
Conceptual Model Interoperability: a
Metamodel-driven Approach

Pablo Rubén Fillottrani1,2 and C. Maria Keet3

1 Departamento de Ciencias e Ingenieŕıa de la Computación, Universidad Nacional
del Sur, Bah́ıa Blanca, Argentina, prf@cs.uns.edu.ar

2Comisión de Investigaciones Cient́ıficas, Provincia de Buenos Aires, Argentina
3Department of Computer Science, University of Cape Town, South Africa,

mkeet@cs.uct.ac.za

Abstract. Linking, integrating, or converting conceptual data models
represented in different modelling languages is a common aspect in the
design and maintenance of complex information systems. While such
languages seem similar, they are known to be distinct and no unifying
framework exists that respects all of their language features in either
model transformations or inter-model assertions to relate them. We aim
to address this issue using an approach where the rules are enhanced
with a logic-based metamodel. We present the main approach and some
essential metamodel-driven rules for the static, structural, components
of ER, EER, UML v2.4.1, ORM, and ORM2. The transformations for
model elements and patterns are used with the metamodel to verify
correctness of inter-model assertions across models in different languages.

1 Introduction

The volume and the need to share existing data sources becomes increasingly
important, like in enterprise information integration [11], company mergers and
acquisitions [4], scientific collaborations in several fields [1,20,18], e-government
initiatives [14,19,21], and in general the broader adoption of the Semantic Web.
Interoperability at the level of conceptual models is a key in this goal, in order to
maximize the extent to which data can be exchanged while preserving its original
meaning. This involves linking, converting, and integrating conceptual models
represented in different modelling languages; e.g., when a database back-end is
designed with EER, the application layer that uses the database is specified in
UML, and the business rules were extracted from the experts using ORM.

Results have been obtained to address this issue. Besides one-off unidirec-
tional algorithms to transform a language, e.g., from ORM to UML [5], several
multi-language approaches exist, ranging from linking each model to a graph [7]
or description logic language [15] to transformations mediated by a dictionary
of common terms [3]. However, these solutions are only partial, for they, among
others, omit several constructs (e.g., weak entity types, roles) or modify the lan-
guage (e.g., by removing datatypes from UML), and therewith have imprecise

‘equivalence’ mappings or the algorithms are not available. Overall, there is very
limited interoperability of conceptual data models in praxis.

To address these issues we have developed an approach that uses a formalised
metamodel with a set of modular rules to mediate the linking and transformation
of elements in the conceptual models represented in different languages, which
simplifies the verification of inter-model assertions and model conversion. The
previously developed metamodel [16,17] with all static structural entities (in-
cluding constraints) of the main conceptual modelling languages—UML v2.4.1,
EER, and ORM2—has been formalised and has a table with mappings between
terms used in the different languages (e.g., UML association and EER relation-
ship). This is used with a newly specified set of rules from/to the metamodel and
within-metamodel conversions to convert model elements and check the validity
of inter-model assertions. A major advantage of using a formalised metamodel
is that it also can induce a series of transformations/link checks, thanks to the
constraints specified in the metamodel. For instance, relating a relationship in-
duces the checking of its roles, of the object types that participate in it, and
their identifiers, due to the chain of mandatory participations in the metamodel.

We discuss related works in Section 2 and introduce the metamodel-driven
approach in Section 3. Section 4 contains a selection of the rules for the main
elements, which is elaborated in Section 5 concerning mapping validations in a
broader context. We discuss and conclude in Section 6.

2 Related works

Several papers mainly have proposed transformations from one conceptual mod-
elling language to another, without considering the case of validating inter-model
assertions. Nevertheless, it is useful to consider also their approaches, for trans-
formations could be used to check inter-model assertions (out of scope are trans-
formations other than between conceptual models, such as QVT for MOF and
ATL for the Eclipse platform).

Venable and Grundy’s work [22,10,23] uses a metamodel in the CoCoA graph-
ical language that covers a part of ER and a part of NIAM (a precursor to ORM),
and it was implemented in MView and Ponamu. Their metamodel omits, mainly,
value types, nested entity types, and composite attributes, and NIAM is forced
to have attributes as in ER in the ‘integrated’ metamodel. Their “dynamic” ad
hoc mappings are thus limited, and they have not been made public.

Boyd and McBrien [7] use the Hypergraph Data Model to relate ER, re-
lational, UML, and ORM schemas, and include transformation rules between
them through mapping each schema into the graph. The advantage is that it
provides a simple irreducible form for schemas that can be used to prove schema
equivalence, but it does not consider inter-model assertions and the specification
omits roles, aggregation, weak entity types, several constraints, and it removes
the data type specification from UML to match EER’s partial attribute.

