Integrating the Educational Enterprise

Tracy Baving
thbaving@cs.uct.ac.za

Donald Cook
dc@cs.uct.ac.za

Trevor Green
tgreen@cs.uct.ac.za

Technical Report CS03-11-00
Department of Computer Science
University of Cape Town

Abstract

Learning management systems are being used in today’s ed-
ucational climate without much thought to current pedago-
gies and interoperability. The Open Knowledge Initiative
(OKI) provides a set of Open Service Interface Definitions
(OSID’s) that address interoperability in the educational en-
terprise while remaining pedagogically flexible. Web Ser-
vices are suggested as a suitable middleware to use when
integrating the enterprise services using OKI. A possible in-
tegration strategy is suggested for the learning management
system WebStation® to demonstrate OKI.

1 Introduction

The Department of Computer Science at the University of
Cape Town uses the web to supplement its teaching. For
every course offered by the department, a web site is put
up and managed, and items such as the PowerPoint slides
of the lectures, the description of the assignments, the hand
in page, etc. need to be put onto each site. A few teaching
assistants are hired, and they maintain these websites as part
of their work for the department.

Over time, several different looking websites have been
developed. This is because no instance of a course website
catered fully for every course. It was more convenient to
develop a new website or make use of existing third-party
tools to provide the needed functionality than to take an
existing instance and further develop it. This approach cer-
tainly worked in the short term, but it has resulted in a
web presence that has a sloppy appearance. Furthermore,
the problem of poor maintainability is now worse, and some
significant bugs still exist.

The department has recently decided to obtain accred-
itation for its degrees from the British Computer Society
(BCS). As part of the agreement, it has committed to mark
assignments and return the results to the students within
two weeks of assignment’s deadline. The existing websites
need to incorporate functionality that will assist the pro-
cess of marking and feedback, and the existing practice of
duplicate data entry needs to be eliminated. Instead of in-
corporating this functionality into the existing systems, a
new and integrated system should be created. We decided
to call this new system WebStation®.

1.1 Objectives
The aims of WebStation® include the following:

e Integrate and improve on current software and pro-
cesses in existence in the Computer Science Department
at UCT.

e Automate and increase automation in processes in op-
eration in the Computer Science Department at UCT.

e Develop a self-contained Learning Management System
(LMS) that builds on the strengths and improved de-
sign limitations of other LMS’s available.

e Ensure that the implementation is modular and exten-
sible

e Focus on user requirements

The project was divided into 2 parts. One part focused
on the creation and configuration of content (WebStation®).
The other part focused on providing administrative services
for the entities used in WebStation® , as well as capture and
integrate services and processes already in operation in the
CS Department (AdminStation). The whole system served
to function as a stand-alone, self-contained Learning Man-
agement System that met the requirements of the Computer
Science Department at UCT.

Before implementing our system, research into the field
of online education systems was conducted. User interviews
were also conducted to obtain information about the services
and systems that were currently available in the department,
as well as to elicit requirements.

We implemented the system using the Microsoft.Net
Framework, making use of useful features provided by
ASP.Net and ADO.Net architectures for creating server-
based web-applications.

1.2 Findings

Near the end of the implementation phase, two conclusions
were reached. Firstly, many LMS’s have been developed
without an educational goal in mind. The current educa-
tional climate at the moment supports a social constructivist
model for providing education. This model defines learning
as a reflective process that can be enhanced through actively
applying knowledge and the social collaboration of ideas. Of
the LMS’s available that do have some educational structure
in mind, very few support this modern view on the educa-
tive process in providing an infrastructure that supports this
type of learning. Pedagogy is an important aspect to con-
sider when eliciting requirements for a LMS.

Secondly, we realised that the application programming
interfaces being developed by the Open Knowledge Initiative
(O.K.I.) would fully integrate the University’s information
technology solution. Learning management systems have
evolved far, but they have each evolved independently and
despite the similarities in their feature sets, no interoperabil-
ity exists between them. Furthermore, they do not integrate
with other third-party systems. O.K.I. is being developed
to address these issues and has the potential to integrate an

entire campus’s IT infrastructure and even integrate the IT
systems of several campuses. This paper will look briefly
at what the O.K.I. is. Implementing the O.K.I. will also be
discussed, with particular reference to WebStation®.

2 What is the O.K.I.?

The Open Knowledge Initiative (O.K.I.) is a project con-
ducted by the Massachusetts Institute of Technology. The
OKI aims to “define a set of fundamental services that com-
ponents of the educational environment use to work to-
gether, as well as with other enterprise applications” [Open
Knowledge Initiative 2002d]. The project regards the learn-
ing management service as an enterprise service, and there-
fore needs to interoperate amongst other enterprise services
within the organisation.

