
SIMPLE DIGITAL LIBRARIES

LIGHTON PHIRI

A DISSERTATION SUBMITTED

IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN

COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCE

UNIVERSITY OF CAPE TOWN

SUPERVISED BY

HUSSEIN SULEMAN

DECEMBER 2013

This work is licensed under a Creative Commons Attribution 3.0 Unported Licence

http://creativecommons.org/licenses/by/3.0/deed.en_GB

Simple Digital Libraries

by

Lighton Phiri

Plagiarism Declaration

I know the meaning of plagiarism and declare that all the work in the document, save for which is

properly acknowledged, is my own.

Lighton Phiri

Friday August 10, 2013

(Date)

Acknowledgements

First of all, I would like to thank my supervisor, Professor Hussein Suleman, for giving me the

opportunity to work with him; and for his encouragement, technical advice and support throughout

my graduate studies. He read carefully early drafts of the manuscript, and his suggestions and

proposed corrections contributed to the final form of this thesis. I am very grateful for this.

In addition, a number of individuals implicitly and explicitly contributed to this thesis in one way

or the other. To these people, I would like to express my sincere thanks. In particular, I would

like to thank Nicholas Wiltshire for facilitating access to the Spatial Archaeology Research Unit

(SARU) Rock Art digital collection; Miles Robinson and Stuart Hammar for basing their “Bonolo”

honours project on the Bleek and Lloyd case study collection; Kaitlyn Crawford, Marco Lawrence

and Joanne Marston for basing their “School of Rock Art” honours project on the SARU Rock

Art archaeological database case study collection; the University of Cape Town Computer Science

Honours class of 2012 for taking part in the developer survey; and especially Kyle Williams for

his willingness to help.

Furthermore, I would like to thank the Centre for Curating the Archive at the University of Cape

Town and the Department of Archeology at the University of Cape Town for making available the

digital collections that were used as case studies. I would also like to thank the Networked Digital

Library of Thesis and Dissertation (NDLTD) for implicitly facilitating access to the dataset used

in performance experiments through their support for open access to scholarship.

Finally, I would like to express my sincere gratitude to my family for their support during my long

stay away from home.

iv

To my parents, and my ’banded’ brothers.

v

Abstract

The design of Digital Library Systems (DLSes) has evolved overtime, both in sophistication and

complexity, to complement the complex nature and sheer size of digital content being curated.

However, there is also a growing demand from content curators, with relatively small-size collec-

tions, for simpler and more manageable tools and services to manage their content. The reasons

for this particular need are driven by the assumption that simplicity and manageability might ulti-

mately translate to lower costs of maintenance of such systems.

This research proposes and advocates for a minimalist and simplistic approach to the overall design

of DLSes. It is hypothesised that Digital Library (DL) tools and services based on such designs

could potentially be easy to use and manage.

A meta-analysis of existing DL and non-DL tools was conducted to aid the derivation of design

principles for simple DLSes. The design principles were then mapped to design decisions applied

to the design of a prototype simple repository. In order to assess the effectiveness of the simple

repository design, two real-world case study collections were implemented based on the design.

In addition, a developer-oriented study was conducted using one of the case study collections

to evaluate the simplicity and ease of use of the prototype system. Furthermore, performance

experiments were conducted to establish the extent to which such a simple design approach would

scale and also establish comparative advantages to existing designs.

In general, the study outlined some possible implications of simplifying DLS design; specifically

the results from the developer-oriented user study indicate that simplicity in the design of the DLS

repository sub-layer does not severely impact the interaction between the service sub-layer and the

repository sub-layer. Furthermore, the scalability experiments indicate that desirable performance

results for small- and medium-sized collections are attainable.

The practical implication of the proposed design approach is two-fold: firstly the minimalistic de-

sign has the potential to be used to design simple and yet easy to use tools with comparable features

to those exhibited by well-established DL tools; and secondly, the principled design approach has

the potential to be applied to the design of non-DL application domains.

vi

Table of Contents

List of Tables . xi

List of Figures . xiii

List of Abbreviations . xv

1 Introduction 1

1.1 Motivation . 2

1.2 Hypotheses . 2

1.3 Research questions . 3

1.4 Scope& approach . 3

1.5 Thesis outline . 4

2 Background 5

2.1 Digital Libraries . 5

2.1.1 Definitions . 5

2.1.2 Application domains . 6

2.1.3 Summary . 8

2.2 Fundamental concepts . 9

2.2.1 Identifiers . 9

2.2.2 Interoperability . 9

2.2.3 Metadata . 10

2.2.4 Standards . 10

2.2.5 Summary . 11

2.3 Frameworks . 11

2.3.1 5S framework . 11

2.3.2 Kahn& Wilensky framework . 12

2.3.3 DELOS reference model . 13

2.3.4 Summary . 13

2.4 Software platforms . 14

vii

2.4.1 CDS Invenio . 14

2.4.2 DSpace . 15

2.4.3 EPrints . 15

2.4.4 ETD-db . 15

2.4.5 Fedora Commons . 16

2.4.6 Greenstone . 16

2.4.7 Omeka . 16

2.4.8 Summary . 17

2.5 Minimalist philosophy . 17

2.5.1 Dublin Core . 18

2.5.2 Wikis . 18

2.5.3 XML . 19

2.5.4 OAI-PMH . 19

2.5.5 Project Gutenberg . 20

2.5.6 Summary . 20

2.6 Data storage schemes . 20

2.6.1 Relational databases . 21

2.6.2 NoSQL databases . 21

2.6.3 Filesystems . 22

2.6.4 Summary . 23

2.7 Design decisions . 24

2.8 Summary . 24

3 Design principles 26

3.1 Research perspective . 26

3.1.1 Prior research observations . 26

3.1.2 Research questions . 26

3.1.3 Summary . 27

3.2 Research methods . 27

3.2.1 Grounded theory . 27

3.2.2 Analytic hierarchy process . 28

3.2.3 Summary . 29

3.3 General approach . 30

3.3.1 Data collection . 30

3.3.2 Data analysis . 31

viii

3.3.3 Design principles . 32

3.3.4 Summary . 35

3.4 Summary . 36

4 Designing for simplicity 37

4.1 Repository design . 37

4.1.1 Design decisions . 37

4.1.2 Architecture . 39

4.1.3 Summary . 40

5 Case studies 43

5.1 Bleek& Lloyd collection . 44

5.1.1 Overview . 44

5.1.2 Object storage . 44

5.1.3 DLSes . 46

5.2 SARU archaeological database . 47

5.2.1 Overview . 47

5.2.2 Object storage . 48

5.2.3 DLSes . 50

5.3 Summary . 50

6 Evaluation 52

6.1 Developer survey . 53

6.1.1 Target population . 53

6.1.2 Data collection . 53

6.1.3 Results . 53

6.1.4 Discussion . 56

6.1.5 Summary . 58

6.2 Performance . 58

6.2.1 Test setup . 59

6.2.2 Test dataset . 59

6.2.3 Workloads . 60

6.2.4 Benchmarks . 64

6.2.5 Comparisons . 79

6.2.6 Summary . 85

6.3 Summary . 85

ix

7 Conclusions 87

7.1 Research questions . 87

7.2 Future work . 88

7.2.1 Software packaging . 89

7.2.2 Version control . 89

7.2.3 Reference implementation . 89

A Developer survey 90

A.1 Ethical clearance . 90

A.2 Survey design . 93

B Experiment raw data 100

B.1 Developer survey . 100

B.2 Performance benchmarks . 103

B.2.1 Workload . 103

B.2.2 Ingestion . 104

B.2.3 Search . 107

B.2.4 OAI-PMH . 111

B.2.5 Feed . 115

Bibliography 119

Index 128

x

List of Tables

1-1 Summary of research approach process . 4

2-1 Summary of key aspects of the 5S framework . 12

2-2 Feature matrix for some popular DL FLOSS software tools 17

2-3 Simple unqualified Dublin Core element set . 18

2-4 OAI-PMH request verbs . 19

2-5 Data model categories for NoSQL database stores 21

2-6 Comparative matrix for data storage solutions . 24

3-1 An N ×N pairwise comparisons matrix . 29

3-2 Software applications used for pairwise comparisons 30

3-3 Software attributes considered in pairwise comparisons 31

3-4 Grounded theory general approach . 35

4-1 Simple repository persistent object store design decision 37

4-2 Simple repository metadata storage design decision 38

4-3 Simple repository object naming scheme design decision 38

4-4 Simple repository object storage structure design decision 38

4-5 Simple repository component composition . 39

5-1 Bleek& Lloyd collection profile . 44

5-2 Bleek& Lloyd repository item classification . 44

5-3 SARU archaeological database collection profile 48

5-4 SARU repository item classification . 48

6-1 Developer survey target population . 53

xi

6-2 Performance experiment hardware& software configuration 59

6-3 Performance experiment dataset profile . 59

6-4 Experiment workload design for Dataset#1 . 60

6-5 Impact of structure on item ingestion performance 65

6-6 Baseline performance benchmarks for full-text search 66

6-7 Search query time change relative to baseline . 68

6-8 Baseline performance benchmarks for batch indexing 71

6-9 Impact of batch size on indexing performance . 73

6-10 Impact of structure on feed generation . 78

B-1 Developer survey raw data for technologies background 100

B-2 Developer survey raw data for DL concepts background 100

B-3 Developer survey raw data for storage usage frequencies 101

B-4 Developer survey raw data for storage rankings 101

B-5 Developer survey raw data for repository structure 101

B-6 Developer survey raw data for data management options 102

B-7 Developer survey raw data for programming languages 102

B-8 Developer survey raw data for additional backend tools 102

B-9 Developer survey raw data for programming languages 103

B-10 Performance experiment raw data for dataset models 103

B-11 Performance experiment raw data for ingestion 104

B-12 Performance experiment raw data for search . 107

B-13 Performance experiment raw data for OAI-PMH 111

B-14 Performance experiment raw data for feed generator 115

xii

List of Figures

1-1 High level architecture of a typical Digital Library System 1

2-1 Screenshot showing the Copperbelt University institution repository 7

2-2 Screenshot showing the digital Bleek& Lloyd collection 7

2-3 Screenshot showing the South African NETD portal 8

2-4 Screenshot showing the Project Gutenburg free ebooks portal 9

2-5 DL, DLS and DLMS: A three-tier framework . 14

3-1 Screenshot showing an excerpt of the GT memoing process 32

4-1 Simple repository object structure . 40

4-2 Simple repository object structure . 41

4-3 Simple repository container object component structure 42

4-4 Simple repository digital object component structure 42

5-1 Screenshot showing a sample page from Bleek& Lloyd collection 43

5-2 Collection digital object component structure . 46

5-3 Screenshot showing a sample rock art from SARU collection 47

5-4 Collection digital object component structure . 50

6-1 Survey participants’ technological background . 54

6-2 Survey participants’ background using storage solutions 54

6-3 Survey participants’ knowledge of DL concepts 55

6-4 Survey participants’ programming languages usage 55

6-5 Survey participants’ rankings of storage solutions 56

6-6 Survey participants’ simplicity& understandability ratings 57

6-7 Survey participants’ ratings of data management approaches 57

6-8 Experiment datasets workload structures . 61

xiii

6-9 Impact of structure on item ingestion performance 66

6-10 Baseline performance benchmarks for full-text search 68

6-11 Impact of structure on query performance . 70

6-12 Baseline performance benchmarks for batch indexing 72

6-13 Impact of batch size on indexing performance . 73

6-14 Baseline performance benchmarks for OAI-PMH data provider 75

6-15 Impact of collection structure on OAI-PMH . 76

6-16 Impact of resumptionToken size on OAI-PMH . 77

6-17 Impact of resumptionToken size& structure on OAI-PMH 80

6-18 Impact of feed size on feed generation . 81

6-19 Impact of structure on feed generation . 82

6-20 Comparison of single item ingestion performance 83

6-21 Comparison of full-text search performance . 83

6-22 Comparison of OAI-PMH performance . 84

6-23 DL aspects performance summary . 86

A-1 Screenshot of faculty research ethical clearance 91

A-2 Screenshot of student access ethical clearance . 92

A-3 Screenshot showing the survey participation email invitation 93

A-4 Screenshot showing the practical assignment question 94

A-5 Screenshot showing the online questionnaire (page 1 of 5) 95

A-5 Screenshot showing the online questionnaire (page 2 of 5) 96

A-5 Screenshot showing the online questionnaire (page 3 of 5) 97

A-5 Screenshot showing the online questionnaire (page 4 of 5) 98

A-5 Screenshot showing the online questionnaire (page 5 of 5) 99

xiv

List of Abbreviations

5S Streams, Structures, Spaces and Societies.

AHP Analytic Hierarchy Process.

DL Digital Library.

DLMS Digital Library Management System.

DLS Digital Library System.

DOI Digital Object Identifier.

ETD Electronic Thesis and Dissertation.

FLOSS Free/Libre/Open Source Software.

NDLTD Networked Digital Library of Thesis and Disser-

tation.

OAI-PMH Open Archives Initiative Protocol for Metadata

Harvesting.

OASIS Organisation for the Advancement of Structured

Information Standards.

PDF/A PDF/A is an ISO-standardised version of the

Portable Document Format (PDF).

PURL Persistent Uniform Resource Locator.

RAP Repository Access Protocol.

SARU Spatial Archaeology Research Unit.

URI Uniform Resource Identifier.

WWW World Wide Web Technologies.

XML Extensible Markup Language.

xv

Chapter 1

Introduction

The last few decades has seen an overwhelming increase in the amount of digitised and born

digital information. There has also been a growing need for specialised systems tailored to better

handle this digital content. Digital Libraries (DLs) are specifically designed to store, manage and

preserve digital objects over long periods of time. Figure 1-1 illustrates a high-level view of a

typical Digital Library System (DLS) architecture.

OAI-PMH

OpenSearch

SWORD Value-added Services

Browse

Ingestion

Search

Indexing

Bitstream Objects Metadata Objects

Machine Interaction User Interaction
O

b
je

ct

M
a
n

a
g
em

en
t

Figure 1-1. High level architecture of a typical Digital Library System

1

1.1 Motivation

DLs began as an abstraction layered over databases to provide higher level services

(Arms, Blanchi, and Overly, 1997; Baldonado et al., 1997; Frew et al., 1998) and have evolved,

subsequently making them complex (Janée and Frew, 2002; Lagoze et al., 2006) and difficult to

maintain, extend and reuse. The difficulties resulting from the complexities of such tools are espe-

cially prominent in organisations and institutions that have limited resources to manage such tools

and services. Some examples of organisations that fall within this category include cultural her-

itage organisations and a significant number of other organisations in developing countries found

in regions such as Africa (Suleman, 2008).

The majority of existing platforms are arguably unsuitable for resource-constrained environments

due to the following reasons:

� Some organisations do not have sustainable funding models, making it difficult to effectively

manage the preservation life-cycle as most tools are composed of custom and third-party

components that require regular updates.

� A number of existing tools require technically-inclined experts to manage them, effectively

raising their management costs.

� The majority of modern platforms are bandwidth intensive. However, they sometimes end up

being deployed in regions were Internet bandwidth is unreliable and mostly very expensive,

making it difficult to guarantee widespread accessibility to services offered.

A potential solution to this problem is to explicitly simplify the overall design of DLSes so that

the resulting tools and services are more easily adopted and managed over time. This premise is

drawn from the many successes of the application of minimalism, as discussed in Section 2.5. In

light of that, this research proposes the design of lightweight tools and services, with the potential

to be easily adopted and managed.

1.2 Hypotheses

This research was guided by three working hypotheses that are a direct result of grounding

work previously conducted (Suleman, 2007; Suleman et al., 2010). The three hypotheses are as

follows:

� A formal simplistic abstract framework for DLS design can be derived.

� A DLS architectural design based on a simple and minimalistic approach could be potentially

easy to adopt and manage over time.

� The system performance of tools and services based on simple architectures could be ad-

versely affected.

2

1.3 Research questions

The core of this research was aimed at investigating the feasibility of implementing a DLS based

on simplified architectural designs. In particular, the research was guided by the following research

questions:

Is it feasible to implement a DLS based on simple architectures?

This primary research question was broadly aimed at investigating the viability of simple archi-

tectures. To this end, the following secondary questions were formulated to clarify the research

problem.

i How should simplicity for DLS storage and service architectures be defined?

This research question served as a starting point for the research, and was devised to help

provide scope and boundaries of simplicity for DLS design.

ii What are the potential implications of simplifying DLS—adverse or otherwise?

It was envisaged, from the onset, that simplifying the overall design of a DLS would poten-

tially result in both desirable and undesirable outcomes. This research question was thus

aimed at identifying the implications of simplifying DLS design.

iii What are some of the comparative advantages and disadvantages of simpler architec-

tures to complex ones?

A number of DLS architectures have been proposed over the past two decades, ranging

from those specifically designed to handle complex objects to those with an overall goal

of creating and distributing collection archives (see Section 2.4). This research question

was aimed at identifying some of the advantages and disadvantages of simpler architectures

compared to well-established DL architectures. This includes establishing how well simple

architectures support the scalability collections.

1.4 Scope and approach

Table 1-1 shows a summary of the research process followed to answer the research ques-

tions.

3

Table 1-1. Summary of research approach process

Research Process Procedure

Literature synthesis Preliminary review of existing literature

Research proposal Scoping and formulation of research problem

Exploratory study Derivation of design principles

Repository design Mapping of design principles to design process

Case studies Implementation case study collections

Evaluation Experimentation results and discussion

1.5 Thesis outline

This manuscript is structured as follows:

� Chapter 1 serves as an introduction, outlining the motivation, research questions and scope

of the research conducted.

� Chapter 2 provides background information and related work relevant to the research con-

ducted.

� In Chapter 3 the exploratory study that was systematically conducted to derive a set of design

principles is described, including the details of the principles derived.

� Chapter 4 presents a prototype repository whose design decisions are directly mapped to

some design principles outlined in Chapter 3.

� Chapter 5 describes two real-world case study implementation designed and implemented

using the repository design outlined in Chapter 4.

� The implications of the prototype repository design are outlined in Chapter 6 through: ex-

perimental results from a developer-oriented survey conducted to evaluate the simplicity and

extensibility; and through scalability performance benchmark results of some DLS opera-

tions conducted on datasets of different sizes.

� Chapter 7 highlights concluding remarks and recommendations for potential future work.

4

Chapter 2

Background

Research in the field of DLs has been going on for over two decades. The

mid 1990s, in particular, saw the emergence of a number of government funded

projects (Griffin, 1998), conferences (Adam, Bhargava, and Yesha, 1995), technical committees

(Dublin Core Metadata Element Set, Version 1.1 1999; Lorist and Meer, 2001) and workshops

(Dempsey and Weibel, 1996; Lagoze, Lynch, and Daniel, 1996), specifically set up to foster for-

mal research in the field of DLs. The rapid technological advances and, more specifically, Web

technologies have resulted in a number of different DLS frameworks, conceptual models, archi-

tectural designs and DL software tools. The variation in the designs can largely be attributed to

the different design goals and corresponding specific problems that the solutions were aimed to

address.

This chapter is organised as follows. Section 2.1 presents an overview of DLs, including definitions

and sample application domains; Section 2.2 introduces fundamental key concepts behind DLs;

Section 2.3 is a discussion of pioneering work on some proposed frameworks and reference models

that have been applied to the implementation of DLS; Section 2.4 presents related work through

a discussion of some popular Free/Libre/Open Source Software (FLOSS) tools used for managing

digital collections; Section 2.5 broadly discusses designs whose successes are hinged on simplicity;

Section 2.6 discusses some commonly used storage solutions; and finally Section 2.7 presents two

prominent methods used to capture software design decisions.

2.1 Digital Libraries

2.1.1 Definitions

The field of DLs is a multidisciplinary field that comprises disciplines such as data management,

digital curation, document management, information management, information retrieval and li-

brary sciences. Fox et al. (Fox et al., 1995) outline the varying impressions of DLs from persons

in different disciplines and adopt a pragmatic approach of embracing the different definitions. They

further acknowledge the metaphor of the traditional library as empowering and recognise the im-

portance of knowledge systems that have evolved as a result. Arms (see Arms, 2001, chap. 1)

5

provides an informal definition by viewing a DL indexDigital Libraries as a well organised, man-

aged network-accessible collection of information—with associated services.

In an attempt to overcome the complex nature of DLs, Gonçalves et al. (Gonçalves et al., 2004) de-

fine a DL, using formal methods, by constructively defining a minimal set of components that make

up a DL. The set-oriented and functional mathematical formal basis of their approach facilitates

the precise definition of each component as functional compositions.

The European Union co-funded DELOS Network of Excellence on DLs working group proposed

a reference model and drafted The DL Manifesto with the aim of setting the foundations and iden-

tifying concepts within the universe of DLs (Candela et al., 2007). The DELOS DL indexDigital

Libraries reference model envisages a DL indexDigital Libraries universe as a complex frame-

work and tool having no logical, conceptual, physical, temporal or personal borders or barriers

on information. A DL indexDigital Libraries is perceived as an evolving organisation that comes

into existence through a series of development steps that bring together all the necessary con-

stituents, each corresponding to three different levels of conceptualisation of the universe of DLs

(Candela et al., 2008). The DELOS DL indexDigital Libraries reference model is discussed in

depth in Section 2.3.3.

2.1.2 Application domains

The use of DLs has become widespread mainly due to the significant technological advances that

have been taking place since the 1990s. The advent of the Internet has particularly influenced this

widespread use. There are various application domains in which DLs are used and researchers

are continuously coming up with innovative ways of increasing the footprint of DL indexDigital

Libraries usage.

Academic institutions are increasingly setting up institutional repositories to facilitate easy access

to research output. DLs play a vital role by ensuring that intellectual output is collected, man-

aged, preserved and later accessed efficiently and effectively. Figure 2-1 is an illustration of an

institutional repository system—a full text open access institution repository of the Copperbelt

University1.

Cultural heritage organisations are increasingly digitising historical artifacts in a quest to display

them online to a much wider audience. In light of this, DLSes are being developed to enable easy

access to this information. Figure 2-2 is a screen snapshot of the Digital Bleek and Lloyd Collec-

tion2, which is a digital collection of historical artifacts that document the culture and language of

the |Xam and !Kun groups of Bushman people of Southern Africa.

There has also been an increasing number of large scale archival projects that have been initiated

to preserve human knowledge and provide free access to vital information (Hart, 1992).

In addition, a number of federated services are increasingly being implemented with the aim of

making information from heterogeneous services available in centralised location. Figure 2-3

shows a snapshot of the South African National Electronic Thesis and Dissertation (NETD) por-

1http://dspace.cbu.ac.zm:8080/jspui
2http://lloydbleekcollection.cs.uct.ac.za

6

http://dspace.cbu.ac.zm:8080/jspui
http://lloydbleekcollection.cs.uct.ac.za

Figure 2-1. Screenshot showing the Copperbelt University institution repository

Figure 2-2. Screenshot showing the digital Bleek& Lloyd collection

7

Figure 2-3. Screenshot showing the South African National Electronic Thesis and Dissertation

portal

tal—a federated service that makes it possible for Electronic Thesis and Dissertations (ETDs) from

various South African universities to be discovered from a central location.

2.1.3 Summary

The massive number of physical copies being digitised, coupled with the increase in the generation

of born-digital objects, has created a need for tools and services—DLs—for making these objects

easily accessible and preservable over long periods of time. The importance of these systems is

manifested through their ubiquitous use in varying application domains.

This section broadly defined and described DLs, and subsequently discussed some prominent ap-

plication domains within which are currently used.

8

Figure 2-4. Screenshot showing the Project Gutenburg free ebooks portal

2.2 Fundamental concepts

2.2.1 Identifiers

An identifier is a name given to an entity for current and future reference. Arms (Arms, 1995)

classifies identifiers as vital building blocks for DL and emphasises their role in ensuring that

individual digital objects are easily identified and changes related to the objects are linked to the

appropriate objects. He also notes that they are also essential for information retrieval and for

providing links between objects.

The importance of identifiers is made evident by the widespread adoption of standardised naming

schemes such as Digital Object Identifiers (DOIs)3 (Paskin, 2005; Paskin, 2010) , Handles System4

and Persistent Uniform Resource Locators (PURLs)5.

Uniform Resource Identifiers (URIs) (Berners-Lee, Fielding, and Masinter, 2005) are considered

a suitable naming scheme for digital objects primarily because they can potentially be resolved

through standard Web protocols; that facilitates interoperability, a feature that is significant in DL

whose overall goal is the widespread dissemination of information.

2.2.2 Interoperability

Interoperability is a system attribute that enables a system to communicate and exchange informa-

tion with other heterogeneous systems in a seamless manner. Interoperability makes it possible

for services, components and systems developed independently to potentially rely on one another

3http://www.doi.org
4http://www.handle.net
5http://purl.oclc.org

9

http://www.doi.org
http://www.handle.net
http://purl.oclc.org

to accomplish certain tasks with the overall goal of having individual components evolve inde-

pendently, but be able to call on each other, thus exchanging information, efficiently and conve-

niently (Paepcke et al., 1998). DL interoperability has particularly made it possible for federated

services (Gonçalves, France, and Fox, 2001) to be developed, mainly due to the widespread use of

the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH).

There are various protocols that have been developed to facilitate interoperability among heteroge-

neous DLSes. Prominent interoperability protocols include: Z39.50 (Lynch, 1991) a client-server

protocol used for remote searching; OAI-PMH (Lagoze et al., 2002b), which has been extensively

used for metadata harvesting; and RSS (Winer, 2007), a Web based feed format commonly used

for obtaining updates on Web resources.

Extensible Markup Language (XML) has emerged as the underlying language used to support a

number of these interoperability protocols, largely due to its simplicity and platform indepen-

dence.

2.2.3 Metadata

Metadata is representational information that includes pertinent descriptive annotations neces-

sary to understand a resource. Arms (Arms, Blanchi, and Overly, 1997) describes different cat-

egories of information as being organised as sets of digital objects—a fundamental unit of the

DL architecture—that are composed of digital material and key-metadata. He defines the key-

metadata as information needed to manage the digital object in a networked environment. The

role performed by metadata is both implicit and explicit and its functions can be more broadly

divided into distinct categories. A typical digital object normally has administrative metadata for

managing the digital object, descriptive metadata to facilitate the discovery of information, struc-

tural metadata for describing relationships within the digital object and preservation metadata that

stores provenance information. Metadata is made up of elements that are grouped into a stan-

dard set, to achieve a specific purpose, resulting in a metadata schema. There are a number of

metadata schemes that have been developed as standards across various disciplines and they in-

clude, among others, Dublin Core (Dublin Core Metadata Element Set, Version 1.1 1999), Learn-

ing Object Metadata (LOM) (Draft Standard for Learning Object Metadata 2002), Metadata En-

coding and Transmission Standard (METS)6 and Metadata Object Description Schema (MODS)7.

Metadata can either be embedded within the digital object—as is the case with Portable Document

Format (PDF) and Hypertext Transfer Markup Language (HTML) documents—or stored sepa-

rately with links to the resources being described. Metadata in DL is often stored in databases for

easy management and access.

2.2.4 Standards

The fast pace at which technology is moving has spawned different types of application software

tools. This means that the choice of which technology to use in any given instance differs, thus

complicating the process of integrating application software with other heterogeneous software

6http://www.loc.gov/standards/mets
7http://www.loc.gov/standards/mods

10

http://www.loc.gov/standards/mets
http://www.loc.gov/standards/mods

tools. Standards become particularly useful in such situations because they form the basis for

developing interoperable tools and services. A standard is a specification—a formal statement

of a data format or protocol—that is maintained and endorsed by a recognised standards body

(see Suleman, 2010, chap. 2).

