the enterprise. New ontologies are being developed

typically with the most recent W3C-standardised on-

tology language, OWL 2 [23], which is based on the

Description Logics (DL) language SROIQ [13] that,

thanks to domain experts and ontology engineers’ re-

quests for more features for object properties, now al-

lows for object sub-properties, (inverse) functional, dis-

jointness, equivalence, cardinality, (ir)reflexivity,

(a)symmetry, transitivity, and role chaining. There are

some syntactic constraints on their usage, but still a lot

is possible to represent knowledge precisely. This also

means there is now even more room to make mistakes

with respect to the ontologist’s intention in addition to

those noted for modelling with OWL 1 [24,25,27,28].

We briefly illustrate four different ways how and where

mistakes in object property expressions can occur.

(i) Domain and range flaws in basic hierarchies; e.g.

(simplified), hasParent v hasMother instead of has-
Motherv hasParent in accordance with their domain

and range restrictions, or declaring a domain/range

to be an intersection of disjoint classes;

(ii) Property characteristics flaws in basic hierarchies:

e.g. (simplified), connectedTo v LocatedIn, with

Asym(LocatedIn) so that Sym(connectedTo) cannot

be asserted anymore although connectedTo is sym-

metric, or hasGrandFather v hasAncestor and

Trans(hasAncestor) in the family-tree ontology1

1 http://www.co-ode.org/roberts/family-tree.owl; last
accessed 12-3-2012.

2 C. Maria Keet

but intransitivity of hasGrandFather cannot be as-

serted.

(iii) Property chain issues in complex hierarchies; e.g.,

hasPart ◦ hasParticipantv hasParticipant in the phar-

macogenomics ontology [5] that forces the classes in

class expressions using these properties (DrugTreat-
ment and DrugGeneInteraction) to be either processes

due to the domain of hasParticipant, or they will be

inconsistent.

(iv) Domain modelling and choosing the right represen-

tation from alternatives; consider the chains

haspart ◦ contains v haspart and contains ◦ haspart v
contains from [4], depicted in Figure 1, with some

instances in Figures 1-C and D. Consider option B

with example D: it certainly is not the case—i.e., an

undesirable deduction due to the property chain—

that Mary haspart Legominifigure1 (it is not a part

like Mary’s mouth is part of Mary). Consider op-

tion A with C: Mary’s mouth contains Lego minifig-

ure1’s leg, which is a correct deduction with re-

spect to the subject domain thanks to the property

chain. Problematic from a practical viewpoint are

‘hidden’ chains, such as in the medical terminology

SNOMED-CT2: congenital absence of one tooth (ID

109442002) implies a congenital absence of mouth
(ID 91946007), and likewise for amputations and

parthood (toes and therefore feet and so on, ID

95858001), whereas other properties do distribute

upwards; e.g., partOf ◦ hasInjury v hasInjury lets one

infer that an injury of the toe is an injury of the foot.

SubPropertyOf(PropertyChain(contains hasPart) contains)

SubPropertyOf(PropertyChain(hasPart contains) hasPart)

A B C

A B C

contains haspart

contains

containshaspart

haspart

A.

B.

Mary's
mouth

Legominifigure1

contains haspart

contains

C.
D.

Legomini-
figure1's
leg

Mary Mary's mouth

haspart contains

haspart

Legomini-
figure1

Fig. 1 Example of a disallowed combination of property
chains in OWL 2 DL, i.e., either A or B is permitted in OWL
2, but not both together (Source: [4]). Option A is preferred
because B is ontologically incorrect, which is illustrated with
Mary chewing on a Legominifigure in C and D.

Such flaws and undesirable deductions are not properly

recognised by automated reasoners and implemented in

explanation features by ontology development environ-

ments, as they do not point to the actual flaw in the

object property box; this is illustrated in Example 1.

Example 1 (Current automated deductions and expla-

nations) Ontologies O1 and O2 contain several object

2 http://www.ihtsdo.org/our-standards/snomed-ct/

PT

ED PD

NPED PED AS STV EV

{disjoint}{disjoint}

{disjoint}

POB M

{disjoint}

ST PRO

{disjoint}

F

Fig. 2 A section of the DOLCE taxonomy in UML notation,
and a selection in DL notation.

property and class expressions, including the formal

counterpart of the class hierarchy as depicted in Fig-

ure 2 and some subject domain classes, summarised in

Table 1. S’s domain and range are PED (i.e., S v PED×
PED) and R v ED× ED is correct with respect to the

notion of subproperty and S v R, but the flawed prop-

erty hierarchy (second column in Table 1) with S v R,

S v ED× ED, and R v PED× PED results either in a

classification of S’s domain class (Ed1) elsewhere in the

taxonomy or it is inconsistent (column 3), depending

on its original position in the class hierarchy. ♦

The observations are due primarily to currently im-

plemented justification and explanation algorithms (e.g.,

[12,16,24]) that focus on logical deductions in OWL

only and assume that class axioms and assertions about

instances take precedence over what ‘ought to be’ re-

garding the object property expressions. Therefore, with

the standard reasoning, the object property expressions

(inclusion axioms)—i.e., property hierarchy, domain and

range axioms, a property’s characteristics, and property

chains—are taken as fixed and assumed to be correct,

but instances and classes can move about in the taxon-

omy when classifying the ontology. However, the mod-

eller may be certain where in the taxonomy a particular

class should be positioned, or at least its main category,

but not sure about how to represent its properties. This

is a reasonable assumption, given that many modellers

commence ontology development by first adding a tax-

onomy and only gradually add properties, and the ad-

vanced OWL 2 DL features for object properties are

relatively new and not easy to grasp. Therewith it has

become an imperative to look at how one can get the

modeller to choose the ontologically correct options in

the object property box—i.e., preventing a flaw—so as

to achieve a better quality ontology and, in case of flaws,

how to guide the modeller to the root defect from the

modeller’s viewpoint, and propose corrections. This re-

quires an ability to recognise the flaw, to explain it,

and to suggest revisions, and based on that, attempt to

prevent it.

Detecting and Revising Flaws in OWL Object Property Expressions 3

Table 1 Sample ontologies to illustrate the OWL reasoners and explanation (based on Protégé’s explanation feature) of
defects supposedly in the class hierarchy, although the real modelling flaw is in the object property hierarchy.

O1 OPEs CEs Deduced, with explanation

R v PED× PED OWLized Figure 2, Ed1 v ED, Ed2 v ED, Ed1 v PED: because the domain of R is PED
S v ED× ED Ped1 v PED, Ped2 v PED, Ed1 v ∃S.Ed2, and S v R
S v R Ped1 v ∃R.Ped2

O2 OPEs CEs Deduced, with explanation

as O1 as O1, but with Ed2 v AS Ed1 inconsistent: 1. AS v ¬PED, 2. Ed1 v ∃S.Ed2,
(and PED v ¬AS still holds) 3. Ed2 v AS, 4. R’s range is PED, 5. S v R

We address these issues by, first, defining two non-

standard reasoning services. We extend the RBox Com-

patibility Service for object subproperties [18] to also

handle the object property characteristics, called Sub-

Property compatibility Service (SubProS), and we de-

fine a new reasoning service, the Property Chain com-

patibility Service, (ProChainS), that checks whether

the chain’s properties are compatible. The compatibil-

ity services are defined such that it exhaustively checks

all permutations and therewith pinpoints to the root

cause in the OWL object property expressions, where

applicable. Second, if a test of either service fails, pro-

posals are made to revise the identified flaw. As such,

SubProS and ProChainS may be considered extra-logical

or onto-logical reasoning services, because the ontology

does not necessarily contain logical errors in some of the

flaws detected. The solution thus falls in the category

of tools focussing on both logic and additional ontology

quality criteria, alike the works on anti-patterns [28],

isolated mistakes and suggestions [27], and the cata-

logue of common pitfalls [25], but then including also

a systematic account of why the flaws occur and how

to revise them, alike an OntoClean [7] for object prop-

erty expressions. Hence, it is different from other works
on explanation and pinpointing mistakes that concern

logical consequences only [12,16,24], and SubProS and

ProChainS also propose revisions for the flaws. In addi-

tion, these foundations also shed light on problems with

distributivity of properties [1,15,26], and over parthood

relations in particular, which can be used to prevent

flaws.

In the remainder of the paper, we characterise prop-

erty subsumption and define SubProS in Section 2, and

property chaining with ProChainS in Section 3. Sug-

gestions to avoid the need for ProChainS are discussed

in Section 4. We conclude in Section 5.

2 Sub-Properties in OWL

After summarizing OWL object property expressions

and its DL version of role inclusion axioms, we proceed

to the notion of property subsumption thanks to do-

main and range axioms and thanks to a property’s char-

acteristics. This forms the basis for SubProS, which, in

turn, is used to devise guidelines for how to revise each

flaw, and subsequently is used in the evaluations with

several ontologies.

2.1 Preliminaries

Subproperties in OWL have a “basic form” and a “more

complex form”. The former is denoted in OWL 2 func-

tional syntax as SubObjectPropertyOf(OPE1 OPE2),

which says that object property expression OPE1 is a

subproperty of OPE2, meaning that “if an individual x

is connected by OPE1 to an individual y, then x is also

connected by OPE2 to y” [23]. The simple version is

denoted in Description Logics (DL) as S v R and a

typical use case is properPartOf v partOf. The more

complex form concerns property chains, denoted with

SubObjectPropertyOf(ObjectPropertyChain(OPE1
... OPEn) OPE) in OWL 2 where OPE is an object

property expression, and several additional syntactic

constraints hold: n ≥ 2, and OPE is equal to owl:top-

ObjectProperty, or n = 2 and OPE1 = OPE2 = OPE,

or OPEi < OPE for each 1 ≤ i ≤ n, or OPE1 = OPE

and OPEi < OPE for each 2 ≤ i ≤ n, or OPEn = OPE

and OPEi < OPE for each 1 ≤ i ≤ n − 1. This is called

“complex role inclusions” in DL, and is defined suc-

cinctly in [13], which states that (sub-)properties are

constrained by the Role Inclusion Axioms as defined in

[13] for SROIQ, the base language for OWL 2 DL,

which also provides the constraints for property chains

in OWL 2, and is included below as Definition 1. Infor-

mally, case 1 covers transitivity of R, case 2 inverses,

case 3 chaining of simple object properties (including

where i = 1, hence the basic form), and for case 4 and

5, the property on the right-hand side either occurs first

or last in the chain on the left-hand side of the inclusion

axiom, provided the regularity constraint hold (a strict

order) so as to maintain decidability.