Atzeni et al [2,3] devised a comprehensive approach with extensible auto-
matic schema translations, which has been implemented. Unlike [22], they have

a term dictionary that aids with the transformation, and the translations are
produced in Datalog. However, it does not include ORM, the dictionary has
only 9 constructs, it lacks metamodel relations and constraints between them,
and the system considers model transformations only.

Bowers and Delcambre’s framework [6] is a flat representation of schema and
data. Its representational language ULD covers only ordinal, set and union class
constructs, and cardinality constraints, and it operates at the implementation-
level, providing examples for the relational model, XML, RDF, and RDF Schema
only. The transformations are handled by Datalog.

Two principal works to relate ORM to UML or ER are [12,5]. Halpin pro-
vides diagram element to diagram element mappings and approximations [12]
and some conversions from ORM to ER are implemented with undisclosed algo-
rithms. Bollen does provide comprehensive rules for transforming ORM’s object
types, nested object types, fact types and some constraints into UML diagrams
[5]. Those rules are then combined in a sequence of algorithms to transform a
ORM conceptual schema into a UML class diagram. While the rules are sound,
some of the algorithms exhibit steps and iterations which are not clearly defined
leading to ambiguous results.

Fill and Burzynski [9] outline three metamodel-mediated approaches to in-
tegrate conceptual models and ontologies, being integration on the level of meta
models, by using references in the meta model of the existing conceptual models,
and a hybrid of the two, but no details. The tool it is said to be implemented
in, ADONIS, now focuses entirely on BPMN.

A different strand of research on unification that does not use a metamodel,
is to use one logic formalism for several conceptual modelling languages, notably
a Description Logic language [8,13,15]. Different logics are used, however, and
they do not cover all features of the language due to the complexity trade-offs
made. For instance, in [8] identifiers are absent, and the DLRifd used in [15]
does not consider the ORM’s relationship constraints or UML’s aggregation.
Also, approximate transformations are not represented.

3 The Metamodel-driven Approaches

The focus is interoperability and integration of conceptual data models repre-
sented in different languages, but to be able to assert a link between two entities
in different models and evaluate automatically whether it is a valid assertion and
what it does entail, one has to know what type of entities they are, whether
they are the same, and if not, whether one can be transformed into the other
for that particular selection. That is, we first need an approach for transforming
a model (or a selection thereof) in one language into another. This is depicted
in Fig. 1 and illustrated with some sample data. There are three input items at
the top, the algorithms on the right, and the two output items at the bottom. In
this paper we focus on the rules and algorithms, but they avail of the formalised
metamodel and term mapping table to function well. For instance, it needs to

- take an entity, follow the sequence of
mandatory constraints of the metamodel

to transform using the algorithms
containing the rules. repeat;

- process the remainder;
- ask user input for each approximation;

- record which are 1:1, remodelled,
approximated, lost;

input model in
language X

vocabulary containing
a terminology comparison

between terms used in
the languages

algorithms

output model
in language Y

name:string
colour:string

Flower

Flower
(ID)

name

colour
has

has

formalised
metamodel

log

Fig. 1. Approach for transforming a model in one language into another, with some
sample data.

recognise that a UML class in the diagram can be mapped 1:1 to a ORM entity
type, and transform a UML attribute to an ORM value type.

This knowledge is then used for the inter-model assertions, whose approach is
illustrated in Fig. 2. It uses both the formalised metamodel and the algorithms; a
structured version of this approach is included as Algorithm 1 in the Appendix.
In addition, compared to transformation, it can be run in both directions from
one fragment to the other, where one direction is chosen arbitrarily. The next two
subsections provide some detail on the formalised metamodel and transformation
lists, before we proceed to the rules in Section 4.

3.1 Formalised metamodel and term mappings

The metamodel, described in [16,17] and represented as a set of UML v.2.4 dia-
grams with annotations, is a consistent conceptual model about the entities and
constraints in the selected modelling languages, covering almost all their native
features. It aims at representing in a unified way whatever is present in the lan-
guages, and several notions from Ontology (philosophy) and ontologies (Artificial
intelligence) were used in its development so as to increase understanding of the
language features, to reconcile or unify perceived differences, and to improve

- classify entities of M1 and M2 into MM entities;
- process mapping assertions using the

transformation algorithms and compare output
with element in M2;

input model M1
and M2 in language

X and Y, resp.

algorithms

output model M12
or NO

name:string
colour:string

Flower

Flower
(ID)

name

colour
has

has

input inter-model
assertion

log

?

name:string
colour:string

Flower

Flower
(ID)

name

colour
has

has

formalised
metamodel

vocabulary with
lists which entities should
be mapped, transformed,

approximated, non-
mappable

Fig. 2. Approach for adding inter-model assertions, with some sample data. The “al-
gorithms” box is essentially the same as the algorithms in Fig. 1.

the quality of the metamodel; e.g., on attributes and the positionalist nature of
relationships [17].

