
City Sketching

James Gain
University of Cape Town

jgain@cs.uct.ac.za

Patrick Marais
University of Cape Town

patrick@cs.uct.ac.za

Rudolph Neeser
University of Cape Town
rudy.neeser@gmail.com

ABSTRACT
Procedural methods offer an automated means of generating complex cityscapes, incorporating the placement
of park areas and the layout of roads, plots and buildings. Unfortunately, existing interfaces to procedural city
systems tend to either focus on a single aspect of city layout (such as the road network) ignoring interaction with
other elements (such as building dimensions) or expect numeric input with little visual feedback, short of the
completed city, which may take up to several minutes to generate.
In this paper we present an interface to procedural city generation, which, through a combination of sketching and
gestural input, enables users to specify different land usage (parkland, commercial, residential and industrial), and
control the geometric attributes of roads, plots and buildings. Importantly, the inter-relationship of these elements
is pre-visualized so that their impact on the final city layout can be predicted. Once generated, further editing, for
instance shaping the city skyline or redrawing individual roads, is supported. In general, City Sketching provides
a powerful and intuitive interface for designing complex urban layouts.

Keywords
sketching interfaces, procedural modeling

1 INTRODUCTION
Procedural methods for simulating terrain, buildings,
plants and cities have been used effectively in computer
games, visual effects and virtual environments for train-
ing and simulation. This loose family of computational
methods includes L-systems [1], noise functions [2],
shape grammars [3] and other algorithms characterised
by recursive self-affine behaviour. Their benefit is that
with little manual effort, complex and realistic content
can be generated. In the most extreme instance an entire
virtual world can burgeon from a single pseudo-random
seed.

However, there is a tension between the productivity
that arises from extensive automation and the control
provided by user involvement. Ideally, users should be
able to dictate key aspects of a scene with as fine a gran-
ularity as desired, and the attendant procedural method
should follow these specifications. There are several
strategies for achieving this, some more successful than
others.

The most prosaic procedural interface is a set of nu-
meric control parameters. Unfortunately, this type of
interface tends to expose the internals of the procedu-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ral method and fails to foster any geometric intuition
on the part of the user. More effective are image maps,
where regions of a landscape are painted with different
properties, such as landforms with particular frequen-
cies [4], the distribution and density of plants or cate-
gories of land usage in cities [5]. Here there is a direct
visual mapping to the domain but the context of use is
somewhat limited. Another option is a textual approach
in which adjectives are used to describe a scene and
then mapped via machine learning to procedural param-
eters. This approach is generally preferred to parameter
specification by inexperienced users [6] but it does re-
quire an extensive training phase. Recently, procedural
techniques have begun to borrow from real-world data
using example-based synthesis. As long as such real-
world data-sets are readily available, as is the case for
city [7] data, and the intended results do not diverge
significantly from the exemplars, this can lead to un-
precedented realism.

Recent work has resulted in some early direct manip-
ulation of procedural models for buildings and trees,
which has been extended to the direct manipulation of
road networks [8].

Another alternative is to develop a sketching interface.
Inspired by pencil-and-paper illustration, these inter-
faces are accessible to non-experts and enable rapid it-
erative design, particularly where absolute precision is
not required. They have been applied with success to
the procedural modeling of terrain, trees, flowers and
clothing.

[A] [B] [C]

[D] [E] [F]

Figure 1: Generating urban layouts by City Sketching: [A] Given an existing landscape; [B] the user sketches road
pattern and land usage zones, and [C] a gesture interface is used to interpret the type of zone and its statistics; [D]
a corresponding city is generated; further iterative editing of roads [E] and buildings [F] is supported.

Turning to the particular case of procedural cities, the
purpose here is to create an urban layout composed
of a road network, plot subdivisions and building en-
velopes. This may extend to procedurally modeling the
facades of individual buildings, but, of late, this has de-
volved to a separate subfield [3]. While seminal work
[5] uses broad proxy parameters (road pattern type and
population density) coupled to image map inputs, the
field has since adopted both example-based methods [7]
and simulation [10] in the interest of increased variety
and realism. With some exceptions (as noted in Sec-
tion 2) interfaces have not kept pace with the increas-
ing sophistication of city simulation and are generally
still limited to direct parameter specification and image
maps.