Definition 1 ((Regular) Role Inclusion Axioms

[13]) Let ≺ be a regular order on roles. A role in-

clusion axiom (RIA for short) is an expression of the

4 C. Maria Keet

form w v R, where w is a finite string of roles not in-

cluding the universal role U , and R 6= U is a role name.

A role hierarchy Rh is a finite set of RIAs. An in-

terpretation I satisfies a role inclusion axiom w v R,

written I |= w v R, if wI ⊆ RI . An interpretation is a

model of a role hierarchy Rh if it satisfies all RIAs in

Rh, written I |= Rh. A RIA w v R is ≺-regular if R

is a role name, and

1. w = R ◦R, or

2. w = R−, or

3. w = S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≤ i ≤ n, or

4. w = R ◦ S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≤ i ≤ n,

or

5. w = S1 ◦ . . . ◦ Sn ◦R and Si ≺ R, for all 1 ≤ i ≤ n.

Finally, a role hierarchy Rh is regular if there exists a

regular order ≺ such that each RIA in Rh is ≺-regular.

For reasons of conciseness and readability, henceforth,

we will use this notation and “◦” for chaining rather

than the wordy OWL functional style syntax.

We look into the “basic form” for sub-properties,

i.e., S v R, in the remainder of this section and consider

property chains in Section 3. To increase readability, we

use R v C1 ×C2 as shortcut for domain and range ax-

ioms ∃R v C1 and ∃R− v C2 where C1 and C2 are

generic classes (i.e., ObjectPropertyDomain(OPE CE)

and ObjectPropertyRange(OPE CE) in OWL, respec-

tively), and R v > × > holds when no explicit do-

main and range axiom has been declared (in OWL:

ObjectPropertyDomain(R owl:Thing) and Object-

PropertyRange(R owl:Thing)) unless it inherited a do-

main or range from its parent property.

2.2 When a property is a subproperty of another

It is well-known that for class subsumption the sub-

class has to be more constrained than its superclass,

which can be applied to properties as well: subsump-

tion for OWL object properties (DL roles) holds if the

subsumed property is more constrained such that in ev-

ery model, the set of individual property assertions is a

subset of those of its parent property. Put differently:

given S v R, then all individuals in the property as-

sertions involving property S must also be related to

each other through property R. There are two principle

ways to constrain a property, and either one suffices:

(i) specify its domain and/or range, and (ii) declare the

property’s characteristics3, which will be analysed in

detail in the next two subsections.

3 Note that a cardinality constraint applies to the axiom,
not the property, hence, is not considered here.

Relationship
characteristic

Antisymmetry IrreflexivityTransitivity

{disjoint, complete}

Local
Reflexivity

Symmetry

Asymmetry

Acyclicity

Intransitivity

Purely-
reflexive

Strongly
intransitive

B.

Global
Reflexivity

Fig. 3 A: Depiction of a structure satisfying S v R thanks to
the domain and range restrictions (DS v DR and RS v RR),
alike the so-called ‘subsetting’ idea in UML; B: hierarchy of
property characteristics (updated from [8,9]), where dashed
characteristics cannot be represented in OWL 2 DL.

2.2.1 Subsumption due to domain and range axioms

Given an object subproperty expression S v R, then in

order to have the instances of S to be always a subset of

the instances of R, S’s domain or range, or both, have

to be subclasses of the domain and range of R. This

might be perceived to have an object-oriented and con-

ceptual data modelling flavour, yet it is widely used (see

also Table 2 on the evaluation of ontologies) and declar-

ing domain and range axioms has distinct advantages

in automated reasoning as well as for constraining the

admissible models and therewith being more precise in

representing the knowledge. The intuition is depicted

graphically with a possible model in Figure 3-A. To

make this more precise, let us first introduce the no-

tion of user-defined domain and range classes for OWL

ontologies in Definition 2.

Definition 2 (User-defined Domain and Range

Classes) Let R be an OWL object property, Ci an

OWL class that may or may not be atomic and 1 ≤
i ≤ n, and R v C1 × C2 its associated domain and

range axiom. Then, with the symbol DR we indicate the

User-defined Domain of R—i.e., DR = C1—and with

the symbol RR we indicate the User-defined Range of

R—i.e., RR = C2.

Observe that one can have a DR or RR that is,

e.g., the union of two classes, and if an object prop-

erty has a user-defined domain and/or range declared,

Detecting and Revising Flaws in OWL Object Property Expressions 5

then its subproperties will inherit the user-defined do-

main/range unless the subproperty has its own user-

defined domain and/or range declared that overrides

the inherited one.

Thus, for the property subsumption due to domain

or range, we need to specify that it ought to be the

case that, given an axiom S v R, DS v DR and

RS v RR must hold, and propose to the ontologist

ways to revise the flaw if this is not the case, as it may

lead to undesired, or at least ‘unexpected’, behaviour

of the reasoner—either the domain class DS is clas-

sified elsewhere in the hierarchy as a subclass of DR,

or, if the classes were declared disjoint, then DS be-

comes inconsistent—as was illustrated in Example 1.

This kind of problem was addressed in [18] with the

RBox Compatibility service, for which the DL ALCI
sufficed to define it. We will adapt it to OWL 2 DL and

substantially extend that service and options to correct

it in Section 2.3.

2.2.2 Subsumption due to the property’s characteristics

OWL object property characteristics (relational prop-

erties) constrain the way objects relate to each other;

e.g., if an ABox contains connectedTo(a, b), then only if

connectedTo is asserted to be symmetric then it will in-

fer connectedTo(b, a). One can argue for a property hier-

archy that respects the characteristics of the properties;

e.g., a property is asymmetric if it is both antisymmet-

ric and irreflexive, hence, if a property is asymmetric, it

certainly is also irreflexive but not vice versa. Thus, this

relies on how the property characteristics relate among

themselves, which is depicted as a small hierarchy in

Figure 3-B. Strongly intransitive and purely reflexive

have been identified recently by [9]; for completeness

and self-containedness we include the characterisations

of all property characteristics in first order logic nota-

tion, as they are more generic and not all of them have

been captured in a DL before:

– transitive: ∀x, y, z(R(x, y) ∧R(y, z)→ R(x, z));

– intransitive: ∀x, y, z(R(x, y) ∧R(y, z)→ ¬R(x, z));

– strongly intransitive: ∀x, y, z((R(x, y) ∧ P (y, z) →
¬R(x, z) and “P is recursively defined to give the

transitive closure of R, i.e., ∀x, y(P (x, y)← (R(x, y)

∨∃z(R(x, z)∧P (z, y))))” so as to prohibit ‘jumping’

over one or more classes in the hierarchy [9];

– locally reflexive: ∀x, y(R(x, y) → R(x, x)), which

requires a y to be there before x relates to itself

through R;

– globally reflexive: ∀xR(x, x);

– purely reflexive: ∀x, y(R(x, y)→ x = y) [9];

– irreflexive: ∀x¬R(x, x);

– asymmetric: ∀x, y(R(x, y)→ ¬R(y, x));

– symmetric: ∀x, y(R(x, y)→ R(y, x));

– antisymmetric: ∀x, y(R(x, y) ∧ R(y, x) → x = y)),

or, as in [8]: ∀x, y(¬(x = y) ∧R(x, y)→ ¬R(y, x));

– acyclic: R is acyclic iff ∀x¬(x has path to x) [8].

A subproperty has to be more constrained than its par-

ent property and, as with inheritance of properties for

classes, a property’s property should be inherited along

the property hierarchy and overridden with a stronger

constraint if that is declared on the subproperty. With

this line of reasoning and S v R, then Asym(S) and

Irr(R) is acceptable, but the other way around, Irr(S)

and Asym(R), is a flaw where either both are, or neither

one is, asymmetric, or R v S would be the intended ax-

iom. One can observe this also for the commonly used

parthood relation and its sub-relation proper parthood:

the former is reflexive, antisymmetric, and transitive,

and the latter irreflexive, asymmetric, and transitive.

With parthood and transitivity, however, there is a

complicating factor. Direct parthood (direct-part) is in-

transitive and tends to be represented in an OWL ontol-

ogy as a subproperty of parthood (part-of)4. The prob-

lem is that one cannot represent intransitivity in OWL

explicitly and not asserting transitivity means a prop-

erty is non-transitive, not intransitive. Informal feed-

back from the community revealed that inheritance of

transitivity along the object property hierarchy is con-

tentious, where either it is assumed this is definitely the

case and should hold, or that it definitely must not be

inherited down in the property hierarchy and if it were

a deduction by an automated reasoner, it would be a

bug. At present, in Protégé 4.1 (Mac version, build 239)

with the HermiT v1.3.6 OWL 2 reasoner as well as with

FaCT++ v1.6.0, transitivity is not inherited but in-

stead passed on upward in the hierarchy at the instance-

level (OWL ABox), which has certain consequences for

the design of SubProS as well as modelling guidelines

on prevention of ‘unexpected’ deductions. We illustrate

some consequences first in the following example, con-

sidering transitive, non-transitive, and pretended-to-be

intransitive parthood relations in an OWL ontology.

Example 2 (Transitivity in OWL ontologies) We use

the African Wildlife Ontology to demonstrate certain,

perhaps surprising, deductions. We have a defined class

Herbivore ≡ ∃eats.(Plant t ∃is-part-of.Plant) u
∀eats.(Plant t ∃is-part-of.Plant),

Giraffe is asserted as a subclass of Animal and

4 Two informal, but well-known, sources promoting
this representation are: the W3C Best Practices doc-
ument on Simple Part-Whole relations, http://www.

w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/,
and the Componency Ontology Design Pattern at
http://ontologydesignpatterns.org/wiki/Submissions:

Componency.