A distinctive property of the OKI is that it is architectural
in nature [Open Knowledge Initiative 20024d]. The interface
methods provided by the OKI integrate three general cate-
gories of software, namely the various learning applications
(such as quizzing, discussion forums, etc.), the central ad-
ministrative system and the academic systems (such as the
library information system and digital repositories). Once
this architecture is fully adopted by the education market,
new components can be plugged into the educational infras-
tructure using OKI’s API’s. While the initial cost of setting
up a learning technology system is not necessarily reduced,
the intention is to reduce the ongoing cost of maintaining
and updating the system.

The OKI defines twelve API’s, which they call OKI Ser-
vice Interface Definitions (OSID’s), namely authorization,
authentication, DBC, filing, dictionary, logging, shared,
workflow, scheduling, SQL and user messaging [[[horne et all
2002]. The API’s are described abstractly and written in
Java. The O.K.I. “keeps open the future possibility of ex-
pressing these services [or APIs] as interfaces in other object
orientated languages such as C++ and C-Sharp. It also
makes it possible to support service-based implementations
using tools such as J2EE and .NET.”

The APIs are divided into two groups: the Common Ser-
vice APIs and the Educational Service APIs. The Common
Service APIs define APIs that are not specifically educa-
tional, such as authorization, authentication, etc. The Ed-
ucational Service APIs are specifically educational. Exam-
ples of Educational Service APIs are class administration,
assessment, communication services, etc. A summary of all
the APIs are presented in [Ihorne et al. 2002].

O.K.I is specifically designed for the needs of higher ed-
ucation and makes use of existing standards (e.g. SCORM,
IMS, etc.) wherever appropriate.

Kumar et al. [Vijay Kumar et al. 2001] argues that ed-
ucational architectures need to fulfill three requirements.
Firstly, “The architecture of learning management systems
must support the development of diverse, customised tools
in the support of disciplined or pedagogically specific needs.”
In other words, the architecture does not limit the institution
to one centralised, monolithic system, but allows smaller en-
tities within the institution to create their own customised
solution to suit their pedagogical needs. For example, if
a institution prefers WebCT as their learning management
system, but it is not pedagogically sufficient for a particular
entity within that institution, then that entity should be able
to develop or choose a system that satisfies their pedagogi-
cal requirements while integrating with the institution’s IT
infrastructure.In U.C.T’s context, this means that WebCT

may be used at the university while the Computer Science
Department uses WebStation®.

Secondly, the architecture must be an “architecture that
endures”. There is no way of knowing what kinds of devices,
operating systems, protocols, etc. will be developed over the
next few years. The architecture should survive technolog-
ical advancements such as these, therefore it is necessary
to keep the design of the learning system as technologically
neutral as possible. “The enterprise approach is one of sus-
tainability and scalability. It calls for the development of an
infrastructure that encourages a wide variety of academic
applications sharing data and services via open communica-
tion protocols and open programmer application interfaces.”
[Vijay Kumar et al. 2007

Thirdly, the architecture must be widely adopted. The
OKI is a collaborative project led by the M.I.T. and sup-
ported by Stanford University, Dartmouth College, Harvard
University, North Carolina State University, the University
of Michigan, the University of Pennsylvania, the University
of Wisconsin-Madison, the University of Washington and the
University of Cambridge.

Kumar further argues [Vijay Kumar et al. 2001] that the
OKT’s strength lies in its modularity. OKI’s Architectural
Overview [[Thorne et al. 2007] states their modularity goals
as follows:

“The OKI architecture must accommodate diverse envi-
ronments and growth in both technology and pedagogy. It
must isolate the courseware tools from infrastructure ser-
vices. It must also isolate one courseware component from
changes in another courseware component. It must scale to
handle the demands of large institutions with many students,
faculty, and courses on multiple campuses, or nonstandard
courses and participants.”

3 Web Services - The Middleware

Having interface definitions such as those proposed by the
OKI is not sufficient to integrate the various services. The
various service definitions need to communicate with one
another in spite of the language, operating system or ar-
chitecture that each of them are implemented on. Another
consideration is the current network architecture of the in-
stitution. The institution should not have to fiddle too much
with the firewall configurations or network architecture.