Motivated by the failings of existing procedural city in-
terfaces and the ease-of-use, familiarity and speed of
sketching, we have developed City Sketching. The fun-
damental operation in our system is marking out re-
gions on a landscape (see Figure 1[A, B]) to represent
road patterns and land usage zones. There are two im-
portant considerations here: firstly, a full set of statistics
is automatically calculated for each region (for exam-
ple, land usage will not only have a type — commer-
cial, industrial, residential or parklands — but also a
mean, minimum and maximum for plot size, building
base and height, or appropriate equivalents), and, sec-
ondly, the final city is determined by the interaction be-
tween the different regions (roads conform to the land-
scape, plot sizes determine separation between roads,
building heights influence road widths). We provide vi-
sual feedback of these interrelationships using proce-
dural textures projected onto the landscape. Further to

the high-level control provided by such region drawing,
users are also able to directly sketch individual roads at
a low-level.
Once a user is satisfied with their initial layout, the re-
gion statistics and explicit road constraints are passed
to a procedural system that creates road networks, plot
subdivisions and individual building placements (Fig-
ure 1[D]). After the city has been created it can be it-
eratively modified by sketching new roads and regions
(Figure 1[E]), followed by a localized procedural up-
date. Furthermore, the characteristic skyline of the city
can be shaped by raising and lowering buildings to fit
a side-view sketch (Figure 1[F]), or more directly by
interactively manipulating building heights in a region.
To summarize, the key contribution of this work is a
holistic approach to procedural city generation that al-
lows users to specify and visualize not only road net-
works, but also categories of land usage, dimensions of
plots and buildings and their interrelationships.
The system has a number of novel components: (a)
A gesture-based component that extracts both zone in-
formation and statistics for roads and buildings from
sketched exemplars. (b) Interactive pre-visualization,
which shows the interrelationship between road pat-
terns and region usage and their effect on the final city.
(c) A procedural engine that grows the entire city and
supports interaction between all elements, and the in-
clusion of user specified roads as constraints.
The remainder of the paper is structured as follows:
Section 2 provides more detailed coverage of previous
interfaces to procedural city systems; Sections 3 and 4
address the interface design and associated procedural
engine; Section 5 examines the system’s performance

in terms of usability and versatility; and, finally, Sec-
tion 6 provides a summary and recommendations for
future work.

2 RELATED WORK
As previously mentioned, most procedural city systems
employ a combination of numeric parameter input and
image maps [5, 12, 10]. These image maps are of-
ten generated using a raster paint application and sup-
plied as separate input files, making it difficult for a
user to create an integrated mental map of the final lay-
out. Some systems do support the drawing of simple
road constraints [10] but, in any event, rarely go far
enough in allowing interactive specification and pre-
visualization of city layout. This is less problematic for
fast system, where the generated city serves as its own
visualization, but can cause frustrating design cycles for
simulation-heavy methods, which typically take several
minutes to execute.

It is also worth considering other procedural domains,
such as plant and terrain modelling, be they painting
[4] or sketching [9] interfaces. The key issue is how
regions are specified in these interfaces. Sketching in-
terfaces generally allow the user to draw a closed loop,
which works well for large contiguous regions without
holes. In contrast, painting interfaces require longer to
demarcate a region but allow complex topology. While
these interfaces are a source of inspiration, our system
goes beyond marking out regions and visualizes how
regions overlap and interact, the specification of con-
strained linear features such as rivers and roads, and the
sketch-based input of geometric region parameters for
roads and buildings.

There are two recent techniques that counter this trend.
Aliaga et al. [7] develop an example-based approach
that allows a city to be assembled from fragments con-
sisting of vector data (attributed point sets represent-
ing the junctions of road) and aligned images (georef-
erenced aerial photography of city blocks). From an in-
terface perspective, fragments can be copied and pasted
and then synthesized into a coherent urban layout via
join, blend or expand operations depending on their
spatial arrangement. Although the technique focuses on
mimicking aerial imagery, there is no reason, in princi-
pal, that it could not be extended to create a fully geo-
metric realization of a virtual city. The only weakness
with this kind of structural synthesis is the reliance on
existing annotated and registered data.

We were also inspired by the road network design of
Chen et al. [13]. In their system a 2D tensor field is
shaped by boundary, pattern, heightfield and density
constraints, and edited with smoothing, noise, rotation
and brush operations. Finally, roads are traced along the
streamlines of the major and minor eigenvector fields.

These results are passed to a separate engine for split-
ting into block, plots and buildings, which precludes
any real feedback between building data and the road
network, as is achieved by our system.

Lipp et al. [8] show how road networks can be edited
using direct manipulation, including copy and paste
functionality. These operations preserve road network
validity (such as preventing unwanted intersections),
and persist even after the road network is regenerated.

Galin et al. [11] address road networks between cities
using a hierarchical approach, starting from highways
and progressing to secondary roads, with graph opti-
mization that respects terrain and water features. Their
interface relies on the now familiar image map painting.

For a more complete overview of approaches to the
modelling and simulation of urban environments, see
Vanegas et al. [14].