6 C. Maria Keet

Giraffe v ∃eats.(Leaf t Twig) u ∀eats.(Leaf t Twig)

For the current purpose, we use direct parthood, where

Leaf is a direct-part of a Twig or Branch, Twig is a

direct-part of a Branch, and a Branch is a direct-part of

a Tree that in turn is a subclass of Plant, and, as usual,

Trans(is-part-of). This being the same, we create two on-

tologies such that AWOsister has direct-part as sibling

object property of is-part-of and AWOsub has direct-part
as sub-object property of is-part-of, and neither ontology

has any characteristics (relational properties) checked

for direct-part.
After synchronizing the reasoner (be this HermiT or

Fact++), Giraffe is still a direct subclass of Animal in

AWOsister, whereas we do obtain the deduction that

Giraffe is a Herbivore in AWOsub. The reason for this dif-

ference is, that in AWOsub that what is related through

direct-part is also related through its transitive parent

property is-part-of, and therefore leaves and twigs are

part of plants by is-part-of’s transitivity, and therefore

giraffe is classified as a herbivore.

If, on the other hand, we change the definition of

Herbivore by replacing the is-part-of occurrences with

direct-part, then giraffe is not classified as a herbivore,

because direct-part is not explicitly declared transitive.

This as-if behaviour for intransitivity does not work

well, however, once we add is-proper-part-of v direct-
part and Trans(is-proper-part-of). Then with individu-

als and their relations is-proper-part-of(aleaf1, atwig1)
and is-proper-part-of(atwig1, atree1), we obtain the ex-

pected deduction that is-proper-part-of(aleaf1, atree1),
but also direct-part(aleaf1, atwig1), direct-part(atwig1,
atree1), and direct-part(aleaf1, atree1), and likewise for

is-part-of. In other words: direct-part starts behaving

just like if it were transitive, contrary to the modeller’s

intention. ♦

The quasi-nonmonotonicity illustrated in the exam-

ple is even more undesirable compared to simply being

consistent in positioning a nontransitive, but desired to

be intransitive, property at the top-level of the property

hierarchy and annotating it that one should not add a

transitive subproperty.

Overall, however, subsumption in the object prop-

erty hierarchy due to the properties’ characteristics is

fairly straight-forward for OWL 2 DL, because anti-

symmetry, acyclicity, and intransitivity cannot be rep-

resented, nor the strongly intransitive and purely re-

flexive characteristics. Current OWL reasoners do not

take into account inheritance of property characteris-

tics, but instead a characteristic is distributed upwards

for individuals; that is, if, say, Sym(R) then this does

not hold automatically for S (with S v R), but if

Sym(S) then all objects that relate through S symmet-

rically also do so symetrically through R, even though

it was not explicitly stated as such. Also with symmetry

the deductions exhibit a quasi-nonmonotonicity of the

super-property depending on the assertions on its sub-

property, alike what we have seen for non-transitivity.

To be sure, adding Asym(S) is very well possible, and

the argument holds likewise for Ref and Irr.
An avenue to remedy this, is to add something to

the reasoners, or one can design a ‘pre-reasoner check’

to alert the ontologist to such a case and propose to add

it or change the object property characteristics expres-

sion(s). Either way, a general principle holds as to how

the property hierarchy should behave, which we shall

define in the next section.

2.3 The SubProperty compatibility Service

Given the analysis on subproperties, we now can de-

fine the new reasoning service, SubProperty compatibil-

ity Service (SubProS), which we do by extending the

basic notions from the RBox compatibility [18]. Infor-

mally, it first checks the ‘compatibility’ of domain and

range axioms with respect to the object property hier-

archy and the class hierarchy in the ontology. The RBox

compatibility service is already necessary and sufficient

for finding domain/range problems, because it exhaus-

tively checks each permutation of domain and range of

the parent and child property in the object property

hierarchy. After that, SubProS checks whether the ob-

ject property characteristic(s) conform to specification,

provided there is such an expression in the ontology

declared for R.

Definition 3 (SubProperty compatibility Service

(SubProS)) For each pair of object properties, R,S ∈
O such that O |= S v R, and O an OWL ontology ad-

hering to the syntax and semantics as specified in [23],

check whether:

Test 1. O |= DS v DR and O |= RS v RR;

Test 2. O 6|= DR v DS ;

Test 3. O 6|= RR v RS ;

Test 4. If O |= Asym(R) then O |= Asym(S);

Test 5. If O |= Sym(R) then O |= Sym(S) or O |=
Asym(S);

Test 6. If O |= Trans(R) then O |= Trans(S);

Test 7. If O |= Ref(R) then O |= Ref(S) or O |= Irr(S);

Test 8. IfO |= Irr(R) thenO |= Irr(S) orO |= Asym(S);

Test 9. If O |= Asym(R) then O 6|= Sym(S);

Test 10. If O |= Irr(R) then O 6|= Ref(S);

Test 11. If O |= Trans(R) then O 6|= Irr(R),

O 6|= Asym(R), O 6|= Irr(S), and O 6|= Asym(S);

An OWL object property hierarchy is said to be

compatible iff

Detecting and Revising Flaws in OWL Object Property Expressions 7

– Test 1 and (2 or 3) hold for all pairs of property-

subproperty in O, and

– Tests 4-11 hold for all pairs of property-subprop-

erty in O.

An OWL ontology O that does not adhere to Sub-

ProS is considered to be ontologically flawed. Practi-

cally, several SubProS tests can avail in part of the ex-

tant OWL reasoners. Class subsumption checking for

Tests 1-3 can be done with a call to the API of any

of the OWL reasoners, where the result is processed to

check the conditions in the tests. Test 9 and Test 10

are already done by OWL 2 DL reasoners, but it now

only returns a class inconsistency when S is used in

a class expression, not regarding the property charac-

teristics per sé; hence, the explanation and suggestions

for revision has to be amended: with respect to the in-

tended meaning, not the class expression is at fault,

but there is a flaw in the property hierarchy. Test 11

is included merely for purpose of exhaustiveness, given

that it is already prohibited by the syntax restrictions

of OWL 2 and already has a corresponding warning (ir-

reflexivity and asymmetry require simple object prop-

erties, but a transitive property is not simple), but it

may become relevant for any future OWL version or

modification of SubProS for another ontology language.

2.3.1 Remedying a flaw

Assuming a modeller may want to remedy a detected

flaw, we specify what has to be done if any of the ap-

plicable tests fails. For Tests 1-3, we reuse the basic

2-step idea from [18] and adapt it to the current setting,
and we propose new corrections for Tests 4-11. Con-

cerning terminology, “raising a warning” denotes that

it is not a logical error with respect to the current stan-

dard OWL automated reasoners but an extra-logical or

onto-logical one, “forcing” a revision indicates that the

flaw resulted also in a logical error that must be fixed

in order to have a consistent ontology with satisfiable

classes, and “propose” indicates suggestions how the

flaw can be best revised.

A. If Test 1 fails, raise a warning “domain and range

restrictions of either R or S are in conflict with the

property hierarchy”, and propose possible correc-

tions:

? Change the object property hierarchy by either

removing S v R and adding R v S or adding

S ≡ R to O, or

? Change domain and range restrictions of R and/

or S, or

? If the test on the domains fails, then propose a

new axiom R v D′R × RR, where D′R is a new

class such that D′R ≡ DR u DS , and similarly

when Test 1 fails on the range.

B. If Test 2 and Test 3 fail, raise a warning “R can-

not be a proper subproperty of S, but they can be

equivalent”, and propose possible corrections:

? Accept the possible equivalence and, optionally,

add S ≡ R to O, or

? Change domain and range restrictions of R and/

or S.

C. Run SubProS again if any changes have been made

in steps A or B, and record changes in the hierarchy

(which will be used in step I).

D. If Asym(R) is asserted in O and Test 4 fails to de-

tect Asym(S), raise a warning “R is asymmetric, but

its subproperty S is not”, proposing to remedy this

with either:

? Add Asym(S) to obtain expected inferences;

? Remove Asym(R);

? Change the positions of R and/or S in the object

property hierarchy;

and similarly when Test 6 fails,

E. If Sym(R) is asserted and Test 5 fails to detect ei-

ther Sym(S) or Asym(S), raise a warning “R is sym-

metric, but its subproperty S is not, nor is it asym-

metric”, proposing to remedy this with either:

? Add Sym(S) or Asym(S) to obtain expected in-

ferences;

? Remove Sym(R);

? Change the positions of R and/or S in the object

property hierarchy;

and similarly when Test 7 fails,

F. If Irr(R) and Test 8 fails to detect either Irr(S) or

Asym(S), raise a warning “R is irreflexive, hence S

should be either Irr(S) or Asym(S), and propose:

? Add Asym(S) or Irr(S) to obtain expected infer-

ences;

? Remove Irr(R);

? Change the positions of R and/or S in the object

property hierarchy;

G. If Test 9 fails, report “R is asymmetric so its sub-

property, S, cannot be symmetric” and force the

modeller to change it by either

? Remove Asym(R), or

? Remove Sym(S).

? Change the positions of R and/or S in the object

property hierarchy;

and similarly if Test 10 fails, but then irreflexive

and reflexive, respectively.

H. If Test 11 fails, report “R (and by Test 6, S, too)

is declared transitive, hence, not a simple object

property, hence it is not permitted to participate

in an irreflexive or asymmetric object property ex-

8 C. Maria Keet

pression” and force the modeller to change it by

either:

? Remove Trans(R), or

? Remove Irr(R), Asym(R), Irr(S), and Asym(S);

I. Run SubProS again if any changes have been made

in steps D-H, and check any changes made in the

property hierarchy against those recorded in step C.

If a change from steps E or F reverts a recorded

change, then report “unresolvable conflict on sub-

property axiom. You must change at least one ax-

iom to exit an otherwise infinite loop of swapping

two expressions”.

The reason for running SubProS again after Test 1-3

and not only at the end is that those changes, if any,

will affect the outcome of Tests 4-11 and in Step I it

must be run again to both push through the changes

and prevent an infinite loop.