Adopting and adhering to standards has many other added benefits—and Strand et al.

(Strand, Mehta, and Jairam, 1994) observe that applications that are built on standards are more

readily scalable, interoperable and portable, constituting software quality attributes that are impor-

tant for the design, implementation and maintenance of DLs. Standards also play a vital role in

facilitating long term preservation of digital objects by ensuring that documents still become easily

accessible in the future. This is done by ensuring that the standard itself does not change and by

making the standard backwards compatible. Notable use of standards in DL include the use of

XML as the underlying format for metadata and OAI-PMH as an interoperability protocol. Digital

content is also stored in well known standards, as is the case with documents that are normally

stored in PDF/A format. The use of standards in DLSes, however, has its own shortcomings; in

certain instances, the use of standards can be a very expensive venture as it may involve a lot of

cross-domain effort (Lorist and Meer, 2001).

2.2.5 Summary

A DLS operates as a specialised type of information system and exhibits certain characteristics

to attain its objects. This section discussed fundamental concepts, associated to DLSes, that help

form the necessary building blocks for implementing DLs.

2.3 Digital Libraries frameworks

A reference model is an abstract framework that provides basic concepts

used to understand the relationships among items in an environment. The

Organisation for the Advancement of Structured Information Standards (OASIS)

(MacKenzie et al., 2006) states that a reference model consists of a minimal set of unifying

concepts, axioms and relationships within a particular problem domain, and is independent of

specific standards, technologies, implementations or other concrete details.

Several DL frameworks (Gonçalves et al., 2004; Kahn and Wilensky, 2006) and reference models

(Candela et al., 2007) have addressed specific problems in DLS architectural design and implemen-

tation. A discussion of some prominent reference models now follows.

2.3.1 Streams, Structures, Spaces and Societies

The Streams, Structures, Spaces and Societies (5S) framework is a unified formal theory for DLs.

It is an attempt to define and easily understand the complex nature of DLs in a rigorous manner. The

framework is based on formal definitions, and abstraction of five fundamental concepts—Streams,

11

Structures, Spaces, Scenarios and Societies (Gonçalves et al., 2004). The five concepts, together

with their corresponding definitions and examples, are summarised in Table 2-1.

Table 2-1. Summary of key aspects of the 5S framework

Concept Description Examples

Streams Streams represent a sequence of ele-

ments of an arbitrary type

Text, video, audio, software

Structures Structures specify the organisation of

different parts of a whole

Collection, document, meta-

data

Spaces Spaces are sets of objects, with associ-

ated operations, that obey certain con-

stants

User interface, index

Scenarios Scenarios define details for the be-

haviour of services

Service, event, action

Societies Societies represent sets of entities and

the relationships among them

Community, actors, relation-

ships, attributes, operations

In the context of the aims of DLs, Gonçalves et al. (Gonçalves et al., 2004) outline an association

between 5S and some aims of a DLS, with Streams being aligned with the overall communication

and consumption of information by end users; Structures supporting the organisation of informa-

tion; Spaces dealing with the presentation and access to information in usable and effective ways;

Scenarios providing the necessary support for defining and designing services; and Societies defin-

ing how a DL satisfies the overall information needs of end users.

However, Candela et al. (Candela et al., 2008) state that the 5S framework is very general-purpose

and thus less immediate. The 5S framework is also arguably aimed at formalising the DL aspects,

as opposed to prescribing specific design guidelines.

2.3.2 Kahn and Wilensky framework

This is a generic information system framework for distributed digital object services with digital

objects as the main building blocks. The framework is based on an open architecture that supports

large and distributed digital information services. Kahn and Wilensky (Kahn and Wilensky, 2006)

describe the framework in terms of the fundamental aspects of an open and distributed infrastruc-

ture, and how the basic components in such an infrastructure support storage, accessibility and

management of digital objects.

In addition to a high level conceptual description of such a distributed information sys-

tem, the framework primarily focuses on the network-based aspects of such an infrastructure

(Kahn and Wilensky, 2006). Specifically, an elaborate description of how digital objects should

be accessed via a Repository Access Protocol (RAP) is outlined. The framework also proposes the

use of a handle server infrastructure as a means for mapping registered digital objects.

12

In essence, the framework merely prescribes conventional methods for the unique identification,

reliable location, and flexible access to digital objects.

2.3.3 DELOS reference model

The DELOS Network of Excellence on DLs8 was a European Union co-funded project aimed at

integrating and coordinating research activities in DLs. The DELOS working group published a

manifesto that establishes principles that facilitate the capture of the full spectrum of concepts that

play a role in DLs (Candela et al., 2007). The result of this project was a reference model—the

DELOS DL reference model—comprising to a set of concepts and relationships that collectively

attempt to capture various entities of the DL universe.

A fundamental part of the DELOS reference model is the DL Manifesto, that presents a DL as a

three-tier framework consisting of a DL, representing an organisation; a DLS, for implementing

DL services; and a Digital Library Management System (DLMS), comprising of tools for admin-

istering the DLS. Figure 2-59 shows the interaction among the three sub-systems.

The reference model further identifies six core concepts that provide a firm foundation for DLs.

These six concepts—Content, User, Functionality, Quality, Policy and Architecture—are enshrined

within the DL and the DLS. All concepts, with the exceptions of the Architecture concept, ap-

pear in the definition of the DL. The Architecture is, however, handled by the DLS definition

(Candela et al., 2008).

The Architecture component, addressed by the DLS, is particularly important in the context of this

research as it represents the mapping of the functionality and content on to the hardware and soft-

ware components. Candela et al. (Candela et al., 2008) attribute the inherent complexity of DLs

and the interoperability challenges across DLs as the two primary reasons for having Architecture

as a core component.

Another important aspect of the reference model, directly related to this research, are the reference

frameworks needed to clarify the DL universe at different levels of abstraction. The three reference

development frameworks are: Reference Model, Reference Architecture, and Concrete Architec-

ture. In the context of architectural design, the Reference Architecture is vital as it provides a

starting point for the development of an architectural design pattern, thus paving the way for an

abstract solution.

2.3.4 Summary

The motivation behind building both the reference models was largely influenced by the need to

understand the complexity inherent in DLs. The idea of designing a DL architecture based on

direct user needs is not taken into account in existing reference models, although the DELOS

Reference Architecture does have a provision for the development of specific architectural design

patterns. The DELOS Reference Architecture is in actual fact considered to be mandatory for the

8http://www.delos.info
9Permission to reproduce this image was granted by Donatella Castelli

13

http://www.delos.info

Figure 2-5. DL, DLS and DLMS: A three-tier framework

development of good quality DLSes, and for the integration and reuse of the system components.

2.4 Software platforms

There are a number of different DL software tools currently available. The ubiquitous availability

of these tools could, in part, be as a result of specialised problems that these solutions are designed

to solve. This section discusses seven prominent DL software platforms.

2.4.1 CDS Invenio

CDS Invenio, formally known as CDSware, is an open source repository software, developed

at CERN10 and originally designed to run the CERN document server11. CDS Invenio provides

an application framework with necessary tools and services for building and managing a DL

(Vesely et al., 2004).

The ingested digital objects’ metadata records are internally converted into a MARC 21 —

MARCXML— representation structure, while the actually fulltext bitstreams are automatically

converted into PDF. This ingested content is subsequently accessed by downstream services via

OAI service providers, email alerts and search engines (Pepe et al., 2005).

The implementation is based on a modular architecture. It is implemented using the Python Pro-

gramming language, runs within an Apache/Python Web application server, and makes use of a

MySQL backend database server for storage of metadata records.

10http://www.cern.ch
11http://cdsweb.cern.ch

14

http://www.cern.ch
http://cdsweb.cern.ch

2.4.2 DSpace

DSpace is an open-source repository software that was specifically designed for storage of digital

research and institutional materials. The architectural design was largely influenced by the need

for materials to be stored and accessed over long periods of time (Tansley et al., 2003).

The digital object metadata records are encoded using qualified Dublin Core—to facilitate effective

resource description. Digital objects are accessed and managed via application layer services that

support protocols such as OAI-PMH.

DSpace is organised into a three-tier architecture, composed of: an application layer; a business

logic layer; and a storage layer. The storage layer stores digital content within an asset store—a

designated area within the operating system’s filesystem; or can alternatively use a storage resource

broker. The digital objects —bitstreams and corresponding metadata records— are stored within a

relational database management system (Smith et al., 2003; Tansley, Bass, and Smith, 2003). Fur-

thermore software is implemented using the Java programming languages, and is thus deployed

within a Servlet Engine. However, this architectural design approach arguably makes it difficult to

recover digital objects in the event of a disaster since technical expertise would be required.

2.4.3 EPrints

EPrints is an archival software that designed to create highly configurable Web-based archives.

The initial design of the software can be traced back to a time when there was a need to foster

open access to research publications, and provides a flexible DL platform for building repositories

(Gutteridge, 2002).

Eprints records are represented as data objects that contain metadata. The software’s plugin archi-

tecture enables the flexible design and development of export plugins capable of converting repos-

itory objects into a variety of other formats. This technique effectively makes it possible for the

data objects to be disseminated via different services—such as OAI data provider modules.

EPrints is implemented using Perl, runs within an Apache HTTP server and uses a MySQL

database server backend to store metadata records. However, the actual files in the archive are

stored on the filesystem.

2.4.4 ETD-db

The ETD-db digital repository software for depositing, accessing and managing ETD collec-

tions. The software is more oriented towards helping facilitate the access and management of

ETDs.

The software was initially developed as is a series of Web pages and additional Perl scripts that

interact with a MySQL database backend (ETD-db: Home 2012). However, the latest version—

ETD 2.0—is a Web application, implemented using the Ruby on Rails Web application framework.

This was done in an effort to handle ETD collections more reliably and securely. In addition, the

15

latest version is able to work with any relational database and can be hosted on any Web server

that supports Ruby on Rails (Park et al., 2011).

2.4.5 Fedora Commons

Fedora is an open source digital content repository framework designed for managing and deliver-

ing complex digital objects (Lagoze et al., 2006).

The Fedora architecture is based on the Kahn and Wilensky framework

(Kahn and Wilensky, 2006), discussed in Section 2.3.2, with a distributed model that makes

it possible for complex digital objects to make reference to content stored on remote storage

systems.

The Fedora framework is composed of loosely coupled services —implemented using the Java

programming language— that interact with each other to provide the functionally of the Web

service as a whole. The Web service functionalities are subsequently exposed via REST and SOAP

interfaces.

2.4.6 Greenstone

Greenstone is an open source digital collection building and distributing software. The software’s

ability to redistribute digital collections on self-installing CD-ROMs has made it a popular tool of

choice in regions with very limited bandwidth (Witten, Bainbridge, and Boddie, 2001).

The most recent version—Greenstone3 (Don, 2006)—is implemented in Java, making it plat-

form independent. It was redesigned to improve the dynamic nature of the Greenstone toolkit

and to further lower the potential overhead incurred by collection developers. In addition, it is

distributed and can thus be spread across different servers. Furthermore, the new architecture

is modular, utilising independent agent modules that communicate using single message calls

(Bainbridge et al., 2004).

Greenstone uses XML to encode resource metadata records —XLinks are used to represent rela-

tionships between other documents. Using this strategy, resources and documents are retrievable

through XML communication. Furthermore, indexing documents enables effective searching and

browsing of resources.

The software operates within an Apache Tomcat Servlet Engine.

2.4.7 Omeka

Omeka is a Web-based publishing platform for publishing digital archives and collections

(Kucsma, Reiss, and Sidman, 2010). It is standards-based and highly interoperable—it makes use

of unqualified Dublin Core and is OAI-PMH compliant. In addition, it is relatively easy to use and

has a very flexible design, which is customisable and highly extensible via the use of plugins.

16

Omeka is implemented using the PHP scripting language and uses MySQL database as a backend

for storage of metadata records. However, the ingested resources—bitstreams— are stored on the

filesystem.

2.4.8 Summary

Table 2-2 is a feature matrix of the digital libraries software discussed in this section.

Table 2-2. Feature matrix for some popular DL FLOSS software tools

C
D

S
In

v
en

io

D
S

p
a
ce

E
P

ri
n

ts

E
T

D
-d

b

F
ed

o
ra

C
o
m

m
o
n

s

G
re

en
st

o
n

e

O
m

ek
a

S
to

ra
g
e

Complex object support X

Dublin Core support for metadata X X X X X

Metadata is stored in database X X X X X X X

Metadata can be stored on filesystem X

Supports distributed repositories X X X X X X X

Object relationship support X X

S
er

v
ic

es

Extensible via plugins X X X X X X

OAI-PMH complaint X X X X X X X

Platform independent X X X X X

Supports Web services X X X

URI support(e.g. DOIs) X X

F
ea

tu
re

s

Alternate accessibility (e.g. CD-ROM) X

Easy to setup, configure and use X X X

Handles different file formats X X X X X X

Hierarchical collection structure X X X X

Horizontal market software X X X X X X

Web interface X X X X X X X

Workflow support X X X X

2.5 Minimalist philosophy

The application of minimalism in both software and hardware designs is widespread, and has been

employed since the early stages of computing. The Unix operating system is perhaps one promi-

nent example that provides a unique case of the use of minimalism as a core design philosophy, and

17

Raymond (Raymond, 2004) outlines the benefits, on the Unix platform, of designing for simplicity.

This section discusses relevant architectures that were designed with simplicity in mind.

2.5.1 Dublin Core element set

The Dublin Core metadata element set defines a set of 15 resource description properties that are

potentially applicable to a wide range of resources. One of the main goals of the Dublin Core

element set is aimed at keeping the element set as small and simple as possible to facilitate the

creation of resource metadata by non-experts (Hillmann, 2005).

Table 2-3. Simple unqualified Dublin Core element set

Element Element Description

Contributor An entity credited for making the resource available

Coverage Location specific details associated to the resource

Creator An entity responsible for creating the resource

Date A time sequence associated with the resource life-cycle

Description Additional descriptive information associated to the resource

Format Format specific attributes associated with the resource

Identifier A name used to reference the resource

Language The language used to publish the resource

Publisher An entity responsible for making the resource available

Relation Other resource(s) associated with the resource

Rights The access rights associated with the resource

Source The corresponding resource where the resource is derived from

Subject The topic associated to the resource

Title The name of the resource

Types The resource type

The simplicity of the element set arises from the fact that the 15 elements form the smallest pos-

sible set of elements required to describe a generic resource. In addition, as shown in Table 2-3,

the elements are self explanatory, effectively making it possible for a large section of most commu-

nities to make full use of the framework. Furthermore, all the elements are repeatable and at the

same time optional. This flexibility of the scheme is, in part, the research why it is increasingly

becoming popular.

2.5.2 Wiki software

Wiki software allows users to openly collaborate with each other through the process of creation

and modification of Web page content (Leuf and Cunningham, 2001). The success of Wiki soft-

ware is, in part, attributed to the growing need for collaborative Web publishing tools. However,

the simplicity in the way content is managed, to leverage speed, flexibility and easy of use, is

18

arguably the major contributing factor to their continued success. The strong emphasis on simplic-

ity in the design of Wikis is evident in Cunningham’s original description: “The simplest online

database that could possibly work” (What is Wiki 1995; Leuf and Cunningham, 2001).

2.5.3 Extensible markup language

XML is a self-describing markup language that was specifically designed to transport and store

data. XML provides a hardware- and software-independent mode for carrying information, and

was design for ease of use, implementation and interoperability from the onset. This is in fact

evident from the original design goals that, in part, emphasised for the language to be easy to

create documentations, easy to write programs for processing the documents and straightforwardly

usable over the Internet (Bray et al., 2008).

XML has become one of the most commonly used tool for transmission of data in various applica-

tions due to the following reasons.

� Extensibility through the use of custom extensible tags

� Interoperability by being usable on a wide variety of hardware and software platforms

� Openness through the open and freely available standard

� Simplicity of resulting documents, effectively making them readable by machines and hu-

mans

The simplicity of XML particularly makes it an easy and flexible tool to work with, in part, due to

the fact that the XML document syntax is composed of a fairly minimal set of rules. Furthermore,

the basic minimal set of rules can be expanded to grow more complex structures as the need

arises.

2.5.4 OAI protocol for metadata harvesting

The OAI-PMH is a metadata harvesting interoperability framework (Lagoze et al., 2002b). The

protocol only defines a set of six request verbs, shown in Table 2-4, that data providers need to

implement. Downstream service providers then harvest metadata as a basis for providing value-

added services.

Table 2-4. OAI-PMH request verbs

Request Verb Description

GetRecord This verb facilitates retrieval of individual metadata records

Identify This verb is used for the retrieval of general repository in-

formation

ListIdentifiers This verb is used to harvest partial records in the form of

record headers

(Continued on next page)

19

Table 2-4. (continued)

Request Verb Description

ListMetadataFormats This verb is used to retrieve metadata formats that are sup-

ported

ListRecords This verb is used to harvest complete records

ListSets This verb is used to retrieve the logical structure defined in

the repository

The OAI-PMH framework was initially conceived to provide a low-barrier to interoperability with

the aim of providing a solution that was easy to implement and deploy (Lagoze and Sompel, 2001).

The use of widely used and existing standards, in particular XML and Dublin Core for encoding

metadata records and HTTP as the underlying transfer protocol, renders the protocol flexible to

work with. It is increasingly being widely used as an interoperability protocol.

2.5.5 Project Gutenberg

Project Gutenberg12 is a pioneering initiative, aimed at encouraging the creation and distribution

of eBooks, that was initiated in 1971 (About Gutenberg 2011). The project was the first single

collection of free electronic books (eBooks) and its continued success is attributed to its philosophy

(Hart, 1992), where minimalism is the overarching principle. This principle was adopted to ensure

that the electronic texts were available in the simplest, easiest to use forms; independent of the

software and hardware platforms used to access the texts.

2.5.6 Summary

This section has outlined, through a discussion of some prominent design approaches, how sim-

plicity in architectural designs can be leveraged and result in more flexible systems that are sub-

sequently easy to work with. In conclusion, the key to designing easy to use tools, in part, lies

in identifying the least possible components that can result in a functional unit and subsequently

add complexity, in the form of optional components, as need arises. Minimalist designs should not

only aim to result in architectures that are easier to extend, but also easier to work with.

2.6 Data storage schemes

The repository sub-layer forms the core architectural component of a typical digital library system

and more specifically, it is composed of two components: a bitstream store and a metadata store,

responsible for storing digital content and metadata records respectively. As shown in Table 2-2,

DLSes are generally implemented in such a manner that digital content is stored on the file system,

whilst the metadata records are almost always housed in a relational database.

12http://www.gutenberg.org

20

http://www.gutenberg.org

This section discusses three prominent data storage solutions that can potentially be integrated

within the repository sub-layer for metadata storage. The focus is to assess their suitability for

integration with DLSes.

2.6.1 Relational databases

Relational databases have stood the test of time, having been around for decades. They have,

until recently, been the preferred choice for data storage. There are a number of reasons

(see Elmasri and Navathe, 2008, chap. 3) why relational databases have proved to be a popular

storage solution, and these include:

� The availability of a simple, but effective query language—SQL— capable of retrieving

multifaceted views of data

� Support for Data model relationships via table relations

� Transaction support through ACID13 properties

� Support for data normalisation, thus preventing redundancy

Relational databases are, however, mostly suitable for problem domains that require frequent re-

trieval and update of relatively small quantities of data.

2.6.2 NoSQL databases

The large-scale production of data (Gantz et al., 2008), coupled with the now prevalent Big Data14,

has resulted in a profound need for data storage architectures that are efficient, horizontally scal-

able, and easier to interface with. As a result, NoSQL databases recently emerged as potential

alternatives to relational databases. NoSQL databases are non-relational databases that embrace

schemaless data, are capable of running on clusters, and generally trade off consistency for other

properties such as performance (see Sadalage and Fowler, 2012, chap. 1).

NoSQL database implementations are often categorised based on the manner in which they store

data, and typically fall under the categories described in Table 2-5.

Table 2-5. Data model categories for NoSQL database stores

Data Model Description

Column-Family Stores Data is stored with keys mapped to values grouped into

column families

Document Stores Data is stored in self-describing encoded data structures

Graph Stores Data is stored as entities with corresponding relationships

between entities

(Continued on next page)

13Atomicity, Consistency, Isolation, Durability
14http://www-01.ibm.com/software/data/bigdata

21

http://www-01.ibm.com/software/data/bigdata

Table 2-5. (continued)

Data Model Description

Key-Value Stores Hash table with unique keys and corresponding pointer

to blobs

NoSQL databases are highly optimised for retrieve and append operations and, as a result, there

has recently been an increase in the number of applications that are making use of NoSQL

data stores. However, the downside of NoSQL databases is that they cannot simultaneously

guarantee data consistency, availability and partition tolerance; as defined in the CAP theorem

(Gilbert and Lynch, 2002).

2.6.3 Filesystems

File systems are implemented by default in all operating systems, and provide a persistent store

for data. In addition, they provide a means to organise data in a manner that facilitates subsequent

retrieval and update of data.

Native file systems have, in the past, not generally been used as storage layers for enterprise appli-

cations, in part, due to the fact that they do not provide explicit support for transaction management

and fast indexing of data. However, the emergence of clustered environments has resulted in ro-

bust and reliable distributed file system technologies such as Apache Hadoop (Borthakur, 2007)

and Google File System (Ghemawat, Gobioff, and Leung, 2003).

The opportunities presented by traditional file systems, and in particular their simplicity, efficiency

and general ease of customisation make them prime candidates for storage of both digital content

and metadata records. In addition, the use of flat files, and more specifically text files, for storage

of metadata records could further complement and simplify the digital library repository sub-layer.

Incidentally, Raymond (see Raymond, 2004, chap. 5) highlights a number of advantages associated

with using text files, and further emphasises that designing textual protocols ultimately results in

future-proof systems.

In general, there are a number of real-word application whose data storage implementations take

advantage of file systems. Some notable example implementations of both digital libraries specific

tools and general purpose tools are outlined below.

BagIt file packaging format The BagIt File Packaging Format specification (Boyko et al., 2012)

defines a hierarchical file packaging format suitable for exchanging digital content. The BagIt

format is streamlined for disk-based and network-based storage and transfer. The organisation of

bags is centred on making use of file system directories as bags, which at a minimum contain: a

data directory, at least one manifest file that lists data directory contents, and a bagit.txt file that

identifies the directory as a bag.

22

DokuWiki DokuWiki is a PHP based Wiki engine, mainly aimed at creating documentation,

that is standards compliant and easy to use (Gohr, 2004). The storage architecture of DokuWiki

principally makes use of the filesystem as its data store, with application data files stored in plain

text files. This design strategy ensures that data is accessible even when the server goes down, and

at the same time facilities backup and restore operations through the use of basic server scripts and

FTP/sFTP.

Git Git is a distributed version control system that functions as a general tool for filesystem

directory content tracking, and is designed with a strong focus on speed, efficiency and real-world

usability on large projects (see Chacon, 2009, chap. 1), to attain three core functional requirements

below.

� Store generic content

� Track content changes in the repository

� Facilitate a distributed architecture for the content

Git is internally represented as a duplex data structure that is composed of a mutable index for

caching information about the working directory; and an immutable repository. The Git object

storage area is a Directed Acyclic Graph that is composed of four types of objects—blob objects;

tree objects; commit objects; and tag objects (Git for Computer Scientists 2010). In addition, the

repository is implemented as a generic content-addressable filesystem with objects stored in a

simple key-value data store (see Chacon, 2009, chap.9).

Pairtrees for collection storage Pairtree is a file system convention for organising digital object

stores, and has the advantage of making it possible for object specific operations to be performed

by making use of native operating system tools (Kunze et al., 2008).

2.6.4 Summary

There are numerous available data storage options, and it is important to understand the varying

options to fully identify the ones most applicable to specific problem domains. It is generally not

always the case that a definitive storage solution is arrived at, however, a data model that better

matches the kind of data storage and retrieval requirements should be the primary deciding factor.

Table 2-6 is a summarised comparative matrix outlining the three storage solutions discussed in

this section.

It is that it is generally not always necessary to use an intermediate data management infrastructure,

and in some cases, it may in all actuality be desirable not to use one at all; as is the case with the

real world applications described in Section 2.6.3.

23

Table 2-6. Comparative matrix for data storage solutions

File Systems RDBMS NoSQL

Use Cases Miscellaneous Relational data Large-scale data

Data Format Heterogeneous

data

Structured data Unstructured data

Transaction Sup-

port

Simple Locking ACID compliant CAP theorem sup-

port

Indexing Optional Available Available

Scalability Horizontal; Verti-

cal

Vertical Horizontal

Replication Partial support Explicit support Explicit support

2.7 Design decisions

Software architectures provide an overview of a software system’s components, and the relation-

ships and characteristics that exist between the various components (Lee and Kruchten, 2007). The

architectures are initially conceived as a composition of the general design, influenced by a corre-

sponding set of design decisions (Kruchten et al., 2005). The design decisions form a fundamental

part of the architectural design process, by guiding the development of the software product, as

they help ensure that the resulting product conforms to desired functional and non-functional re-

quirements.

There are two prominent methods—design rationale and formalised ontological representation—

used to capture design decisions (Lee and Kruchten, 2007). The design rationale provides a his-

torical record, in form of documentation, of the rationale used to arrived at a particular design

approach (Lee and Lai, 1991), and typically makes use of techniques such as Issue-Based Informa-

tion Systems (IBIS) (Conklin and Yakemovic, 1991) and “Questions, Options and Criteria” (QOC)

(MacLean et al., 1991). The formalised ontological representation method on the other hand makes

use of an ontological model for describing and categorising the architectural design decisions

(Kruchten, 2004).

There are a number of benefits of explicitly capturing and documenting design decisions, the most

significant one being that they help in—ensuring the development of the desired product. In the

case of domain-specific products, they form a crucial role of ensuring that the resulting solution

directly conforms to the solution space it is meant to operate within.

2.8 Summary

This chapter discussed background information that forms the basis for this research. Section 2.1

discussed DLs, through elaborate high level definitions, complemented with examples of varying

24

application domains within which contemporary DLSes are utilised. Core fundamental concepts

associated to DL were also discussed in 2.2.

Some prominent DL frameworks were presented in Section 2.3, followed by FLOSS DL software

tools in Section 2.4; revealing that the varying frameworks and architectural designs are largely

as a result of the different problems for which solutions were sought. However, there are core

features that are common to most of the proposed solutions. It could thus be argued that existing

solutions may not be be suitable for certain environments, and as such simpler alternative architec-

tural designs may be desirable. A culmination of the argument for utilising simpler architectural

designs manifested in the discussion of prominent designs that used simplicity as the core criterion

in Section 2.5.

In addition, the repository sub-layer was highlighted as the component that forms the core of digital

libraries in Section 2.6, and a further discussing of potential storage solutions that can be used for

the storage of metadata records then followed. Traditional file systems have been identified as

contenders of the more generally accepted relational databases and now common place NoSQL

databases, for the storage of metadata records.

Furthermore, a discussion of two major general approaches followed when arriving at software

design decisions were presented in 2.7.

25

Chapter 3

Design principles

This chapter details the systematic process that was followed in order to derive the guiding princi-

ples that can potentially simplify the design of DL services, effectively making then easier to work

with.

The chapter is organised as follows: Section 3.1 outlines the rationale behind conducting this

exploratory study; Section 3.1.2 introduces and describes the research method that was employed

during this phase of the research; Section 3.3 details the process that was followed to collect and

analyse the data; and finally, Section 3.4 concludes the chapter.