3 INTERFACE
There are two aspects of city design that receive sepa-
rate consideration in our sketching interface: (a) closed
region strokes are drawn onto the landscape to repre-
sent usage zones and road patterns with a gestural in-
terface for capturing various region statistics; and (b),
once an initial city has been generated, further editing is
supported, such as drawing in extra roads, constraining
skylines from separate viewpoints using sketched poly-
lines, and altering building heights. Distinct forms of
sketching are appropriate in each case. Care is taken
in the interface to provide support for iterative refine-
ment. For instance, users are able to refine a particu-
lar portion of a curve or loop by oversketching or di-
rect manipulation, with the option of shifting to a more
favorable viewpoint during the process. Furthermore,
users can “undo” previously committed sketches using
a scratch gesture. In our system, city and landscape fea-
tures are generally sketched from an aerial viewpoint
with strokes and points in the 2D image plane projected
onto the 3D terrain. The resulting features are then var-
iously interpreted as usage zones, road patterns or road
constraints, depending on the selected interface tool.

3.1 Usage Zones and Road Patterns
City Sketching, in common with other procedural city
systems, controls city attributes, such as zoning and
road arrangement, through the shaping and placement
of contiguous regions. However, we diverge from pre-
vious approaches in several respects. First, our system
exposes a broad spectrum of detailed geometric param-
eters for roads, buildings and plots. We favor a geo-
metric approach because it promotes visual depiction
and thus has greater predictability than abstract quan-
tities such as population density and wealth. Second,
these parameters are controlled through a combination

Figure 2: Sketching of zones and roads: inside a pre-
viously sketched commercial usage zone (blue-green)
the user draws a closed region stroke onto the terrain;
this can be modified by oversketching; the road pat-
tern (a grid) and statistics (orientation of major and mi-
nor gridlines) are inferred from gestures; the zones and
their interactions are visualized using procedural tex-
tures; roads (such as a highway) can also be sketched
directly.

of sketching (to specify the outlines of regions) and ges-
tures (to capture specific region information) — Fig-
ure 2.

City Sketching users mark out two types of regions on
the landscape. Usage Zones represent typical urban
zoning classifications (commercial, industrial, residen-
tial or parklands) and also capture the size and density
of buildings (or trees in the case of parklands); specif-
ically the minimum, maximum and mean for building
height, building length and plot length. Road Patterns,
on the other hand, represent the dominant layout of
roads in a region (grid, radial or random) and also en-
code various style parameters, such as the angular sep-
aration between radiating avenues in the case of the ra-
dial style, or the aspect ratio of blocks in the grid style.

The final city layout is determined by the interaction of
usage zones and road patterns. Thus, inter-road spacing
is determined by plot size, road widths by building vol-
ume and density (approximating traffic intensity), and
the incidence at road junctions by the road pattern. This
enables nuanced control over an urban layout. For ex-
ample, a rich residential suburb with relatively narrow
roads and large single-story buildings on larger plots
can be specified with our system — a level of control
difficult to achieve using less detailed parameters such
as population density.

However, two challenges arise: the need for a visual
depiction of the interaction between regions, and for

a simple, fast and effective means of entering region
statistics. The problem of visualization is overcome
by creating procedural textures that are stencilled ap-
propriately to the intersection of a usage zone and road
pattern region and mapped onto the landscape. While
these textures cannot capture the full complexity of a
procedural system, as presented in Section 4.2, they are
sufficient to convey the directionality, distribution and
style of the final road layout. We use gestures to address
the problem of capturing region information. While the
field of gestural input is broad and encompasses aspects
such as communication through hand motion and body
language, one commonality is the compact encoding of
symbolic information. In our context a set of sketched
symbols is used to indicate the type of each region (see
Figure 3). If that was the limit of our gesture func-
tionality then a simple button or menu interface would
suffice. However, our gestures also serve as exemplars
from which region statistics are derived.

Residential

Zone
Usage

Road
Patterns

Parkland Commercial Industrial

Grid Radial Random

Figure 3: Gestures: simple gestures are used to indicate
zone usage (park, residential, commercial, or industrial)
or road pattern (grid, radial, or random). Variation in
the gestures, such as spacing and aspect ratio are also
used to capture zone statistics.

w = 15m1

h = 10m1

p = 15m1
1
2

h = 250m2

h = 35m3

w = 80m2

w = 55m3

p = 130m2 p = 40m3
1
2

Figure 4: Extracting statistics from gestures: three ex-
emplars are drawn for each land usage zone (in this
case commercial) and their aspect ratio and relative sep-
aration are used to derive statistics (minimum, maxi-
mum and mean) for building height (h1,h2,h3), build-
ing width (w1,w2,w3) and plot width (p1, p2, p3). Scal-
ing in the vertical dimension is piecewise linear in order
to allow both skyscrapers and single-story buildings on
the same gesture canvas.

For usage zones we expect users to draw three gestures
of the same type. As shown in Figure 4, the dimensions
of the bounding boxes around each gestures and their
relative separation are then used to derive statistics for
building length, height and plot length. Specifically, the
values for a particular parameter (e.g., plot length) are
sorted from smallest to largest and then mapped to the
minimum, mean and maximum, respectively. One com-
plication is that the full range of building heights (from
5m to 400m) cannot reasonably be drawn to a linear
scale on a single canvas. Instead, we utilize a piece-
wise linear mapping with a relatively small gradient up
to 20m and a steeper slope thereafter. The key on the
left of Figure 4 serves users as a visual indicator of this
scale.