Many middleware solutions exist to provide a distributed
solution (such as CORBA, COM+ or RMI), but Web Ser-
vices offers the simplest solution [Stal 2002]. Two advan-
tages of Web Services over other middleware solutions in
terms of interoperability are that they are language agnostic
and based on web technologies.

Web Services add a new level of interoperability through
a SOAP layer, which separates the transport protocol from
the Web Service payload. This allows Web Services to
be requested over various transport protocols, including
HTTP, RMI/IIOP, Instant Messaging and IBM WebSphere
MQSeries to name a few [Fremantle et al. 2002].

Typically Web Services are implemented over HTTP,
which allows services to be requested over the Internet, and
not only within a intranet. This enables a simple distributed
solution to institutions that have many campuses. Further-
more, if each campus has its own firewall and allows Inter-
net access, then no added configuration is necessary to allow
Web Services.

In addition to its simplicity, Web Services have a myriad of
protocols that complement it. The protocols that concern

interoperability particularly are the Web Service Descrip-
tion Language (WSDL); the Universal Description, Discov-
ery and Integration of Web Services (UDDI); and the Web
Service Inspection Language (WSIL).

3.1 WSDL

The Web Services Description Language allows for the de-
scription of the inputs and outputs of a Web Service. It
allows the server to publish the interface of a Web Service
so that if a client sends a SOAP request in the correct format
as described by the WSDL instance, an appropriate SOAP
response will be returned in the correct format as described
by the same WSDL instance.

According to [Fremantle et al. 2002], WSDL has two
strengths:

1. It enforces separation between interface and implemen-
tation.

Fremantle et al. writes: “The interface must be de-
scribed as an abstract PortType, which is defined in
terms of the input and/or output messages that it sup-
ports for each operation. This abstract service is then
bound to a particular implementation at a particular lo-
cation using a Port (location) and Binding (implemen-
tation style).” This abstract description of interfaces
permits Web Services to have the degree of language
agnosticism that it has.

2. It is inherently extensible.

Fremantle continues: “The core WSDL specification
only describes the abstract interface and the structure
of ports and bindings. Actual implementation types,
such as SOAP, are described using extensions. This ex-
tensibility means WSDL can be used to describe almost
any service-orientated interaction.”

Various tools exist which make use of WSDL to generate
client proxy stubs. These stubs do not necessarily have to
be in the same implementation language as Web Service’s
implementation language.

3.2 UDDI

UDDI is a standard maintained by Oasis (http://www.oasis-
open.org/). Companies such as Microsoft and IBM host
UDDI implementations where businesses may publish their
services. UDDI may also be implemented privately.
Educational institutions may make use of UDDI to pub-
lish services to other institutions. An example of such a
service would be a digital library of publications. Congia,
et al [Congia et al. 2003] have implemented a SOAP-based
protocol for OAI-PMH, which is a first step toward having
Web Services implemented that can access open archives.
UDDI can publish the availability of these services to a cen-
tral location so that they may be discovered and utilised.

3.3 WSIL

WHSIL is a complement to UDDI. UDDI offers discovery of
services on a global or wide-scale. WSIL concentrates on
a particular site and discovers the services available locally.
The list of services returned by a WSIL query includes either
a link to each service’s WSDL or a link to a UDDI service
entry. WSIL provides institutions with a lightweight alter-
native to UDDI when the locality of the services of known.

WebStation AdminStation

—

Middle Tier

Authentication
(m————
|
|
|
| Authorization

*>—
1
>—
1
3 g Presentation Assembly @——
1
>—
1
>
1

Data Retrieval

T :503139‘ ission
I

]

Data
Access

Figure 1: Current WebStation® architecture

4 Implementing OKI in WebStation?

Both WebStation and AdminStation are built using a 3-
tiered architecture. The services provided by the middle
tier are authentication, authorization, presentation assem-
bly, data submission, data retrieval, calendar, tutorial man-
agement, logging and Document Storage. The arrangement
of these services are shown in figure [and the implementa-
tion after integration using OKI is shown in B.

Authentication and authorization have their obvious place
in the new OKI based architecture.

The course calendar component (not shown) will use two
of the OSID’s, namely Scheduling and Hierarchy. FEach
course has its own calendar in the old architecture. How-
ever, there should be the ability to have events that are
common across several courses. This is where the Hierarchy
OSID comes in, because it allows a course to “inherit” a
calendar from another course, or even inherit calendars that
do not belong to a course such as a university’s academic
calendar. Desktop organisers such as Microsoft Outlook can
also be configured to use the OKI OSID’s (and this con-
figuration needs to only be written once for each software
package) and then these desktop organisers may be used to
manipulate course calendars.