It is formalized in two versions, both available at http://www.meteck.org/

SAAR.html. The first is a set of function-free first order logic set of formula with
equality. Fig. 3 shows a fragment relating relationship, role, and object type
with identification constraints. The second is a subset of the first that is repre-
sentable and approximated in OWL 2 for easy computational use, represented
in SHIQ(D), with some 100 classes, 70 object properties (partially due to en-
codings of ternaries), and 663 axioms.

The metamodel is complemented with a vocabulary in the form of a list of
terminology comparison and conventions of the entities in UML Class Diagrams,
EER, and ORM, and their corresponding names in the metamodel (see [17]).

3.2 Categorisation of rules

As the model features are more or less similar across the languages, we have
divided them into four groups: 1:1 mappings, transformations, approximations,
and those for which there are no alternatives. The four lists largely follow from
the metamodel of the static, structural components and constraints [17], al-
though in some cases there is a conceptual equivalence, but not exactly in the
representation; e.g., UML and EER both have attributes, but EER does not
record the datatype, so they are not 1:1 from an algorithmic viewpoint.

∀(x, y)(Contains(x, y)→ Relationship(x) ∧ Role(y))

∀(x)∃≤2y(Contains(x, y))
∀(x)(Role(x)→ ∃(y)(Contains(y, x)))
∀(x, y, z)(Contains(x, y) ∧ Contains(z, y)→ (x = z))
∀(x, y, z)(RolePlaying(x, y, z)→ Role(x) ∧ CardinalityConstraint(y) ∧ EntityType(z))
∀(x)(Role(x)→ ∃(y, z)(RolePlaying(x, y, z)))
∀(x, y, z, v, w)(RolePlaying(x, y, z) ∧ RolePlaying(x, v, w)→ (y = v) ∧ (z = w))
∀(x, y, z, v, w)(RolePlaying(x, y, z) ∧ RolePlaying(v, y, w)→ (x = v) ∧ (z = w))
∀(x)(CardinalityConstraint(x)→ ∃(y)(MinimumCardinality(x, y) ∧ Integer(y)))
∀(x)(CardinalityConstraint(x)→ ∃(y)(MaximumCardinality(x, y) ∧ Integer(y)))
∀(x, y)(ReifiedAs(x, y)→ Relationship(x) ∧ NestedObjectType(y))
∀(x)(NestedObjectType(x)→ ∃(y)(ReifiedAs(x, y)))
∀(x, y, z)(ReifiedAs(x, y) ∧ ReifiedAs(z, y)→ (x = z))
∀(x, y, z)(ReifiedAs(x, y) ∧ ReifiedAs(x, z)→ (y = z))
∀(x, y)(ReifiedAs(x, y)→ ∀(z, w)(Contains(x, z)↔ RolePlaying(z, w, y)))
∀(x, y)(Identifies(x, y)→ (IdentificationConstraint(x) ∧ ObjectType(y)))
∀(x)(IdentificationConstraint(x)→ ∃(y)(Identifies(x, y)))
∀(x, y, z)((Identifies(x, y) ∧ Identifies(x, z))→ (y = z))
∀(x)(ObjectType(x)→ ∃(y)(Identifies(y, x)))
∀(x, y, z)((DeclaredOn(x, y) ∧ DeclaredOn(x, z) ∧ IdentificationConstraint(x) ∧ (¬(y = z)))→

(ValueProperty(y)↔ ¬AttributiveProperty(z)))
∀(x)(IdentificationConstraint(x)→ ∃(y)(DeclaredOn(x, y)))
∀(x, y)((DeclaredOn(x, y) ∧ SingleIdentification(x))→ (Attribute(y) ∨ ValueType(y)))
∀(x)(SingleIdentification(x)→ ∃(y)(DeclaredOn(x, y))
∀(x, y, z)((SingleIdentification(x) ∧ DeclaredOn(x, y) ∧ DeclaredOn(x, z))→ (y = z))

Fig. 3. A fragment of the metamodel FOL formalization.

1:1 Mappings. The mappings are those where the elements are the same, and
the conversion are straightforward single steps. They are: Relationships (n-ary,
with n ≥ 2), Role, Object type and Associative object type, Subsumption (class
and relationship), Disjoint roles, Disjoint entity types, Subset constraint, Object
type cardinality, Completeness (classes), Mandatory.