Road pattern layout statistics are derived as follows: for
grids, the direction of major/minor axes and the aspect
ratio of city blocks; for radial, the angular distribution
of the radial spokes and their center; for random, the
range of angles between intersecting roads. Of course,
the exemplars could be followed more explicitly, but
this would require a more deliberate and less natural
style of interaction.

Finally, while road pattern gestures provide the tem-
plate for an entire region, sometimes users wish to pre-
cisely control the placement of roads. For this purpose,
City Sketching provides the capability to draw primary,
secondary or tertiary roads directly onto the terrain, as
demonstrated in Figure 2. When the procedural city is
generated road constraints, corresponding to the user-
drawn roads, are stitched into the prevailing road pat-
tern.

3.2 Building Editing

Figure 5: Sketching skylines: from an orthographic
side-on view the user selects a subset of buildings on
an inset mini-map; then draws a characteristic sky-
line, which is automatically converted into a piecewise
representation; finally, building heights are adjusted to
conform to the skyline.

Roads can be drawn directly onto the terrain and then
passed as explicit constraints to the procedural engine,
and it is desirable to have analogous control over
buildings. This is provided in two ways: in skyline
mode where the characteristic skyline of the city can
be sketched from a side-on orthographic view, with
building heights conforming to the resulting constraint
envelope (see Figure 5), and in elevation mode, by
demarcating collections of buildings from an aerial
perspective and then directly raising or lowering them.

In skyline mode, users first select a group of buildings
to edit by drawing an enclosing loop on an inset con-
textual map; they can then draw and refine a silhouette,
which is automatically converted into a step-wise rep-
resentation (effectively, a piecewise constant function).
Once committed, building heights are adjusted to the
minimal extent necessary to meet the skyline constraint,
while taking cognizance of the region statistics (as dis-
cussed further in section 4.3). Note that building foot-
prints remain unaltered, because to do otherwise would
require re-organising the street layout.

From a rendering perspective we chose flat-shading, so
that users would focus predominantly on building sil-
houettes, and a fog effect to provide some depth con-
text. We found an orthographic projection to be essen-
tial in preserving the relative scale of buildings.

While this approach works well for moderate changes
in terrain altitude, it fails for cities built on or around
hills and mountains (such as San Francisco). In ex-
treme cases buildings might be entirely culled, since
their foundations lie above the sketched skyline. We
considered a number of alternatives — projecting build-
ings onto a plane for the purposes of Skyline editing or
allowing users to select buildings in bands of altitude
— but ultimately we opted to simply filter out build-
ings with a base situated above a user-defined thresh-
old. Skyline mode is primarily intended for shaping the
city vista from a particular view direction and this is
damaged by alternative implementations where there is
only an indirect correspondence between the sketched
skyline and the final results.

In elevation mode, the user selects a set of buildings ei-
ther by radial distance from a pick point or by drawing
a region loop (using the same process as land usages
and road patterns). The selected buildings can then be
raised or lowered by a constant amount, with a smooth
tailing away of elevation change towards the edges of
the selection, so that the alterations blend with the sur-
rounding city (see Figure 1[E]). Any building whose
new height falls outside the bounds specified by the re-
gion statistics is highlighted.

4 IMPLEMENTATION

4.1 Gesture Recognition
The gesture recognition subsystem is responsible for
categorizing one or more user-sketched input strokes
and extracting appropriate parameters. For our pur-
poses, each stroke is a sequence of point samples drawn
in one continuous motion. Gesture classification is usu-
ally based on a set of extracted features, with machine
learning applied to deal with inevitable variability. Ex-
tensive training on example gestures is usually required
and, although the recognition rates are generally high
(95% or greater), these systems can also produce non-
negligible false positive rates [15].

However, since our interface need only differentiate be-
tween a limited set of 4 zone usage gestures, methods
based on machine learning were deemed an unneces-
sary overhead. Instead, we have developed a simple and
robust ad-hoc approach with satisfactory performance
(see Section 5). Specifically, we assume that gesture
strokes are piecewise linear curves defined on the unit
square, and that the interface designer will supply a set
of gesture exemplars for each zone usage type. To de-
termine if a set of point-sampled strokes matches a valid
usage exemplar, we proceed as follows: First, we filter
the point set to remove drawing jitter. We then apply
a simple line aggregation algorithm to collapse multi-
ple consecutive line segments, which results in either
a single larger line segment or a poly-line, depending
on the curvature of the stroke. Finally, we compute a
simple feature vector: a list of angles between adjacent
line segments. A similar vector is also computed for
each exemplar during initialization. Classification en-
tails first matching the number of segments (since each
usage zone gesture is unique in this respect) and then
testing the absolute difference between components of
the feature vector to see if the gesture falls within the
broad range of permitted angular variation. If a gesture
is not recognized as a usage zone we test it against the
set of road patterns.