3.1 Research perspective

3.1.1 Prior research observations

In our earlier work linked to this research, some issues that hinder ubiquitous access to informa-

tion and widespread preservation in Africa have been highlighted (Suleman, 2008). A number of

potential solutions to the issues raised have in the recent past also been presented, and take the

form of lightweight systems (Suleman, 2007; Suleman et al., 2010) with simplicity as the key cri-

terion.

However, the proposed solutions were solely based on specific user requirements. The significance

of prior work stems from the fact that they provided this research with working hypotheses, which

take the form of a set of observable facts, that helped set the stage for the exploratory study.

3.1.2 Research questions

The primary research question for this research, described in Section 1.3, seeks to investigate the

feasibility of implementing DL services that are based on simple architectures. In order to better

understand the simplicity of services, a secondary research question, which was the main driving

factor for the exploratory study, was formulated as outlined below.

26

� How should simplicity for DL storage and service architectures be defined?

The overall aim of the exploratory study was two-fold: firstly, it served to guide the overall direc-

tion of the research, and secondly, it was aimed at understanding contemporary DL design in such

a way as to be able to better prescribe an alternative design approach that might result in simpler

DL tools and services.

In order to obtain a reliable and comprehensive understanding of the desired result, a qualitative

study was conducted using a Grounded Theory approach.

3.1.3 Summary

This section has highlighted prior work related to this research that helped set the stage for the

exploratory study. The section also outlined how the exploratory study fits into the overall aims of

the research by outlining the rationale and significance of the study. In the subsequent section, the

research methods used during the exploratory study are discussed.

3.2 Research methods

3.2.1 Grounded theory

Grounded Theory is a research method that provides a technique for developing theory iteratively

from qualitative data. The goal of Grounded Theory is to generate a theory that accounts for a

pattern of behaviour that is relevant for those involved (Glaser, 1978). Grounded Theory attempts

to find the main concern of the participants and how they go about resolving it, through constant

comparison of data at increasing levels of abstraction and has also been described as “a general

pattern for understanding” (Glaser, 1992).

The Grounded Theory method generally revolves around a series of five steps, as outlined be-

low.

Grounded theory process

Step 1 Data collection

This step uses a method appropriate to the research context to elicit information from selected

participants. Typical methods include conducting semi-structured interviews.

Step 2 Data analysis

The data analysis step forms the core of grounded theory and generally involves the use of a

constant comparative method to generate and analyse data.

27

Step 3 Memoing

Memoing, as the name suggests, involves writing theoretical memos to identify relationships be-

tween different patterns of the data.

Step 4 Sorting

The sorting step takes the form of arranging all memos once the data collection becomes saturated.

The outcome of this results in a theory describing how the identified categories relate to the core

category.

Step 5 Theoretical coding

The data collected is divided into segments to identify categories or themes. The categorised data

is then further examined to identify properties common to each of the categories.

Grounded theory was selected as the primary research method for the exploratory study due to the

following reasons:

� It is primarily aimed at theory generation, focusing specifically on generating theoretical

ideas, explanations and understanding of the data.

� It is useful when trying to gain a fresh perspective of a well-known area.

� It has proven to be a successful method for exploring human and social aspects.

� It is by far one of the most common/popular analytic technique in qualitative analysis.

� It is arguably intuitive.

3.2.2 Analytic hierarchy process

The Analytic Hierarchy Process (AHP) is a theory of measurement through pairwise comparisons

that relies on judgement of experts to derive priority scales (Saaty, 2008). A pairwise comparison

is a problem-solving technique that allows one to determine the the most significant item among

a group of items. The overall process is driven by scales of absolute judgement that represent

how much more an element dominates another with respect to a given attribute. The pairwise

comparison method involves following a series of steps and is outlined in Section 3.2.2.

Pairwise comparisons method

The method of pairwise comparisons ensures that for a given set of elements or alternatives, each

candidate element is matched head to head with the other candidates and is performed by decom-

posing decisions (Saaty, 2008) into the steps outlined below.

28

Step 1 Define the criteria to be ranked.

The criteria identified are influenced by the overall objectives and form the basis of the comparative

analysis.

Step 2 Arrange the criteria in an N ×N matrix.

In essence, each element in a given set a of N elements is compared against other alternatives in

the set as shown in Table 3-1. The total number of pairwise comparisons can thus be computed

using equation:

N(N − 1)

2

Table 3-1. An N ×N pairwise comparisons matrix

H G F E D C B A

A X X X X X X X

B X X X X X X

C X X X X X

D X X X X

E X X X

F X X

G X

H

Step 3 Compare pairs of items.

Each criterion is compared again other alternatives to determine the relative important of the char-

acteristic.

Step 4 Create the ranking of items.

A ranking system is created based on the relative occurrence of each element in the matrix.

The use of pairwise comparisons was particularly useful in the research context as the method

is ideal for ranking a set of decision-making criteria and rate the criteria on a relative scale of

importance.

3.2.3 Summary

This section has described the two primary research methods that were used during the exploratory

phase of this research. The combined effect of using the two methods is appropriate as the ex-

29

ploratory study involved a series of qualitative phases. The details of the study are outlined in

Section 3.3.

3.3 General approach

3.3.1 Data collection

A meta-analysis involving a total of 12 software applications was systematically conducted to

facilitate the compilation of a comprehensive and inclusive set of principles. The set of tools

comprised six DL software applications and six non-DL software applications. The selection of

the six DL software was done on the basis of popularity as depicted on OpenDOAR1. Table 3-2

outlines the 12 candidate tools that were considered.

The relevant software attributes that may have influenced the design decisions of the applications

were then identified. The pairwise comparisons method, outlined in Section 3.2.2 was then used as

the constant comparison method during the data analysis stage. The data analysis stage is discussed

in more detail in Section 3.3.2

Table 3-2. Software applications used for pairwise comparisons

Application Category Description

DSpace2 DL software A general digital asset management software

EPrints3 DL software A general digital repository software package

ETD-db4 DL software An electronic thesis and dissertation software

package

FedoraCommons5 DL software A general digital object repository framework

Greenstone6 DL software A general digital collection management soft-

ware

CDS Invenio7 DL Software A general document repository software pack-

age

Facebook8 Non DL software A free social network portal/Website

Gmail9 Non DL software A free email messaging hosted-service plat-

form

MixIt10 Non DL software A free instant messaging Web application

Moodle11 Non DL software A free e-learning management platform

(Continued on next page)
1http://www.opendoar.org
2http://www.dspace.org
3http://www.eprints.org
4http://scholar.lib.vt.edu/ETD-db
5http://fedora-commons.org
6http://www.greenstone.org
7http://invenio-software.org
8http://www.facebook.com
9https://mail.google.com

10http://www.mixit.com
11http://moodle.org

30

http://www.opendoar.org
http://www.dspace.org
http://www.eprints.org
http://scholar.lib.vt.edu/ETD-db
http://fedora-commons.org
http://www.greenstone.org
http://invenio-software.org
http://www.facebook.com
https://mail.google.com
http://www.mixit.com
http://moodle.org

Table 3-2. (continued)

Application Category Description

Ushahidi12 Non DL software An information collection and visualisation

platform

WordPress13 Non DL software A standalone blogging software package

3.3.2 Data analysis

The set of all possible software attributes that can potentially influence design decisions of software

applications were identified and arranged based on whether they were specific to the two sets of

software applications—Digital Library software and non-DL software—or both sets. Table 3-3

shows the software attributes, that were considered, as pertains to whether they affect DL software,

non-DL software, or both.

Table 3-3. Software attributes considered in pairwise comparisons

DL Non-DL Both

Digital content X

Media types X

Metadata objects X

Data access X

Information structure X

Core language X

Content delivery X

Deployment platform X

Software dependencies X

Flexibility X

Preservation strategy X

Extensibility X

Standardisation X

Interoperability X

Ease of installation X

Objects accessibility X

Objects naming scheme X

Hosting X

Scalability X

Reliability X

Usability X

Mobile friendly X

12http://www.ushahidi.com
13http://wordpress.org

31

http://www.ushahidi.com
http://wordpress.org

Figure 3-1. Screenshot showing an excerpt of the grounded theory memoing process

Open coding (Glaser, 1992) was used during the data analysis process, and a head-to-head pairwise

comparison was then performed on each of the 12 applications against the other alternatives using

the pairwise comparisons method procedure described in Section 3.2.2. All in all, a total of 66

pairwise comparisons, derived using the equation in Section 3.2.2, were conducted.

The Memoing process, for each of the 66 comparisons, involved identifying design choice for each

software attribute and the possible corresponding design rationale. All possible potential design

decisions that could be applicable to the design of simple and minimalistic architectures were

subsequently identified. Figure 3-1 shows an excerpt of the memoing process.

3.3.3 Design principles

The major outcome of the exploratory study is a set of eight guiding design principles for simple

and minimalistic architectures of digital libraries tools and/or services. It is premised that DL

software designed and implemented based on these guiding principles could ultimately be easy to

use and maintain in the long run. The design principles are as follows:

Principle 1. Hardware and/or software platform independence

Description It should be possible to operate tools and services on a wide variety of hardware

and software platforms. The rationale behind this principle is to ensure that the least possible

cost associated to technological infrastructure is incurred during the collection management life-

cycle.

Discussion The preservation life-cycle of digital objects is an on-going process that typically

involves the management of digital content and its associated representational information. The

cost implications of long-term digital preservation is a crucial task for both small and large-scale

preservation projects (Beagrie et al., 2002). However, the vast majority of organisations involved

in the curation and preservation of digital information usually do not have adequate funding to

32

support this process. In addition, a number of such organisations, in particular heritage organisa-

tions, do not have sustainable funding models to ensure the on-going process of managing digital

objects.

A reduction in the cost associated to the collection management process could be archived in

various ways including, but not limited to the following:

� Designing tools that require minimal technical expertise to manage

� Designing tools capable of being run on popular of operating systems

� Designing tools capable of being operated on hardware platforms with minimal specifica-

tions

Principle 2. Heterogeneous object, metadata and service integration

Description There should be explicit support for integration of any digital object type, metadata

format or new service.

Discussion The proliferation of both born-digital and digitised information has given rise to var-

ious data formats and a corresponding increase in the number of metadata standards, as discussed

in Section 2.2.3. In addition, there is a growing demand for DL services in order to facilitate

ubiquitous access to information.

Due to the aforementioned, it is imperative that the designed of digital library tools be flexible

enough to accommodate heterogeneous objects, metadata and services. In a nutshell, the design

should be based on a “one size fits all” approach.

Principle 3. Support for community and international standards

Description The design of tools and services should take into account community-based stan-

dards and international standards in order to facilitate interoperability.

Discussion The increase in the amount of digital content generated and made available publicly

has brought about a need to standardise processes in the digital curation workflow. Section 2.2.4

outlines the important role that standards play and also discusses some of the popular DL stan-

dards.

Incorporating standards in the initial stages of the design process would effectively ensure that the

resulting DL services becomes interoperable with other external services. It also makes it easier

for service to be customised.

Principle 4. Flexible design to facilitate extensibility

33

Description The design should be flexible enough to enable end users to adapt the tools and

services to their own needs.

Discussion Digital curation is slowly becoming a ubiquitous process, and DLs are increasingly

being used in a wide array of application domains—example application domains are highlighted

in Section 2.1.2.

The services offered by these different application domains varying and it is imperative that the

overall design be flexible enough to facilitate customisation and extensibility.

Principle 5. Minimalist design approach

Description There should be minimal use of external software components in order to simplify

the overall design. This would arguably result in tools that are easier to manage.

Discussion The design of services should, at a minimum, only be composed of the least number

of components that are required for it to function. Auxiliary external components should be made

optional, making them available only when required.

In addition, mandatory components should be critically analysed to ensure that they make use of

simplest possible solutions and/or technologies.

Principle 6. Simplified preservation process

Description The preservation process should be simplified as much as possible to make it possi-

ble to easily migrate digital content.

Discussion The preservation lifecylce is an on-going process that requires dedicated staff. The

majority of contemporary DL services require technology experts to perform the routine preserva-

tion tasks.

The overall design should thus be made as simple as possible so that novice users are able to

perform the most basic of preservation tasks.

Principle 7. Structured Organisation of Data

Description There should be explicit support for hierarchical logical organisation of informa-

tion.

34

Discussion The majority of data that is curated and made accessible publicly necessitates the

logical organisation of information to facilitate relationships that might exist between different data

views. In addition, data consumers usually visualise information using varying logical views.

The design should thus explicitly support the logical organisation of information, and optionally

make it flexible enough for users to define the desired logical views and structures.

Principle 8. Design for least possible resources

Description There should be support for access to digital collections in environments with re-

source constraints.

Discussion One of the motivating factors, outlined in Section 1.1, behind this research was the

unavailability of DL tools that can effectively operate in resource constrained environments. This

is still a growing need for most environments in developing countries, such as those found in

Africa.

The design of DL services should thus be based on the least possible resources to enable resulting

service operate in environments with limited resources.

3.3.4 Summary

This section discussed the procedure that was followed to derived a set of design guiding principles

that, when employed during the design of digital library services, may potentially result in simpler

services. Grounded Theory was used as the overarching method during the derivation process and

Table 3-4 shows a summary of how the Grounded Theory steps were undertaken.

Table 3-4. Grounded theory general approach

Stage Description

Data Collection A meta-analysis review of 12 software applications was con-

ducted

Data Analysis Pairwise comparisons were used at the constant comparative

method

Memoing Memos were created using a general note taking process

Sorting Arranged conceptual levels based on meta-level of attribute being

investigated

Coding The coding process took place in tandem with the data collection

process and open coding was used

35

3.4 Summary

This chapter discussed the derivation process of a set of design principles applicable for the design

of simple DL services which can easily be operated in resource constrained environments. The

development of applications for resource constrained environments requires careful consideration

and eliciting these requirements during the early stages of the design process may ensure that the

resulting services become tailored for such domains.

In summary, all the design principles were derived with simplicity and minimalism and the key

criterion.

36

Chapter 4

Designing for simplicity

In Chapter 3, a set of design principles, and the systematic approach used to derived them was out-

lined. The derived design principles can be applied during the design of the different components

of a DLS—user interface, repository and service layer.

In this chapter, a prototype generic simple repository design, based on the derived design principles,

is outlined.

4.1 Repository design

4.1.1 Design decisions

In Section 2.7, the significance of software design decisions were outlined; in addition prominent

methods used to capture design decisions were highlighted. The design decisions associated with

the architectural design of the repository sub-layer were arrived by taking into account the princi-

ples derived during the exploratory study (see Chapter 3). Tables 4-1, 4-2, 4-3 and 4-4 outline the

detailed design decisions applied to design the repository.

Table 4-1. Simple repository persistent object store design decision

Element Description

Issues Principles 1, 2, 6 and 8

Decision Store bitstreams on the local operating system filesystem

Assumptions None

Alternatives Store bitstreams as blobs in a database; store bitstreams in the cloud

Rationale Backup and migration tasks associate to repository objects can be

potentially simplified; operating system commands can be used to

perform repository management tasks

Implications None –most conventional tools and services use the same approach

Notes None

37

Table 4-2. Simple repository metadata storage design decision

Element Description

Issues Principles 1, 2, 5, 6 and 8

Decision Native operating system filesystem used for metadata storage

Assumptions None

Alternatives Relational database; NoSQL database; embed metadata into digital

objects

Rationale Storing metadata records in plain text files ensures platform indepen-

dence; complexities introduced by alternative third-party storage so-

lution avoided through the use of native filesystem

Implications No standard method for data access (e.g. SQL); Transaction process

support only available via simple locking; non-availability of com-

plex security mechanisms

Notes None

Table 4-3. Simple repository object naming scheme design decision

Element Description

Issues Principle 5

Decision Use actual object name as unique identifier

Assumptions Native operating systems

Alternatives File hash values; automatically generated identifiers

Rationale Native operating systems ensure file naming uniqueness at directory

level. In addition, it is a relatively simpler way of uniquely identify-

ing objects as object naming control is given to end users, rather than

imposing it on them

Implications Object integrity has a potential to be compromised; objects could

potentially be duplicated by simply renaming them

Notes None

Table 4-4. Simple repository object storage structure design decision

Element Description

Issues Principles 6 and 7

Decision Store bitstreams alongside metadata records –at the same directory

level on the filesystem; filesystem directory to be used as container

structures for repository objects

Assumptions The other sub-layers of the DLS have read, write and execute access

to the repository root node

Alternatives Separate storage locations for bitstreams and metadata records

(Continued on next page)

38

Table 4-4. (continued)

Element Description

Rationale Storing bitstreams and corresponding metadata records alongside

each other could ultimately make potential migration processes eas-

ier; container structures could potentially make it easier to move

repository objects across different platforms

Implications None

Notes None

4.1.2 Architecture

The architectural design is centred around designing a simple repository which at a bare minimum

is capable of facilitating the core features of a DLS—long term preservation and ease of access to

digital objects.

Table 4-5. Simple repository component composition

Component File Type Description

Container Object Directory Structure used to store digital objects

Content Object Regular file Content/bitstreams to be stored in the repos-

itory

Metadata Object Regular file XML-encoded plain text file for storing

metadata records

The repository design is file-based and makes use of a typical native operating system filesystem

as the core infrastructure. Table 4-5 shows the main components that make up the repository

sub-layer, with all the components residing on the filesystem, arranged and organised as normal

operating system files—regular files and/or directories—as shown in Figure 4-1.

As shown in Figure 4-1, a typical DLS repository would be located in an application accessible

base root directory node, and is composed of two types of digital objects—Container Objects

and Content Objects—both of which are created and stored within the repository with companion

Metadata Objects that store representational information associated with the object. Figure 4-2

illustrates how Container and Content objects are stored on a typical filesystem.

Container Objects can be recursively created within the root node as the repository scales, and ex-

hibit an interesting characteristic of a enabling the creation of additional Container Objects within

them. As shown in Figure 4-3, the Metadata Object associated with Container Objects holds infor-

mation that uniquely identifies the object; optionally describe the object in more detail, including

relationships that might exist with other objects within the repository; and a detailed log of objects

contained within it—the manifest.

39

KEY

Bitstream

/usr/local/x

abcd

efgh

ijkl

/usr/local/x/abcd/efgh

/usr/local/x/abcd/efgh.metadata

/usr/local/x/abcd/efgh/ijkl

/usr/local/x/abcd/efgh/ijkl.metadata

Archive Root

Container

Figure 4-1. Simple repository object structure

Content Objects represent digital objects—typically bitstreams—to be stored within the repository.

As shown in Figure 4-4, the representational information stored in the Metadata Objects associated

with Content Objects is similar to that of Container Objects, with the exception of manifest related

information.

4.1.3 Summary

In this chapter, the design of a prototype simple repository sub-layer was outlined through the

mapping of design decisions and principles derived in Chapter 3.

40

REPOSITORY

COLLECTION

FILESYSTEM

MetadataObjects

Figure 4-2. Simple repository object structure

41

CONTAINER OBJECT

METADATA

CONTAINER

Identifier

Descriptive
Metadata

Relationship
Definitions

Manifest

XML Encoded

Operating System

Directory/Folder

Plain Text File

Figure 4-3. Simple repository container object component structure

CONTENT OBJECT

METADATA

BITSTREAM

Identifier

Descriptive
Metadata

Relationship
Definitions

XML Encoded

Bitstream
(e.g. jpeg image)

Plain Text File

Figure 4-4. Simple repository digital object component structure

42

Chapter 5

Case studies

In order to assess the overall effectiveness of the prototype simple repository design described in

Chapter 4, repositories for two real-world case study collections were implemented. This chapter

discusses the two case study implementations.

Figure 5-1. Screenshot showing a sample page from the “Posts and trading” story in the Lucy

Lloyd !Kun notebooks

43

5.1 Bleek and Lloyd collection

5.1.1 Overview

The Bleek and Lloyd collection (Skotnes, 2007) is a 19th century compilation of notebooks and

drawings comprising of linguistic and ethnographic work of Lucy Lloyd and Wilhelm Bleek on the

life of the |Xam and !Kun Bushman people of Southern Africa. In 2003, the Lucy Lloyd Archive

and Research centre at the University of Cape Town embarked on a large scale digitisation project

and all the artifacts are in the process of being scanned and corresponding representation informa-

tion generated. Table 5-1 shows the current composition of the digitised objects and Figure 5-1

shows a sample page from one of the digitised notebooks.

Table 5-1. Bleek& Lloyd collection profile

Collection theme Historical artifacts; museum objects

Media types Digitised

Collection size 6.2GB

Content type image/jpeg

Number of collections 6
Number of objects 18 924

5.1.2 Object storage

Table 5-2. Bleek& Lloyd repository item classification

Item Object Type Comments

Notebook Container object Author compilation of books

Book Container object Compilation of digitised pages

Story Content object Content object without bitsreams

Page Content object Digitised page

Table 5-2 shows the object composition of the collection and Figure 5-2 shows the relationships

among the objects.

The metadata objects are encoded using Dublin Core (Dublin Core Metadata Element Set, Version 1.1 1999);

Listings 5-1, 5-2 and 5-3 show sample encoding for Content Objects, “virtual” Content Objects

and Container Objects.

44

Listing 5-1. A digital content metadata file

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>

< r e s o u r c e x m l n s : d c t e r m s =” h t t p : / / p u r l . o rg / dc / t e r m s / ”>

<d c t e r m s : r e q u i r e s> . . .< / d c t e r m s : r e q u i r e s>

< / r e s o u r c e>

Listing 5-2. A virtual object metadata file

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>

< r e s o u r c e x m l n s : b l =” h t t p : / / l l o y d b l e e k c o l l e c t i o n . u c t . ac . za / ”

x m l n s : d c =” h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / ”

x m l n s : d c t e r m s =” h t t p : / / p u r l . o rg / dc / t e r m s / ”>

< d c : i d e n t i f i e r>2< / d c : i d e n t i f i e r>

< d c : t i t l e>Words and s e n t e n c e s< / d c : t i t l e>

<d c t e r m s : c o n t r i b u t o r>Adam K l e i n h a r d t< / d c t e r m s : c o n t r i b u t o r>

<d c : s u b j e c t>Words and s e n t e n c e s< / d c : s u b j e c t>

<b l : k e y w o r d s>

. . .

< / b l : k e y w o r d s>

<d c : d e s c r i p t i o n> . . .< / d c : d e s c r i p t i o n>

<b l : comment s> . . .< / b l : comment s>

<d c t e r m s : c r e a t e d>J u l y 1866< / d c t e r m s : c r e a t e d>

<b l : p a g e s>001−066< / b l : p a g e s>

<d c t e r m s : r e q u i r e s>A1 4 1 00001 . JPG< / d c t e r m s : r e q u i r e s>

. . .

<d c t e r m s : r e q u i r e s>A1 4 1 00066 . JPG< / d c t e r m s : r e q u i r e s>

< / r e s o u r c e>

Listing 5-3. A container object metadata file

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>

< r e s o u r c e x m l n s : d c =” h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / ”

x m l n s : d c t e r m s =” h t t p : / / p u r l . o rg / dc / t e r m s / ”>

< d c : t i t l e>BC 151 A1 4 001< / d c : t i t l e>

<d c t e r m s : h a s P a r t>A1 4 1 FUCOV . JPG< / d c t e r m s : h a s P a r t>

<d c t e r m s : h a s P a r t>A1 4 1 IFCOV . JPG< / d c t e r m s : h a s P a r t>

<d c t e r m s : h a s P a r t>A1 4 1 00001 . JPG< / d c t e r m s : h a s P a r t>

. . .

<d c t e r m s : h a s P a r t>A1 4 1 INS45 . JPG< / d c t e r m s : h a s P a r t>

<d c t e r m s : h a s P a r t>A1 4 1 IBCOV . JPG< / d c t e r m s : h a s P a r t>

<d c t e r m s : h a s P a r t>A1 4 1 BUCOV . JPG< / d c t e r m s : h a s P a r t>

<d c t e r m s : h a s P a r t>A1 4 1 SPINE . JPG< / d c t e r m s : h a s P a r t>

< / r e s o u r c e>

45

Notebook

Book

Story Page

Figure 5-2. Collection digital object component structure

5.1.3 Digital Library Systems

The Digital Bleek and Lloyd collection

The digital Bleek and Lloyd collection (The Digital Bleek and Lloyd 2007) is an online1 catalogue

that was developed to store and enable access to digitised manuscripts described in Section 5.1.1.

The underlying software was initially designed to enable access to as many people as possible so

usage requirements were minimal—it was not even necessary to use a Web server or database. The

system was designed to be XML-centric, and is based on an implementation strategy that involves

pre-generating scalable hyperlinked XHTML pages using XSLT (Suleman, 2007). However, the

original system was not focused on preservation, extensibility or reusability. In an attempt to take

advantage of these attributes and also simplify the resulting system, a prototype redesigned system

(Phiri and Suleman, 2012) was developed using the repository described in Section 5.1.2 as the

underlying data storage layer.

Bonolo

The Bonolo project—undertaken in 2012—was initiated to investigate a new approach to build-

ing digital repository systems (Hammer and Robinson, 2011). One of the project deliverable is

a prototype generic DLS (Hammer and Robinson, 2011; Phiri et al., 2012) that makes use of the

repository described in Section 5.1.2 as the data storage layer.

1http://lloydbleekcollection.cs.uct.ac.za

46

http://lloydbleekcollection.cs.uct.ac.za

Figure 5-3. Screenshot showing the Die Mond South plant fossil from the Eastern Cederberg rock

art site

5.2 SARU archaeological database

5.2.1 Overview

The Department of Archaeology2’s Spatial Archaeology Research Unit (SARU) at the University

of Cape Town has been compiling archaeological collections since the early 1950s. These collec-

tions are predominantly in the form of site records and corresponding artifacts within the vicinity

of the sites. Table 5-3 show the composition of collections that have been compiled thus far, and

Figure 5-3 shows an image of a rock art motif from one of the archaeological sites.

Owing to the growing number of collections and a growing need by a number of researchers to ac-

cess this information, an archaeological database was designed in 2005, in part, to produce layers

suitable for integration with Geographic Information Systems. The site records are currently ac-

cessed via a Microsoft Access3 database-based desktop application used to store the digital archive

(Wiltshire, 2011).

2http://web.uct.ac.za/depts/age
3http://office.microsoft.com/en-us/access

47

http://web.uct.ac.za/depts/age
http://office.microsoft.com/en-us/access

Listing 5-4. A sample kloof/farm container object metadata file

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>

< r e s o u r c e x m l n s : d c =” h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / ”

x m l n s : d c t e r m s =” h t t p : / / p u r l . o rg / dc / t e r m s / ”>

< d c : t i t l e>Posen< / d c : t i t l e>

<d c t e r m s : h a s P a r t>POS1< / d c t e r m s : h a s P a r t>

<d c t e r m s : h a s P a r t>POS2< / d c t e r m s : h a s P a r t>

. . .

<d c t e r m s : h a s P a r t>POS11< / d c t e r m s : h a s P a r t>

<d c t e r m s : h a s P a r t>POS12< / d c t e r m s : h a s P a r t>

< / r e s o u r c e>

Table 5-3. SARU archaeological database collection profile

Collection theme Archaeology artifacts; museum objects

Media types Born digital

Collection size 283GB

Content type image/jpeg; image/tiff

Number of collections 110
Number of objects 72 333

5.2.2 Object storage

The records from the database were re-organised to conform to the design described in Chapter 4.

Table 5-4 shows the object types identified in the collection and Figure 5-4 is an illustration of the

repository structure and relationships among the objects.