2.3.2 Evaluation of SubProS

SubProS was evaluated with several ontologies. The

TONES Ontology repository5 contains 219 ontologies

and we selected 12 ontologies semi-randomly based on

(i) having listed in the metrics to have a substantial

amount of object properties, and (ii) being a real on-

tology (i.e., no toy or tutorial ontology, not converted

from OBO, nor an OWLized thesaurus). Relevant data

about the ontologies and the outcomes of running Sub-

ProS is shown in Table 2. Noteworthy is that object

properties that are in an hierarchy predominantly have

changes in the domain or range. We analyse BioTop’s

inconsistent object property in the next evaluation.

Evaluation 1 (BioTop’s inconsistent ‘has process role’)

The ‘has process role’ in BioTop [2] version d.d. June

17, 2010 is inconsistent, yet there is no explanation for

it computed by currently implemented explanation al-

gorithms. The ontology contains, among other axioms:

‘has process role’v‘temporally related to’ (E.1)

‘has process role’v‘processual entity’×role (E.2)

‘temporally related to’ v
‘processual entity’ t quality ×
‘processual entity’ t quality (E.3)

role v ¬quality (E.4)

role v ¬‘processual entity’ (E.5)

Sym(‘temporally related to’) (E.6)

We now use SubProS to isolate the flaw and subse-

quently propose a revision.

– Test 1: fail, because Rhasprocessrole v Rtemporallyrelatedto

is false, as the ranges (see E.2 cf. E.3) are disjoint

(see E.4, E.5) and therewith ‘has process role’ is in-

consistent;

5 http://owl.cs.manchester.ac.uk/repository/

– Test 2 and 3: pass.

– Test 4: not applicable.

– Test 5: fail, because O does not contain Sym(‘has
process role’).

– Test 6-11: not applicable.

To revise the issue detected with Test 1, we have to

choose among three options, as described in item A,

above, regarding remedying a flaw. The ‘has process
role’ property has not been used in class expressions,

and from the informal meaning described in the anno-

tation, it fits as subproperty of ‘temporally related to’,
therefore, one opts for choice 2, being to change the

range of ‘temporally related to’ into ‘processual entity’ t
quality t role, and the same holds for the inverse (‘pro-
cess role of’.). To revise the issue of the failed Test

5, there are three options (see item E): it was already

decided not to change the property hierarchy, so one ei-

ther can add Sym(‘has process role’), or Asym(‘has pro-
cess role’), or remove Sym(‘temporally related to’). Con-

sidering the meaning of the properties, Sym(‘temporally
related to’) is certainly true and Sym(‘has process role’)
certainly false, hence Asym(‘has process role’) is the ap-

propriate revision. After changing the ontology accord-

ingly, no issues emerge with SubProS. ♦

3 Property Chaining in OWL

Property chaining is well-known in DL research as role

composition [22,29,33], but in OWL its usage is more

restricted and, except for a few elaborate cases (the

family relations example [23] and metamodelling rewrit-

ings [6]), is typically used with only two object proper-

ties being chained, where one of them occurs on both

sides of the inclusion [4,13,23]; e.g., hasPart ◦
hasParticipant v hasParticipant in pharmacogenomics

[5], foaf:maker ◦ foaf:maker− v sda:co-author in the con-

ferencing domain [3], and similarly for digital objects

collections (dcterms:contributor− ◦ dcterms:contributor
v ex:co-author) [20]. We will first describe some back-

ground information about property chaining and its

‘original’, role composition, illustrate some typical prob-

lems, then introduce the Property Chain compatibility

Service ProChainS, and finally address how to manage

consequences of property chains and revise flawed ones.

The issues mentioned and solution proposed here ap-

plies to any OWL 2 DL admissible chain.

3.1 Preliminaries and problems

Property chaining in OWL 2 has a long history in DL

research, where it is known as role composition [14,22,

Detecting and Revising Flaws in OWL Object Property Expressions 9

Table 2 Selection of some TONES Repository ontologies, retrieved on 12-3-2012, and others used in the examples; OP =
object property; char. = object property characteristic.

Ontology No. No. of No. more Comments
of SubOP constrained

OPs axioms D or R by char.

DOLCE-lite 70 46 13 3 Transitivity was added to a subproperty.
gfo-basic 41 12 11 1 Functionality was added to a subproperty.
SAO 1.2 36 25 21 5 Additions to a subproperty cf. its parent property: 2 in-

stances where functionality is added, and 2 x transitivity
added; Test 6 of SubProS fails on has Vesicle Component.

airsystem 111 56 43 2 One subproperty has functionality added; ProChainS’s
Test SR-a, b and c fails on hasFunctionalSubsystem ◦ has-
Component v hasComponent because hasFunctionalSubsys-
tem does not have user-defined domain and range axioms,
whereas hasComponent has Object.

process (SWEET) 102 10 7 0 Mainly many underspecifications and implicit imports (e.g.,
space.owl), which hampers analysis.

family-tree 52 25 14 2 Functionality is added to one subproperty; fails Test 6 of
SubProS.

propreo 32 20 17 2 The ontology is beyond OWL 2 DL because a non-simple
object property appears in a class axiom that uses a max-
imum qualified cardinality constraint.

heart 29 18 9 0 There are many inconsistencies; fails Test 1 and 2 on is-
BranchOf; fails Test 6 of SubProS in many cases (including
the direct-part issue, with, e.g., has direct subcavity).

mygrid-
unclassified

69 39 0 3 Transitivity was added once to a subproperty and function-
ality twice.

building architec-
ture

28 24 0 0 It fails Test 5 of SubProS due to the omission of Asym on
properPartOf.

biotop 89 84 45 9 Transitivity was added to two subproperties; fails Test 1

and 5 of SubProS, which is discussed in Evaluation 1.
legal-action.owl The ontology did not load in Protégé due to multiple de-

pendencies, and timed out.

biochemical-
reaction-complex

7 0 0 1 It contains the RO relations and the untyped property
chain with hasparticipant and haspart, which is discussed
in Evaluation 4.

DMOP v5.2 118 40 23 1 Functionality is added to a subproperty; fails Test 6 of
SubProS; analyses of DMOP with ProChainS are described
in Example 4, and Evaluation 2 and 5.

family-tree 52 25 12 0 It fails Test 5 and 6 of SubProS, including the hasAncestor
and hasGrandparent issue.

29,33]. There are subtle differences between the origi-

nal notion of composition in DL and what remains of

it in OWL such that, on the one hand, the the effec-

tive meaning of a property chain in OWL is consider-

ably weaker than the true role composition, and, on the

other hand, leaves room for ‘workarounds’. We briefly

summarise and discuss the main results on role compo-

sition (without loss of generality, we illustrate it with

only two roles on the left-hand side of the inclusion).

This aids examining more precisely correct and flawed

property chain axioms.

Role composition in the DL language ALR is de-

fined as (Eq. 1) [29],

R ◦ S .
= {(x, y)|∃z ∈M : (x, z) ∈ R ∧ (z, y) ∈ S} (1)

where R and S are DL-roles, i.e., OWL object proper-

ties, over a set M , that is R,S ⊆M ×M . The compo-

sition “R◦S” means that the two instances x and y are

related by some relation—unnamed in (Eq. 1)—which

amounts to the same as joining the two roles. Logi-

cally, and ontologically, this is “true composition”. Let

us name the implicit or derived DL-role indicated with

the right-hand side of the “
.
=” as T , hence, R ◦ S .

= T ,

where R,S and T may be the same or different; e.g.,

child ◦ child
.
= grandchild, i.e., the child of your child is

your grandchild. This true composition with arbitrary

roles is undecidable and therewith undesirable from a

computational viewpoint, and so is its weaker version

R◦S v T [29,33]. With two additional weakening steps

limiting its usage, it is decidable and included in RIQ
[14] and SROIQ [13]: one can represent only R◦S v R

or S ◦ R v R, where R and S may be the same or dif-

ferent and one has acyclic role hierarchy. For SROIQ,

the composition operator and its constraints for prop-

erty chaining are declared as specified in Definition 1.

10 C. Maria Keet

Although weakening of true role composition to in-

clusion is understandable from the viewpoint of the de-

sire to stay within the decidable fragment of first or-

der logic, practically, the restrictions on usage change

the semantics and intention of ‘composition’—defining

a role from other roles—into mere ‘chaining’—some lim-

ited necessary condition for that role. On the other

hand, it is also underspecified from a purely modelling

viewpoint, because it is possible to introduce behaviour

as if it were composition, using a ‘workaround’ through

under- or non-specification of the domain and range of

the roles. This is illustrated in the next example, where

we also show that a more precise formalization actu-

ally will detect the issue, which, however, points in the

logically correct but ontologically wrong direction.

Example 3 (Simulating role composition) Let us take

R◦S v R, and for explanatory purpose and brevity, de-

note with Rl the R on the left-hand side of the inclusion,

and Rr the R on the right-hand side, i.e., Rl ◦ S v Rr.