Transformations. Transformations are those where the elements are essen-
tially the same, but not from a syntax viewpoint and therefore require a set of
steps that should be treated as one atomic rule. They are: UML (dimensional)
Attribute from/to ORM (dimensional) Value Type, UML attribute/ORM value
type to and EER (dimensional) Attribute, EER Weak entity type to its ORM
version, EER Multivalued Attribute to separate object types in UML and ORM,
ORM Value Type to UML and ER attribute, Internal Identifier, Attributive
property cardinality, Single identification.

Approximations. The core distinction between transformations and approx-
imations, is that the latter includes a choice point with input from the user or
some arbitrary (modifiable) default value may be used; hence, firing the same
rule in the same situation twice does not necessarily lead to the same outcome.
It is up to the modeller to accept approximations or not. They are: patterns
for UML qualified association, EER Weak entity (type with additional rela-
tionship), and ORM external identifier when it suits, as depicted in Fig. 4; Role
value constraints (with subclasses); UML’s composite and shared aggregate with
named relationship/fact type; composite attribute; EER (dimensional) Attribute
to UML attribute/ORM value type;

Entities for which there are no alternatives. The three families of languages do
not have the same expressiveness even at the ontological level, and some of those

1..2

0..2

PrivateClient

Bank

accountNr
Account

PrivateClient
(clientNo)

Bank
(name)

Account
Number

≤ 2

≤ 2
uses

has

is of
Bank

Account

of

PrivateClientuses

name

number ClientNo

0..n

1

0..2 1..2

Fig. 4. Patterns for approximations between UML’s qualified association, EER weak
entity type, and ORM’s external identifier.

features cannot be represented or approximated in the other language. They are:
UML to ORM: missing inclusive mandatory; EER to ORM: inclusive manda-
tory; UML to EER: disjunctive mandatory, qualified Identifier, value constraints;
ORM to UML: compound cardinality, value comparison, role equality, disjoint
relationships, relationship equality, join subset, join disjointness, join equality,
all relationship constraints; ORM to EER: disjunctive mandatory, compound
cardinality, value comparison, value type constraints, role equality, disjoint re-
lationships, relationship equality, join subset, join disjointness, join equality, all
relationship constraints. We do not consider them further in this paper.

4 Interoperability rules

In principle, there are two choices for specifying the interoperability rules: cre-
ate a mesh between the languages, or do it via the metamodel. If we have n
conceptual data modeling languages and assuming there were only simple 1:1
mappings or when one glosses over some details, then the former option will
require n! rules while the later only 2n rules. We already know there are not
only simple mappings, so the lower bound of 2n will increase due to the intra-
metamodel rules to transform entities, such as an attribute into a value type and
vice versa. Overall, while the difference in rules might not be large when consid-
ering only three languages, one must note that they come in different flavours
and versions. The use of the intermediate metamodel helps to reuse rules while
focusing on the real changes. For example, a UML v2.0 attribute to an ORM
value type mapping can use the same intra-metamodel transformation, but with
mesh-transformations, a new one would have to be added. Therefore, we will use
the metamodel-mediated rules. This does require annotations to the entities in
the metamodel, to the effect that the algorithm checks the annotation what to
do: map straight to the entity in the other language, or perform a transformation
or approximation first within the metamodel.

1:1 mapping rules and the metamodel For the 1:1 mappings, this amounts
to straightforward rules, and only a few are shown; the rest follows the same
pattern. We abbreviate the metamodel as MM in the following rules.

(OT) Object Type

(O1) Class
UML to MM

========⇒ Object Type
in: Class

out: Class→ Object Type

(1O) Object Type
MM to UML

========⇒ Class
in: Object Type

out: Object Type → Class

(xOx) Likewise for the other 1:1 mappings between Class, Entity type and

Entity type, with (O2)
ORM to MM

========⇒; (2O)
MM to ORM

========⇒; (O3)
EER to MM

========⇒;

(3O)
MM to EER

========⇒.
(Rol) Role

(Ro1) Association end
UML to MM

========⇒ Role
in: AssociationEnd

out: AssociationEnd→ Role
(1Ro) Role

MM to UML
========⇒ AssociationEnd

in: Role
out: Role → AssociationEnd

(xRox) Likewise for the other 1:1 mappings of Role and Relationship com-

ponent, with (Ro2)
ORM to MM

========⇒; (2Ro)
MM to ORM

========⇒; (Ro3)
EER to MM

========⇒;

(3Ro)
MM to EER

========⇒.
(Rel) Relationship

(R1) Association
UML to MM

========⇒ Relationship
in: Association(AssociationEnd : Class, AssociationEnd : Class)

out: AssociationEnd→ Role // i.e., using (Ro1)
out: Association→ Relationship
out: Class→ Object Type // i.e., using (O1)
out: Relationship(Role:Object type, Role:Object Type)