Table 5-4. SARU repository item classification

Item Object Type Comments

Map Sheet Container Object Map sheet code

Farm/Kloof Container Object Farm/Kloof

Site Number Container Object Site number

Project/Recorder Container object Project, recorder or contributor

Artifact Content object Photograph

The metadata records were encoded using a custom tailored metadata scheme, conforming to the

original format of data input forms used by research when conducting field studies. Listings 5-4

and 5-5 show encoding for a sample site record Container object and Content object, respec-

tively.

48

Listing 5-5. A sample site record content object metadata file

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>

< s i t e>

< r e c o r d I d>2809< / r e c o r d I d>

<s i t e N o>POS12< / s i t e N o>

<mapSheet>

. . .

< / mapSheet>

<loca lName>Posen 12< / loca lName>

<commonName>NULL< / commonName>

<p r o j e c t>

. . .

< / p r o j e c t>

< r e c o r d e r>

. . .

< / r e c o r d e r>

<d a t e>2007−04−02 00 : 0 0 : 0 0< / d a t e>

<d i r e c t i o n s T o S i t e>NULL< / d i r e c t i o n s T o S i t e>

<plot tedOnMap>0< / p lo t tedOnMap>

<commentsOnSite>NULL< / commentsOnSite>

<wid th>NULL< / w id th>

<d e p t h>NULL< / d e p t h>

< l e n g t h>NULL< / l e n g t h>

<b r e a d t h>NULL< / b r e a d t h>

<p r e v i o u s R e c o r d i n g s>NULL< / p r e v i o u s R e c o r d i n g s>

<g p s L a t i t u d e>−34.04872< / g p s L a t i t u d e>

<g p s L o n g i t u d e>22 .27378< / g p s L o n g i t u d e>

< a l t i t u d e>NULL< / a l t i t u d e>

<t ime>NULL< / t ime>

<g r a d i n g>NULL< / g r a d i n g>

<f12>NULL< / f12>

<s i t e T y p e>

. . .

< / s i t e T y p e>

<c a t e g o r y>

. . .

< / c a t e g o r y>

<d e s c r i p t i o n>

. . .

< / d e s c r i p t i o n>

<c o n t e n t s>

. . .

< / c o n t e n t s>

< / s i t e>

49

Map Sheet

Kloof

Site

Project

Artifact

RecorderContributor

Figure 5-4. Collection digital object component structure

5.2.3 Digital Library Systems

School of rock art

The School of Rock Art (Crawford, Lawrence, and Marston, 2012) is a Web application that was

developed to act as an archaeology educational tool for elementary school students. The Web

application is composed of three independent modules that all interact with the repository described

in this section.

5.3 Summary

This chapter presented two real-world case study collections based on the simple prototype reposi-

tory design outlined in Chapter 4. Furthermore, some DLS implementations that used each of the

case study collections as repository sub-layers were highlighted.

50

In essence, the case studies serve as proof of concept implementations for real-world practi-

cal application of the simple design. In Chapter 6, Section 6.1, a user study, in the form of a

developer-oriented survey that used the Bleek and Lloyd collection as the primary storage layer, is

described.

51

Chapter 6

Evaluation

Evaluation of DLs has been a subject of interest for DL research from the very

early stages. This is evidenced by early initiatives such as the D-Lib Working

Group on DL Metrics (D-Lib Working Group on Digital Library Metrics 1998) that was es-

tablished in the late 1990s. A series of related studies have since been conducted

with the aim of outlining a systematic and viable way of evaluating the complex,

multi-faceted nature of DLs that encompasses content, system and user-oriented aspects.

For instance, the DELOS1 Cluster on Evaluation (Borgman, Solvberg, and Kovács, 2002;

DELOS Workshop on the Evaluation of Digital Libraries 2004), which is perhaps the most current

and comprehensive DL evaluation initiative, was initiated with the aim of addressing the different

aspects of DLs evaluation.

The DELOS DL evaluation activities have yielded some significant results; in an attempt to un-

derstand the broad view of DLs, Fuhr et al. (Fuhr et al., 2001) developed a classification and

evaluation scheme using four major dimensions: data/collection, system/technology, users and us-

age, and further produced a MetaLibrary comprising of test-beds to be used in DL evaluation. In

a follow-up paper, Fuhr et al. (Fuhr et al., 2007) proposed a new framework for evaluation of DLs

with detailed guidelines for the evaluation process.

This research proposes simplifying the overall design of DLSes and more specifically designing

for simplicity of management and ease of use the resulting DLSes. The design principles derived

in Chapter 3 were used to design and implement a simple generic repository sub-layer for DLSes.

In Chapter 5 three proof of concept file-based repository implementations are presented to evaluate

the effectiveness of this approach.

A developer survey, outlined in Section 6.1, was conducted to assess the impact of redesigning the

repository sub-layer on extensibility of implementations based on this design.

Furthermore, owing to the fact that repositories have a potential to grow, detailed scalability per-

formance benchmarks were conducted to assess the performance of this design strategy relative to

the sizes of collections; these performance benchmarks are outlined in Section 6.2.

1http://www.delos.info

52

http://www.delos.info

6.1 Developer survey

The developer-oriented user study was conducted to assess the simplicity of file-based repository

implementations and the easy of interaction with such implementations.

6.1.1 Target population

The survey participants were recruited from a total of 34 Computer Science Honours (CSC4000)

students, enrolled for the World Wide Web Technologies (WWW) elective course module at the

University of Cape Town.

The WWW module had a mandatory practical assignment, accounting for 20% of the overall

assessment, in which the students were required to build generic Web applications, in groups, using

the file-based repository store described in Section 5.1. Screenshots of the online questionnaire are

in the Appendix section2, and show the assignment question. A request for survey participation

was emailed to the class mailing list after the assignment due date, in which 26 out of the 34
students responded, as shown in Table 6-1

Table 6-1. Developer survey target population

G
ro

u
p

1

G
ro

u
p

2

G
ro

u
p

3

G
ro

u
p

4

G
ro

u
p

5

G
ro

u
p

6

G
ro

u
p

7

G
ro

u
p

8

G
ro

u
p

9

G
ro

u
p

1
0

G
ro

u
p

1
1

G
ro

u
p

1
2

Candidates 3 3 3 3 3 2 3 3 3 3 3 2

Respondents 3 3 1 2 2 3 3 1 2 2 1 2

6.1.2 Data collection

A post-experiment survey was conducted in the form of an online questionnaire3, designed using

LimeSurvey4. The questionnaire was aimed at eliciting participants’ experience in working with a

file-based collection.

6.1.3 Results

The survey participants’ background-related information is shown in Figures 6-1, 6-2 and 6-3. The

implementation of the Web services was done using a variety of programming languages, as shown

in Figure 6-4.

2Please see Appendix A.2 for details
3Please see to Appendix A.2 for details
4http://www.limesurvey.org

53

http://www.limesurvey.org

Technologies background

DB apps

DBMS

Web apps

XML

0 5 10 15 20 25

Number of subjects

T
ec

h
n
o
lo

g
ie

s

< 1 year 1-3 years 3-6 years > 6 years

Figure 6-1. Survey participants’ background knowledge working with technologies relevant to the

study.

Storage background

Cloud

Database

File

0 5 10 15 20 25

Number of subjects

S
to

ra
g
e

so
lu

ti
o
n
s

Not at all Rarely Some times Most times

All the time

Figure 6-2. Survey participants’ background working with some selected popular storage solutions.

54

DL concepts background

DLs

Metadata

Preservation

N
o
v
ice

E
x
p
ert

Number of subjects

D
L

co
n
ce

p
ts

Figure 6-3. Survey participants’ knowledge of some fundamental DL concepts.

Programming languages usage

C#

Java

Python

HTML5

PHP

JavaScript

0 5 10 15

Number of subjects

P
ro

g
ra

m
m

in
g

la
n
g
u
ag

es

Figure 6-4. Survey participants programming languages usage during service implementation.

55

Storage ranking order

Rank #3

Rank #2

Rank #1

0 5 10 15 20 25

Number of subjects

R
an

k
in

g
o
rd

er
s

Cloud storage Database storage File storage

Figure 6-5. Survey participants’ rankings of data storage solutions.

The respondents’ views on the simplicity and ease of use of the repository is shown in 6-6; addi-

tionally, their rankings of possible storage solutions for metadata records are shown in Figure 6-5.

Finally, their preferences on the possible solutions to use for data management tasks/operations are

shown in Figure 6-7.

6.1.4 Discussion

The survey results indicate that the target population generally had the necessary skillset required

for this study. The majority of respondents had some form of experience working with Web appli-

cations and associated technologies (see Figure 6-1); the majority of them frequently worked with

Database Management Systems and had some form of experience working with file-based systems

(see Figure 6-2). In addition, all respondents were familiar with fundamental concepts associated

with DLs (see Figure 6-3).

The range of Web services implemented by the target population and the variety of programming

languages used to implement the services is indicative of the flexibility of the repository design.

Furthermore, these results strongly suggest that the repository design did not significantly influence

the choice of service and implementation language. This conclusion is further supported by an

explicit survey question in Figure A-5, which was aimed at eliciting respondents’ views on whether

the repository structure had a direct influence on their programming language(s) of choice, to which

15% of the participants agreed.

The strong preference of using databases as storage structures, shown in the results from Fig-

ures 6-5 and 6-7 is arguably as a result of the majority of participants’ prior work with databases,

and is best explained by the question that asked participants for reasons prior for their preferred

storage solutions; the responses from some participants who ranked databases first are listed be-

low.

56

Simplicity

Understandability

Metadata

Structure

Metadata

Structure

0 5 10 15 20 25

Number of subjects

R
ep

o
si

to
ry

as
p
ec

ts

Strongly agree Agree Neutral Disagree

Strongly disagree

Figure 6-6. Survey participants’ simplicity and understandability ratings of repository design.

Operations approach ratings

Copying records

Deleting records

Reading records

Updating records

0 5 10 15 20 25

Number of subjects

M
an

ag
em

en
t

o
p
er

at
io

n
s

Both File-based Database-based Neither

Figure 6-7. Survey participants’ ratings of data management approaches for DL operations.

57

� “I understand databases better.”

� “Simple to set up and sheer control”

� “Easy setup and connection to MySQL database”

� “Speed of accessing data, and its free.”

� “Ease of data manipulation and relations”

� “Easy to query”

� “Centralised management, ease of design, availability of support/literature”

� “The existing infrastructure for storing and retrieving data”

� “Querying a database table to retrieve a record is most useful for data.”

Interestingly, out of the total 12 participants whose preference was databases,the majority identified

themselves as having little background information pertaining to metadata standards, DLs and

digital preservation. It can be argued that their lack of knowledge of these fundamental concepts

could have influenced their subjective views. This is supported by some of their general comments

listed below.

� “Had some difficulty working the metadata, despite looking at how to process DC metadata

online, it slowed us down considerably.”

� “Good structure although confusing that each page has no metadata of its own(only the

story).”

� “The hierarchy was not intuitive therefore took a while to understand however having crossed

that hurdle was fairly easy to process.”

� “I guess it was OK but took some getting used to”

6.1.5 Summary

The results from the developer survey showed that developer interaction with resulting systems is

not significantly affected. More importantly, the results indicate that DLS management tasks could

potentially be simplified.

6.2 Performance

A significant architectural change performed to the design and implementation of the simple repos-

itory outlined in Chapter 4 involves changing the way metadata records are stored in the repos-

itory sub-layer of DLSes. More specifically, the proposed solution advocates for the use of a

typical operating system file system for the storage of metadata records, as opposed to the con-

ventional use of a database management system. This design decision is motivated by two key

factors—simplicity and manageability. However, conventional wisdom (Nicola and John, 2003;

58

Sears, Ingen, and Gray, 2007) points to the fact that system performance would evidently be ad-

versely affected for relatively large collections.

The remainder of this section outlines the performance experiments conducted to evaluate the

simple repository design. Section 6.2.1 briefly describes the test environment set-up to conduct the

experiments; Section 6.2.2 describes the test dataset and Secton 6.2.3 describes the workloads used

during experimentation. In Section 6.2.4 a series of performance benchmarks are discussed, and a

discussion of performance comparisons with DSpace is then discussed in Section 6.2.5.

6.2.1 Test setup

The experiments were all conducted locally—to isolate network-related hidden factors that could

distort the measurements—on a standalone Intel Pentium (E5200@ 2.50 GHz) with 4 GB of RAM

running Ubuntu 12.04.1 LTS. Apache 2.2.22 Web server and Jetty were used to host module im-

plementations; and ApacheBench 2.3 and Siege 2.70 were used to simulate a single user request,

with five run-averages taken for each aspect request.

Furthermore, in order to isolated computing resource hidden factors such as memory and CPU

usage, the only applications that were set-up and subsequently executed on the machine were those

related to the experiments being conducted. Table 6-2 shows a summary of the configurations that

were used to conduct the experiments.

Table 6-2. Performance experiment hardware and software configuration

Hardware Pentium(R) Dual-Core CPU E5200@ 2.50 GHz

4 GB RAM

Software Apache/2.2.22 (The Apache HTTP Server Project 2012)

ApacheBench 2.3 (Apache HTTP Server Version 2.2 2012)

Apache Solr 4.0 (Apache Solr 2012)

Jetty 8.1.2 (Jetty:// 2012)

Siege 2.70 (Fulmer, 2012)

Ubuntu 12.04.1 LTS (Ubuntu 12.04.2 LTS (Precise Pangolin) 2012)

6.2.2 Test dataset

Table 6-3. Performance experiment dataset profile

Collection theme Dublin Core encoded plain text files

(Continued on next page)

59

Table 6-3. (continued)

Collection size 8.6 GB

Content type text/xml

Total number of objects 1 907 000

The dataset used for the experiments is a collection of XML records, encoded using simple Dublin

Core, which were harvested from the NDLTD Union Catalog5 using the OAI-PMH 2.0 protocol.

Table 6-3 shows a summary of the dataset profile used for conducting the performance experi-

ments, and the details of the repository and sub-collection structure are shown in Listing 6-1 and

Listing 6-2 respectively.

The OAI-PMH unique setSpec element names, shown in Listing 6-2, for each of the harvested

records were used to create container structures that represent collection names for the resulting

archive.

6.2.3 Workloads

The 1 907 000 objects in the experiment dataset—summarised in Table 6-3—are aggregate meta-

data records from a total of 131 different institutional repositories from around the world; in ad-

dition the metadata records are encoded in Dublin Core, a metadata scheme which allows for all

elements to be both optional and repeatable. As a result, the structure of the metadata records was

not consistent throughout all the records. A random sampling technique was thus used to generate

linearly increasing workloads, with records randomly selected from the 131 setSpecs.

Table 6-4 shows the 15 workloads initially modelled for use during the performance experimenta-

tion stage. An additional two datasets were then spawned to create experiment datasets with vary-

ing hierarchical structures. Table B-10 shows the profiles for the three dataset workload models,

and Figure 6-8 illustrates the object organisation in one-level, two-level and three-level workload

models.

Table 6-4. Experiment workload design for Dataset#1

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
1
0

W
1
1

W
1
2

W
1
3

W
1
4

W
1
5

Records

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80
0

25
60
0

51
20
0

10
2
40
0

20
4
80
0

40
9
60
0

81
9
20
0

1
63
8
40
0

Collections

19 25 42 57 67 83 10
0

11
2

11
6

11
9

12
7

12
9

12
8

13
1

13
1

Size [MB]

0.
54

1.
00

2.
00

3.
90

7.
60

15
.0
0

30
.0
0

60
.0
0

11
8.
00

23
6.
00

47
1.
00

94
2.
00

19
45
.0
0

37
88
.8
0

76
80
.0
0

5http://union.ndltd.org/OAI-PMH

60

http://union.ndltd.org/OAI-PMH

NDLTD

OCLC

...

object

...

...

...

...

(a) Dataset#1 structure

NDLTD

OCLC

2010

...

object

...

...

...

(b) Dataset#2 structure

NDLTD

OCLC

2010

z

...

object

...

...

(c) Dataset#3 structure

Figure 6-8. The workload hierarchical structures for the three experiment datasets. The setSpec,

publication date and first character of creator name were used as first-, second- and third-level

container names respectively.

61

Listing 6-1. NDLTD union catalog OAI-PMH Identity verb response

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>

<OAI−PMH xmlns=” h t t p : / /www. o p e n a r c h i v e s . o rg / OAI / 2 . 0 / ”

x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

x s i : s c h e m a L o c a t i o n =” h t t p : / /www. o p e n a r c h i v e s . o rg / OAI / 2 . 0 /

h t t p : / /www. o p e n a r c h i v e s . o rg / OAI / 2 . 0 / OAI−PMH. xsd ”>

<r e s p o n s e D a t e>2012−09−23 T10:19:23Z< / r e s p o n s e D a t e>

< r e q u e s t ve rb =” I d e n t i f y ”>h t t p : / / un ion . n d l t d . o rg / OAI−PMH/< / r e q u e s t>

< I d e n t i f y>

<r e p o s i t o r y N a m e>NDLTD Union Arch ive o f ETD Metada ta< / r e p o s i t o r y N a m e>

<baseURL>h t t p : / / un ion . n d l t d . o rg / OAI−PMH/< / baseURL>

<p r o t o c o l V e r s i o n>2 . 0< / p r o t o c o l V e r s i o n>

<adminEmail>husse in@cs . u c t . ac . za< / adminEmail>

<e a r l i e s t D a t e s t a m p>2011−09−07 T02:15:34Z< / e a r l i e s t D a t e s t a m p>

<d e l e t e d R e c o r d>p e r s i s t e n t< / d e l e t e d R e c o r d>

<g r a n u l a r i t y>YYYY−MM−DDThh:mm:ssZ< / g r a n u l a r i t y>

<d e s c r i p t i o n>

<e p r i n t s xmlns=” h t t p : / /www. o p e n a r c h i v e s . o rg / OAI / 1 . 1 / e p r i n t s ”

x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

x s i : s c h e m a L o c a t i o n =” h t t p : / /www. o p e n a r c h i v e s . o rg / OAI / 1 . 1 / e p r i n t s

h t t p : / /www. o p e n a r c h i v e s . o rg / OAI / 1 . 1 / e p r i n t s . xsd ”>

<c o n t e n t>

<URL>h t t p : / / un ion . n d l t d . o rg /< /URL>

< t e x t>NDLTD Union Arch ive o f ETD Metada ta< / t e x t>

< / c o n t e n t>

<m e t a d a t a P o l i c y />

<d a t a P o l i c y />

< / e p r i n t s>

< / d e s c r i p t i o n>

< / I d e n t i f y>

< / OAI−PMH>

6
2

Listing 6-2. NDLTD union catalog OAI-PMH ListSets verb response

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>

<OAI−PMH xmlns=” h t t p : / /www. o p e n a r c h i v e s . o rg / OAI / 2 . 0 / ”

x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

x s i : s c h e m a L o c a t i o n =” h t t p : / /www. o p e n a r c h i v e s . o rg / OAI / 2 . 0 /

h t t p : / /www. o p e n a r c h i v e s . o rg / OAI / 2 . 0 / OAI−PMH. xsd ”>

<r e s p o n s e D a t e>2012−09−24 T12:27:59Z< / r e s p o n s e D a t e>

< r e q u e s t ve rb =” L i s t S e t s ”>h t t p : / / un ion . n d l t d . o rg / OAI−PMH/< / r e q u e s t>

<L i s t S e t s>

< s e t>

<s e t S p e c>UPSALLA< / s e t S p e c>

<setName>DiVA Arch ive a t U p s a l l a U n i v e r s i t y< / setName>

< / s e t>

< s e t>

<s e t S p e c>OCLC< / s e t S p e c>

<setName>OCLC< / setName>

< / s e t>

< s e t>

<s e t S p e c>IBICT< / s e t S p e c>

<setName>IBICT B r a z i l i a n ETDs< / setName>

< / s e t>

< s e t>

<s e t S p e c>VTETD< / s e t S p e c>

<setName>V i r g i n a Tech . Theses and D i s s e r t a t i o n< / setName>

< / s e t>

. . .

. . .

. . .

< / L i s t S e t s>

< / OAI−PMH>

6
3

6.2.4 Benchmarks

A series of performance benchmarks were conducted on some typical DL services, in order to

assess the overall performance of the architecture.

The purpose of the performance experiments was to evaluate the performance and scalability of

collections as the workload—in relation to collection size—was increased. The performance ex-

periments were carried out on the following list of services,—with the exception of indexing—

derived from a transaction log analysis of a production digital library system6—a subject reposi-

tory running EPrints 2.1.1.

� Item ingestion

� Full-text search

� Indexing operations

� OAI-PMH data provider

� Feed generation

The series of experiments were designed specifically to determine the break-even points at which

performance and scalability drastically degrades. Nielsen’s three important limits for response

times (Nielsen, 1993) were used as a basis for determining desirable response times for varying

workloads.

The detailed descriptions of the experiments conducted on the services/aspects now follows.

Item ingestion

The ingestion process for a typical DLS in part involves importation of metadata associated with the

bitstreams being ingested. The purpose of experiments conducted for this aspect was to determine

the relative ingestion performance of metadata records, in terms of response time, with varying

workload sizes.

Experiment: Item ingestion response time This experiment was aimed at assessing the inges-

tion response time for the 15 workloads.

Methodology A single record was randomly harvested from the OCLC setSpec7, using

datestamp-based selective harvesting (Lagoze et al., 2002b), in order to harvest records that were

created, deleted, or modified after the initial bulk harvesting described in Section 6.2.2. The sec-

ond and third-level container objects were then created in advance, for workloads in which the

container objects in question were not present, to isolate the latency that would result from creat-

ing missing containers. The ingestion process was then simulated through a script that read the

6http://pubs.cs.uct.ac.za
7The OCLC setSpec was common to all the 15 workloads

64

http://pubs.cs.uct.ac.za

record to be ingested and wrote the contents of the record to each of the 15 workload collections.

The times taken to successfully write the record to disk were then noted.

Results The experiment results are shown in Table 6-5 and Figure 6-9.

Table 6-5. Impact of structure on item ingestion performance

Dataset #1 Dataset #2 Dataset #3

In
g
es

ti
o
n

[m
s]

P
a
rs

in
g

D
is

k
w

ri
te

In
g
es

ti
o
n

[m
s]

P
a
rs

in
g

D
is

k
w

ri
te

In
g
es

ti
o
n

[m
s]

P
a
rs

in
g

D
is

k
w

ri
te

W1 4.79 63.14% 36.86% 4.15 96.40% 3.60% 4.12 96.67% 3.33%

W2 5.69 97.76% 2.24% 5.09 97.42% 2.58% 4.02 96.35% 3.65%

W3 2.79 95.69% 4.31% 2.87 95.53% 4.47% 2.94 95.51% 4.49%

W4 2.78 95.67% 4.33% 4.08 96.78% 3.22% 2.84 95.65% 4.35%

W5 2.84 95.42% 4.58% 2.86 95.57% 4.43% 2.94 95.64% 4.36%

W6 2.78 95.68% 4.32% 2.90 95.67% 4.33% 2.86 95.41% 4.59%

W7 3.33 96.10% 3.90% 2.81 95.76% 4.24% 2.89 94.96% 5.04%

W8 2.80 95.59% 4.41% 2.80 95.63% 4.37% 2.86 94.65% 5.35%

W9 2.80 95.71% 4.29% 2.86 95.31% 4.69% 4.95 56.82% 43.18%

W10 2.89 95.54% 4.46% 2.79 95.72% 4.28% 2.88 95.52% 4.48%

W11 2.96 95.33% 4.67% 2.81 95.33% 4.67% 2.95 95.45% 4.55%

W12 3.95 96.26% 3.74% 2.96 95.40% 4.60% 2.87 95.62% 4.38%

W13 2.92 95.27% 4.73% 3.13 95.96% 4.04% 2.81 95.69% 4.31%

W14 2.83 95.45% 4.55% 2.85 95.63% 4.37% 2.78 95.66% 4.34%

W15 2.93 95.38% 4.62% 2.95 95.48% 4.52% 2.82 95.50% 4.50%

Discussion The ingestion response times remain constant irrespective of the workload size. This

is because the only overhead incurred results from disk write IO. It should be noted that this

experiment mimicked an ideal situation where the destination location for the item is known before

hand.

The workload size does not affect the ingestion response time.

Full-text search

The purpose of these experiments was to determine the impact on collection size on query perfor-

mance for indexed and non-indexed collections.

65

Item ingestion

2.5

2.6

2.7

2.8

2.9

3.0

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

T
im

e
[m

s]

Dataset#1 Dataset#2 Dataset#3

Figure 6-9. The average time, in milliseconds, taken to ingest a single item into an existing collec-

tion.

Experiment: Search performance for unindexed collections This experiment was conducted

to determine query performance of non-indexed collections.

Methodology The most frequently occurring terms in the workloads were identified and search

requests issued to determine response times. The search module implementation involved travers-

ing collection containers and successively parsing and querying each metadata file in the collection

for the search phrase in question.

Results The mean response times taken to generate search query resultsets are shown in Fig-

ure 6-10. In order to ascertain the overall distribution of the search response times, the time taken

for the various search phases—directory traversal, parsing and XPath querying—was noted; Ta-

ble 6-6 and Figure 6-10 show these times for the 15 workloads.

Table 6-6. Baseline performance benchmarks for full-text search

Time [ms] Traversal Parsing XPath

W1 24.67 16.13% 38.49% 45.38%

W2 47.87 15.40% 39.05% 45.54%

W3 97.38 14.89% 39.01% 46.10%

W4 191.90 14.28% 39.45% 46.27%

W5 386.99 13.82% 39.39% 46.79%

W6 768.35 13.58% 39.58% 46.84%

W7 1531.06 13.55% 39.37% 47.08%

W8 3093.12 13.41% 39.52% 47.08%

(Continued on next page)

66

Table 6-6. (continued)

Time [ms] Traversal Parsing XPath

W9 6172.22 13.37% 39.76% 46.87%

W10 12 487.06 13.66% 39.72% 46.63%

W11 25 108.74 14.20% 39.49% 46.31%

W12 49 301.45 13.51% 39.65% 46.85%

W13 100 267.33 14.20% 39.85% 45.95%

W14 7 365 254.00 1.99% 95.57% 2.44%

W15 18 664 713.65 5.28% 92.87% 1.85%

Discussion The results in Figure 6-10 indicate an increasing linear correlation between the work-

load size and the query response time. This is largely due to the fact that all metadata records need

to be analysed each time a search query is issued.

In addition, Table 6-6 indicates that a significant amount of time is spent parsing and querying

the records, with each of the tasks accounting for an average of 39% and 46% respectively. Fur-

thermore, this occurs before the workload size exceeds 409 600, at which point the parsing phase

becomes extremely expensive—accounting for 95% of the total search query time.

The query response time increases linearly as the workload size is increased and is drastically

affected by larger workloads. The only effective way to get better performance would be to use an

index.

Experiment: Impact of collection structure on search performance This experiment was

conducted to assess the search query response times relative to a collection structure. The results

obtained in Section 6.2.4, derived from a one-level collection structure, were compared with work-

loads of varying levels.

Methodology The search queries issued in Section 6.2.4 were issued to two-level and a three-

level, illustrated in Figure 6-8b and Figure 6-8c respectively, structured workloads. The response

times were noted and compared with those obtained from one-level structured workloads.

Results Table 6-7 shows the change in response times for two-level and three-level workloads

relative to one-level workloads; and Figure 6-11 is a graphical representation of the response times

for the different search query phases.