We can make the domain and range of Rl distinct from

that of Rr without declaring it explicitly. For instance,

we want to know which kind of amino acids are part

of which enzyme(s). Let R = structPartOf, intended to

mean to relate parts and wholes that are types of ma-

terial continuants and S = hasFunction that relates a

material continuant to a function or role (in, e.g., the

BFO foundational ontology), AminoAcid and Protein are

both material continuants and Enzyme a function, and

we have the following axioms in our ontology:

AminoAcid v ∃ structPartOf.Protein (E.1)

Protein v ∃ hasFunction.Enzyme (E.2)

structPartOf ◦ hasFunction v structPartOf (E.3)

This entails that

AminoAcid v ∃structPartOf.Enzyme. (E.4)

Deducing that an amino acid is part of some enzyme

(E.4), is fine in the vernacular and used as such, but

note the change in use and meaning of the structPartOf
relation, which does not relate two material entities

anymore as it should do, but now permits that a struc-

tural entity (AminoAcid) is part of a functional entity

(Enzyme). That is, essentially, the high-level category

of the range of structPartOf that is part of the defini-

tion of the meaning of the property has changed due to

property chaining, and therewith the intended meaning

of structPartOf has changed. If, regarding the intended

meaning of R, we obtain Rl 6= Rr resulting from the

different implicit categories of the domain and range

caused by the concatenation—even though the name

of the role is exactly the same—we have introduced in

disguise through the backdoor the R ◦ S v T , where

T ≡ Rr. However, this occurs only when domain or

range axioms are either not or under-specified. Let us

now type the properties, where IC is IndependentCon-

tinuant and DC DependentContinuant:
structPartOf v IC × IC (E.5)

Function v DC (E.6)

hasFunction v IC× Function (E.7)

DC v ¬IC (E.8)

with the classes taken from BFO, and property chain

(E.3), then we cannot instantiate it, because the ranges

of structPartOf and hasFunction are disjoint (cf. E.5 and

E.7, and E.8); hence, our approach was wrong. In addi-

tion, (E.1-E.8) taken together results in an unsatisfiable

AminoAcid, which, however, is not the root cause of the

problem. On the other hand, a chain like

structPartOf ◦ hasFunction v hasFunction (E.9)

implies that

AminoAcid v ∃ hasFunction.Enzyme (E.10)

which leaves the semantics of the object properties in-

tact and will not cause an inconsistency, but, unfortu-

nately, this is ontologically nonsense: in this case, the

part does not have the same function as the whole it is

part of. Given the more precise knowledge represented,

and still wanting to know the answer to the original

question, one can obtain this by going in the other di-

rection:

hasFunction− ◦ structPartOf− v hasFunction− (E.11)

so that Enzyme inheres in (i.e., hasFunction−) some

AminoAcids. ♦
Rephrasing the example: the workaround was in-

correct from an ontology viewpoint and the vernacu-

lar was imprecise and therewith the motivation for the

workaround was unsound, and being more precise in

the representation of the knowledge resolved the issue6.

Before we present a systematic approach to resolving

issues with violating the meaning of roles/object prop-

erties, a different though related problem will be in-

troduced, which is similar in flavour as Example 1 in

illustrating undesirable deductions, but then applied to

property chains. We have again two ontologies, O1 and

O2, with their respective axioms as listed in Table 3

where the property chain is one of Case S from Defi-

nition 1. A standard reasoner deduces either a classifi-

cation of a class elsewhere in the class hierarchy or an

inconsistency in the class hierarchy, which is, in fact,

due to a problematic property chain axiom together

with the domain and range declarations of its partici-

pating properties. That this is not a contrived situation

is demonstrated in Example 4 in the domain of data

mining.

Example 4 (DMOP ontology chaining issue) The Data

Mining and OPtimisation ontology (DMOP, v5.2, Sept.

6 Further, as might be gleaned from (E.11), it is bet-
ter to have (E.1) the other way around (Protein v ∃ has-
Part.AminoAcid), because not all amino acids are part of a
protein, yet each protein must have some amino acids.

Detecting and Revising Flaws in OWL Object Property Expressions 11

Table 3 Sample ontologies (CEs include the OWLized Fig 2) and a problematic property chain, with similar outcomes as in
Table 1 but a more elaborate root problem (explanation based on Protégé 4’s explanation feature).

O1 OPEs CEs Inferred, with explanation

R v POB× POB Pob1 v POB, Pob2 v POB, Pt2 v ED due to domain S2,
S1 v PT× PT Ed1 v ED, Ed2 v ED, Ed1 v PED due to domain S3,
S2 v ED× ED Pt1 v PT, Pt2 v PT, Pt1 v POB due to the property chain
S3 v PED× PED Pt1 v ∃S1.Pt2, Pt2 v ∃S2.Ed1,
S1 ◦ S2 ◦ S3 v R Ed1 v ∃S3.Pob1

O2 OPEs CEs Inferred, with explanation

as O1 as O1, but with Pt1 v M Pt1 inconsistent because 1. M v ¬POB, 2. Ed1 v ∃S3.Pob1,
(note: ED v ¬PD still holds) 3. Pt1 v M, 4. Pt2 v ∃S2.Ed1, 5. DR = POB, 6. S1 ◦ S2 ◦ S3 v R

2011) was developed in the e-LICO project (http://

www.e-lico.eu) [11]. It uses the SROIQ features, has

some 573 classes, 1021 subclass axioms, 113 object prop-

erties, 40 object sub-property axioms, and 11 property

chains. One of the chains, shown in Figure 4, is

hasMainTable ◦ hasFeature v hasFeature, (E.1)

and the properties are typed as

hasMainTable v DataSet× DataTable, (E.2)

hasFeature v DataTable× Feature. (E.3)

Observe that RhasMainTable = DhasFeature—both are

DataTable—but DhasMainTable = DataSet and DhasFeature =

DataTable. Because DataSet is a not-disjoint sibling-

class of DataTable in DMOP, the combination of (E.2,

E.3) and (E.1) causes the deduction DataSet v DataTa-

ble. This deduction is wrong with respect to the subject

domain semantics, and the real flaw is either a domain

or range axiom, or there is a flaw in the chain axiom.

We solve this issue with ProChainS in Evaluation 5. ♦

DataSet DataTable DataTable Feature

hasMainTable hasFeature

hasFeature

D
hasFeature

 = DataTable

compatibleincompatible

Fig. 4 Graphical depiction of hasMainTable ◦ hasFeature
v hasFeature, the domain and range axioms of the two ob-
ject properties, and compatibility of the domains and ranges.

To foster development of good quality ontologies,

the ontologist should at least be informed about proba-

ble modelling flaws and be guided in the right direction

to revise axioms in some way. This requires a specifi-

cation of new constraints on the use of property chains

so as to guarantee meaningful reasoning with respect to

the subject domain, and explanation of the derivations,

which can be implemented in a reasoner and/or in the

interface of the ontology development software. We ad-

dress the issues with the Property Chain compatibility

Service (ProChainS), which ensures that ‘safe’ property

chains are declared in the ontology.

3.2 The Property Chain Compatibility Service

With respect to Definition 1’s role inclusion axioms,

we need to consider cases 3, 4, and 5 and, without

loss of generality, for each OWL object property, if

a domain and range is declared, exactly one domain

and range axiom is provided. Recall the notation as

in Definition 1 and 2: e.g., for Case S, i.e., the third

option in Definition 1, we may have a property chain

S1 ◦S2 ◦S3 v R where each property has corresponding

domain and range DS1, RS1, DS2, RS2, DS3, RS3, DR,

and RR. The three cases with the constraints that must

hold are described formally in Definition 4. Informally,

to ensure avoidance of undesirable classifications or in-

consistencies, the domain/range class from left to right

has to be equal or a superclass on the left-hand side of

the inclusion, and similarly for the outer domain and

range on the left-hand side and domain and range of

the object property on the right-hand side.

Definition 4 (Property Chain Compatibility Ser-

vice (ProChainS)) For each set of object properties,

R,S1, . . . , Sn ∈ R, R the set of OWL object properties

(VOP in [23]) in OWL ontology O, and Si ≺ R with

1 ≤ i ≤ n, O adheres to the constraints of Definition 1

(and, more generally, the OWL 2 specification [23]),

and user-defined domain and range axioms as defined

in Definition 2, for each of the property chain expres-

sion, select either one of the three cases:

Case S. Property chain pattern as S1◦S2◦. . .◦Sn v R.

Test whether:

Test S-a. O |= RS1 v DS2, . . . , RSn−1 v DSn;

Test S-b. O |= DS1 v DR;

Test S-c. O |= RSn v RR;

Case RS. Property chain pattern as R◦S1◦. . .◦Sn v R.

Test whether:

Test RS-a. O |= RS1 v DS2, . . . , RSn−1 v DSn;

Test RS-b. O |= RR v DS1;

Test RS-c. O |= RSn v RR;

Case SR. Property chain pattern as S1◦. . .◦Sn◦R v R.

Test whether:

Test SR-a. O |= RS1 v DS2, . . . , RSn−1 v DSn;

12 C. Maria Keet

Test SR-b. O |= DS1 v DR;

Test SR-c. O |= RSn v DR;

An OWL property chain expression is said to be com-

patible iff the OWL 2 syntactic constraints hold and

either Case S, or Case RS, or Case SR holds.

ProChainS is evaluated with three domain ontolo-

gies that, for ease of explanation, we assume to con-

tain an OWLized DOLCE taxonomy (recall Figure 2)

where applicable, it has subject domain classes (e.g.

DrugTreatment) that are involved in class expressions,

DOLCE’s hasParticipant v PD× ED and hasPart v
PT× PT, a structuralPart v POB× POB, and a part-of

between perdurants (involvedIn v PD× PD).

Evaluation 2 (DMOP chains, Case S) DMOP v5.2 con-

tains a property chain realizes ◦ addresses v achieves and

each property has a domain and range axiom, which is

depicted in Figure 5; the classes are all subclasses of

DOLCE’s NPED. Let us apply the three relevant tests

of ProChainS:

– Test S-a: pass, because Rrealizes v Daddresses;

– Test S-b: pass, because the answer to “Drealizes v
Dachieves?” is that they are both DM-Operation;

– Test S-c: fail, because Rachieves v Raddresses holds

instead of Raddresses v Rachieves; that is, Raddresses

is the union of DM-Task and OptimizationProblem,

whereas Rachieves is only DM-Task.

Notwithstanding the failed Test S-c, the chain can be

instantiated, but if the range of addresses is a subclass

of OptimizationProblem in a class expression, then its in-

stances will be classified as a member of DM-Task, given

that the two classes are not declared disjoint. If the two

classes would have been declared disjoint, then the on-

tology would have become inconsistent (due to other

axioms, the root problem was identified as a “bad indi-

vidual” member of DM-Operation), instead of pointing

to the issue with Raddresses and Rachieves and the prop-

erty chain. Furthermore, the classification is undesir-

able: tasks and problems are clearly distinct entities.

The lead ontology developer chose to revise the domain

and range restrictions of addresses to have the chain

functioning as intended (included in v5.3). ♦

Evaluation 3 (SNOMED CT’s injury, Case RS) Let us

revisit SNOMED-CT from the introduction and the

so-called upwards distributivity, which was asserted it

should hold for injuries. First, add to O the chain

injuryOf ◦ structuralPart v injuryOf
so that when some Fracture v F as an injury of

Metacarpal2 v POB—which is the bone between the

wrist and the index finger, hence, a structural part of

the Hand—then the reasoner infers it is also an injury

of the hand. Running ProChainS, we obtain:

– Test RS-a: pass, for i = 1;

– Test RS-b: pass, because “RinjuryOf v DstructuralPart?”

has all POBs;

– Test RS-c: pass, because “RstructuralPart v RinjuryOf?”

has all POBs.