The Discussion Board and Announcements components
will integrate with the User Messaging OSID. Messages can

WebStation AdminStation

—

Middle Tier

Authentication ([@p—
oki.authentication (= — — — — —~ i
Authorization |[@—
oki.authorization [———— 1
|

oki.hierarchy Presentation Assembly «@p—
% 9
Data Retrieval @p—

1

|
|
|
|
|
I
I
| Data Submission p—
|
| % 1
|
|
I
|
|
I

oki.filing
BCS Document Storage [@p—

Calendar @p—
oki.scheduling

Figure 2: WebStation® architecture using OKI

be organised into groups and threads by implementing them
as nodes in a hierarchy as provided by the Hierarchy Service
Interface Definition. Discussion forums may even be linked
to an email address using the OKI OSID’s and sending a
message to this email address is equivalent to posting to the
discussion forum. The back-end of the scheduling OSID can
even link with a SMTP server and email the students in the
course whenever a message is posted to that group. The
possibility even exists of sharing discussion groups across
learning management systems.

The BCS Document Storage service supplied by the
WebStation® middle tier is an ideal candidate to wrap the
OKI Filing OSID because the two services provide exactly
the same functionality.

Finally, the logging service provided by the WebStation®
middle tier (not shown) can wrap the OKI Logging OSID.
The back-end of the Logging OSID can perform on-the-fly
processing of logging information it receives and present an
analysed view of the logs through a second implementation
of the Logging OSID since The Logging OSID makes provi-
sion for read-only logs and write-only logs.

5 Conclusion

Learning management systems are predominantly pedagogy
specific and therefore restrict their lifetime. WebStation® at-

tempts to be pedagogically neutral, but this may not neces-
sarily be the case. The Open Knowledge Initiative provides
an architecture that allows the learning management system
to be easily disposable without affect the majority of a insti-
tutions information technology infrastructure. Institutions
will therefore no longer have to be pedagogically restricted
by their information technology implementations.

The Open Knowledge Initiative, coupled with Web Ser-
vices, provides a very flexible distributed model. Built on
web standards and SOAP, Web Services offer a language ag-
nostic, platform agnostic remote procedure call mechanism
that can integrate the institution’s enterprise services and
integrate services between institutions.

References

Conacia, S., GAYLORD, M., AND MERCHANT, B.
2003. Soapifying the open archives. Available from
http://pubs.cs.uct.ac.za/.

FREMANTLE, P., WEERAWARANA, S., AND KHALAF, R.

2002. Enterprise services. Communications of the ACM
45, 10 (October), 77-82.

Hou, J., AND ZHANG, Y. 2002. Constructing good qual-
ity web page communities. In Proceedings of the thir-
teenth Australasian conference on Database technologies,
Australian Computer Society, Inc., 65-74.

OPEN KNOWLEDGE INITIATIVE, 2002. Oki product descrip-
tion introduction. Available from http://web.mit.edu/oki.

OPEN KNOWLEDGE INITIATIVE, 2002. What is
the open knowledge initiative? Available from
http://web.mit.edu/oki.

STAL, M. 2002. Web services: Beyond component-based
computing. Communications of the ACM 45, 10 (Octo-
ber), 71-76.

TALBOTT, D., GiBSON, M., AND SKUBLICS, S. 2002. A
collaborative methodology for the rapid development and
delivery of online courses. In Proceedings of the 20th an-
nual international conference on Computer documenta-
tion, ACM Press, 216-225.

THE ADL INITIATIVE. The sharable content object ref-
erence model (scorm) specification 1.2. Available from
http://www.adlnet.org/.

THE IMS GLOBAL CONSORTUIM. The ims global consortium
standards. Available from http://ww.imsglobal.org/.

THORNE, S., SHUBERT, C., AND MERRIMAN, J.,
2002. Oki architecture overview. Available from
http://web.mit.edu/oki/.

Vijay KuMAR, M. S., MARRIMAN, J., AND LoNG, P. D.
2001. Building “open” frameworks for education. EDU-
CAUSE (November).

WorLD WIDE WEB CONSORTIUM, 2003. Web ser-
vices architecture (working draft). Available from
http://www.w3.org/TR /2003 /WD-ws-arch-20030808/ .

	Introduction
	Objectives
	Findings

	What is the O.K.I.?
	Web Services - The Middleware
	WSDL
	UDDI
	WSIL

	Implementing OKI in WebStation3
	Conclusion