67

Search (Cumulative)

102

104

106

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

Traversal Traversal+Parsing Traversal+Parsing+XPath

Search (Distribution)

100

105

1010

1015

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

Traversal Parsing XPath

Figure 6-10. The cumulative times taken for the different search query processing phases—

directory traversal, XML parsing and XPath query times.

Table 6-7. Search query time change relative to baseline

∆ Dataset#2 ∆ Dataset#3

Traversal Parsing XPath Traversal Parsing XPath

W1 62.91% 0.21% 0.33% 141.59% (0.39)% 2.13%

W2 55.90% (0.99)% 0.45% 134.24% (1.98)% 0.63%

W3 51.78% 0.65% 1.65% 126.18% (0.84)% 1.68%

W4 39.22% 0.38% 1.24% 113.29% (1.03)% 2.49%

W5 32.61% 0.82% 0.36% 101.85% (1.16)% 0.90%

W6 22.81% 0.14% 0.76% 83.80% (1.08)% 2.01%

W7 16.72% 1.68% (0.24)% 133.23% (0.03)% 0.46%

W8 11.03% 0.40% (0.72)% 59.56% (0.33)% (0.02)%

W9 6.82% 0.10% (0.27)% 48.84% (0.55)% 0.39%

W10 7.47% (0.88)% (0.89)% 42.11% (0.42)% 0.18%

W11 0.18% (0.51)% (0.70)% 38.81% 0.44% (0.34)%

(Continued on next page)

68

Table 6-7. (continued)

∆ Dataset#2 ∆ Dataset#3

Traversal Parsing XPath Traversal Parsing XPath

W12 9.39% 1.07% (0.10)% 62.04% 2.54% 0.79%

W13 8.61% 0.01% 0.54% 137.16% 1.84% 2.72%

W14 (30.37)% (54.99)% 5.10% 66.06% (86.83)% 6.78%

W15 (79.22)% (39.63)% 1.78% (61.31)% (86.39)% 11.56%

Discussion There is a significant linear increase in the search query response times before the

workload size goes beyond 409 600, with the Parsing and XPath times remaining constant as the

traversal times change.

Indexing operations

The integration of DLSes with indexing services is increasingly becoming common to facilitate

seamless discovery of information through search and browse services. The experiments conducted

for the index evaluation aspect were aimed at benchmarking various indexing operations associated

with digital collections.

The Apache Solr search platform was deployed within a Jetty Servlet engine, and subsequently

integrated with the 15 workloads. The workloads were conveniently set-up as 15 separate Apache

Solr Cores and the following factors were investigated relative to the different workload sizes

described in Section 6.2.3.

� Batch indexing of collections

� Incremental updates to existing collections

Experiment: Batch collection indexing benchmarks Batch indexing of collections is a com-

mon use-case; for instance, storage and retrieval systems will in certain instances require re-

indexing of content when records have been updated with new values. This experiment was aimed

at benchmarking the batch indexing of varying workloads.

Methodology The Apache Solr Data Import Request Handler (Solr Wiki 2012a) was configured

for all the 15 workload cores to perform full builds. A full data-import command was then issued,

and repeated 5 times, for each of the 15 workload cores. The minimum time taken to perform

successful data-import operations was then recorded.

Results The batch indexing experiment results are shown in Table 6-8 and Figure 6-12.

69

T
rav

ersal

P
arsin

g

X
P

ath

1
0
2

1
0
4

1
0
6

1
0
2

1
0
4

1
0
6

1
0
2

1
0
4

1
0
6

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

W
o
rk

lo
ad

size

log10(Time [ms])

D
ataset#

1
D

ataset#
2

D
ataset#

3

F
ig

u
re

6
-1

1
.

Im
p
act

o
f

d
irecto

ry
stru

ctu
re

o
n

q
u
ery

p
erfo

rm
an

ce,
sp

lit
u
p

in
to

th
e

d
ifferen

t
search

p
h
ases—

trav
ersal,

p
arsin

g
an

d
x
p
ath

p
h
ases.

7
0

Discussion The results strongly indicate that there is a linear relationship between the workload

size and the resulting index size, with an average ratio of 1:2. This is largely as a result of indexing

all the 15 Dublin Core repeatable fields. In addition, all the record fields were stored in the index

when conducting the experiment. In an ideal scenario, only relevant fields would have to be indexed

and stored, significantly reducing the resulting index size.

The indexing operation throughput generally increases with increasing workload, reaching a peak

value of 803 documents/second at workload W9—as shown in Figure 6-12, after which it plum-

mets. This scenario is attributed to the fact that Apache Solr indexing is, in part, dependent on the

size on the index—the index size linearly increases with workload size. Furthermore, the 2 GB

RAM on the graduate becomes inadequate as the workload increases, thus degrading the perfor-

mance.

Table 6-8. Baseline performance benchmarks for batch indexing

Index [MB] Time [s] Throughput [doc/s]

W1 0.40 1.11 90
W2 0.56 1.47 136
W3 1.10 2.46 163
W4 1.90 4.14 193
W5 3.50 7.19 223
W6 6.40 13.25 242
W7 12.00 14.81 432
W8 24.00 17.89 715
W9 46.00 31.87 803
W10 91.00 204.21 251
W11 179.00 432.12 237
W12 348.00 1331.99 154
W13 962.00 2934.96 140
W14 1433.60 8134.99 101
W15 2662.40 18 261.88 90

Experiment: Incremental collection indexing benchmarks This experiment was conducted

to assess the performance of the indexing process, relative to the size of the collection, when

collections are updated with new content.

Methodology A batch of 1000 latest records8 were harvested from the NDLTD portal and added

to existing workload indices using Apache Solr XSLT UpdateRequestHandler (Solr Wiki 2012b).

The number of documents added to the indices was varied between 1, 10, 100 and 1000. In addition,

the changes were only committed to the indices after all records had been added to the index.

8OAI-PMH ’from’ parameter was used to harvest records not previously harvested

71

Index size

100

101

102

103

104

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(S

iz
e

[M
B

])

Corpus size Index size

Time

100

101

102

103

104

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k
Workload size

lo
g
1
0
(T

im
e

[s
])

Throughput

200

400

600

800

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

T
h
ro

u
g
h
p
u
t

[d
o
c/

s]

Figure 6-12. Indexing operations performance benchmarks results showing the size of the indices

on disk, the time taken to generate the indices, and the indexing process throughput. Notice how

the throughput plummets when the workload goes beyond 25 600 documents.

72

Incremental indexing

101.5

102

102.5

103

103.5

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

Batch size=1 Batch size=10 Batch size=100 Batch size=1000

Figure 6-13. Incremental Index documents update operations performance benchmarks.

Results Table 6-9 and Figure 6-13 show the experiment results.

Table 6-9. Impact of batch size on indexing performance

Batch size

1 10 100 1000

In
d

ex
in

g

P
a
rs

in
g

In
d

ex
in

g

P
a
rs

in
g

In
d

ex
in

g

P
a
rs

in
g

In
d

ex
in

g

P
a
rs

in
g

W1 88.78% 11.22% 45.96% 54.04% 45.04% 54.96% 39.44% 60.56%

W2 88.89% 11.11% 39.34% 60.66% 40.44% 59.56% 39.08% 60.92%

W3 90.32% 9.68% 40.13% 59.87% 42.40% 57.60% 40.60% 59.40%

W4 87.52% 12.48% 35.64% 64.36% 41.08% 58.92% 39.95% 60.05%

W5 85.85% 14.15% 47.19% 52.81% 42.56% 57.44% 39.61% 60.39%

W6 89.87% 10.13% 41.56% 58.44% 39.86% 60.14% 40.07% 59.93%

W7 90.35% 9.65% 41.74% 58.26% 42.77% 57.23% 43.20% 56.80%

W8 90.86% 9.14% 45.26% 54.74% 43.07% 56.93% 39.31% 60.69%

W9 92.49% 7.51% 41.92% 58.08% 42.09% 57.91% 40.25% 59.75%

W10 88.96% 11.04% 41.57% 58.43% 42.65% 57.35% 42.01% 57.99%

W11 88.53% 11.47% 37.27% 62.73% 42.29% 57.71% 42.92% 57.08%

W12 87.71% 12.29% 38.68% 61.32% 41.74% 58.26% 39.96% 60.04%

W13 88.15% 11.85% 40.87% 59.13% 39.52% 60.48% 42.76% 57.24%

W14 86.77% 13.23% 32.63% 67.37% 41.71% 58.29% 42.72% 57.28%

W15 89.37% 10.63% 36.89% 63.11% 38.05% 61.95% 40.15% 59.85%

73

Discussion The conversion process of records to Apache Solr ingest format takes up a consider-

able amount of time during parsing. In addition, it is significantly faster to schedule commits for

large sets of newer records in contrast to issuing commits after addition of each record, since the

cumulative commit times for individual items in a typical batch are avoided.

OAI-PMH data provider

The main objective of experiments associated with this aspect was to determine the performance of

an integrated file-based collection OAI-PMH data provider in relation to the collection size.

The XMLFile Perl data provider module (Suleman, 2002) was used to conduct the experiments.

The module was configured and deployed within a mod perl9 enabled Apache 2.2.22 Web server.

The following factors were considered, relative to the workloads described in Section 6.2.3.

� The collection structure

� The size of the resumptionToken

Experiment: OAI-PMH data provider baseline benchmarks This experiment was conducted

to derive baseline results for a basic OAI-PMH data provider environment set up.

Methodology The OAI-PMH data provider for each archive was configured with a resumption-

Token of 1000 and the records in each workload arranged in a one-level hierarchical structure, as

shown in Figure 6-8a

The tests performed involved submitting GetRecord, ListIdentifiers, ListRecords, and ListSets re-

quests to each of the individual 15 workloads. Siege was used to to simulate a single user request

with a total of 5 repeated runs for each request; the average response times for each case were then

recorded.

Results The response times for the four OAI-PMH verbs are shown in Figure 6-14.

Discussion The ListRecords and ListIdentifiers verbs are the most expensive of the OAI-PMH

verbs, each taking more than 2 seconds when the workload size goes beyond 400 and 6400 respec-

tively. In contrast, the GetRecord and ListSets verbs only go beyond acceptable limits when the

workload size exceeds 204 800 and 819 200 respectively.

Experiment: Impact of collection structure The results obtained from the baseline experiment

conducted in Experiment 1 involved the use of a one-level collection structure illustrated in Fig-

ure 6-8a. This experiment was conducted to assess the impact that a multi-level structure would

have on the overall performance of an OAI-PMH data provider whilst varying the workload.

9An Apache/2.x HTTP server embedded Perl interpreter

74

OAI-PMH (Baseline)

10-2

10-1

100

101

102

103

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

GetRecord ListIdentifiers ListRecords ListSets

Figure 6-14. OAI-PMH data provider baseline performance benchmarks results for all four request

verbs.

Methodology A three-level collection structure, shown in Figure 6-8c, was used. Siege was

then used to to simulate a single user request with a total of 5 repeated runs for GetRecord, Lis-

tIdentifiers, ListRecords and ListSets verbs; the average response times for each case were then

recorded.

Results Figure 6-15 show results of the impact on performance of collection structure on the

OAI-PMH verbs.

Discussion The difference in response times, of ListIdentifiers and ListRecords verbs, for the

different levels only becomes apparent with relatively larger workloads. This difference is as a

result of the latency incurred during directory traversal, an operation that takes a relatively shorter

time to complete. This is further evidenced by the results from the ListSets verb (see Figure 6-15),

an operation that is significantly dependent on directory traversal.

Experiment: Impact of resumptionToken size The flow control for incomplete list responses

in Experiment 1 was handled based on the recommendations from the guidelines for repository

implementers (Lagoze et al., 2002a). This involved the use of a resumptionToken size of 1000
records. This experiment was conducted to determine the impact of varying the resumptionToken

sizes as the workload increased.

Methodology The resumptionToken sizes were varied between 10, 100 and 1000, whilst con-

ducting ListIdentifiers and ListRecords requests for the first and last list responses. Siege was

used to simulate a single user request with a total of 5 repeated runs for each request; the average

response times for each case were then recorded.

75

GetRecord

ListIdentifiers

ListRecords

ListSets

10-2

10-1

100

101

102

103

10-2

10-1

100

101

102

103

10-2

10-1

100

101

102

103

10-2

10-1

100

101

102

103

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

Dataset#1 Dataset#2 Dataset#3

Figure 6-15. Impact of collection structure on OAI-PMH data provider performance. Note that

with the exception of workloads with less than 1000 documents, ListIdentifiers and ListRecords

are partial incomplete-list responses for the first N=1000 records.

76

First list recordset

Last list recordset (N)

10-1

100

101

102

103

10-1

100

101

102

103

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

Token size=10 Token size=100 Token size=1000

Figure 6-16. Impact of resumptionToken size on OAI-PMH data provider performance. The plots

show the time taken to generate archives’ first partial incomplete list set and the archives’ last list

set.

Results The results of the experiment are shown in Figure 6-16 in the form of response times for

ListRecord verb when resumptionToken size is 0 (First list recordset) and when resumptionToken

size is N (Last list recordset); with N representing the last list response.

Discussion The results indicate that harvesting recordsets using a smaller resumptionToken size

is faster than otherwise. In addition, there is not a noticeable change when the resumptionToken

cursor is varied.

Experiment: Impact of resumptionToken size and structure This experiment was conducted

to assess the combined effect of a structured collection and varying resumptionToken sizes.

Methodology The collection structures shown in Figure 6-8 was used and resumptionToken sizes

varied as in the experiment described in Section 6.2.4. Siege was then used to compute response

times for generating incomplete list responses for the ListRecords OAI-PMH verb.

77

Results Figure 6-17 shows results of the combined effect of hierarchical structure and resump-

tionToken size.

Discussion The results indicate that it is significantly faster to harvest records from workloads

with fewer hierarchical levels and at the same time smaller resumptionToken sizes. The reason for

this is two-fold: first, the traversal time for workloads with fewer levels is reduced; and secondly,

the time taken to sort records with smaller resumptionToken sizes is faster.

Feed generator

The purpose of this experiment was to determine how the relative size of file-based collections

could potentially impact the performance of an integrated RSS feed generator module.

Experiment: Impact of collection structure This experiment was conducted to investigate the

performance of a file-based RSS module for non-indexed collections.

Methodology The approach used to determine top N latest records took advantage of the operat-

ing system creation and modification timestamps. This approach was used to avoid the overhead

that results from parsing individual records. Each of the 15 workloads were traversed to determine

the response times when generating top N latest records.

This technique was repeated for one-level, two-level and three-level hierarchical structures and

using results from one-level structures as the baseline, the change in response times was noted to

determine the effect of altering the collection structures.

Results Figure 6-18 shows the times taken to generate the top N most recently added records

to each of the 15 workloads. Table 6-10 and Figure 6-19 show the change (∆ Dataset#2 and

∆ Dataset#3) in response times—relative to one-level structured workloads results shown in

Table B-14—for each of the workloads when rearranged into two-level and three-level struc-

tures.

Table 6-10. Impact of structure on feed generation

∆ Dataset#2 ∆ Dataset#3

5 10 20 5 10 20

W1 63.85% 61.62% 58.54% 152.75% 151.05% 145.19%

W2 58.16% 54.64% 54.32% 150.73% 146.84% 141.73%

W3 51.97% 47.85% 49.57% 141.99% 140.05% 136.78%

W4 41.63% 37.10% 38.98% 125.78% 123.37% 121.50%

W5 33.92% 31.56% 33.01% 114.05% 110.42% 112.09%

W6 23.49% 23.24% 21.40% 93.80% 94.39% 106.34%

W7 17.30% 14.93% 17.00% 81.40% 76.52% 79.33%

(Continued on next page)

78

Table 6-10. (continued)

∆ Dataset#2 ∆ Dataset#3

5 10 20 5 10 20

W8 13.54% 12.53% 11.65% 60.91% 61.63% 67.42%

W9 8.19% 9.78% 8.34% 54.52% 52.73% 50.33%

W10 6.31% 6.47% 4.88% 34.99% 44.35% 40.90%

W11 4.12% 5.91% 6.13% 26.02% 26.94% 34.42%

W12 3.69% 4.28% 4.14% 55.52% 64.81% 57.05%

W13 9.00% 8.98% 9.24% 101.65% 94.27% 100.57%

W14 (50.45)% (55.47)% (57.92)% 38.85% 25.31% 18.00%

W15 (90.14)% (90.06)% (90.36)% (80.48)% (80.50)% (80.84)%

Discussion The results presented in Figure 6-18 indicate that there is not a noticeable change

in the overall performance when the collection structure is changed. This is primarily due to the

fact that the only significant factor involved during feed generation is the comparison of metadata

file timestamps—an operation which is very efficient. Another significant factor involved in the

feed generation process is directory traversal time, which remains almost constant for varying feed

sizes, since the structure remains unchanged. However, increasing the feed sizes to larger sizes

would result in some noticeable variation, since the time for comparing file timestamps would be

increased significantly.

Table 6-10 and Figure 6-19 show a noticeable change in the response times for two-level and three-

level structured workload collections, relative to one-level structured workloads. This change is as

a result of the increase in the traversal times as the hierarchies are increased.

6.2.5 Comparisons

DL scalability (Misra, Seamans, and Thoma, 2008) and stress-testing (Bainbridge et al., 2009) ex-

periments conducted in the past have mostly been focused on specific aspects of DLSes. However,

some comparative studies (Fedora Performance and Scalability Wiki 2012) have been conducted,

specifically aimed at gathering data used to make improvements to tools and services.

The comparative experiments conducted are similar to the work presented by Misra et al.

(Misra, Seamans, and Thoma, 2008). However, as opposed to the ingest-focused benchmarks they

conducted, the results presented in this section involved varying aspects of DLs. In addition, they

were specifically conducted to compare two different approaches—the simple repository design

and DSpace 3.1 (DSpace Wiki 2013).

Methodology

A total of 15 DSpace 3.1 instances were set up corresponding to the 15 experiment workloads. The

community and collection hierarchies corresponding to workload name and setSpecs respectively,

79

First list recordset Last list recordset (N)

10-1

100

101

102

103

10-1

100

101

102

103

10-1

100

101

102

103

T
o
k
en

size=
1
0

T
o
k
en

size=
1
0
0

T
o
k
en

size=
1
0
0
0

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k
3
.2

k
6
.4

k
1
2
.8

k
2
5
.6

k
5
1
.2

k
1
0
2
.4

k
2
0
4
.8

k
4
0
9
.6

k
8
1
9
.2

k
1
6
3
8
.4

k

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k
3
.2

k
6
.4

k
1
2
.8

k
2
5
.6

k
5
1
.2

k
1
0
2
.4

k
2
0
4
.8

k
4
0
9
.6

k
8
1
9
.2

k
1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

Dataset#1 Dataset#2 Dataset#3

Figure 6-17. Impact of varying resumptionToken sizes and collection structure on the OAI-PMH

Data Provider performance.

80

Feed size

101

102

103

104

105

106

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

Feed size = 5 Feed size = 10 Feed size = 20

Figure 6-18. Impact of feed size on feed generation performance

in each of the 15 workloads, were then pre-created; this process was necessitated by the fact that

item ingestion within DSpace can only be performed on existing collections.

The following evaluation aspects were then performed on the DSpace instances and subsequently

compared with performance results from workloads ingested into the 15 file-based reposito-

ries.

� Item ingestion performance

� Search query performance

� OAI-PMH data-provider performance

Results

Figure 6-20 is a comparison of the ingest response times for a potential non-indexed file-based

repository and DSpace; Figure 6-22 show OAI-PMH comparisons; and Figure 6-21 show the com-

parison of search query performance between the two approaches.

Discussion

Figure 6-20 shows that the average time taken to ingest a single item using the proposed ap-

proach is significantly more efficient than DSpace. Furthermore, the ingest time generally remains

constant as the workload is increased. The reason for this is that parsing and repository disk

write are the only ingest phases required to ingest an item into the repository, with parsing and

disk writes accounting for 90% and 10% of the total ingest time respectively. In contrast, the

DSpace ingest phase comprises of an item-level database write phase (org.dspace.content.Item),

81

F
eed

size=
5

F
eed

size=
1
0

F
eed

size=
2
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

W
o
rk

lo
ad

size

log10(Time [ms])

D
ataset#

1
D

ataset#
2

D
ataset#

3

F
ig

u
re

6
-1

9
.

Im
p
act

o
f

stru
ctu

re
o
n

feed
g
en

eratio
n

p
erfo

rm
an

ce

8
2

Item ingestion

101

102

103

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

DSpace Simple repository

Figure 6-20. A plot showing a comparison of ingestion performance between the simple repository

and DSpace.

Full text search

102

104

106

1
0
0

2
0
0

4
0
0

8
0
0

1
.6

k

3
.2

k

6
.4

k

1
2
.8

k

2
5
.6

k

5
1
.2

k

1
0
2
.4

k

2
0
4
.8

k

4
0
9
.6

k

8
1
9
.2

k

1
6
3
8
.4

k

Workload size

lo
g
1
0
(T

im
e

[m
s]

)

DSpace Simple repository

Figure 6-21. A plot showing a comparison of full-text search performance between the simple

repository and DSpace.

83

L
istId

en
tifi

ers

L
istR

eco
rd

s

L
istS

ets

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

W
o
rk

lo
ad

size

log10(Time [ms])

D
S

p
ace

S
im

p
le

rep
o
sito

ry

F
ig

u
re

6
-2

2
.

A
p
lo

t
sh

o
w

in
g

a
co

m
p
ariso

n
o
f

O
A

I-P
M

H
p
erfo

rm
an

ce
b
etw

een
th

e
sim

p
le

rep
o
si-

to
ry

an
d

D
S

p
ace.

8
4

a collection-level database write phase (org.dspace.content.Collection) and an indexing phase

(org.dspace.search.DSIndexer).

Search operations and OAI-PMH data provider operations, shown in Figure 6-21 and Figure 6-22,

are orders of magnitude faster on DSpace in comparison to a file-based store. The response times

on DSpace for these operations are significantly a result of a third-party search service (Apache

Solr) integrated with the application to facilitate fast search. The uneven plots—top and bottom

plots corresponding to DSpace—in Figure 6-22 are as a result of the difference in the structure of

the metadata records from the different collections—the DSpace instances used in the experiments

were configured using an OAI 2.0 data provider that uses a Solr data source by default.

These findings suggest that comparable speeds could be easily attained if the file-based repository

was integrated with a search service. Incidentally, integration of a file-based repository with a

search service was shown to be possible in 6.2.4.

6.2.6 Summary

The results of the performance experiments helped confirm the following:

� The proposed simple repository design yields acceptable performance for relatively medium-

sized unindexed collections.

� The comparative experiments with DSpace indicate that—comparable performance can be

achieved if the simple repository were to be integrated with a third-party search service.

� The majority of operations would be dependent on parsing for unindexed collections.

6.3 Summary

The results from the developer survey (see Section 6.1) have shown that the resulting simple file-

based repository design is easy to work with and could potentially simplify repository management

tasks. Furthermore, the results also indicate that a simple file-based repository design would have

little impact on the extensibility of an application built on top of such a repository design.

The implementation case study collections outlined in Section 5 serve as proof that the proposed

approach is effective; the Bleek and Lloyd case study (see Section 5.1) in particular serves as proof

that system functionalities and features of existing services based on conventional storage solutions

can be replicated using a simple file-based digital object store with little adverse effect.

The scalability performance experiments yielded results that strongly indicate that the performance

would be within generally acceptable limits for medium-sized collections, as evidenced in the

Kiviat plot shown in Figure 6-23. Figure 6-23 also indicates that ingestion performance is signifi-

cantly better than the other services. In addition, the performance degradation for all other services

occurs for collections with larger than 12 800 objects. It was further shown that performance degra-

dation of operations such as information discovery and OAI-PMH associated services are largely

as a result of parsing, a problem that can easily be remedied through the use of an index.

85

Index

Ingest

OAI-PMH

Feed

Search

100

102

104

106

lo
g
1
0
(T

im
e

[m
s]

)

100

200

400

800

1.6k

3.2k

6.4k

12.8k

25.6k

51.2k

102.4k

204.8k

409.6k

819.2k

1638.4k

Figure 6-23. A Kiviat plot showing performance degradation (increase in response times) of eval-

uation aspects—batch indexing, full-text search, OAI-PMH data provider, RSS feed generator and

single item ingestion—relative to increasing workload sizes, with each polar line representing the

15 experiment workloads.

Finally, it was shown that the superior performance results from the comparative experiments done

with DSpace are attributed to the external index service—Apache Solr and Lucene—integrated

with DSpace to facilitate fast search. However, it was shown in the indexing experiments (see

Section 6.2.4) that integration of such an external search service could easily be performed using

the proposed approach.

86

Chapter 7

Conclusions

This research was motivated by the observation that most contemporary DL tools are complex

and thus difficult to manage. The design of simpler and more manageable tools for storage and

management of digital content was subsequently identified as a potential solution. A literature

synthesis of the two-decades long study of DLs suggests that there is now a firm understanding of

the basic underpinning concepts associated with DLSes. This is evident from the varying existing

designs of tools and services specifically tailored to store, manage and preserve digital content.

In Chapter 2, some prominent DL frameworks and software tools were presented to illustrate the

differences in the design approach. Furthermore, the relevant background information was also

presented.

An exploratory study, discussed in Chapter 3, was conducted using Grounded Theory as the over-

arching research method to help derive a set of guiding design principles that would aid the overall

design of simple DLSes. A practical application of the guiding principles, discussed in Chapter 4,

was assessed through the design of a simple repository sub-layer for a typical DLS and the effec-

tiveness of the design subsequently evaluated through the implementation of two real-world case

studies that are discussed in Chapter 5. In addition to assessing the effectiveness of this research

through the case studies implementations, a developer survey (see Section 6.1) was conducted to

assess the simplicity and usefulness of the approach. Finally, a series of performance benchmarks,

discussed in Section 6.2, were conducted to assess the implications of simplifying DLS design

relative to the collection size.

7.1 Research questions

The research questions that were formulated at the onset of this research, as described in Sec-

tion 1.3 were addressed through the exploratory study discussed in Chapter 3; the prototype repos-

itory design described in Chapter 4; the case study implementation presented in Chapter 5; and

through experiments outlined in Chapter 6. In summary, the research questions were resolved as

follows:

87

Is it feasible to implement a DLS based on simple architectures?

The prototype repository design in Chapter 4, together with the real-world case study implemen-

tations discussed in Chapter 5 prove the feasibility of simple designs. This assertion is further

supported by the various Web services that were developed during the developer study described

in Section 6.1.

i How should simplicity for DLS storage and service architectures be defined?

A major outcome, and perhaps a significant contribution of this research revolves around

a principled approach to simple DLS design. This approached offers the advantage of en-

suring that domain and application-specific needs are met. Furthermore, such a principled

design approach could have potential practical application to other applications, other than

DLSes, with distinct domain-specific needs. This outcome was implicitly derived as a direct

manifestation of results from the research questions discussed in Chapter 1.

ii What are the potential implications of simplifying DLS—adverse or otherwise?

The results from the developer survey suggest that the proposed approach does not adversely

impact the overall extensibility of the prototype repository design. This inference is sup-

ported by the varying implementation languages and techniques utilised by the survey partic-

ipants. In addition, only four out of the 12 groups used additional back-end tools to develop

a layered service on top of the simple repository sub-layer used in the survey.

iii What are some of the comparative advantages and disadvantages of simpler architec-

tures to complex ones?