Hence, according to ProChainS, it is a compatible prop-

erty chain.♦

Evaluation 4 (Pharmacogenomics chains, Case SR)

The pharmacogenomics ontology contains the chain

hasPart ◦ hasParticipant v hasParticipant and knowledge

about drugs and treatments [5], and aforementioned ax-

ioms. Evaluating it with ProChainS, we obtain:

– Test SR-a: pass, as it is trivially satisfied (i = 1);

– Test SR-b: fail, because DhasPart v DhasParticipant does

not hold, because PD v PT;

– Test SR-c: fail, because RhasPart v DhasParticipant does

not hold, because PD v PT.

Extending O with DrugTreatment v PT and

DrugGeneInteraction v PT, then a reasoner deduces they

are subclasses of PD, whereas if DrugTreatment v ED
and DrugGeneInteraction v ED were to be added to O,

then it deduces that the two classes are inconsistent

because ED v ¬PD. The usage of “hasPart” thus holds

only if DrugTreatment and DrugGeneInteraction are sub-

classes of PD (perdurants or ‘processes’). This observa-

tion permits one to refine the property chain into

involvedIn− ◦ hasParticipant v hasParticipant.
With this refinement, we run ProChainS for Case SR

again: Test SR-b and c pass, because DinvolvedIn− =

RinvolvedIn− = DhasParticipant = PD; hence, this property

chain is guaranteed not to lead to an inconsistency when

the object properties are used in OWL axioms. ♦

Having seen how the three cases in ProChainS func-

tion, we now proceed to managing the consequences in

a structured way.

3.3 Managing Consequences of Property Chains

As Evaluation 4 shows, the ontology may not neces-

sarily be inconsistent when viewed purely from a logic

perspective, and, in fact, classify one or more of the

participating classes elsewhere in the taxonomy with

respect to where it was added originally (be this on-

tologically correct or not). Put differently, one cannot

always enforce ProChainS’s outcomes on the user. Be

they undesired inferences or inconsistencies in the class

hierarchy, it is important to have an explanation that

those consequences are due to the property chain.

Now that we know what and how to check whether

a declared property chain is logically and ontologically

correct, it is also possible to devise support for identify-

ing modelling defects, communicating this to the user,

Detecting and Revising Flaws in OWL Object Property Expressions 13

DM-Operation DM-Algorithm

DM-Algorithm or
DM-Workflow or
OptimizationStrategy

realizes addresses

achieves

DM-Task or
Optimization-
Problem

D
achieves

 = DM-Operation R
achieves

 =

DM-Task

compatible

incompatible

compatible

Fig. 5 The realizes ◦ addresses v achieves chain in DMOP v5.2, with the domain and range axioms of the participating prop-
erties; the matching chain is indicated in bold grey/green, the problematic one in Arial narrow font, and both are indicated
with compatible or incompatible, respectively.

and suggest options to correct it in a similar way as for

SubProS. A less comprehensive approach can be taken

compared to the formal foundations of computing ex-

planations or root justifications [12,24], because we do

not have to find the root cause anymore and, in fact,

can make use of certain explanation features that are

implemented already. We propose the following ontol-

ogy revisions, in case the test fails, where subscript i,

with i ≤ n − 1, denotes the ordered property on the

left-hand side of the inclusion:

A. If Test S-a, Test RS-a, or Test SR-a fails, check

for any violating pair RSi, DSi+1 whether:

(i) O |= RSi v ¬DSi+1, then raise a warning “In-

compatible domain and range of RSi, DSi+1 in

the property chain expression. This is certain to

lead to an inconsistent class when the properties

are used in class axioms, and an inconsistent on-

tology when used in assertions about instances”,

and propose the following minimal corrections:

? Change the range of Si such thatO |= RSi v
DSi+1, or

? Change the domain of Si+1 such that O |=
RSi v DSi+1;

? Change the property chain such that a com-

patible property participates;

(ii) O |= DSi+1 v RSi, then raise a warning “In-

compatible domain and range of RSi, DSi+1 in

the property chain expression. This either results

in an inconsistent class when the properties are

used in class axioms and an inconsistent ontol-

ogy when used in assertions about instances, or

results in a classification of DSi+1 elsewhere in

the class hierarchy”, and propose the following

minimal corrections:

? Change the range of Si such thatO |= RSi v
DSi+1, or

? Change the domain of Si+1 such that O |=
RSi v DSi+1;

? Change the property chain such that a com-

patible property participates;

? Let the reasoner classify DR as a subclass

of DS1 and accept this inference, provided

O 6|= DR v ⊥;

B. If Test S-b fails, then raise a warning “Incompat-

ible domain and range of DS1, DR in the property

chain expression, which will induce a classification of

DR elsewhere in the taxonomy or an inconsistency”

and propose the following options:

? Change the domain of R or S1 such that O |=
DS1 v DR, or

? Let the reasoner classify DSi+1 as a subclass of

RSi and accept this inference, provided O 6|=
DSi+1 v ⊥;

and similarly for the respective ranges of R and Sn

in Test S-c.

C. If Test RS-b fails, then raise a warning “Incom-

patible domain and range of DS1, RR in the left-

hand-side of the property chain expression, which

will induce a classification of RR elsewhere in the

taxonomy or an inconsistency” and propose:

? Change the domain of S1 or range of R such that

O |= DS1 v RR, or

? Let the reasoner classify RR as a subclass of DS1

and accept this inference, provided O 6|= RR v
⊥;

and similarly for the respective ranges of R and Sn

in Test RS-c.

D. If Test SR-b fails then raise a warning “Incompat-

ible domain and range of DS1, DR in the property

chain expression, which will induce a reclassification

or inconsistency of DS1” and propose the following

options:

? Change the domain of S1 or R such that O |=
DS1 v DR, or

? Let the reasoner classify DS1 as a subclass of RR

and accept this inference, provided O 6|= DS1 v
⊥;

and similarly for the range of Sn (compared to the

range of R) in Test SR-c.

E. Run ProChainS again if any changes have been made

in steps A-D.

ProChainS and the management of its consequences is

evaluated with the DMOP ontology, solving the flaw

described in Example 4.

14 C. Maria Keet

Evaluation 5 (Assessing DMOP chains) DMOP v5.2

has 11 chains, of which eight raise a warning with

ProChainS, and three of those cause a classification of

classes elsewhere in the taxonomy due to the chain ex-

pressions. hasMainTable ◦ hasFeature v hasFeature was

intorduced in Example 4, which is an instance of Case

SR. Applying the three relevant tests, we obtain:

– Test SR-a: pass, for i = 1;

– Test SR-b: fail, due to the incompatible the domain

axioms, as DataSet is a not-disjoint sibling-class of

DataTable , so O 6|= DhasMainTable v DhasFeature, there-

fore Test SR-b fails and DataSet v DataTable is de-

duced, which is deemed undesirable. Step D’s sug-

gestions for revision are either to change the do-

main or to accept the new classification. The DMOP

domain experts chose the first option and changed

the domain of hasFeature into DataSet t DataTable,

which is included in DMOP v5.3.

– Test SR-c: pass, as both are DataTable.

No inconsistencies or unexpected classifications were

deduced with the other five chains, principally thanks

to the absence of disjointness axioms. For instance, the

Case S described in Evaluation 2 with realizes ◦ ad-
dresses v achieves where Test S-c failed because O 6|=
RDM-TasktOptimizationProblem v RDM-Task. Considering the

suggestions for revision, step B’s first option to revise

the ontology was chosen, i.e., removing Optimization-
Problem from the range axiom of addresses, which is

included as such in DMOP v5.3. This was chosen prin-

cipally because the meaning of the relation was over-

loaded, and OptimizationStrategy was removed from the

domain axiom, i.e., the optimization aspects were re-

moved entirely from addresses. ♦

Thus, SubProS and ProChainS together cover all types

of modelling flaws with their root causes and options to

revise them in OWL ontologies with respect to OWL

object property expressions, being the property hierar-

chies, domain and range axioms to type the property,

a property’s characteristics, and property chains.

4 Prospects for preventing flaws in property

chains

Property chaining is a relatively recent addition to OWL

that intends to meet ontologists’ requests, such as the

recurring example where one wants to infer that a frac-

ture of the neck of the femur is a fracture of the fe-

mur [15] and car engine ownership [13], and it is grad-

ually being used in ontologies and its usage likely will

increase. Although by definition, the logic allows the

modeller to chain any two relations as long as they do

not violate the OWL 2 limitations, in practice, a certain

subset of all possible relations is used more often than

others, and most combinations of chaining generic re-

lationships are actually flawed. We discuss and demon-

strate validity of the latter assertion by considering ob-

ject properties in DOLCE, GFO, and RO in Section 4.1.

The interesting chains that yield ontologically correct

deductions concern plain parthood with some other re-

lationship: based on the analysis for ProChainS, we now

can make precise and motivate in Section 4.2 the intu-

ition of what is called “transfers through” [15], “prop-

agates via” or “inheritance across transitive roles” [26]

and “upward” and “right” “distributivity” over part-

hood relations [1] . Overall, it provides an indication

for using ProChainS to prevent flaws.

4.1 Chaining typical properties in top-level ontologies

Many different object properties are declared in ontolo-

gies, but several re-occur across ontologies, such as on

causality, agency, location, having a particular function

or role, and inherence and having a certain quality. Such

recurring types of relations typically are present also in

foundational ontologies, such as DOLCE [21] and GFO

[10], where they generally have domain and range ax-

ioms declared. In addition to considering the meaning of

the relation, this feature makes them exceedingly suit-

able for evaluation with ProChainS even before declar-

ing any property chain and property’s usage in class ex-

pressions. Analysing the non-parthood relations, there

are only a few safe property chains that can be declared

at the time of writing, which is due to a combination

of under- and over-specification.