A road pattern template also consists of a series of
strokes arranged in specific geometric relationships.
For example, a Manhattan grid has two sets of roughly
parallel lines, which are approximately orthogonal,
while a Paris-style radial road network has concentric
ring-roads with spoke-avenues radiating from a central
area.

In order to classify a road pattern, each input stroke is
first categorised as a line, polyline or (approximate) cir-
cle. We then compare the set of input strokes against
each road pattern template in turn, until a match is
found. If no match is found, the collection of strokes
is flagged as unclassifiable. The tests required for a
match depend on the template under consideration. So,
for the radial pattern, the stroke set must contain both

lines and at least one circle, but no polylines. If mul-
tiple circles are present, the circles are tested to see if
they are roughly concentric. Finally, lines are examined
to see if they start within the innermost circle and cross
outwards. At least two lines are required to estimate
angular separation. If all these tests are passed, the set
of strokes is matched and the appropriate parameters
extracted. Otherwise we attempt to match against the
next pattern template.

4.2 Procedural City Generation
Our goal is to create a simple and efficient means of
generating road networks, parcel allotments and build-
ing envelopes, based on the statistical information pro-
vided by a city sketch. The system outlined here is just
one of several possible procedural back-ends that could
be fed by our sketching front-end. Our approach is in-
spired by the principles of L-system road generation
[5], including context awareness and non-determinism.
However, in practice, we found L-systems to be very
slow for large cities, because they require production
matching over the entire string, which grows exponen-
tially. Instead, we use growth seeds to represent po-
tential road segments. These are placed initially at the
centroids of each unique combination of road pattern
and usage zone. Should the centroid not lie inside the
corresponding region, we use the center of the largest
inset square instead. A growth seed derives its direc-
tion, length and road width from the underlying region
statistics. For example, road length within a grid pat-
tern depends on average plot width, block aspect ratio,
and alignment with the major or minor axis. As a fur-
ther example, road width varies according to the aver-
age building volume normalized by plot area as a proxy
for population density. Road growth also adapts to the
terrain, either avoiding or conforming to slope contours
depending on the severity of the incline. To lessen the
impact of high frequency fluctuations we first smooth
the terrain before calculating slope. In regions with a
slope greater than 2.86 degrees from horizontal, roads
are aligned with the terrain contours (the so-called San
Francisco pattern [5]) and we prevent road placement
altogether where the slope is greater than 5.7 degrees,
corresponding to a 10% grade limit used in interna-
tional road codes.
Growth seeds are reoriented as they approach exist-
ing roads, using the heuristics outlined by Parish and
Müller [5], in order to connect at junctions and avoid
malformed blocks. As a seed lays down roads it may,
depending on the needs of the road network, spawn fur-
ther growth seeds at junctions.
There are two issues with this approach: handling user-
drawn road constraints and merging road networks at
region boundaries. It is important that individual roads
sketched by users do not unduly distort the underly-
ing road pattern. Unfortunately, the obvious strategy

of growing patterns outwards from seeds placed along
a sketched road is foiled by any form of curvature in the
sketch. Instead, we stitch in user-drawn roads by first
growing the road network to completion, then deleting
existing roads within an offset distance of the user con-
straint, followed by laying a new road along the con-
straint curve, and finally initiating growth seeds at the
newly formed deadends in the existing network, with
parameters copied from incident deleted roads. A mem-
ory of the prior road pattern is thus retained, so that it
is not unduly disrupted during regrowth. In this way
the network regrows with a similar pattern that adapts
where necessary by snapping to the road constraint. A
similar process is used for filling new regions in an ex-
isting city.

The second challenge lies in correctly switching be-
tween road patterns at region boundaries. It is not suf-
ficient to reorient seeds as they transition between re-
gions because, even if their directions align with ex-
isting roads in the current region, this does nothing to
match road position and spacing. Rather, we delay
growth seeds as they cross region boundaries. In this
way existing growth within a region can continue undis-
torted and the approaching fronts of two road patterns
will meet correctly at the boundary. We also place dif-
ferent categories of road into separate queues and pro-
cess each to completion in priority order (highways, ar-
terials, then streets), ensuring that higher priority roads
can extend to completion without being blocked by
those with lower priority.

Once the road network is in place, we extract blocks
by a simple winding process. We then generate build-
ings by first subdividing an input block into parcels and
the placing a building bounding box within each parcel.
The bounding box is a cuboid which can be replaced
with the appropriate building geometry.