The results from the performance-based experiments indicate that the performance of infor-

mation discovery operations relative to the size of the collection is adversely impacted; the

results show that a collection size exceeding 12 800 items results in an response times ex-

ceeding 10 seconds for certain DLS operations. However, owing to the fact that the affected

operations are information discovery related, this shortcoming can be resolved by integrat-

ing the DLS with an indexing service. Interestingly, ingest-related experiments resulted in

superior response times.

7.2 Future work

The objectives of this research were successfully achieved. However, there are still a number of

potential research directions that could be further explored. The following are some potential future

research areas that could be explored to complement the work conducted in this research.

88

7.2.1 Software packaging

A key issue that has been linked to user adoption and overall usability of DL software is the

installation and configuration process associated to such systems (Körber and Suleman, 2008).

There have been a number of attempts to implement out-of-the-box systems (Maly et al., 2004;

Installing EPrints 3 via apt (Debian/Ubuntu) 2011). However, these have mostly been specific to

particular operating system platforms. A potential research area could thus involve investigating

how to simplify the packing of DL tools and services.

7.2.2 Version control

The integration of digital object version control could significantly complement the preserva-

tion of resources stored in DLs. This is an area that is already currently being explored

(Item Level Versioning 2012). However, there is still a need to further explore how this important

aspect of DL preservation can be simplified.

7.2.3 Reference implementation

The applicability of the design principles was presented in form of a simple prototype repository

design. However, DLSes are multi-faceted applications and it would be interesting to design and

implement a reference implementation composed of components—user interface and service layer

components—designed using this prescribed design approach. This would further set the stage

to conduct user studies aimed at determining whether simplifying the overall design of DLSes

would have an impact on the way users interact with such systems. In addition, this would make

it possible for desirable aspects of DLs, for instance interoperability, to be evaluated as part of a

complete system. Furthermore, a detailed evaluation of the integration of prominent DLS-specific

standards and protocols with such a reference implementation would prove invaluable.

89

Appendix A

Developer survey

This appendix provides extra information related to the developer user study outlined in Section 6.1.

Ethical clearance related information is outlined in A.1 and questionnaire design related informa-

tion in A.2.

A.1 Ethical clearance

The University of Cape Town has assigned ethics clearance authority to Faculty-level Research

Ethics Committees. In addition, permission to access staff and student target populations, as re-

search participants, is assigned to the Executive Director: Human Resource and the Executive

Director: Student Affairs respectively. In a nutshell, the ethics clearance standard operating proce-

dure ensures that;

� Permission to access staff or student populations must be obtained from ED: HR for staff

and ED: Student Affairs for students.

� This process is separate from the ethics clearance process.

� Ethics clearance must be sought from the Faculty-level Research Ethics Committee in the

Faculty closest to the area of research proposed.

� The proposed research may proceed only when both permission to access and ethics clear-

ance have been obtained.

This appendix section provides screenshots of ethical clearance obtained prior to undertaking user

studies. Figure A-1 is a screenshot of permission received from the science faculty to undertake

the user study and Figure A-2 is a screenshot of approval obtained from Student Affairs to use

university students as subjects for the user study.

90

Figure A-1. Screenshot of faculty research ethical clearance

91

Figure A-2. Screenshot of student access ethical clearance

92

Figure A-3. Screenshot showing the WWW survey participation email invitation

A.2 Survey design

This appendix section provides auxiliary information related to the developer survey described in

Section 6.1. Figure A-3 is a screenshot of the email sent to the target population inviting them to

participate in the survey, Figure A-4 is a screenshot of the WWW practical programming assign-

ment assigned to the target population, and Figures A-5, A-5, A-5, A-5 and A-5 are screenshots of

the post-assignment online questionnaire used by survey participants.

93

Figure A-4. Screenshot showing the WWW practical programming assignment question

94

(a)

Figure A-5. Screenshot showing the online LimeSurvey questionnaire (page 1 of 5)95

(b)

Figure A-5. Screenshot showing the online LimeSurvey questionnaire (page 2 of 5)

96

(c)

Figure A-5. Screenshot showing the online LimeSurvey questionnaire (page 3 of 5)

97

(d)

Figure A-5. Screenshot showing the online LimeSurvey questionnaire (page 4 of 5)98

(e)

Figure A-5. Screenshot showing the online LimeSurvey questionnaire (page 5 of 5)

99

Appendix B

Experiment raw data

B.1 Developer Survey results

Table B-1. Developer survey raw data for technologies background

Experience working with DL tools and techniques

<
1

y
ea

r

1
-3

y
ea

rs

3
-6

y
ea

rs

>
6

y
ea

rs

[Database Management Systems]

5 19 1 1

[Database-Driven Applications]

13 11 1 1

[Extensible Markup Language]

12 13 1 0

[Web-Based Application Development]

14 10 1 1

Table B-2. Developer survey raw data for DL concepts background

Participants knowledge of DL concepts

N
o
v
ic

e

E
x
p
er

t

1 2 3 4 5

[Digital Libraries]

10 11 5 0 0

[Digital Preservation]

11 8 7 0 0

[Metadata Standards]

8 9 8 1 0

100

Table B-3. Developer survey raw data for storage usage frequencies

Storage solutions usage frequencies

A
ll

th
e

ti
m

e

M
o
st

ti
m

es

N
o
t

a
t

a
ll

R
a
re

ly

S
o
m

e
ti

m
es

[Cloud-Based Solutions]

0 0 13 8 5

[Database-Based Solutions]

4 7 5 10

[File-Based Solutions]

6 6 1 5 8

Table B-4. Developer survey raw data for storage rankings

Storage solutions preferences

C
lo

u
d

D
a
ta

b
a
se

F
il

e

[Ranking 1]

8 12 6

[Ranking 2]

5 10 11

[Ranking 3]

13 4 9

Reasons for most prefered solution

Table B-5. Developer survey raw data for repository structure

To what degree do you agree with the following

S
tr

o
n

g
A

g
re

e

A
g
re

e

N
eu

tr
a
l

D
is

a
g
re

e

S
tr

o
n

g
D

is
a
g
re

e

[Easy to move the data]

3 15 6 2 0

[No additional softwar required]

5 13 6 2 0

[Easy to process with program]

5 11 4 5 1

[Easy to understand]

2 10 8 6 0

[XML was easy to process]

6 13 1 5 1

[XML was easy to understand]

(Continued on next page)

101

Table B-5. (continued)

To what degree do you agree with the following

S
tr

o
n

g
A

g
re

e

A
g
re

e

N
eu

tr
a
l

D
is

a
g
re

e

S
tr

o
n

g
D

is
a
g
re

e

4 12 7 3 0

Table B-6. Developer survey raw data for data management options

Solution best suited for data operations

B
o
th

D
a
ta

b
a
se

F
il

e
S

to
re

N
ei

th
er

[Copying files]

1 5 19 1

[Deleting metadata records]

6 11 9 0

[Editing metadata records]

6 8 12 0

[Reading metadata records]

5 7 13 1

Table B-7. Developer survey raw data for programming languages

Programming languages used during in assignment

C
#

H
T

M
L

5

J
a
v
a

J
a
v
a
S

cr
ip

t

P
H

P

P
y
th

o
n

2 11 2 17 15 4

Table B-8. Developer survey raw data for additional backend tools

Additional backend tools used in assignment

Y
es

N
o

11 15

102

Table B-9. Developer survey raw data for programming languages

To what degree do you agree with the following

S
tr

o
n

g
A

g
re

e

A
g
re

e

N
eu

tr
a
l

D
is

a
g
re

e

S
tr

o
n

g
D

is
a
g
re

e

[structure was easy to process]

11 3 7 5 0

[metadata was easy to parse]

16 5 3 2 0

[metadata influenced language]

3 6 11 1 5

B.2 Performance benchmarks results

B.2.1 Workload models

Table B-10. Performance experiment raw data for dataset models

Size 1 2 3 Σ

1

W1 0.53 19 — — 19

W2 0.97 25 — — 25

W3 2 42 — — 42

W4 3.9 57 — — 57

W5 7.6 67 — — 67

W6 15 83 — — 83

W7 30 100 — — 100

W8 60 112 — — 112

W9 118 116 — — 116

W10 236 119 — — 119

W11 471 127 — — 127

W12 942 129 — — 129

W13 1945.6 128 — — 128

W14 3788.8 131 — — 131

W15 7577.6 131 — — 131

2

W1 0.78 19 66 — 85

W2 1.4 25 105 — 130

W3 2.7 42 186 — 228

W4 4.9 57 264 — 321

W5 9.2 67 420 — 487

W6 17 83 551 — 634

W7 33 100 771 — 871

W8 64 112 1071 — 1183

W9 123 116 1314 — 1430

(Continued on next page)

103

Table B-10. (continued)

Size 1 2 3 Σ

W10 243 119 1687 1 1807

W11 481 127 2058 — 2185

W12 957 129 2400 — 2529

W13 1945.6 128 2747 — 2875

W14 3891.2 131 3093 1 3225

W15 7680 131 3457 1 3589

3

W1 1.2 19 66 96 181

W2 2.1 25 105 174 304

W3 4 42 186 331 559

W4 7.2 57 264 585 906

W5 14 67 420 1035 1522

W6 24 83 551 1736 2370

W7 44 100 771 2854 3725

W8 80 112 1071 4499 5682

W9 147 116 1314 6612 8042

W10 277 119 1687 9689 11 495

W11 526 127 2059 13 335 15 521

W12 1016 129 2401 18 012 20 542

W13 2048 128 2748 23 664 26 540

W14 3993.6 131 3094 30 177 33 402

W15 7782.4 131 3460 37 357 40 948

B.2.2 Ingestion

Table B-11. Performance experiment raw data for ingestion

1 2 3 4 5

1 Phase = Overall

W1 289.64 2.83 10.29 2.76 3.28

W2 53.66 2.79 2.91 14.28 2.8

W3 47.44 2.77 2.77 2.84 2.77

W4 34.32 2.77 2.76 2.79 2.81

W5 27.63 2.79 2.92 2.78 2.87

W6 1418.27 2.76 2.78 2.8 2.76

W7 48.34 4.52 2.9 2.92 2.99

W8 60.58 2.78 2.8 2.76 2.85

W9 76.6 2.78 2.78 2.76 2.86

W10 247.31 2.99 2.84 2.87 2.85

W11 41.79 2.97 3.05 3 2.8

W12 64.93 2.9 5.5 4.53 2.86

W13 52.42 3.04 3.08 2.77 2.77

W14 33 2.81 2.76 2.97 2.77

W15 56.96 2.79 2.81 2.93 3.21

1 Phase = Parsing

W1 242.19 2.67 3.63 2.64 3.16

W2 2.7 2.67 2.78 14.14 2.68

W3 2.71 2.65 2.65 2.72 2.65

(Continued on next page)

104

Table B-11. (continued)

1 2 3 4 5

W4 2.65 2.65 2.64 2.67 2.69

W5 2.66 2.64 2.79 2.66 2.75

W6 2.65 2.64 2.66 2.68 2.64

W7 2.7 4.39 2.78 2.79 2.84

W8 2.68 2.66 2.67 2.64 2.73

W9 2.68 2.66 2.66 2.64 2.74

W10 2.69 2.87 2.72 2.72 2.72

W11 3.04 2.82 2.91 2.85 2.68

W12 2.7 2.77 5.33 4.39 2.71

W13 2.72 2.9 2.92 2.65 2.65

W14 2.67 2.68 2.64 2.84 2.64

W15 2.83 2.66 2.68 2.8 3.06

Phase = Disk Write

W1 47.44 0.16 6.66 0.12 0.12

W2 50.96 0.12 0.14 0.13 0.12

W3 44.73 0.12 0.12 0.12 0.12

W4 31.66 0.12 0.12 0.12 0.12

W5 24.97 0.15 0.13 0.12 0.13

W6 1415.62 0.12 0.12 0.12 0.12

W7 45.64 0.12 0.12 0.14 0.14

W8 57.9 0.12 0.13 0.12 0.13

W9 73.92 0.12 0.12 0.12 0.12

W10 244.61 0.12 0.12 0.14 0.13

W11 38.75 0.15 0.14 0.14 0.13

W12 62.22 0.13 0.18 0.14 0.15

W13 49.7 0.15 0.16 0.12 0.13

W14 30.34 0.13 0.12 0.13 0.13

W15 54.13 0.13 0.13 0.13 0.15

2 Phase = Overall

W1 98.12 2.97 2.94 7.3 3.38

W2 90.01 2.82 11.69 3 2.85

W3 38.52 2.84 2.78 3.02 2.83

W4 75.7 2.77 7.53 3 3.04

W5 43.22 2.77 3.12 2.76 2.8

W6 52.64 2.78 2.75 3.24 2.82

W7 83.54 2.79 2.78 2.84 2.84

W8 52.18 2.79 2.79 2.77 2.85

W9 1652.69 2.79 2.76 2.97 2.9

W10 231.19 2.77 2.8 2.81 2.8

W11 74.39 2.82 2.82 2.78 2.83

W12 84.57 3.09 2.82 2.83 3.09

W13 121.48 4.02 2.92 2.79 2.79

W14 108.62 2.74 2.81 2.96 2.9

W15 77.69 3.14 2.77 3.1 2.8

2 Phase = Parsing

W1 2.7 2.83 2.74 7.17 3.26

W2 2.71 2.7 11.54 2.87 2.72

W3 2.89 2.72 2.66 2.87 2.71

W4 2.77 2.65 7.39 2.86 2.9

W5 2.76 2.65 2.97 2.64 2.68

W6 2.68 2.66 2.64 3.1 2.7

W7 2.67 2.68 2.67 2.72 2.72

(Continued on next page)

105

Table B-11. (continued)

1 2 3 4 5

W8 2.99 2.67 2.67 2.65 2.72

W9 2.64 2.67 2.64 2.79 2.78

W10 2.66 2.65 2.68 2.69 2.68

W11 2.68 2.7 2.65 2.66 2.71

W12 2.97 2.94 2.7 2.7 2.95

W13 2.79 3.89 2.8 2.67 2.67

W14 2.73 2.62 2.69 2.83 2.77

W15 2.66 2.98 2.64 2.97 2.67

Phase = Disk Write

W1 95.42 0.14 0.2 0.14 0.13

W2 87.29 0.12 0.15 0.12 0.13

W3 35.64 0.12 0.13 0.15 0.12

W4 72.93 0.12 0.14 0.14 0.13

W5 40.46 0.12 0.15 0.12 0.12

W6 49.96 0.12 0.12 0.14 0.12

W7 80.88 0.12 0.12 0.12 0.12

W8 49.18 0.12 0.12 0.12 0.13

W9 1650.05 0.12 0.12 0.18 0.12

W10 228.53 0.12 0.12 0.12 0.12

W11 71.71 0.12 0.16 0.12 0.12

W12 81.6 0.15 0.12 0.13 0.14

W13 118.68 0.13 0.13 0.13 0.12

W14 105.88 0.12 0.12 0.13 0.12

W15 75.02 0.15 0.12 0.13 0.13

3 Phase = Overall

W1 100.79 3.03 3.2 7.43 2.83

W2 48.85 6.8 3 2.78 3.51

W3 62.4 2.78 2.81 3.14 3.05

W4 67.49 2.86 2.86 2.86 2.77

W5 32.98 3.03 2.92 2.84 2.96

W6 63.31 2.8 2.8 3.05 2.78

W7 93.01 2.93 2.76 3.07 2.82

W8 62.29 2.85 2.93 2.87 2.79

W9 67.74 2.8 3.03 3 10.96

W10 81.61 3.06 2.79 2.82 2.84

W11 75.08 2.97 2.78 2.86 3.17

W12 108.41 2.76 3 2.98 2.75

W13 358.58 2.77 2.75 2.77 2.94

W14 80.5 2.76 2.82 2.78 2.75

W15 106.17 2.79 2.85 2.85 2.79

3 Phase = Parsing

W1 13.55 2.9 3.05 7.3 2.69

W2 3.24 6.6 2.86 2.66 3.39

W3 2.65 2.65 2.69 2.99 2.91

W4 2.72 2.73 2.74 2.74 2.65

W5 2.7 2.89 2.79 2.72 2.83

W6 2.86 2.67 2.68 2.9 2.65

W7 2.66 2.72 2.64 2.94 2.7

W8 2.66 2.68 2.76 2.73 2.68

W9 2.66 2.68 2.89 2.85 2.82

W10 2.67 2.92 2.67 2.7 2.71

W11 2.7 2.82 2.66 2.74 3.03

(Continued on next page)

106

Table B-11. (continued)

1 2 3 4 5

W12 2.86 2.64 2.86 2.85 2.63

W13 2.78 2.65 2.63 2.65 2.82

W14 2.67 2.64 2.7 2.66 2.63

W15 2.67 2.67 2.73 2.73 2.64

Phase = Disk Write

W1 87.24 0.14 0.14 0.13 0.14

W2 45.61 0.2 0.14 0.12 0.12

W3 59.75 0.12 0.12 0.15 0.14

W4 64.78 0.12 0.12 0.13 0.12

W5 30.28 0.14 0.13 0.12 0.13

W6 60.45 0.13 0.12 0.15 0.12

W7 90.34 0.21 0.12 0.13 0.12

W8 59.64 0.17 0.17 0.15 0.12

W9 65.09 0.12 0.14 0.14 8.14

W10 78.94 0.14 0.12 0.12 0.13

W11 72.39 0.15 0.12 0.12 0.15

W12 105.54 0.12 0.14 0.13 0.12

W13 355.8 0.12 0.12 0.12 0.12

W14 77.83 0.12 0.12 0.12 0.12

W15 103.5 0.12 0.12 0.12 0.14

B.2.3 Search

Table B-12. Performance experiment raw data for search

1 2 3 4 5

1 Phase = Overall

W1 195.18 24.62 24.63 24.64 24.77

W2 282.11 47.93 47.94 47.63 47.99

W3 404.63 97.67 97.15 97.24 97.48

W4 1170.46 191.64 191.56 192.26 192.14

W5 2677.09 387.17 387.27 386.95 386.57

W6 2936.71 768.24 768.21 771.62 765.32

W7 6624.93 1544.51 1524.79 1529.03 1525.89

W8 43 226 3072.92 3059.75 3116.66 3123.16

W9 137 444.38 6239.22 6154.6 6144.61 6150.45

W10 318 844.87 12 403.6 12 422.68 12 710.26 12 411.71

W11 780 773.27 25 409.49 25 141.06 25 175.92 24 708.49

W12 1 622 021.39 49 853.95 49 048.52 49 161.42 49 141.91

W13 3 875 299.14 104 027.86 99 129.04 99 040.29 98 872.15

W14 8 933 491.31 7 335 941.65 7 416 207.84 7 350 024.06 7 358 842.46

W15 21 932 576.11 18 306 767.28 18 408 131.83 19 536 419.13 18 407 536.35

1 Phase = Parsing

W1 79.75 9.51 9.44 9.47 9.56

W2 147.72 18.79 18.69 18.54 18.77

W3 224.98 38.35 37.76 37.83 38.02

W4 582.86 75.7 75.76 75.73 75.61

W5 1305.56 153.27 152.39 151.77 152.33

(Continued on next page)

107

Table B-12. (continued)

1 2 3 4 5

W6 1791.52 304.51 304.46 305.47 301.87

W7 4407.16 606.79 601.31 602.4 600.66

W8 38 438 1216.69 1204.56 1233.3 1234.78

W9 131 226.89 2486.87 2447.74 2441.93 2440.03

W10 306 332.31 4960.09 4942.19 4976 4961

W11 757 748.29 9989.67 9934.02 9890.42 9848.33

W12 1 558 213.23 19 602.24 19 520.14 19 575.47 19 487.99

W13 3 721 310.45 40 668.23 39 724.13 39 670.54 39 775.52

W14 8 552 306.79 7 021 045.27 7 085 465.93 7 019 735.31 7 030 185.89

W15 20 686 750.58 17 008 969.14 17 081 428.81 18 163 715.62 17 084 730.98

Phase = XPath

W1 21.87 11.12 11.21 11.21 11.23

W2 45.57 21.77 21.85 21.77 21.82

W3 95.19 44.72 44.94 44.9 45.01

W4 185.89 88.64 88.49 89.1 88.96

W5 374.74 181.03 181.19 181.41 180.6

W6 756.94 360.08 359.64 360.86 359.12

W7 1510.18 728.33 716.87 720.85 717.06

W8 2984.49 1444.86 1444.16 1464.8 1470.6

W9 4194.45 2916.37 2884.35 2879.51 2890.78

W10 8128.19 5798.03 5826.67 5850.69 5813.13

W11 15 524.59 11 644.32 11 667.39 11 615.07 11 588.4

W12 43 710.53 23 137.13 23 082.77 23 058 23 104.57

W13 79 438.77 46 074.33 46 116.43 46 116.66 45 968.05

W14 143 938.7 179 589.99 179 913.71 179 929.56 179 977.18

W15 280 066.58 354 841.74 353 939.2 314 975.65 356 153.99

Phase = Traversal

W1 93.56 3.99 3.99 3.96 3.98

W2 88.82 7.37 7.41 7.32 7.4

W3 84.47 14.6 14.45 14.51 14.44

W4 401.72 27.3 27.32 27.43 27.57

W5 996.79 52.87 53.68 53.77 53.64

W6 388.25 103.65 104.1 105.29 104.33

W7 707.59 209.4 206.61 205.78 208.17

W8 1803.51 411.36 411.03 418.56 417.78

W9 2023.03 835.97 822.51 823.17 819.63

W10 4384.37 1645.49 1653.81 1883.57 1637.59

W11 7500.4 3775.5 3539.65 3670.43 3271.76

W12 20 097.64 7114.59 6445.61 6527.95 6549.34

W13 74 549.92 17 285.3 13 288.48 13 253.08 13 128.59

W14 237 245.82 135 306.39 150 828.19 150 359.2 148 679.4

W15 965 758.95 942 956.4 972 763.82 1 057 727.86 966 651.38

2 Phase = Overall

W1 256.83 27.3 27.22 27.21 27.18

W2 1611.77 52.18 51.75 51.94 51.77

W3 1339.74 106.69 105.88 105.45 105.49

W4 1808.64 204.84 204.56 203.99 202.77

W5 3902.07 406.19 406.43 405.94 406.79

W6 6101.84 799.44 792.39 793.53 795.93

W7 10 027.94 1575.02 1572.9 1579.31 1569.4

W8 18 524.15 3134.83 3136.95 3132.46 3128.85

W9 33 029.93 6229.91 6218.97 6202.27 6241.36

(Continued on next page)

108

Table B-12. (continued)

1 2 3 4 5

W10 89 834.7 12 850.96 12 395.74 12 432.91 12 395.91

W11 198 638.61 25 524.99 24 809.76 24 764.96 24 832.72

W12 659 394.2 52 176.44 49 558.25 49 441.72 49 273.51

W13 1 371 705.38 107 911.19 99 960.16 99 375.28 99 734.05

W14 3 790 555.62 3 454 981.67 3 461 207.67 3 455 124.86 3 464 561.81

W15 11 704 076.22 10 700 810.89 11 717 518.55 10 969 375.79 10 694 511.63

2 Phase = Parsing

W1 64.78 9.59 9.52 9.5 9.45

W2 407.09 18.71 18.43 18.48 18.42

W3 558.3 38.49 38.34 38.03 38.09

W4 720.49 76.97 75.75 75.82 75.41

W5 1827.85 154.26 154.03 153.12 153.35

W6 3245.83 304.63 305.04 305.53 302.84

W7 5586.71 613.66 612.4 617.38 608.2

W8 10 054.6 1231.14 1226.16 1228.44 1223.14

W9 19 059.3 2465.62 2446.35 2448.87 2465.2

W10 62 362.28 4938.41 4896.42 4914.15 4915.12

W11 151 842.75 9932.74 9866.18 9817.9 9844.75

W12 575 706.01 19 957.37 19 776.84 19 678.71 19 606.73

W13 1 219 740.23 40 128.09 39 998.58 39 794.58 39 929.06

W14 3 485 885.31 3 164 139.22 3 170 847.95 3 163 687.76 3 173 643.79

W15 11 122 506.05 10 116 372.78 11 224 523.28 10 404 928.25 10 113 103.48

Phase = XPath

W1 22.58 11.23 11.21 11.23 11.25

W2 44.86 21.91 21.83 21.98 21.89

W3 92.3 45.63 45.64 45.66 45.59

W4 187.4 89.64 90.4 90.03 89.53

W5 372.79 181.44 181.39 181.76 182.28

W6 751.2 365.47 359.51 360.5 365.22

W7 1493.16 720.76 718.19 719.69 717.63

W8 3025.15 1444.49 1448.88 1442.75 1446.39

W9 6015.72 2883.11 2885.6 2876.77 2894.64

W10 11 990.97 5756.07 5764.56 5789.81 5771.21

W11 24 068.74 11 511.22 11 552.84 11 556.24 11 567.42

W12 47 408.32 23 084.04 23 087.85 23 083.97 23 036.41

W13 95 045.1 46 435.26 46 272.05 46 154.37 46 411.89

W14 187 891.87 189 383.56 188 677.4 189 199 188 831.15

W15 364 615.28 374 103.6 303 449.81 355 344.02 371 536.61

Phase = Traversal

W1 169.48 6.48 6.49 6.47 6.49

W2 1159.83 11.55 11.5 11.48 11.45

W3 689.15 22.57 21.89 21.76 21.81

W4 900.75 38.23 38.41 38.14 37.83

W5 1701.42 70.49 71.01 71.06 71.16

W6 2104.81 129.34 127.84 127.51 127.88

W7 2948.07 240.6 242.31 242.24 243.57

W8 5444.4 459.2 461.92 461.27 459.32

W9 7954.9 881.18 887.02 876.63 881.52

W10 15 481.45 2156.48 1734.76 1728.96 1709.59

W11 22 727.13 4081.03 3390.75 3390.82 3420.55

W12 36 279.87 9135.02 6693.56 6679.04 6630.37

W13 56 920.04 21 347.84 13 689.52 13 426.33 13 393.1

(Continued on next page)

109

Table B-12. (continued)