Let us first consider a set of least constrained prop-

erties: the Relation Ontology (RO) [31]. RO is an on-

tology of relations and relationships that is used in

bio-ontologies, especially within the OBO Foundry [30].

Based on those informal definitions, omitting is a, in-

verse relations, subtypes of part of, and instantiation,

the meaningful property chains are indicated with a

“+” in Table 4, “–” as definitely incorrect, and for the

“±” cases it is unclear and they require either a more

precise specification or user intervention on a case-by-

case basis. Note that, with the present definitions [31]

and its online version7, part of requires caution, because

it uses the same name for continuant-parts, for process-

parts, and for region-parts, which should not be mixed

(recall Example 3), and the relations in the online for-

mats do not have a user-defined domain and range8;

e.g., a part of ◦ has participant v part of never can be

7 http://obofoundry.org/ro/; last accessed on: 20-12-
2012.
8 This is being updated such that it is being inte-

grated with BFO as the impending BFO v2, which diverges

Detecting and Revising Flaws in OWL Object Property Expressions 15

correct due to the mismatch of Rpart of , a continuant,

and Dhas participant, which is a process that is disjoint

from continuant (recall also Evaluation 4). Overall, of

the 81 options, only 9 are ‘safe’ to chain and return on-

tologically correct deductions, and 6 of them are so only

thanks to their transitivity, therewith reducing the safe

options to a mere 3. When more relations are defined

and fully encoded in OWL, additional ontologically cor-

rect combinations may be identified, and a similar table

can be constructed for the pattern S ◦ R v R, which cov-

ers cases such as part of ◦ participates in v participates in
that are safe. Nevertheless, it is a low yield of possible

chains.

Table 4 Reasoning with property chains for the relations
in the Relation Ontology, with the R ◦ S v R pattern. Notes:
when part of is chained, then the domain and range are as-
sumed to be the same on both sides of the inclusion, location
(entailing spatial parthood) and containment (not entailing
parthood) are taken here at the class-level.

R ◦ S v R

p
ar
t
o
f

lo
ca
te
d
in

co
n
ta
in
ed

in

a
d
ja
ce
n
t
to

tr
a
n
sf
or
m
a
ti
o
n
o
f

d
er
iv
es

fr
o
m

p
re
ce
d
ed

b
y

h
a
s
p
ar
ti
ci
p
a
n
t

h
a
s
a
g
en

t

S right →
R down ↓

part of + - - - - - - - -
located in + + - - - - - - -
contained in + + + - - - - - -
adjacent to ± ± ± - - - - - -
transf. of - - - - + - - - -
derives from - ± - ± ± + - - -
preceded by ± - - - - - + - -
has particip. - - ± - - - - - -
has agent - - - - - - - - -

The outcome of the analysis is even poorer for the

more detailed formalisations of the relations in the foun-

dational ontologies. We analysed from the DOLCE-lite

OWL file the following object properties: constituent,
participant, has-quality, q-location, r-location, physical-
location-of, exact-location, and spatio-temporally-present-
at and their inverses. From the GFO and the gfo-basic

OWL file, we analysed the object properties: partici-
pates in, plays role, has role, occupied by, exhibits, and

has property and their inverses, where applicable. For

GFO, one could add a chain that if a perpetuant ex-

hibits some presential that occupies some space, then

that perpetuant occupies that space, i.e., exhibits ◦
occupies v occupies; the user-defined domains and

from the new relation ontology (http://code.google.com/p/
obo-relations/; last accessed on: 20-12-2012) that is tailored
to biology and has many object properties.

ranges for the other properties and incompatible. Re-

garding DOLCE, an interesting annotation in the

DOLCE-lite file for r-location is “heterogeneous com-

position across physical and non-physical endurants”,

i.e.,

q-location-of ◦ inherent-in ◦ specific-constant-
dependent ◦ has-quality ◦ q-location v r-location,

but the problem is that the annotation assumes that

specific-constant-dependent has as domain a physical en-

durant (PED) and as range a non-physical endurant

(NPED), whereas the relation itself is typed with only

particular (PT), and inherent-in assumes a physical en-

durant as range in the chain, but its range axiom is

asserted to be the top-level class particular. Put differ-

ently, on the one hand, the properties in these founda-

tional ontologies are typed such that it severely limits

the possibilities to chain, and on the other hand, they

are not specific enough for the desired property chain

to guarantee there will be no undesirable deductions.

Overall, this raises the observation that declaring

useful property chains that do not involve parthood are

more relevant for more precisely defined object proper-

ties in domain ontologies rather than broad-sweeping

chains with more generic relations. Because properties

cannot be anticipated, then the only recourse is, upon

declaring a chain, to check it with ProChainS.

4.2 Property chaining with parthood

Some combinations of property chains are undesirable

because it will lead to problematic deductions in any

case, as with Mary and her legominifigure, or at least

in some cases it is undesirable, such as with SNOMED

CT’s amputations and parthood, as introduced in Sec-

tion 1, yet in other cases it is required, as with the

femur’s fracture and the drug treatments in the phar-

macogenomics ontology. This does not mean, however,

that it is all arbitrary and dependent on the situation.

The main questions to answer, are how to ‘remove’ the

seeming arbitrariness and how one can get the mod-

eller to choose the ontologically correct options among

alternatives, therewith to some extent pre-empting the

need for ProChainS. We shall first address the recurring

issue with parthood and containment, thereby provid-

ing a general scope—of which Mary and her mouth and

minifigure are only one example—and then proceed to

the more general case.

We assume the modeller understands part-whole re-

lations, has typed the properties with domain and range

axioms, has chosen the correct part-whole relationship

between any two classes (e.g., with OntoPartS [19]),

and is interested in chaining properties. Consider now

16 C. Maria Keet

the four possible permutations with parthood and (3-

dimensional) containment as a mereotopological rela-

tion between regions with co-locating objects (e.g., [19,

32]), depicted in the top-row of Figure 6. We can now

rule out a chain like Figure 1-B. This becomes more

evident with structural parthood between objects, i.e.,

structPartOf ◦ containedIn v structPartOf is wrong,

whereas structPartOf ◦ containedIn v containedIn yields

correct inferences. The reason for this is that the ‘re-

gions with co-locating objects’ as domain and range for

contains/containedIn—not representable in OWL but

part of the relation’s meaning nevertheless—does not

enforce the constraint that one of the participating co-

located objects must be a structural part of another

(only a regional part), hence, ontologically by the in-

tended meaning of the relations, one cannot infer that

that must hold. The same argument holds when one

substitutes containedIn for (2-dimensional) locatedIn.

The possibilities of chaining parthood with other re-

lations is easier to assess when domain and range can

be fully declared in an OWL ontology and observing

whether the range of one property is compatible with

the other(s). For instance, a parthood relation between

processes (perdurants, PD), involvedIn v PD× PD [18],

cannot chain in any arbitrary combination with

participatesIn v ED× PD that relates an endurant to a

perdurant; see Figure 6, third row.

The emerging pattern of safe and flawed chains is

depicted in Figure 6. What this really means, is that

out of the four permutations, at most two may be ‘on-

tologically correct’, or at least result in meaningful, in-

tended, deductions. They are of the pattern

partOf ◦ [someOtherProperty] v [someOtherProperty]

and

[someOtherProperty] ◦ partOf v [someOtherProperty]

where [someOtherProperty] v ¬partOf and their respec-

tive domains/ranges are compatible. Phrased in natural

language, the following is likely to be correct depending

on the [someOtherProperty]:

– if the whole does/has [someOtherProperty], then we

can infer that so does its part does/have [someOther-
Property], i.e., a ‘downward distributivity’ of the

property of the whole to its part along the parton-

omy, and

– if some object does/have [someOtherProperty], then

this distributes ‘upward’ so that the whole and up-

ward in the partonomy also has the property that

the part has, where the whole is delimited as such

with a class (universal/concept) in the OWL ontol-

ogy.

Conversely, it is generally false that parthood distributes

either upward or downward over the [someOtherProp-
erty]. Relating this back to Figure 1 where we have

seen two options for chaining parthood and contain-

ment, Figure 1-A is an example with distributivity of

[someOtherProperty] over a partonomy, whereas Figure 1-

B is an example with distributivity of parthood over

[someOtherProperty]. Thus, we have another argument

in addition to domain/range axioms as to why Figure 1-

A is better than Figure 1-B.

This insight allows a modeller to narrow down the

options from four to at most two chains, where, depend-

ing on the need, both may be applicable, or only one

of the two is the ‘best’ property chain. Here, the no-

tion of ‘best’ refers to ‘in any arbitrary situation’, not

a single, one-off in-my-ontology case. Take, for instance

the car parts and ownership [13]: partOf ◦ owns v owns
works with car and engine (if you own the car, you

also own the engine that is part of the car) and pos-

sibly also the other way around, owns ◦ partOf v owns
(if you own the car engine, it is fair to assume you also

own the car), but the latter does not hold in all cases,

for if one owns, say, a single apartment, one does not

automatically also own the whole apartment building.

Likewise, for the amputations and congenital absences

in SNOMED CT, as mentioned in Section 1, point (iv):

it is indeed a correct derivation that when the foot is

amputated, so is the toe that was part of the foot, i.e.

a downward distributivity—if you lose the whole, you

lose its parts—but not an upward one. Thus, the up-

ward and downward distributivity now also have a clear

pattern of representation as to which property chains

is applicable in the ontology. The underlying principle

why in some cases only one of the two options for dis-

tributivity holds remains an open issue, and thus this

last aspect has to be evaluated on a case-by-case basis

for the time being.

5 Conclusions

We analysed and proposed the fundamental principles

of subsumption of relationships in a relationship hierar-

chy, and integrated its results with OWL 2’s basic and

complex object property expressions. This enabled the

identification of the type of flaws that can occur in the

OWL object property box regarding simple property

subsumption and property chaining, for which two com-

patibility services, SubProS and ProChainS, were pro-

posed, which check for meaningful object property hi-

erarchies and property chaining. Thanks to pinpointing

the root cause with SubProS and ProChainS, proposals

for how to revise the ontology were made, including the

options to change the object property expressions or the

class hierarchy, and how, or accepting the deductions.