The parcel splitting procedure must run quickly and
produce sub-plots which span the range of plot sizes
specified by the usage zone sketches (see Figure 4).
This provides a single axis for building width and spac-
ing (and thus, implicitly, plot size), from which infer a
range of values for plot size that constrain the allowable
size of bounding boxes generated by parcel splitting.
No explicit provision is made to produce or control
irregular sub-plots; they arise naturally along curved
boundaries. The plot parameters do not obey a specific
distribution: they are merely bounds which constrain
how large or small a plot should be. Since we employ a
recursive splitting procedure, explained below, and this
will tend to split plots as much as possible, we allow a
random chance (50%) of terminating splitting early, as
long as the current plot under scrutiny is not bigger than
the largest specified plot size.

Our parcel generation phase is a modification of the
method used by Parish and Müller [5]. First, we build

an oriented bounding box for the input polygon. We
then split the input polygon in the direction of the
longest axis of the bounding box, allowing a small ran-
dom perturbation in the range (0.4,0.6) for the origin
of the split line along the shortest box axis. The split-
ting process continues recursively: each new polygon
is split orthogonally to an edge of the polygon which
maximizes our splitting criterion. This criterion gives
high weight to long edges as well as edges which have
immediately adjacent edges which are near orthogonal
to the edge under consideration. The origin of the split-
ting line is jittered to ensure that we do not always split
from the centre of an edge. We effectively ignore con-
cavity by taking the first two line intersection points
with the polygon loop. This is guaranteed to yield two
polygons, regardless of boundary complexity. This al-
lows concave plots if the initial polygons is concave, but
since these occur in reality this is not an issue. We dis-
allow splits which would generate new polygons with
oriented bounding boxes that fall below our minimum
parcel size requirement. A new parcel must be large
enough to accommodate the smallest building as well
as a prescribed margin around each building. We also
disallow splits which would generate parcels with no
street access.

For each we estimate the largest interior box, using a
sampling approach: we look inwards from each poly-
gon edge and try to find the largest contained box us-
ing a number of ray intersections centred on each edge.
While this is a rather crude approximation, it is reason-
ably cheap (for small numbers of rays) and yield boxes
oriented along edges, promoting street access. We then
shrink the box to fit the constraints supplied by the
sketch system. We do this by generating a random plot
margin for each box axis and determining whether the
resulting (reduced) box obeys the constraints on build-
ing size. If it does, we accept the reduced envelope as
the building base; otherwise we try with the minimal
margin constraint. If this fails, we flag that parcel as
being too small to contain a valid building. Once we
have generated a suitable building, we impose a global
aspect ratio check to shrink plots which have exploited
the maximal plot size to aggressively. Currently we do
not allow buildings with an aspect ratio above 3. Fi-
nally, we generate a uniform random height between
the height constraints supplied for that input block.

4.3 Building Editing
The skyline subsystem takes a sketched skyline curve
and must then ensure that the final orthogonal projec-
tions of all selected buildings conform to the implied
envelope. Our solution obeys the following princi-
ples: (a) the fewest possible buildings are altered, (b)
heights after modification remain in the min/max range
attached to buildings, (c) buildings above the skyline
constraint are lowered, while those lying below are only

raised as necessary to cover the skyline, and (d) the pro-
cedure executes at interactive rates.

To enforce the skyline constraint, we decompose the
piece-wise constant skyline envelope into a sequence
of zones on the projection plane. Each zone is simply a
disjoint rectangular region in the plane with a constant
height constraint that impacts all buildings projecting
into that zone. Of course, buildings often project across
adjacent zones. In keeping with principle 3, such a
building is lowered, if necessary, to the minimum height
of the zones it spans.

In order to satisfy principle 1, we develop the idea of
zone coverage. This refers to the proportion of a zone’s
width that is covered by the union of the bases of build-
ings whose heights have been fitted to that zone’s sky-
line. Thus the potential coverage of a building is the
intersection of its projected extent with the zone’s ex-
tent, but this coverage is only realized if its height is
altered to fit the zone. To keep building edits to a min-
imum, we first raise those buildings which contribute a
large proportion of unique coverage to any given zone.
To do this we order the height edits for each zone by
potential coverage. We then select legal edits for each
zone until either we have no edits remaining or some
prescribed coverage fraction has been attained. In prac-
tice the piece-wise constant height constraint can lead
to skylines that are too sharply defined to be natural. We
address this by allowing a certain “fuzziness” in asso-
ciating buildings with zones. More precisely, we shrink
the building extent by an ε in either direction for the
purpose of computing zone associations. The result-
ing skyline has a rougher, more approximate appear-
ance while, in essence, still conforming to the sketched
constraint. To further enhance variation, we add a small
random offset to building height edits, which allows
them some variation below the zone height threshold.

By default, the skyline is enforced on all buildings in
the selected region. Sometimes, however, a user may
wish to edit only those buildings in the front-line clos-
est to the view. We find these buildings using a 1D z-
buffer. The base extent of each building (in the XZ-
plane) is rasterized into a 1D depth buffer such that the
identity of the closest buildings along the base line can
be retrieved.