(1R) Relationship
MM to UML

========⇒ Association

in: Relationship(Role:Object type, Role:Object Type)
out: Role → AssociationEnd // i.e., using (1Ro)
out: Relationship → Association

out: Object Type → Class // i.e., using (1O)
out: Association(AssociationEnd : Class, AssociationEnd : Class)

(xRx) Likewise for the other 1:1 mappings of Fact type and Relation-

ship, with (1R)
MM o UML

========⇒; (R2)
ORM to MM

========⇒; (2R)
MM to ORM

========⇒; (R3)
EER to MM

========⇒; (3R)
MM to EER

========⇒.

A mapping
UML to ORM

=========⇒ for a class C in UML model M1 and generating an entity
type for model transformation to ORM model M2 then is simply composed of
the component-rules. For instance, for an inter-model assertion:

GenOT Class
UML to ORM

=========⇒ Entity type
in: C

out: (O1)

out: (2O) // i.e., an ORM EntityType named C

For a relationship mapping
UML to EER

=========⇒, with A the association in the UML
model asserted to be equivalent to some relationship R in an EER model, the
following set of rules apply when verifying the mapping is correct:

(MapR) Association
UML to ER

========⇒ Relationship
in: A(ae1 : C1, ae2 : C2)

out: (R1)
out: (3R)
out: match pattern out(3R) with R(rc1 : E1, rc2 : E2)

To check the validity of the mapping, one also could have started with the EER
R(rc1 : E1, rc2 : E2) and work towards A(ae1 : C1, ae2 : C2) using (R3) and (1R).
The generation of a new model in another language and checking of an asserted
inter-model relation for the other 1:1 mappings listed in the previous section
follow a similar pattern and is omitted for brevity.

Transformations We describe two transformations, which are arguably the
most important for they are used most widely. It follows the same approach as
with the 1:1 mappings, but the rules become increasingly more elaborate, and
for ease of comprehension, we have changed the type of arrow.

To handle a model generation or mapping for a UML attribute and ORM
value type, we first need to declare their respective mappings into the metamodel,
and then the transformation at the level of the metamodel. This is described in
the next set of rules, where the (xDx) rules for datatypes are specified alike those
for object types, with the same naming scheme.

(Att) Attributive property

(A1) Attribute
UML to MM7−−−−−−−−→ Attribute

in: Attribute(Class, DataType)
out: (O1)
out: (D1)
out: Attribute→ Attribute
out: Attribute(Object type, Data type)

(1A) Attribute
MM to UML7−−−−−−−−→ Attribute

.... // steps in (A1) in reverse order
(VT) Value type

(V1) Value type
ORM to MM7−−−−−−−−→ Value type

in: ValueType ∧ mapped to(ValueType, DataType)
out: (D1)
out: mapped to→ mapped to
out: ValueType→ Value type
out: ValueType ∧ mapped to(Value type, Data type)

(1V) Value type
ORM to MM7−−−−−−−−→ Value type

.... // steps in (V1) in reverse order

(Att-VT) Attribute and Value type conversions
(Att-to-VT) Attribute

MM7−−−→ Value type
in: Attribute(Object type, Data type)

out: (D1)
out: Role
out: Relationship
out: mapped to
out: Attribute → Value type
out: Relationship(Role:Object type, Role:Value type)
out: mapped to(Value type, Data type)

(VT-to-Att) Value type
MM7−−−→ Attribute

in: Value type ∧ mapped to(Value type, Data type)
out: (D1)
out: Object type
out: ValueType → Attribute
out: Attribute(Object type, Data type)

It is now possible to generate an ORM value type from an attribute in a
UML diagram, and vv., and, in a similar fashion, to verify whether an inter-
model assertion between a particular UML attribute and ORM value type is
correct (at least structurally). This is specified in the following two rules.

GenVT Attribute
UML to ORM7−−−−−−−−−→ Value type

in: A(C, D)
out: (A1)
out: (Att-to-VT)
out: (2R)
out: (1V) // i.e., an ORM model with F(rc : C, rv : V),

V and mapped to(V, D)

MapVTAtt Value type
ORM to UML7−−−−−−−−−→ Attribute

in: V ∧ mapped to(V, D)
out: (V1)
out: (VT-to-Att)
out: (1A) // i.e., a UML Class Diagram with A(C, D)
out: match pattern out(1A) with attribute declaration in the UML diagram

These basic pieces can, in turn, be used for more complex transformations
and approximations (illustrated below).