1 2 3 4 5

W14 116 778.44 101 458.88 101 682.32 102 238.11 102 086.87

W15 216 954.89 210 334.51 189 545.45 209 103.52 209 871.54

3 Phase = Overall

W1 298.72 30.51 30.43 30.78 30.3

W2 1783.19 57.75 57.3 57.72 57.39

W3 1755.77 116.65 115.88 115.68 116.26

W4 3995.3 225.15 223.51 223.21 225.64

W5 7020.17 443.2 440.42 441.21 440.47

W6 13 871.57 861.75 858.38 860.7 858.09

W7 23 016.81 2225.3 1672.35 1672.81 1672.15

W8 48 331.7 3427.63 3303.07 3304.47 3308.03

W9 70 237.16 6855.59 6484.46 6467.21 6485.01

W10 68 207.45 14 348.67 12 816.83 12 805.15 12 806.8

W11 188 772.37 29 646.99 25 382.97 25 427.95 25 524.33

W12 399 812.99 64 790.77 50 586.88 50 537.15 50 532.63

W13 692 391.6 183 192.13 102 811.77 100 788.36 100 336.3

W14 1 449 066.95 1 355 233.19 1 367 962.81 1 366 005.77 1 359 123.36

W15 3 377 263.84 3 133 229.84 3 120 101.94 3 123 345.38 3 124 346.77

3 Phase = Parsing

W1 50.01 9.52 9.45 9.49 9.38

W2 369.59 18.44 18.22 18.32 18.33

W3 648.88 38.08 37.48 37.49 37.64

W4 1322.62 75.79 74.19 74.54 75.17

W5 2599.35 151.77 150.2 150.33 150.37

W6 5170.64 302.96 300.13 300.86 299.18

W7 9530.53 610.75 602.49 600.83 596.33

W8 19 576.72 1229.89 1212.82 1215.16 1215.3

W9 31 131.14 2468.01 2437.99 2423.69 2432.96

W10 32 769.04 5074.6 4895.8 4897.57 4887.42

W11 90 253.66 10 094.84 9856.98 9874.35 10 010.76

W12 211 274.05 20 576.71 19 861.06 19 851.95 19 885.1

W13 413 092.3 43 381.81 39 936.26 39 796.42 39 657.27

W14 1 000 349.19 922 768.17 931 480.33 930 961.2 923 140.54

W15 2 590 911.01 2 366 361.88 2 353 697.22 2 357 864.22 2 359 454.83

Phase = XPath

W1 24.17 11.39 11.35 11.58 11.4

W2 45.38 21.96 21.97 21.91 21.91

W3 92.16 45.69 45.6 45.55 45.73

W4 184.61 90.69 90.89 90.35 92.09

W5 370.85 183.13 182.3 182.94 182.38

W6 745.6 367.76 365.38 367.72 367.79

W7 1468.94 725.45 720.38 720.13 730.55

W8 2956.34 1463.02 1452.72 1453 1454.57

W9 5967.63 2914.94 2903.01 2899.05 2899.12

W10 12 103.48 5956.06 5791.48 5784.85 5797.43

W11 23 891.75 11 726.21 11 555.66 11 538.96 11 534.16

W12 47 855.91 23 801.63 23 164.45 23 110.91 23 033.53

W13 96 062.05 50 340.98 46 426.84 46 306.68 46 206.68

W14 191 225.21 191 918.16 192 719.44 191 766.13 191 808.71

W15 384 410.01 385 169.63 384 806.44 384 357.25 385 044.03

Phase = Traversal

W1 224.55 9.6 9.63 9.71 9.52

(Continued on next page)

110

Table B-12. (continued)

1 2 3 4 5

W2 1368.22 17.34 17.11 17.49 17.15

W3 1014.73 32.87 32.79 32.64 32.89

W4 2488.07 58.68 58.44 58.31 58.39

W5 4049.98 108.3 107.92 107.94 107.72

W6 7955.34 191.03 192.87 192.12 191.12

W7 12 017.35 889.1 349.49 351.85 345.27

W8 25 798.63 734.72 637.53 636.31 638.16

W9 33 138.39 1472.64 1143.45 1144.48 1152.93

W10 23 334.93 3318 2129.55 2122.74 2121.95

W11 74 626.97 7825.95 3970.33 4014.64 3979.41

W12 140 683.04 20 412.43 7561.38 7574.28 7614.01

W13 183 237.25 89 469.33 16 448.67 14 685.25 14 472.35

W14 257 492.56 240 546.86 243 763.03 243 278.44 244 174.11

W15 401 942.83 381 698.33 381 598.29 381 123.91 379 847.91

B.2.4 OAI-PMH data provider

Table B-13. Performance experiment raw data for OAI-PMH

1 2 3 4 5

1 Verb = GetRecord

W1 0.01 0.01 0.01 0.01 0.01

W2 0.01 0.01 0.01 0.01 0.01

W3 0.02 0.02 0.02 0.01 0.02

W4 0.02 0.02 0.02 0.02 0.02

W5 0.04 0.02 0.03 0.03 0.03

W6 0.05 0.05 0.05 0.05 0.05

W7 0.08 0.08 0.08 0.09 0.08

W8 0.16 0.16 0.16 0.16 0.15

W9 0.3 0.3 0.3 0.31 0.3

W10 0.61 0.6 0.6 0.59 0.6

W11 1.2 1.21 1.2 1.22 1.2

W12 2.47 2.46 2.46 2.45 2.47

W13 4.9 4.92 4.93 4.94 4.87

W14 22.81 21.11 10.86 10.72 10.82

W15 608.6 673.77 611.09 662.52 608.11

1 Verb = ListIdentifiers

W1 0.01 0.01 0.02 0.01 0.01

W2 0.03 0.03 0.03 0.02 0.03

W3 0.06 0.07 0.06 0.06 0.06

W4 0.17 0.17 0.17 0.18 0.17

W5 0.4 0.39 0.39 0.4 0.4

W6 0.77 0.77 0.77 0.77 0.77

W7 1.53 1.54 1.53 1.53 1.54

W8 3.09 3.09 3.09 3.09 3.1

W9 6.25 6.34 6.37 6.37 6.35

W10 13.38 13.51 13.47 13.48 13.68

W11 28.46 29.09 29.21 29.67 29.68

(Continued on next page)

111

Table B-13. (continued)

1 2 3 4 5

W12 64.22 61.86 64.02 64.41 65.6

W13 140.49 133.94 138.99 141.51 143.79

W14 548.08 566.62 567.82 580.47 589.56

W15 1922.89 2035.21 1981.42 2050.59 2081.8

Verb = ListRecords

W1 1.93 0.52 0.49 0.48 0.5

W2 1.11 0.98 0.98 0.99 0.98

W3 2.25 2 2.01 2.01 2.03

W4 6.7 4.12 4.23 4.23 4.22

W5 6.64 5.41 5.54 5.44 5.53

W6 6.55 5.94 5.95 5.95 5.96

W7 7.48 6.73 6.75 6.79 6.76

W8 9.81 8.37 8.45 8.52 8.45

W9 13.45 11.68 12.07 11.93 12.16

W10 20.88 18.9 18.96 19.33 19.23

W11 38.09 33.46 34.95 34.39 35.5

W12 81.16 66.95 69.08 67.75 68.89

W13 210.85 139.72 141.5 146.33 145.58

W14 590.57 590.64 586.45 602.66 615.35

W15 1991.68 1972.84 1937.09 2029.23 2011.34

1 Verb = ListSets

W1 0.01 0 0.01 0.01 0.01

W2 0.01 0.01 0.01 0.01 0.01

W3 0.01 0.01 0.01 0.02 0

W4 0.01 0.02 0.02 0.01 0.01

W5 0.02 0.02 0.02 0.01 0.01

W6 0.03 0.03 0.02 0.03 0.03

W7 0.05 0.04 0.05 0.04 0.04

W8 0.07 0.07 0.07 0.08 0.07

W9 0.13 0.12 0.14 0.13 0.13

W10 0.26 0.25 0.25 0.25 0.24

W11 0.5 0.49 0.5 0.5 0.49

W12 1 0.99 1.01 1 1

W13 2.05 1.99 1.99 2.03 2.02

W14 119.78 116.76 119.58 75.76 11.61

W15 628.31 658.13 638.11 609.18 647.21

2 Verb = GetRecord

W1 0.01 0.01 0.02 0.01 0.01

W2 0.01 0.02 0.01 0.02 0.01

W3 0.02 0.02 0.02 0.02 0.02

W4 0.03 0.03 0.02 0.02 0.03

W5 0.04 0.05 0.04 0.04 0.04

W6 0.07 0.06 0.07 0.07 0.06

W7 0.11 0.12 0.1 0.1 0.1

W8 0.19 0.2 0.2 0.19 0.2

W9 0.35 0.36 0.35 0.36 0.35

W10 0.68 0.68 0.68 0.68 0.68

W11 1.32 1.33 1.32 1.33 1.32

W12 2.66 2.65 2.66 2.63 2.64

W13 5.2 5.24 5.25 5.28 5.24

W14 58.47 57.4 59.49 56.65 57.59

W15 128.98 128 128.28 129.4 130.34

(Continued on next page)

112

Table B-13. (continued)

1 2 3 4 5

2 Verb = ListIdentifiers

W1 0.02 0.03 0.02 0.03 0.01

W2 0.03 0.03 0.03 0.04 0.03

W3 0.07 0.07 0.07 0.07 0.07

W4 0.2 0.18 0.19 0.19 0.19

W5 0.41 0.42 0.42 0.42 0.42

W6 0.8 0.8 0.8 0.81 0.81

W7 1.57 1.59 1.59 1.58 1.59

W8 3.16 3.21 3.18 3.24 3.19

W9 6.51 6.47 6.64 6.53 6.64

W10 13.45 13.82 13.68 14.14 13.61

W11 29.37 29.98 29.87 30.2 30.84

W12 64.93 66.66 67.39 67.9 66.02

W13 141.48 142.09 143.05 146.62 146.72

W14 432.59 470.88 435.17 457.24 452.32

W15 973.71 1052.02 1049.53 1193.01 1130.72

Verb = ListRecords

W1 1.94 0.55 0.49 0.49 0.49

W2 2.41 0.99 1 0.99 0.99

W3 3.23 2.01 2.03 2.03 2.03

W4 5.89 4.17 4.25 4.27 4.27

W5 7.95 5.47 5.51 5.51 5.56

W6 9.34 5.99 5.97 5.99 5.99

W7 10.64 6.8 6.81 6.78 6.82

W8 12.03 8.49 8.59 8.62 8.65

W9 18.16 11.97 12.28 12.2 12.29

W10 29.66 19.1 19.63 19.48 19.94

W11 48.69 34.63 36.19 35.24 35.68

W12 90.59 69.82 71.94 72.58 72.27

W13 185.46 147.83 152.61 148.73 156.54

W14 445.35 425.54 428.54 453.39 471.71

W15 1005.01 954.68 977.41 951.68 1060.94

2 Verb = ListSets

W1 0.02 0.01 0.01 0.01 0.01

W2 0.01 0.02 0.01 0.01 0.02

W3 0.02 0.03 0.02 0.01 0.02

W4 0.03 0.02 0.03 0.02 0.03

W5 0.04 0.04 0.04 0.03 0.04

W6 0.06 0.05 0.06 0.04 0.06

W7 0.08 0.08 0.08 0.08 0.08

W8 0.13 0.12 0.12 0.13 0.12

W9 0.21 0.2 0.19 0.2 0.2

W10 0.36 0.34 0.34 0.35 0.35

W11 0.64 0.62 0.62 0.62 0.63

W12 1.2 1.19 1.2 1.19 1.2

W13 2.29 2.28 2.28 2.28 2.29

W14 53.84 54.22 55.45 55.19 53.11

W15 121.05 121.63 125.47 126.05 125.03

3 Verb = GetRecord

W1 0.02 0.02 0.02 0.01 0.01

W2 0.02 0.02 0.02 0.02 0.02

W3 0.03 0.02 0.03 0.03 0.02

(Continued on next page)

113

Table B-13. (continued)

1 2 3 4 5

W4 0.05 0.04 0.05 0.04 0.04

W5 0.07 0.07 0.06 0.08 0.07

W6 0.11 0.11 0.1 0.11 0.11

W7 0.19 0.19 0.19 0.19 0.19

W8 0.32 0.33 0.32 0.31 0.33

W9 0.55 0.54 0.55 0.54 0.54

W10 0.97 0.98 1 0.97 0.99

W11 1.75 1.73 1.77 1.75 1.75

W12 3.18 3.2 3.24 3.23 3.19

W13 6.18 6.16 6.28 6.23 6.2

W14 169.94 168.91 172.72 170.87 169.65

W15 258.1 257.12 257.81 258.33 257.43

3 Verb = ListIdentifiers

W1 0.02 0.03 0.03 0.02 0.02

W2 0.04 0.05 0.04 0.04 0.04

W3 0.09 0.08 0.08 0.09 0.08

W4 0.21 0.22 0.22 0.21 0.22

W5 0.47 0.47 0.47 0.47 0.47

W6 0.89 0.9 0.89 0.9 0.9

W7 1.74 1.75 1.74 1.76 1.75

W8 3.44 3.52 3.47 3.55 3.47

W9 6.9 7.25 6.93 7.33 7.02

W10 14.66 15.93 15.26 15.54 14.23

W11 28.77 32.92 29.26 32.33 30.62

W12 56.51 68.71 58.32 70.74 61.98

W13 141.94 155.22 143.46 157.94 148.13

W14 699.98 704.1 716.51 751.32 736.28

W15 1344.34 1342.29 1422.78 1417.14 1419.45

Verb = ListRecords

W1 1.76 0.55 0.49 0.5 0.49

W2 2.44 0.99 1 1 1.01

W3 3.8 2.02 2.06 2.05 2.05

W4 7.5 4.2 4.3 4.28 4.3

W5 9.68 5.57 5.62 5.57 5.6

W6 13.79 6.06 6.13 6.12 6.08

W7 17.99 6.98 7 7.02 7.06

W8 28.05 8.79 9.01 8.93 9.06

W9 34.68 12.43 13.07 12.66 13.17

W10 35.63 19.43 21.16 19.63 21.2

W11 51.59 33.31 40.13 34.63 39.33

W12 327.16 90.23 79.92 65.78 79.21

W13 345.9 147.23 162.49 149.55 168.86

W14 704.08 708.5 732.86 717.09 707.86

W15 1318.5 1349.22 1395.19 1317.7 1398.06

3 Verb = ListSets

W1 0.02 0.02 0.02 0.01 0.02

W2 0.02 0.03 0.02 0.02 0.03

W3 0.03 0.04 0.04 0.03 0.04

W4 0.06 0.05 0.06 0.06 0.05

W5 0.09 0.1 0.08 0.09 0.09

W6 0.15 0.14 0.14 0.14 0.14

W7 0.24 0.23 0.22 0.23 0.22

(Continued on next page)

114

Table B-13. (continued)

1 2 3 4 5

W8 0.39 0.35 0.37 0.36 0.36

W9 0.58 0.56 0.54 0.56 0.55

W10 0.93 0.89 0.89 0.89 0.9

W11 1.51 1.44 1.4 1.4 1.43

W12 2.37 2.37 2.25 2.24 2.25

W13 3.97 3.89 3.79 3.8 3.79

W14 164.09 163.76 161.98 162.7 163.01

W15 254.31 248.24 248.58 249.03 255.68

B.2.5 RSS feed generator

Table B-14. Performance experiment raw data for feed generator

1 2 3 4 5

1 Feed Size = 10

W1 126.19 3.17 3.18 3.14 3.17

W2 100.62 5.74 5.77 5.88 5.79

W3 43.61 11.13 11.2 11.42 11.14

W4 469.96 21.24 21.53 21.36 21.26

W5 859.29 41.32 41.15 40.88 41.21

W6 313.74 80.74 80.42 79.69 79.77

W7 506.46 159.59 159.67 160.05 158.8

W8 1231.32 312.62 314.24 314.61 309.86

W9 1515.71 616.52 620.69 622.15 617.45

W10 2910.32 1244.34 1228.22 1256.9 1238.55

W11 5870.46 2472.77 2492.03 2493.73 2495.1

W12 14 255.93 4968.46 4974.29 4977.62 4931.97

W13 53 507.65 11 726.26 10 422.47 10 124.06 10 226.86

W14 202 099.24 142 956.68 161 814.93 137 669.03 161 639.18

W15 1 494 247.27 1 500 161.56 1 469 962.57 1 501 713.71 1 502 793.11

1 Feed Size = 20

W1 138.92 3.28 3.19 3.24 3.23

W2 77.42 5.88 5.91 5.89 5.83

W3 27.88 11.24 11.4 11.38 11.32

W4 357.03 21.63 21.56 21.26 21.36

W5 857.77 40.9 41.26 41.06 41.08

W6 240.27 80.14 81.29 80.96 80.29

W7 386.42 160 156.6 155.23 157.66

W8 1236.09 317.64 311.38 315.52 312.75

W9 1529.08 631.74 627.75 614.09 623.03

W10 2900.28 1252.91 1264.38 1242.76 1250.69

W11 5595.65 2483.71 2484.81 2509.3 2485.52

W12 12 394.67 5013.73 5046.75 4934.95 5035.25

W13 53 528.61 11 739.9 10 172.96 10 220.42 10 377.97

W14 201 437.4 141 490.54 188 817.35 157 429.21 154 816.67

W15 1 533 403.47 1 508 059.15 1 544 971.51 1 527 422.26 1 527 359.93

1 Feed Size = 5

W1 127.08 3.13 3.14 3.13 3.12

(Continued on next page)

115

Table B-14. (continued)

1 2 3 4 5

W2 90.86 5.65 5.65 5.58 5.58

W3 26.12 11.09 11.07 10.89 10.92

W4 370.71 20.88 21 20.8 20.9

W5 835.61 40.42 40.21 40.08 40.67

W6 245.09 78.21 78.55 79.97 78.7

W7 443.88 156.23 157.47 156.2 156.46

W8 1154.83 310.35 308.62 311.91 308.9

W9 1402.44 617.23 614.15 618.55 617.05

W10 2769.03 1232.68 1242.59 1232.09 1240.65

W11 5389.49 2492.06 2516.53 2513.12 2499.31

W12 12 228.1 5099.98 5143.73 5124.04 5100.76

W13 55 919.46 11 577.68 10 133.54 10 169.61 10 256.72

W14 196 510.51 130 006.86 163 649.38 148 844.43 107 346.73

W15 1 478 308.48 1 503 564.57 1 490 593.58 1 487 541.84 1 533 537.19

2 Feed Size = 10

W1 138.05 5.1 5.17 5.09 5.09

W2 1194.15 8.93 9.03 8.99 8.9

W3 329.83 16.49 16.71 16.7 16.47

W4 845.71 29.22 29.38 29.43 29.05

W5 897.61 54.42 53.29 54.74 54.04

W6 922.91 99.22 98.55 99.06 98.29

W7 2975.19 183.56 183.73 182.9 183.2

W8 3330.95 350.41 354.7 348.97 354

W9 5535.71 678.75 676.52 686.19 677.62

W10 12 093.23 1331.23 1322.53 1304.89 1330.63

W11 15 701.47 2732.23 2632.81 2610.13 2566.53

W12 25 510.35 5207.1 5169.39 5157.89 5167.89

W13 37 315.74 15 069.83 10 313.14 10 439.43 10 495.14

W14 70 906.46 66 104.22 67 309.46 66 774.96 68 797.17

W15 147 629.33 148 021.99 148 232.12 146 836.54 150 915.87

2 Feed Size = 20

W1 138.03 5.14 5.15 5.1 5.12

W2 1170.02 9.12 8.99 9.1 9.06

W3 193.54 16.93 16.8 16.81 17.27

W4 815.18 29.83 30.04 29.63 29.75

W5 751.61 55.15 53.86 54.48 55.04

W6 1195.29 97.88 96.89 98.78 98.19

W7 3061.58 184.07 185.8 183.24 183.37

W8 3244.91 350.23 349.85 350.29 353.35

W9 5677.03 676.34 671.67 673.3 683.49

W10 11 663.83 1310.18 1318.83 1310.02 1316.41

W11 15 558.91 2693.88 2595.82 2624.4 2659.85

W12 25 323.41 5281.32 5226.35 5221.37 5131.74

W13 36 676.55 14 745.34 10 525.26 10 534.32 10 635.81

W14 70 853.44 66 926.09 67 810.83 67 738.64 67 890.5

W15 149 104.71 147 361 148 037.87 147 883.4 145 550.32

2 Feed Size = 5

W1 138.1 5.12 5.13 5.17 5.1

W2 1170.77 8.96 8.9 8.76 8.9

W3 168.03 16.73 16.57 16.82 16.68

W4 319.12 29.54 30.18 29.59 29.08

W5 918.27 54.1 53.6 53.89 54.54

(Continued on next page)

116

Table B-14. (continued)

1 2 3 4 5

W6 1500.26 97.05 96.62 97.83 98.04

W7 3028.7 184.84 182.7 183.83 183.34

W8 3271.64 351.64 355.21 351.43 349.41

W9 5638.15 670.5 671.71 661.58 665.28

W10 12 976.4 1302.61 1316.55 1319.87 1321.11

W11 15 654.11 2668.18 2600.06 2589.62 2576.26

W12 26 935.61 5586.14 5234.13 5202.08 5201.74

W13 38 354.42 14 570.34 10 457.65 10 378.5 10 522.55

W14 70 406.69 67 639.53 67 611.87 69 189.22 67 981.44

W15 157 774.88 149 921.91 146 654.66 149 380.24 147 233.26

3 Feed Size = 10

W1 227.16 8 7.95 7.95 7.87

W2 1199.85 14.33 14.3 14.26 14.33

W3 969.67 26.89 26.97 26.83 27.05

W4 1937.23 48.31 47.15 47.59 47.69

W5 2333.57 87.22 86.06 86.53 86.46

W6 6061.26 156.83 154.71 156.21 155.49

W7 8838.55 289.83 280.72 276.73 279.11

W8 15 344.79 507.16 506.7 506.3 502.32

W9 20 603.1 1030.97 918.62 911.61 921.55

W10 16 659.76 2098.95 1687.14 1687.72 1697.41

W11 54 583.02 3226.84 3121.88 3143.56 3142.4

W12 113 608.72 14 705.97 5995.83 5993.02 6022.88

W13 142 830.32 47 111.96 11 877.22 11 874.57 11 700.95

W14 195 435.08 188 220.19 189 170.24 189 949.34 189 613.38

W15 294 391.01 290 758.45 290 940.07 291 768.1 291 597.21

3 Feed Size = 20

W1 227.17 7.9 7.94 7.97 7.91

W2 1188.05 14.3 14.19 14.23 14.11

W3 993.57 26.96 26.78 26.84 26.77

W4 1715.01 47.8 47.34 47.28 47.64

W5 2502.1 87.43 86.85 87.2 86.98

W6 5818.2 195.92 156.43 157.45 156.03

W7 8442.34 282.05 280.58 283.5 282.76

W8 15 533.77 581.09 508.51 505.6 509.74

W9 20 436.11 996.54 921.23 921.36 914.01

W10 17 864.3 1957.92 1711.33 1690.21 1700.61

W11 54 826.49 3801.89 3203.04 3195.13 3192.61

W12 112 539.22 13 122.7 6114.55 6094.24 6127.1

W13 143 790.28 48 527.87 12 175.79 12 294.47 12 265.56

W14 195 675.02 188 411.75 189 488.64 189 887.72 190 393.39

W15 295 458.87 293 411.15 292 556.64 292 097.53 292 306.8

3 Feed Size = 5

W1 225.99 8.01 7.87 7.87 7.91

W2 1213.55 14.28 13.97 14.1 13.96

W3 970.96 26.78 26.51 26.55 26.54

W4 2076.98 47.4 47.06 47.21 47.05

W5 2347.7 86.68 85.2 87.21 86.36

W6 6590.58 153.31 151.45 155 151.56

W7 8986.77 303.52 277.19 278.18 277.34

W8 15 119.9 506.71 498.84 495.06 494.29

W9 22 839.36 1103.45 894.48 907.59 906.48

(Continued on next page)

117

Table B-14. (continued)

1 2 3 4 5

W10 19 261.25 1717.69 1663.01 1644.83 1653.73

W11 69 834.67 3329.12 3062.89 3119.48 3116.56

W12 130 355.51 13 818.9 5975.06 6051.15 5986.81

W13 157 848.42 49 905.28 11 637.86 11 656.5 11 770.42

W14 218 520.25 192 188.49 191 027.72 189 745.42 190 483.53

W15 328 668.65 298 260.4 292 675.15 291 934.93 291 187.44

118

Bibliography

About Gutenberg (2011). Project Gutenberg. URL: http://www.gutenberg.org/wiki/

Gutenberg:About (visited on Mar. 31, 2013).

Adam, Nabil R., Bharat K. Bhargava, and Yelena Yesha, eds. (1995). Digital Libraries Current

Issues. Vol. 916. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer-Verlag. DOI:

10.1007/BFb0026845.

Apache HTTP Server Version 2.2 (2012). ab - Apache HTTP server benchmarking

tool. The Apache Software Foundation. URL: http://httpd.apache.org/docs/2.2/

programs/ab.html (visited on Feb. 14, 2012).

Apache Solr (2012). The Apache Software Foundation. URL: http://lucene.apache.org/

solr/ (visited on Dec. 23, 2012).

Arms, William Y. (July 1995). “Key Concepts in the Architecture of the Digital Library”. In: D-Lib

Magazine. The Magazine of Digital Library Research 1.1. DOI: 10.1045/july95-arms.

Arms, William Y. (2001). “Libraries, Technology, and People”. In: Digital Libraries. Ed. by

William Y. Arms. 2nd. Cambridge, Massachusetts: The MIT Press. Chap. Chapter 1, pp. 1–20.

Arms, William Y., Christophe Blanchi, and Edward A. Overly (Feb. 1997). “An Architecture for

Information in Digital Libraries”. In: D-Lib Magazine. The Magazine of Digital Library Research

3.2. DOI: 10.1045/february97-arms.

Bainbridge, David et al. (2004). “Dynamic Digital Library Construction and Configuration”. In:

Research and Advanced Technology for Digital Libraries. Ed. by Rachel Heery and Liz Lyon.

Springer Berlin / Heidelberg, pp. 1–13. DOI: 10.1007/978-3-540-30230-8_1.

Bainbridge, David et al. (2009). “Stress-Testing General Purpose Digital Library Software”. In:

Research and Advanced Technology for Digital Libraries. Ed. by Maristella Agosti et al. Springer

Berlin Heidelberg, pp. 203–214. DOI: 10.1007/978-3-642-04346-8_21.

Baldonado, Michelle et al. (1997). “The Stanford Digital Library metadata architecture”. In: Inter-

national Journal on Digital Libraries 1.2, pp. 108–121. DOI: 10.1007/s007990050008.

Beagrie, Neil et al. (2002). Trusted Digital Repositories: Attributes and Responsibilities. An RLG-

OCLC Report. Mountain View, CA: Research Libraries Group. URL: http://www.oclc.org/

119

http://www.gutenberg.org/wiki/Gutenberg:About
http://www.gutenberg.org/wiki/Gutenberg:About
http://dx.doi.org/10.1007/BFb0026845
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://dx.doi.org/10.1045/july95-arms
http://dx.doi.org/10.1045/february97-arms
http://dx.doi.org/10.1007/978-3-540-30230-8_1
http://dx.doi.org/10.1007/978-3-642-04346-8_21
http://dx.doi.org/10.1007/s007990050008
http://www.oclc.org/resources/research/activities/trustedrep/repositories.pdf

resources/research/activities/trustedrep/repositories.pdf (visited on

Sept. 13, 2012).

Berners-Lee, Tim, Roy Fielding, and Larry Masinter (2005). RFC 3986. Uniform Resource Iden-

tifier (URI): Generic Syntax. The Internet Engineering Task Force. URL: http://www.ietf.

org/rfc/rfc3986.txt (visited on Mar. 31, 2013).

Borgman, Christine L, Ingeborg Solvberg, and László Kovács (2002). “Fourth DELOS workshop.

Evaluation of digital libraries: Testbeds, measurements, and metrics”. In: Budapest: Hungarian

Academy of Sciences.

Borthakur, Dhruba (2007). The Hadoop Distributed File System: Architecture and Design.

URL: http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf (visited on

Oct. 25, 2012).

Boyko, Andy et al. (2012). The BagIt File Packaging Format (V0.97). Version 0.97. Internet Engi-

neering Task Force. URL: http://tools.ietf.org/html/draft-kunze-bagit (vis-

ited on Oct. 11, 2012).

Bray, Tim et al. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommen-

dation 26 November 2008. URL: http://www.w3.org/TR/xml (visited on Nov. 19, 2012).

Candela, Leonardo et al. (Mar. 2007). “Setting the Foundations of Digital Libraries. The DE-

LOS Manifesto”. In: D-Lib Magazine. The Magazine of Digital Library Research 13.3/4. DOI:

10.1045/march2007-castelli.