For elevation mode we need to ensure that height
changes fall off smoothly towards the boundary of the
selection. To achieve this the change in height is scaled
by a weighting factor:

w =

1 if r > r1

f (1− r
r1
) if 0≤ r ≤ r1

0 if r < 0
(1)

where f (x) = (x2−1)2, x ∈ [0,1]; r is the shortest dis-
tance to the boundary of the selection (with points in-

side having positive distance and those outside nega-
tive), and r1 is the distance after which a constant height
change is applied.

5 EXPERIMENTS AND RESULTS
Since the primary focus of this work is the development
of a sketching and gestural interface, we concentrate in
this section on the utility and ease-of-use of the final
system. In this regard, we administered a number of
usability experiments:

Comparing Sketching and Input Maps: We tested
an early version of our sketching interface against the
dominant alternative of image map input created with a
paint program. In the painting interface each layer (us-
age, road pattern, parkland) is displayed separately and
created using a typical image painting toolset with vari-
able width paintbrushes, erasers and bucket fill. This
represents a common paradigm in procedural city mod-
elling.

The experiment consisted of a between-groups study
with 20 subjects. Users were asked to reproduce 2 pre-
viously created cities (drawn randomly from a sample
of 5) and were assessed on the basis of speed, accuracy
and a post-test usability questionnaire. While sketching
was faster than image maps, this was not significant
(p = 0.15 on a t-test). We attribute this to the disparity
in experience with comparable interfaces (users scored
a mean of 3.2 for painting and 1.4 for sketching on
a 5-point Liekert scale of self-reported experience).
With training we expect sketching to be significantly
faster. Accuracy was assessed using a scoring scheme
which considered the approximate shape of region
boundaries, placement of road constraints and the
heights of buildings. The sketching interface was found
to be significantly more accurate (p = 0.008). Finally,
users scored the usability of sketching more highly
than image maps, with a mean score of 4.35 against
2.10 on a simple 5-point Liekert scale. In summary,
we found that sketching wins in general over image
maps with respect to accuracy and usability, with a
non-significant trend towards improved speed.

Gesture Calibration: In order to deal with the wide
range in building scales (from 5m high single-story
homes to 400m tall skyscrapers) and the limited size of
the gesture canvas, we originally intended employing
an exponential scale. After running an exploratory
experiment with 10 subjects, however, we discovered
that most users found this to be confusing and counter-
intuitive. Given drawings of various building gestures
along with a scaling key (as shown on the left of
Figure 4) and the task of attaching heights and widths,
the majority of users (8 out of 10) used a piecewise
linear scale for the vertical, with a change in slope at
about the 3−4 story level, and a width dictated by the

aspect ratio of the building. These findings motivated
our final approach.

Gesture Recognition: We undertook an experiment to
test the robustness of our simple gesture recognition
scheme, since it can be frustrating for a user to have
to undo false positives or redo false negatives. Our ex-
periment was something of an acid test: the 12 subjects
were given no training except a briefing sheet, received
no feedback as to the success or failure of gestures
(since we wanted to minimize learning effects) and they
used a mouse, which, although ubiquitous, is rather de-
ficient as a drawing device. Subjects were presented
with 3 examples of each gesture, in a randomized or-
der. The results were encouraging, with a mean recog-
nition rate of 84.1% (s = 7.4%) on the first attempt.
There were no misclassified gestures (false positives)
and the mean unclassified gesture rate (false negatives)
was thus 15.9%. The gesture that failed most often was
the simple Manhattan road pattern: two sets of near or-
thogonal lines that cross each other. Users sometimes
drew overly long lines with high curvature, which were
incorrectly classified as polylines, an issue that is easily
corrected with remedial training. Overall, this experi-
mental setup represents worst-case performance, since,
in practice, users are given feedback, are allowed to
practise, and are not restricted to using a mouse, leading
to substantially higher first-attempt recognition rates.

[A] [B]

Figure 6: Results: comparison of real and virtual Man-
hattan - [A] real street map (c©OpenStreetMap contrib-
utors), [B] virtual recreation. City Sketching is able to
reproduce the alignment and spacing of road networks
and the placement of features, such as Central Park,
Broadway and Brooklyn Bridge but is not suited to ex-
actly reproducing local road layouts.

We have also undertaken some informal validation tests
to see whether an existing cityscape can be roughly
reproduced by an experienced designer within a fixed
time limit (45 minutes). A procedural version of Man-
hattan (New York City) with 7660 buildings and 3006
roads is shown in Figure 7 and alongside a road net-
work from the corresponding real city in Figure 6. Also
shown is a hypothetical city on the edge of the Grand
Canyon (11794 buildings and 5605 roads). The proce-
dural city generation completed in under 30 seconds for
both examples on a 2.4 GHz Intel Core 2 Duo with 2 Gb
RAM.