Approximations As mentioned above, approximates contain a ‘choice’ step
that requires input from the user to complete the transformation. Such choice
points in the rules are indicated in italics. We select the rules for identifiers
in EER and ORM, as they are important in a model, and illustrate it with
the case of simple (single attribute) identifier. To be able to do so, the attribute
mapping from EER is introduced first; the mandatory and cardinality constraint
(a 1:1) are straight-forward mappings into and from the metamodel and have the
same naming pattern, i.e., M1, 1M etc, and C1, 1C etc, with MinimumCardinality
abbreviated as mic and MaximumCardinality as mac.

(Att) Attribute
(Ae1) Attribute EER to MM Attribute
in: Attribute(Class,)

out: (O1)
out: → choose a DataType
out: Attribute→ Attribute
out: Attribute(Object type, Data type)

(1Ae) Attribute MM to EER Attribute
in: Attribute(Object type, Data type)

out: (O1)
out: Attribute → Attribute

out: DataType →
out: Attribute(Class,)

With these rules, one can generate, e.g., an EER single attribute identifier from
an ORM reference scheme, and vv., and confirm a mapping between the two;
one of the four options are declared in the following rule set.

MapSID ORM reference scheme ORM to EER EER single attribute identifier
in: FT(re : E1, rv : V) ∧ mapped to(V, D) ∧ M ∧ C(mic = 1, mac = 1)

out: (O2) // ORM entity type into MM object type
out: (V1) // ORM value type into MM value type
out: (M2) // ORM mandatory into MM mandatory
out: (C2) // ORM cardinality into MM cardinality
out: (VT-to-Att) // MM conversion value type to attribute
out: (3O) // MM object type into entity type E of EER
out: (1Ae) // generate EER Diagram attribute: A(E,)
out: (3M) // MM mandatory into mandatory of EER
out: (3C) // MM cardinality into cardinality of EER
out: match pattern out(1Ae,3M,3C) with single identifier declaration in the
EER diagram

Arguably, it looks like one might be able to do this more succinctly by defining
the notion of identifier-using-an-attribute and identifier-using-a-value-type and
to use that in the transformation and create different versions of (Atto-to-VT)
and (VT-to-Att) that include the mandatory 1:1 constraints. However, this also
requires duplications that cannot be isolated, and the above option is then the
more transparent one.

5 Validating mappings with the metamodel and rules

The metamodel is useful for creating less, and more efficient, mapping and trans-
formation rules, but this is not its only advantage. It can drive the validation
of mappings and the generation of model transformations thanks to the con-
straints declared in the metamodel. Consider again the centre-part of Fig. 2
with its “process mapping assertions using the transformation algorithms”. The

approach takes as input two models (M1 and M2), an inter-model assertion (e.g.,
a UML binary association R1 and an ORM fact type R2, the look-up list with
the mappings, transformation, approximations, and the non-mappable elements
(see Section 3.2), and the formalised metamodel (see Fig. 3). Once the model
elements of M1 and M2 are classified in terms of the metamodel, the mapping
validation process start, which goes through several steps, depending on what is
asserted to be a mapping. This is illustrated for a R1 to R2 mapping.

Step 1. It can be seen from the vocabulary that association and fact type
correspond to Relationship in the metamodel, and thus enjoy a 1:1 mapping. The
ruleset that will be commenced with are R1 from UML to the metamodel and
2R to OMR’s fact type.

Step 2. R1 and 2R refer to Role and Object type of the metamodel. The meta-
model states that there must be at least 2 contains relations from Relationship to
Role (Fig. 3, line 2). There are 2, which each cause the role-rules to be evaluated,
with Ro1 of R1’s two association ends and 2Ro for ORM’s roles.

Step 3. The metamodel states that Role must participate in the relationship
rolePlaying (Fig. 3, lines 5 and 6), and it has a participating Object type (possibly
a subtype thereof) and optionally a Cardinality constraint. They also have 1:1
mappings, which is straight-forward for cardinality (1C and C2).

Step 4. The class participating in R1 causes its rules to be evaluated, being
an O1 to Object type and 2O to ORM’s entity type.

Step 5. Each Object type must have at least one Identification constraint
(Fig. 3, last 9 lines), be this an internal one or an external one, and involv-
ing one or more attributes or value types (which one it is has been determined
by the original classification). If it is a Single identification, then a rule similar to
MapSID (see previous section) is called and executed (which, in turn, calls the
Att-to-VT rule and the use of Data type).