These insights were used to examine prevention of flaws

and how to choose the best option among alternatives.

Detecting and Revising Flaws in OWL Object Property Expressions 17

Containment:

Injury:

Particiaption:

Ownership:

Amputations:

Fig. 6 Examples of simple property chaining with partOf and another property, its four options, and the remaining one or two
that are ontologically correct, also demonstrating a pattern of distributivity (second column: downward distributivity; fourth
column: upward distributivity).

Options for prevention are limited, but choosing among

alternatives is made easy, especially with the chain pat-

tern for upward and downward distributivity over part-

hood relations. SubProS and ProChainS were evaluated

with several domain ontologies, which demonstrated
that such flaws do exist, that they can be isolated ef-

fectively, and successful suggestions for revisions can be

proposed.

We have commenced looking into an efficient al-

gorithm to implement SubProS and ProChainS and a

user-friendly interface to help revising flaws for the on-

tology development environment. Another avenue can

be to extend OntoPartS [19] for advanced modelling

of part-whole relations—which is currently redesigned

as a Protégé plugin—with ProChainS.

Acknowledgements The author wishes to thank Melanie
Hilario for her feedback on the subject domain and object
properties in the DMOP ontology.

References

1. Artale, A., Franconi, E., Guarino, N., Pazzi, L.: Part-
whole relations in object-centered systems: An overview.
Data and Knowledge Engineering 20(3), 347–383 (1996)

2. Beisswanger, E., Schulz, S., Stenzhorn, H., Hahn, U.:
BioTop: An upper domain ontology for the life sciences -
a description of its current structure, contents, and inter-
faces to OBO ontologies. Applied Ontology 3(4), 205–212
(2008)

3. Boran, A., Bedini, I., Matheus, C.J., Patel-Schneider,
P.F., Keeney, J.: Choosing between axioms, rules and
queries: Experiments in semantic integration techniques.
In: Eigth International Workshop OWL: Experiences and
Directions (OWLED’11) (2011). San Francisco, Califor-
nia, USA, June 5-6 2011

4. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B.,
Patel-Schneider, P., Sattler, U.: OWL 2: The next step
for OWL. Journal of Web Semantics: Science, Services
and Agents on the World Wide Web 6(4), 309–322 (2008)

5. Dumontier, M., Villanueva-Rosales, N.: Modeling life sci-
ence knowledge with OWL 1.1. In: Fourth Interna-
tional Workshop OWL: Experiences and Directions 2008
(OWLED 2008 DC) (2008). Washington, DC (metro),
1-2 April 2008

6. Glimm, B., Rudolph, S., Völker, J.: Integrated metamod-
eling and diagnosis in OWL 2. In: P.F. Patel-Schneider,
Y. Pan, P. Hitzler, P. Mika, L. Zhang, J.Z. Pan, I. Hor-
rocks, B. Glimm (eds.) Proceedings of the 9th Interna-
tional Semantic Web Conference, LNCS, vol. 6496, pp.
257–272. Springer (2010)

7. Guarino, N., Welty, C.: An overview of OntoClean. In:
S. Staab, R. Studer (eds.) Handbook on ontologies, pp.
151–159. Springer Verlag (2004)

8. Halpin, T.: Information Modeling and Relational
Databases. San Francisco: Morgan Kaufmann Publish-

18 C. Maria Keet

ers (2001)
9. Halpin, T.A., Curland, M.: Enriched support for ring con-

straints. In: R. Meersman, T.S. Dillon, P. Herrero (eds.)
OTM Workshops 2011, LNCS, vol. 7046, pp. 309–318.
Springer (2011). Hersonissos, Crete, Greece, October 17-
21, 2011

10. Herre, H.: General Formal Ontology (GFO): A founda-
tional ontology for conceptual modelling. In: R. Poli,
M. Healy, A. Kameas (eds.) Theory and Applications
of Ontology: Computer Applications, chap. 14, pp.
297–345. Springer, Heidelberg (2010). DOI 10.1007/
978-90-481-8847-5 14

11. Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalous,
A.: Ontology-based meta-mining of knowledge discovery
workflows. In: N. Jankowski, W. Duch, K. Grabczewski
(eds.) Meta-learning in Computational Intelligence, pp.
273–315. Springer (2011)

12. Horridge, M., Parsia, B., Sattler, U.: Laconic and pre-
cise justifications in OWL. In: Proc. of the 7th Inter-
national Semantic Web Conference (ISWC 2008), LNCS,
vol. 5318. Springer (2008)

13. Horrocks, I., Kutz, O., Sattler, U.: The even more irre-
sistible SROIQ. Proceedings of KR-2006 pp. 452–457
(2006)

14. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.:
From SHIQ and RDF to OWL: The making of a web
ontology language. Journal of Web Semantics 1(1), 7
(2003)

15. Horrocks, I., Rector, A., Goble, C.: A description logic
based schema for the classification of medical data. In:
Proc. of the 3rd Int. Workshop on Knowledge Represen-
tation meets Databases (KRDB’96), CEUR-WS, vol. 4,
pp. 24–28 (1996)

16. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.: Repairing
unsatisfiable concepts in OWL ontologies. In: Y. Sure,
J. Domingue (eds.) Proceedings of the European Se-
mantic Web Conference (ESWC’06), LNCS, vol. 4011.
Springer (2006)

17. Keet, C.M.: Detecting and revising flaws in OWL object
property expressions. In: A. ten Teije, et al. (eds.) 18th
International Conference on Knowledge Engineering and
Knowledge Management (EKAW’12), LNAI, vol. 7603,
pp. 252–266. Springer (2012). Oct 8-12, Galway, Ireland

18. Keet, C.M., Artale, A.: Representing and reasoning over
a taxonomy of part-whole relations. Applied Ontology
3(1-2), 91–110 (2008)

19. Keet, C.M., Fernández-Reyes, F.C., Morales-González,
A.: Representing mereotopological relations in OWL on-
tologies with ontoparts. In: E. Simperl, et al. (eds.)
Proceedings of the 9th Extended Semantic Web Confer-
ence (ESWC’12), LNCS, vol. 7295, pp. 240–254. Springer
(2012). 29-31 May 2012, Heraklion, Crete, Greece

20. Koutsomitropoulos, D.A., Solomou, G.D., Pap-
atheodorou, T.S.: Metadata and semantics in digital
object collections: A case-study on CIDOC-CRM and
Dublin Core and a prototype implementation. Journal
of Digital Information 10(6) (2009). URL http://

journals.tdl.org/jodi/article/viewArticle/693/577
21. Masolo, C., Borgo, S., Gangemi, A., Guarino,

N., Oltramari, A.: Ontology library. Wonder-
Web Deliverable D18 (ver. 1.0, 31-12-2003). (2003).
Http://wonderweb.semanticweb.org

22. Massacci, F.: Decision procedures for expressive descrip-
tion logics with intersection, composition, converse of
roles and role identity. In: Proceedings of the 17th Inter-
national Joint Conference on Artificial Intelligence (IJ-
CAI’2001), pp. 193–198 (2001)

23. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web
ontology language structural specification and functional-
style syntax. W3c recommendation, W3C (2009).
Http://www.w3.org/TR/owl2-syntax/

24. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL on-
tologies. In: Proceedings of the World Wide Web Con-
ference (WWW 2005) (2005). May 10-14, 2005, Chiba,
Japan

25. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-
Pérez, A.: Validating ontologies with OOPS! In: A. ten
Teije, et al. (eds.) 18th International Conference on
Knowledge Engineering and Knowledge Management
(EKAW’12), LNAI, vol. 7603, pp. 267–281. Springer
(2012). Oct 8-12, Galway, Ireland

26. Rector, A.: Analysis of propagation along transitive roles:
Formalisation of the GALEN experience with medical
ontologies. In: I. Horrocks, S. Tessaris (eds.) Proceed-
ings of the International Workshop on Description Log-
ics (DL’02), CEUR-WS, vol. 53 (2002). Toulouse, France,
April 19-21, 200

27. Rector, A., Drummond, N., Horridge, M., Rogers, L.,
Knublauch, H., Stevens, R., Wang, H., Wroe Csallner,
C.: OWL pizzas: Practical experience of teaching OWL-
DL: Common errors & common patterns. In: Proceedings
of the 14th International Conference Knowledge Acqui-
sition, Modeling and Management (EKAW’02), LNCS,
vol. 3257, pp. 63–81. Springer (2004). Whittlebury Hall,
UK

28. Roussey, C., Corcho, O., Vilches-Blázquez, L.: A cata-
logue of OWL ontology antipatterns. In: Proc. of K-
CAP’09, pp. 205–206 (2009)

29. Schmidt-Schauss, M.: Subsumption in KL-ONE is unde-
cidable. In: Proceedings of 1st Conference on Knowl-
edge Representation and Reasoning (KR’89), pp. 421–
431 (1989)

30. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug,
W., Ceusters, W., Goldberg, L., Eilbeck, K., Ireland, A.,
Mungall, C., OBI Consortium, T., Leontis, N., Rocca-
Serra, A., Ruttenberg, A., Sansone, S.A., Shah, M.,
Whetzel, P., Lewis, S.: The OBO Foundry: Coordinated
evolution of ontologies to support biomedical data inte-
gration. Nature Biotechnology 25(11), 1251–1255 (2007)

31. Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar,
A., Lomax, J., Mungall, C., Neuhaus, F., Rector, A.L.,
Rosse, C.: Relations in biomedical ontologies. Genome
Biology 6, R46 (2005)

32. Varzi, A.: Handbook of Spatial Logics, chap. Spatial rea-
soning and ontology: parts, wholes, and locations, pp.
945–1038. Berlin Heidelberg: Springer Verlag (2007)

33. Wessel, M.: Obstacles on the way to qualitative spatial
reasoning with description logics: some undecidability re-
sults. In: C.A. Goble, D.L. McGuinness, R. Möller, P.F.
Patel-Schneider (eds.) Proceedings of the International
Workshop in Description Logics (DL’01), CEUR WS,
vol. 49 (2001). Stanford, CA, USA, August 1-3, 2001