We have found that sketched gestures are an effective
input mechanism when absolute precision is not re-
quired and parameters have a direct geometric interpre-
tation. In such circumstances they can be both mean-
ingful and compact. For instance, our usage zone ges-
ture captures a selection and 9 float values in a single
sketch. However, gestures are less useful for indirect
parameter specification. For example, our system as-
sumes usage zones with a dominant type, but in many
cases a mixture is more realistic. Using a gesture to
encode the exact proportion of industrial, residential
and commercial buildings within a zone would likely
be clumsy in the extreme. In cases like this, traditional
GUI elements, such as slider bars, are more appropriate.

6 CONCLUSION
This paper presented City Sketching, a procedural sys-
tem that employs a hybrid sketch and gesture inter-
face, enabling users to control, in detail, the genera-
tion of a virtual city, including the layout and interac-
tion between road networks, categories of land usage,
and the dimensions of plots and buildings. Our sys-
tem can be applied to improve scene modelling for vi-
sual effects, computer games and simulation. Our re-
sults show that it is possible to have a single procedural
framework, controlled through sketch-based interaction
alone, which draws together all the necessary compo-
nents for high-level city design. Furthermore, our ap-
proach is both more usable and more accurate when
compared to conventional image map or numeric con-
straint specification.

There are a number of directions in which the system
could usefully be extended. First, it would be interest-
ing to connect our interface to a separate simulation-
oriented city generator that is capable of exploiting the
statistics and constraints that we produce. Second, there
is scope to extend detailed editing of the city. For in-
stance, the placement of individual “hero” buildings
with specific dimensions is possible but not currently
supported. Finally, the example-based aspect of our
system could be extended by substituting real-world
road map images for road pattern gestures. However,
deriving statistics or even explicit road constraints in
this case would require extensive image processing.

ACKNOWLEDGEMENTS
This research was supported by an NRF/THRIP grant
and the Centre for High Performance Computing.

7 REFERENCES
[1] Prusinkiewicz, P., and Lindenmayer, A. The algo-

rithmic beauty of plants. Springer-Verlag, 1996.
[2] Ebert, D., Musgrave, F., Peachey, D., Perlin, K.,

and Worley, S. Texturing and Modeling: A Proce-
dural Approach. Morgan Kaufmann; 3 ed., 2003.

Figure 7: Results: two procedural city sketches. By row from top to bottom - Manhattan, Manhattan in close up,
A hypothetical city on the edge of the Grand Canyon and its close up. By column from left to right - sketch, road
network, procedural city. Both examples were designed in under 45 minutes by an experienced user.

[3] Müller, P., Wonka, P., Haegler, S., Ulmer, A., and
Van Gool, L. Procedural modeling of buildings.
ACM Trans Graph, 25(3): p. 614-23, 2006.

[4] Perlin, K., and Velho, L. Live paint: painting with
procedural multiscale textures. In: SIGGRAPH
’95, p. 153-60, 1995.

[5] Parish, Y., and Müller, P. Procedural modeling of
cities. In: SIGGRAPH ’01, p. 301-8, 2001.

[6] Hultquist, C., Gain, J., and Cairns, D. An adjec-
tival interface for procedural content generation.
In: Intelligent Computer Graphics 2009; v. 240,
p. 143-65, 2009.

[7] Aliaga, D., Vanegas, C., and Benes, B. Interac-
tive example-based urban layout synthesis. In:
SIGGRAPH Asia ’08, p. 1-10, 2008.

[8] Lipp, M., Scherzer, D., Wonka, P., and Wim-
mer, M. Interactive modeling of city layouts using
layers of procedural content. Computer Graphics
Forum, 30(2), p. 345-54, 2011.

[9] Gain, J., Marais, P., and Strasser, W. Terrain
sketching. In: I3D ’09, p. 31-8, 2009.

[10] Vanegas, C., Aliaga, D., Benes, B., and Wad-

dell, P. Interactive design of urban spaces using
geometrical and behavioral modeling. In: SIG-
GRAPH Asia ’09, p. 1-10, 2009.

[11] Galin, E., Peytavie, A., Guerin, E., and Benes, B.
Authoring hierarchical road networks. Computer
Graphics Forum, 30(7), p. 2021-2030, 2011.

[12] da Silveira, L., and Musse, S.. Real-time genera-
tion of populated virtual cities. In: VRST ’06, p.
155-64, 2006.

[13] Chen, G., Esch, G., Wonka, P., Müller, P., and
Zhang, E. Interactive procedural street modeling.
In: SIGGRAPH ’08, p. 1-10, 2008.

[14] Vanegas, C., Aliaga, D., Wonka, P., Müller, P.,
Waddell, P., and Watson, B. Modelling the ap-
pearance and behaviour of urban spaces. Com-
puter Graphics Forum, 29(1), p. 25-42, 2010.

[15] Dadgostar, F., Sarrafzadeh, A., Fan, C., Silva, L.,
and Messom, C. Modeling and recognition of ges-
ture signals in 2d space: A comparison of nn and
svm approaches. IEEE Conference on Tools with
Artificial Intelligence, p. 701-4, 2006.