There are no further mandatory constraints from the ‘chain’ from Relationship
to Role to Object type to Single identification (that, in turn, consults Attribute
and Data type for the ‘UML to ORM’ example here). The sequence readily
becomes longer if the participating object type is actually one of its subtypes:
e.g., Nested object type has a mandatory constraint such that it must be related
to the Relationship it objectifies, which causes the verification to go through a new
sequence of steps following the chain of mandatory constraints. If the relationship
would have been a subtype of Relationship, then the four stages above will have
been specified more precisely correspondingly (e.g., adding attributes). Because
an object type need not to have non-identifier attributes, a check for the presence
of this entity has to be added.

Consider again Fig. 2 and the possible mapping between the UML class
Flower and ORM’s entity type Flower, which can be validated from UML to
ORM or ORM to UML. If the former then, like Step 4, above, 1O and O2 is called
and, like in Step 5, the identifier. The mapping can work, provided one admits
to using the UML internal identifier as candidate for single identifier (reference
scheme) in ORM. Executing it in the other direction from ORM to UML, one

could include a choice point and add ORM’s reference scheme as a UML user-
defined identifier (indicated with a {id} after the name of the attribute).

6 Discussion and Conclusions

We have presented a metamodel-driven approach for model transformations and
inter-model assertions where the models are represented in different languages.
Besides the input model and a mapping table, it uses a formalised metamodel to
direct a sequence of the language transformations, and it uses a set of mapping,
transformation, and approximation rules to carry it out. We presented a selection
of the rules, in particular considering the static structural, components of ER,
EER, UML v2.4.1, ORM, and ORM2. The transformations for model elements
and patterns, in turn, are used with the metamodel to verify correctness of
inter-model assertions across models in different languages. An next step is to
implement them and evaluate them with actual conceptual models.

The metamodel-driven approach requires quite an investment upfront, first
and foremost in terms of designing the metamodel. Its formalization ironed out
some duplications and enabled the capturing also of the textual constraints.
While one could have chosen to remain at the term dictionary level for the
entities in the conceptual data modelling languages, alike [3], this extra work
pays off in increased coverage of features, higher precision of mappings, as well
as explicit approximations where asked for by the user. In addition, it makes the
whole procedure more transparent, and the rules are usable essentially for both
transformations and for validations of inter-model mapping assertions.

The overall fine-grained granular and modular approach with the rules for
the transformation and mappings also increase the reusability of the rules across
the various larger-sized mappings, and can be used to construct a set of transfor-
mation steps or larger ‘chunks’ of the model, alike for the qualified associations,
external uniqueness, and weak entity types in Fig. 4. It does not, however, read-
ily offer a single procedure for testing schema equivalence, which is not only out
of scope of the current work, but also extremely unlikely in the case of inter-
model assertions, for the simple reasons that that is typically not the aim, and
the intersection of entities that are truly the same across the three conceptual
modelling language families (UML, EER, and ORM) is small (see also figures 1
and 2 in [17]).

These sets of rules not only contributes to the comprehension of differences
between heterogenous conceptual models, they also serve as the formal frame-
work for a tool supporting the design, management and integration of conceptual
schemas and ontologies in different modelling languages. Even though it is not
always possible to find exact matches between entities in the different models,
the approximations rules will help users to find corresponding alternatives.

Acknowledgements This work is based upon research supported by the Na-
tional Research Foundation of South Africa (Project UID: 90041) and the Ar-
gentinian Ministry of Science and Technology.

References

1. See the list of collaborations (2014), http://www.tipharma.com/

2. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-
independent schema translation. VLDB Journal 17(6), 1347–1370 (2008)

3. Atzeni, P., Gianforme, G., Cappellari, P.: Data model descriptions and transla-
tion signatures in a multi-model framework. AMAI Mathematics and Artificial
Intelligence 63, 1–29 (2012)

4. Banal-Estanol, A.: Information-sharing implications of horizontal mergers. Inter-
national Journal of Industrial Organization 25(1), 31–49 (2007)

5. Bollen, P.W.L.: A formal ORM-to-UML mapping algorithm (2002), http://arno.
unimaas.nl/show.cgi?fid=46, research memo RM 02/016, Faculty of Economics
and Business Administration, University of Maastricht

6. Bowers, S., Delcambre, L.M.L.: Using the uni-level description (ULD) to support
data-model interoperability. Data & Knowledge Engineering 59(3), 511–533 (2006)

7. Boyd, M., McBrien, P.: Comparing and transforming between data models via an
intermediate hypergraph data model. J. on Data Semantics IV, 69–109 (2005)

8. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. Journal of Artificial Intelligence Research 11, 199–240 (1999)

9. Fill, H.G., Burzynski, P.: Integrating ontology models and conceptual models us-
ing a meta modeling approach. In: Proc. of 11th Int. Protégé Conference (2009),
amsterdam. 2009

10. Grundy, J., Venable, J.: Towards an integrated environment for method engi-
neering. In: Proceedings of the IFIP TC8, WG8.1/8.2 Method Engineering 1996
(ME’96). vol. 1, pp. 45–62 (1996)

11. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M.J., Draper, D., Pollock, J., Rosen-
thal, A., Sikka, V.: Enterprise information integration: successes, challenges and
controversies. In: Özcan, F. (ed.) SIGMOD Conference. pp. 778–787. ACM (2005)

12. Halpin, T.: Information Modeling and Relational Databases. San Francisco: Mor-
gan Kaufmann Publishers (2001)

13. Hofstede, A.H.M.t., Proper, H.A.: How to formalize it? formalization principles for
information systems development methods. Information and Software Technology
40(10), 519–540 (1998)

14. Hovy, E.: Data and knowledge integration for e-government. In: Digital Govern-
ment, pp. 219–231. Springer (2008)

15. Keet, C.M.: Ontology-driven formal conceptual data modeling for biological data
analysis. In: Elloumi, M., Zomaya, A.Y. (eds.) Biological Knowledge Discovery
Handbook: Preprocessing, Mining and Postprocessing of Biological Data, chap. 6,
pp. 129–154. Wiley (2013)

16. Keet, C.M., Fillottrani, P.R.: Structural entities of an ontology-driven unifying
metamodel for UML, EER, and ORM2. In: Proc. of MEDI’13. LNCS, vol. 8216,
pp. 188–199. Springer (2013), sept. 25-27, 2013, Amantea, Calabria, Italy

17. Keet, C.M., Fillottrani, P.R.: Toward an ontology-driven unifying metamodel for
UML class diagrams, EER, and ORM2. In: Proc. of ER’13. LNCS, vol. 8217, pp.
313–326. Springer (2013), 11-13 Nov., 2013, Hong Kong

18. Louie, B., Mork, P., Martin-Sanchez, F., Halevy, A., Tarczy-Hornoch, P.: Data
integration and genomic medicine. J. of Biomedical Informatics 40(1), 5–16 (2007)

19. Mendes Calo, K., Cenci, K.M., Fillottrani, P.R., Estevez, E.C.: Information sharing
– benefits. Journal of Computer Science & Technology 12(2), 49–55 (2012)

20. Nelson, E.K., Piehler, B., Eckels, J., et al.: Labkey server: an open source plat-
form for scientific data integration, analysis and collaboration. BMC bioinformatics
12(1), 71 (2011)

21. United Nations Department of Economic and Social Affairs: United Nations E-
Government Survey 2010 – Leveraging e-government at a time of financial and
economic crisis. Tech. Rep. ST/ESA/PAD/SER.E/131, United Nations (2010),
http://unpan3.un.org/egovkb/global_reports/10report.htm

22. Venable, J., Grundy, J.: Integrating and supporting Entity Relationship and Object
Role Models. In: Proc. of ER’95. LNCS, vol. 1021, pp. 318–328. Springer (1995)

23. Zhu, N., Grundy, J., Hosking, J.: Pounamu: a metatool for multi-view visual lan-
guage environment construction. In: IEEE Conf. on Visual Languages and Human-
Centric Computing 2004 (2004)

Appendix

Algorithm 1: Overview checking inter-model assertions.
input: model M1 and model M2, represented in languages L1 and L2; intermodel

equivalence assertions
1 for each entity e ∈M1,M2 do
2 classify e according to metamodel entities in the vocabulary
3 end
4 for each equivalence assertion e1 ≡ e2, e1 ∈M1, e2 ∈M2 do

5 if type(e1)
L1 to MM to L2===========⇒ type(e2) ∈ 1:1Mappings then

6 // there is a corresponding 1:1 mapping
7 call relevant Algorithm (set of mapping rules);

8 else
9 // then lookup transformations

10 if type(e1)
L1 to MM to L27−−−−−−−−−−−→ type(e2) ∈ Transformations then

11 call relevant Algorithm;
12 else
13 // offer user approximation
14 if type(e1) L1 to L2

type(e2) ∈ Approximations then
Data: Ask whether the user would accept an approximation; a← answer

15 if a == yes then
16 call relevant Algorithm;
17 else
18 output: “There is no accepted approximations from e1 to e2. Your

asserted link will be removed. ”
19 end

20 else
21 output: “There is no transformation nor approximation for e1 and e2.

Your asserted link is invalid, and will be removed.”
22 end

23 end

24 end

25 end
26 run reasoner on combined model;
27 if reasoner == ok then
28 return “The assertions are logically correct.”
29 else
30 return “The models together with the assertions resulted in an inconsistency. You must

revise and run the procedure again.”
31 end