Candela, Leonardo et al. (2008). The DELOS Digital Library Reference Model. Foundations

for Digital Libraries. Version 0.98. DELOS Network of Excellence on Digital Libraries. URL:

http://eprints.port.ac.uk/4104 (visited on Jan. 9, 2012).

Chacon, Scott (2009). Pro Git. Ed. by Tiffany Taylor. 1st. New York: Apress. URL: http://

git-scm.com/book (visited on Oct. 11, 2012).

Conklin, Jeffrey E. and Burgess K.C. Yakemovic (Sept. 1991). “A Process-Oriented Ap-

proach to Design Rationale”. In: Human-Computer Interaction 6.3, pp. 357–391. DOI:

10.1207/s15327051hci0603&4_6.

Crawford, Kaitlyn, Marco Lawrence, and Joanne Marston (2012). School of Rock Art. Univer-

sity of Cape Town. URL: http://pubs.cs.uct.ac.za/honsproj/cgi-bin/view/

2012/crawford_lawrence_marston.zip/index.html (visited on Feb. 14, 2012).

D-Lib Working Group on Digital Library Metrics (1998). URL: http://www.dlib.org/

metrics/public/index.html (visited on Mar. 30, 2013).

DELOS Workshop on the Evaluation of Digital Libraries (2004). URL: http://dlib.ionio.

gr/wp7/workshop2004.html (visited on Mar. 30, 2013).

120

http://www.oclc.org/resources/research/activities/trustedrep/repositories.pdf
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf
http://tools.ietf.org/html/draft-kunze-bagit
http://www.w3.org/TR/xml
http://dx.doi.org/10.1045/march2007-castelli
http://eprints.port.ac.uk/4104
http://git-scm.com/book
http://git-scm.com/book
http://dx.doi.org/10.1207/s15327051hci0603&4_6
http://pubs.cs.uct.ac.za/honsproj/cgi-bin/view/2012/crawford_lawrence_marston.zip/index.html
http://pubs.cs.uct.ac.za/honsproj/cgi-bin/view/2012/crawford_lawrence_marston.zip/index.html
http://www.dlib.org/metrics/public/index.html
http://www.dlib.org/metrics/public/index.html
http://dlib.ionio.gr/wp7/workshop2004.html
http://dlib.ionio.gr/wp7/workshop2004.html

Dempsey, Lorcan and Stuart L. Weibel (July 1996). “The Warwick Metadata Workshop: A Frame-

work for the Deployment of Resource Description”. In: D-Lib Magazine. The Magazine of Digital

Library Research 2.7/8. DOI: 10.1045/july96-weibel.

Don, Katherine (2006). Greenstone3: A modular digital library. URL: http://www.

greenstone.org/docs/greenstone3/manual.pdf (visited on Apr. 1, 2013).

Draft Standard for Learning Object Metadata (2002). Final Draft Standard. Institute of Electri-

cal and Electronics Engineers. URL: http://ltsc.ieee.org/wg12/files/LOM_1484_

12_1_v1_Final_Draft.pdf (visited on Sept. 13, 2012).

DSpace Wiki (2013). DSpace 3.x Documentation. DuraSpace. URL: https://wiki.

duraspace.org/display/DSDOC3x/DSpace+3.x+Documentation (visited on

Mar. 30, 2013).

Dublin Core Metadata Element Set, Version 1.1 (1999). Dublin Core Metadata Initiative. URL:

http://www.dublincore.org/documents/dces (visited on Jan. 9, 2012).

Elmasri, Ramez and Shamkant B. Navathe (2008). “The Relational Data Model and Relational

Database Constraints”. In: Fundamentals Of Database Systems, 5/E. Ed. by Matt Goldstein. 6th.

Pearson Education Inc. Chap. Chapter 3.

ETD-db: Home (2012). URL: http://scholar.lib.vt.edu/ETD-db/index.shtml

(visited on Oct. 29, 2012).

Fedora Performance and Scalability Wiki (2012). URL: http://fedora.fiz-karlsruhe.

de/docs (visited on Mar. 29, 2013).

Fox, Edward A. et al. (Apr. 1995). “Digital Libraries”. In: Communications of the ACM 38.4,

pp. 22–28. DOI: 10.1145/205323.205325.

Frew, James et al. (1998). “The Alexandria Digital Library Architecture”. In: Research and

Advanced Technology for Digital Libraries. Springer Berlin Heidelberg, pp. 61–73. DOI:

10.1007/3-540-49653-X_5.

Fuhr, Norbert et al. (2001). “Digital Libraries: A Generic Classification and Evaluation

Scheme”. In: Research and Advanced Technology for Digital Libraries. Ed. by Panos

Constantopoulos and Ingeborg T. Slvberg. Springer Berlin Heidelberg, pp. 187–199. DOI:

10.1007/3-540-44796-2_17.

Fuhr, Norbert et al. (2007). “Evaluation of digital libraries”. In: International Journal on Digital

Libraries 8.1, pp. 21–38. DOI: 10.1007/s00799-007-0011-z.

Fulmer, Jeff (2012). Siege Home. URL: http://www.joedog.org/siege-home/ (visited

on Dec. 23, 2012).

Gantz, John F. et al. (2008). The Diverse and Exploding Digital Universe. An Updated Forecast of

Worldwide Information Growth Through 2011. URL: http://www.emc.com/collateral/

121

http://dx.doi.org/10.1045/july96-weibel
http://www.greenstone.org/docs/greenstone3/manual.pdf
http://www.greenstone.org/docs/greenstone3/manual.pdf
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf
https://wiki.duraspace.org/display/DSDOC3x/DSpace+3.x+Documentation
https://wiki.duraspace.org/display/DSDOC3x/DSpace+3.x+Documentation
http://www.dublincore.org/documents/dces
http://scholar.lib.vt.edu/ETD-db/index.shtml
http://fedora.fiz-karlsruhe.de/docs
http://fedora.fiz-karlsruhe.de/docs
http://dx.doi.org/10.1145/205323.205325
http://dx.doi.org/10.1007/3-540-49653-X_5
http://dx.doi.org/10.1007/3-540-44796-2_17
http://dx.doi.org/10.1007/s00799-007-0011-z
http://www.joedog.org/siege-home/
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf

analyst-reports/diverse-exploding-digital-universe.pdf (visited on

Oct. 27, 2012).

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung (Oct. 2003). “The Google

File System”. In: ACM SIGOPS Operating Systems Review 37.5, pp. 29–43. DOI:

10.1145/1165389.945450.

Gilbert, Seth and Nancy Lynch (June 2002). “Brewer’s Conjecture and the Feasibility of Consis-

tent, Available, Partition-Tolerant Web Services”. In: ACM SIGACT News 33.2, pp. 51–59. DOI:

10.1145/564585.564601.

Git for Computer Scientists (2010). Tv’s cobweb. URL: http://eagain.net/articles/

git-for-computer-scientists/index.html (visited on Oct. 11, 2012).

Glaser, Barney (1978). Theoretical sensitivity: Advances in the methodology of grounded theory.

Mill Valley, CA: Sociology Press.

Glaser, Barney (1992). Basics of Grounded Theory Analysis. Mill Valley, CA: Sociology Press.

Gohr, Andreas (2004). DokuWiki. It’s better when it’s simpler. URL: https://www.dokuwiki.

org/dokuwiki (visited on Oct. 11, 2012).

Gonçalves, Marcos André, Robert K. France, and Edward A. Fox (2001). “MARIAN : Flexible

Interoperability for Federated Digital Libraries”. In: Proceedings of the 5th European Conference

on Research and Advanced Technology for Digital Libraries. Ed. by Panos Constantopoulos and

Ingeborg Sølvberg. London, United Kingdom. DOI: 10.1007/3-540-44796-2_16.

Gonçalves, Marcos André et al. (Apr. 2004). “Streams, Structures, Spaces, Scenarios, Societies

(5s): A Formal Model for Digital Libraries”. In: ACM Transactions on Information Systems 22.2,

pp. 270–312. DOI: 10.1145/984321.984325.

Griffin, Stephen M. (July 1998). “NSF/DARPA/NASA Digital Libraries Initiative”. In: D-Lib Mag-

azine. The Magazine of Digital Library Research 4.7/8. DOI: 10.1045/july98-griffin.

Gutteridge, Christopher (2002). “GNU EPrints 2 Overview”. In: 11th Panhellenic Academic Li-

braries Conference. URL: http://eprints.soton.ac.uk/256840/ (visited on Sept. 13,

2012).

Hammer, Stuart and Miles Robinson (2011). Bonolo. University of Cape Town. URL: http://

pubs.cs.uct.ac.za/honsproj/cgi-bin/view/2011/hammar_robinson.zip/

Website/index.html (visited on Feb. 14, 2012).

Hart, Michael (1992). Project Gutenberg. The History and Philosophy of Project Guten-

berg. URL: http://www.gutenberg.org/wiki/Gutenberg:The_History_and_

Philosophy_of_Project_Gutenberg_by_Michael_Hart (visited on Jan. 9, 2012).

Hillmann, Diane (2005). Using Dublin Core. URL: http://dublincore.org/

documents/usageguide (visited on Oct. 31, 2012).

122

http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://dx.doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1145/564585.564601
http://eagain.net/articles/git-for-computer-scientists/index.html
http://eagain.net/articles/git-for-computer-scientists/index.html
https://www.dokuwiki.org/dokuwiki
https://www.dokuwiki.org/dokuwiki
http://dx.doi.org/10.1007/3-540-44796-2_16
http://dx.doi.org/10.1145/984321.984325
http://dx.doi.org/10.1045/july98-griffin
http://eprints.soton.ac.uk/256840/
http://pubs.cs.uct.ac.za/honsproj/cgi-bin/view/2011/hammar_robinson.zip/Website/index.html
http://pubs.cs.uct.ac.za/honsproj/cgi-bin/view/2011/hammar_robinson.zip/Website/index.html
http://pubs.cs.uct.ac.za/honsproj/cgi-bin/view/2011/hammar_robinson.zip/Website/index.html
http://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart
http://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart
http://dublincore.org/documents/usageguide
http://dublincore.org/documents/usageguide

Installing EPrints 3 via apt (Debian/Ubuntu) (2011). URL: http://wiki.eprints.org/w/

Installing_EPrints_3_via_apt_(Debian/Ubuntu) (visited on Mar. 31, 2013).

Item Level Versioning (2012). DSpace 3.x Documentation. URL: https://wiki.duraspace.

org/display/DSDOC3x/Item+Level+Versioning (visited on Mar. 31, 2013).

Janée, Greg and James Frew (2002). “The ADEPT digital library architecture”. In: Proceedings

of the 2nd ACM/IEEE-CS joint conference on Digital libraries. JCDL ’02. New York, NY, USA:

ACM Press, pp. 342–350. DOI: 10.1145/544220.544306.

Jetty:// (2012). Eclipse Foundation. URL: http://www.eclipse.org/jetty/ (visited on

Dec. 27, 2012).

Kahn, Robert and Robert Wilensky (Mar. 2006). “A framework for distributed digital

object services”. In: International Journal on Digital Libraries 6.2, pp. 115–123. DOI:

10.1007/s00799-005-0128-x.

Körber, Nils and Hussein Suleman (2008). “Usability of Digital Repository Software: A Study of

DSpace Installation and Configuration”. In: Digital Libraries: Universal and Ubiquitous Access to

Information. Ed. by George Buchanan, Masood Masoodian, and SallyJo Cunningham. Vol. 5362.

Springer Berlin Heidelberg, pp. 31–40. DOI: 10.1007/978-3-540-89533-6_4.

Kruchten, Philippe (2004). “An Ontology of Architectural Design Decisions in Software-

Intensive Systems”. In: 2nd Groningen Workshop on Software Variability, pp. 1–8. URL:

https://courses.ece.ubc.ca/˜417/public/Kruchten-2004.pdf (visited on

Dec. 14, 2012).

Kruchten, Philippe et al. (2005). “Building up and Exploiting Architectural Knowledge”.

In: 5th Working IEEE/IFIP Conference on Software Architecture. IEEE, pp. 291–292. DOI:

10.1109/WICSA.2005.19.

Kucsma, Jason, Kevin Reiss, and Angela Sidman (Mar. 2010). “Using Omeka to Build Digital

Collections: The METRO Case Study”. In: D-Lib Magazine. The Magazine of Digital Library

Research 16.3/4. DOI: 10.1045/march2010-kucsma.

Kunze, John A. et al. (2008). Pairtrees for Object Storage. URL: https://confluence.

ucop.edu/display/Curation/PairTree (visited on Oct. 11, 2012).

Lagoze, Carl, Clifford A. Lynch, and Ron Daniel (1996). The Warwick Framework. A Container

Architecture for Aggregating Sets of Metadata. Cornell University. HDL: 1813/7248.

Lagoze, Carl and Herbert Van de Sompel (2001). “The Open Archives Initiative: Build-

ing a Low-Barrier Interoperability Framework”. In: Proceedings of the 1st ACM/IEEE-CS

Joint Conference on Digital Libraries. New York, USA: ACM Press, pp. 54–62. DOI:

10.1145/379437.379449.

Lagoze, Carl et al. (2002a). Implementation Guidelines for the Open Archives Initiative Pro-

tocol for Metadata Harvesting. Guidelines for Repository Implementers. URL: http://www.

123

http://wiki.eprints.org/w/Installing_EPrints_3_via_apt_(Debian/Ubuntu)
http://wiki.eprints.org/w/Installing_EPrints_3_via_apt_(Debian/Ubuntu)
https://wiki.duraspace.org/display/DSDOC3x/Item+Level+Versioning
https://wiki.duraspace.org/display/DSDOC3x/Item+Level+Versioning
http://dx.doi.org/10.1145/544220.544306
http://www.eclipse.org/jetty/
http://dx.doi.org/10.1007/s00799-005-0128-x
http://dx.doi.org/10.1007/978-3-540-89533-6_4
https://courses.ece.ubc.ca/~417/public/Kruchten-2004.pdf
http://dx.doi.org/10.1109/WICSA.2005.19
http://dx.doi.org/10.1045/march2010-kucsma
https://confluence.ucop.edu/display/Curation/PairTree
https://confluence.ucop.edu/display/Curation/PairTree
http://hdl.handle.net/1813/7248
http://dx.doi.org/10.1145/379437.379449
http://www.openarchives.org/OAI/2.0/guidelines-repository.htm

openarchives.org/OAI/2.0/guidelines-repository.htm (visited on Dec. 14,

2012).

Lagoze, Carl et al. (2002b). The Open Archives Initiative Protocol for Metadata Harvesting. URL:

http://www.openarchives.org/OAI/openarchivesprotocol.html (visited on

Jan. 9, 2012).

Lagoze, Carl et al. (Apr. 2006). “Fedora: an architecture for complex objects and

their relationships”. In: International Journal on Digital Libries 6.2, pp. 124–138. DOI:

10.1007/s00799-005-0130-3.

Lee, Jintae and Kum-Yew Lai (Sept. 1991). “What’s in Design Rationale?” In: Human-Computer

Interaction 6.3, pp. 251–280. DOI: 10.1207/s15327051hci0603&4_3.

Lee, Larix and Philippe Kruchten (2007). “Capturing Software Architectural Design Decisions”.

In: Canadian Conference on Electrical and Computer Engineering. IEEE, pp. 686–689. DOI:

10.1109/CCECE.2007.176.

Leuf, Bo and Ward Cunningham (2001). The Wiki way: quick collaboration on the Web. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Lorist, Jeroen H. H. and Kees van der Meer (2001). “Standards for Digital Libraries and Archives:

Digital Longevity”. In: Proceedings of the 1st International Workshop on New Developments in

Digital Libraries: In Conjunction with ICEIS 2001. ICEIS Press, pp. 89–98.

Lynch, Clifford A. (Jan. 1991). “The Z39.50 Information Retrieval Protocol: An Overview

and Status Report”. In: SIGCOMM Computer Communication Review 21.1, pp. 58–70. DOI:

10.1145/116030.116035.

MacKenzie, Matthew et al. (2006). Reference Model for Service Oriented Architecture 1.0. OASIS

Standard, 12 October 2006. Organization for the Advancement of Structured Information Stan-

dards. URL: http://docs.oasis-open.org/soa-rm/v1.0 (visited on Sept. 13, 2012).

MacLean, Allan et al. (Sept. 1991). “Questions, Options, and Criteria: Elements of

Design Space Analysis”. In: Human-Computer Interaction 6.3, pp. 201–250. DOI:

10.1207/s15327051hci0603&4_2.

Maly, Kurt J. et al. (2004). “Light-Weight Communal Digital Libraries”. In: Proceedings of the 4th

ACM/IEEE-CS joint conference on Digital libraries. JCDL ’04. New York, NY, USA: ACM Press,

pp. 237–238. DOI: 10.1145/996350.996403.

Misra, Dharitri, James Seamans, and George R. Thoma (2008). “Testing the scalability of a

DSpace-based archive”. In: Proceedings of the IS&T Archiving, pp. 36–40.

Nicola, Matthias and Jasmi John (2003). “XML Parsing: A Threat to Database Performance”. In:

Proceedings of the twelfth international conference on Information and knowledgemanagement.

CIKM’03. New York, NY, USA: ACM Press, pp. 175–178. DOI: 10.1145/956863.956898.

124

http://www.openarchives.org/OAI/2.0/guidelines-repository.htm
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://dx.doi.org/10.1007/s00799-005-0130-3
http://dx.doi.org/10.1207/s15327051hci0603&4_3
http://dx.doi.org/10.1109/CCECE.2007.176
http://dx.doi.org/10.1145/116030.116035
http://docs.oasis-open.org/soa-rm/v1.0
http://dx.doi.org/10.1207/s15327051hci0603&4_2
http://dx.doi.org/10.1145/996350.996403
http://dx.doi.org/10.1145/956863.956898

Nielsen, Jakob (1993). Response Times: The 3 Important Limits. URL: http://www.nngroup.

com/articles/response-times-3-important-limits (visited on Mar. 29, 2013).

Paepcke, Andreas et al. (Apr. 1998). “Interoperability for Digital Libraries Worldwide”. In: Com-

munications of the ACM 41.4, pp. 33–42. DOI: 10.1145/273035.273044.

Park, Sung Hee et al. (2011). “VT ETD-db 2.0: Rewriting the ETD-db System”.

In: 14th International Symposium on Electronic Theses and Dissertations. Cape Town,

South Africa. URL: http://dl.cs.uct.ac.za/conferences/etd2011/papers/

etd2011_park.pdf.

Paskin, Norman (2005). “Digital Object Identifiers for scientific data”. In: Data Science Journal 4,

pp. 12–20. DOI: 10.2481/dsj.4.12.

Paskin, Norman (2010). “Digital object identifier (DOI) system”. In: Encyclopedia of library and

information sciences 3, pp. 1586–1592. DOI: 10.1081/E-ELIS3-120044418.

Pepe, Alberto et al. (2005). “CERN Document Server Software: the integrated digital library”.

In: 9th ICCC International Conference on Electronic Publishing. Ed. by Milena Dobreva and Jan

Engelen. Leuven, Belgium, pp. 297–302. URL: http://cds.cern.ch/record/853565/.

Phiri, Lighton and Hussein Suleman (July 2012). “In Search of Simplicity: Redesigning the

Digital Bleek and Lloyd”. In: DESIDOC Journal of Library & Information Technology 32.4,

pp. 306–312. URL: http://publications.drdo.gov.in/ojs/index.php/djlit/

article/view/2524 (visited on Oct. 25, 2012).

Phiri, Lighton et al. (2012). “Bonolo: A General Digital Library System for File-Based Collec-

tions”. In: Proceedings of the 14th International Conference on Asia-Pacific Digital Libraries.

Ed. by Hsin-Hsi Chen and Gobinda Chowdhury. Berlin, Heidelberg: Springer Berlin / Heidelberg,

pp. 49–58. DOI: 10.1007/978-3-642-34752-8_6.

Raymond, Erick Steven (2004). “Textuality. The Importance of Being Textual”. In: The Art of

Unix Programming. Ed. by Brian W. Kernighan. 1st. Boston, Massachusetts: Addison-Wesley Pro-

fessional. Chap. Chapter 5, pp. 105–111. URL: http://www.faqs.org/docs/artu (visited

on Oct. 17, 2012).

Saaty, Thomas L. (2008). “Decision Making with the Analytic Hierarchy Process”. In: Interna-

tional Journal of Services Sciences. DOI: 10.1504/IJSSci.2008.01759.

Sadalage, Pramod J. and Martin Fowler (2012). “Why NoSQL?” In: NoSQL Distilled. A Brief

Guide to the Emerging World of Plyglot Persistence. Ed. by Pramod J. Sadalage and Martin Fowler.

1st. Boston, Massachusetts: Addison-Wesley Professional. Chap. Chapter 1, pp. 1–12.

Sears, Russell, Catharine van Ingen, and Jim Gray (2007). “To BLOB or Not To BLOB: Large

Object Storage in a Database or a Filesystem?” In: CoRR abs/cs/0701168. arXiv:cs/0701168.

(Visited on Feb. 17, 2012).

Skotnes, Pippa (2007). Claim to the Country - The Archive of Wilhelm Bleek and Lucy Lloyd.

Johannesburg, South Africa: Jacana Media.

125

http://www.nngroup.com/articles/response-times-3-important-limits
http://www.nngroup.com/articles/response-times-3-important-limits
http://dx.doi.org/10.1145/273035.273044
http://dl.cs.uct.ac.za/conferences/etd2011/papers/etd2011_park.pdf
http://dl.cs.uct.ac.za/conferences/etd2011/papers/etd2011_park.pdf
http://dx.doi.org/10.2481/dsj.4.12
http://dx.doi.org/10.1081/E-ELIS3-120044418
http://cds.cern.ch/record/853565/
http://publications.drdo.gov.in/ojs/index.php/djlit/article/view/2524
http://publications.drdo.gov.in/ojs/index.php/djlit/article/view/2524
http://dx.doi.org/10.1007/978-3-642-34752-8_6
http://www.faqs.org/docs/artu
http://dx.doi.org/10.1504/IJSSci.2008.01759
http://arxiv.org/abs/cs/0701168

Smith, MacKenzie et al. (Jan. 2003). “DSpace. An Open Source Dynamic Digital Repository”. In:

D-Lib Magazine 9.1. DOI: 10.1045/january2003-smith.

Solr Wiki (2012a). Data Import Request Handler. URL: http://wiki.apache.org/solr/

DataImportHandler (visited on Dec. 25, 2012).

Solr Wiki (2012b). XsltUpdateRequestHandler. URL: http://wiki.apache.org/solr/

XsltUpdateRequestHandler (visited on Feb. 10, 2013).

Strand, Eric J., Rajiv P. Mehta, and Raju Jairam (Sept. 1994). “Applications Thrive on Open Sys-

tems Standards”. In: StandardView 2.3, pp. 148–154. DOI: 10.1145/202749.202757.

Suleman, Hussein (2002). OAI-PMH2 XMLFile File-based Data Provider. URL: http://

www.dlib.vt.edu/projects/OAI/software/xmlfile/xmlfile.html (visited

on Dec. 23, 2012).

Suleman, Hussein (2007). “Digital Libraries Without Databases: The Bleek and Lloyd Collec-

tion”. In: Proceedings of the 11th European Conference on Research and Advanced Technology

for Digital Libraries. Ed. by László Kovács, Norbert Fuhr, and Carlo Meghini. Berlin, Heidelberg:

Springer-Verlag, pp. 392–403. DOI: 10.1007/978-3-540-74851-9_33.

Suleman, Hussein (2008). “An African Perspective on Digital Preservation”. In: Proceedings of

the International Workshop on Digital Preservation of Heritage and Research Issues in Archiving

and Retrieval. Kolkata, India.

Suleman, Hussein (2010). “Interoperability in Digital Libraries”. In: E-Publishing and

Digital Libraries: Legal and Organizational Issues. Ed. by Ioannis Iglezakis, Tatiana-

Eleni Synodinou, and Sarantos Kapidakis. IGI Global. Chap. Chapter 2, pp. 31–47. DOI:

10.4018/978-1-60960-031-0.ch002.

Suleman, Hussein et al. (2010). “Hybrid Online-Offline Digital Collections”. In: Proceedings

of the 2010 Annual Research Conference of the South African Institute of Computer Scien-

tists and Information Technologists. Bela Bela, South Africa: ACM Press, pp. 421–425. DOI:

10.1145/1899503.1899558.

Tansley, Robert, Mick Bass, and MacKenzie Smith (2003). “DSpace as an open archival

information system: Current status and future directions”. In: Lecture Notes in Com-

puter Science 2769. Ed. by Traugott Koch and Ingeborg Sø lvberg, pp. 446–460. DOI:

10.1007/978-3-540-45175-4_41.

Tansley, Robert et al. (May 2003). “The DSpace Institutional Digital Repository System:

Current Functionality”. In: Proceedings of the 2003 Joint Conference on Digital Libraries.

Houston, United States: Institute of Electrical and Electronic Engineers, pp. 87–97. DOI:

10.1109/JCDL.2003.1204846.

The Apache HTTP Server Project (2012). The Apache Software Foundation. URL: http://

httpd.apache.org (visited on Mar. 30, 2013).

126

http://dx.doi.org/10.1045/january2003-smith
http://wiki.apache.org/solr/DataImportHandler
http://wiki.apache.org/solr/DataImportHandler
http://wiki.apache.org/solr/XsltUpdateRequestHandler
http://wiki.apache.org/solr/XsltUpdateRequestHandler
http://dx.doi.org/10.1145/202749.202757
http://www.dlib.vt.edu/projects/OAI/software/xmlfile/xmlfile.html
http://www.dlib.vt.edu/projects/OAI/software/xmlfile/xmlfile.html
http://dx.doi.org/10.1007/978-3-540-74851-9_33
http://dx.doi.org/10.4018/978-1-60960-031-0.ch002
http://dx.doi.org/10.1145/1899503.1899558
http://dx.doi.org/10.1007/978-3-540-45175-4_41
http://dx.doi.org/10.1109/JCDL.2003.1204846
http://httpd.apache.org
http://httpd.apache.org

The Digital Bleek and Lloyd (2007). URL: http://lloydbleekcollection.cs.uct.ac.

za/ (visited on Oct. 11, 2012).

Ubuntu 12.04.2 LTS (Precise Pangolin) (2012). URL: http://releases.ubuntu.com/

precise/ (visited on Apr. 1, 2013).

Vesely, Martin et al. (2004). “CERN Document Server: Document Management System for Grey

Literature in a Networked Environment”. In: Publishing Research Quarterly 20 (1), pp. 77–83.

DOI: 10.1007/BF02910863.

What is Wiki (1995). URL: http://wiki.org/wiki.cgi?WhatIsWiki (visited on

Mar. 30, 2013).

Wiltshire, Nicolas (2011). Spatial analysis of archaeological sites in the Western Cape using

an integrated digital archive. University of Cape Town. URL: http://uctscholar.uct.

ac.za/R/N8XKKNNCY76DM8GQG33X3C8LCDJ7N6MUKFFKAHMT67HVDJN9TT-03715?

func=results-brief (visited on Feb. 14, 2012).

Winer, Dave (2007). RSS Advisory Board. RSS 2.0 Specification. URL: http://www.

rssboard.org/rss-specification (visited on Sept. 10, 2012).

Witten, Ian H., David Bainbridge, and Stefan J. Boddie (2001). “Greenstone: open-source digital

library software with end-user collection building”. In: Online Information Review 25.5, pp. 288–

298. DOI: 10.1108/14684520110410490.

127

http://lloydbleekcollection.cs.uct.ac.za/
http://lloydbleekcollection.cs.uct.ac.za/
http://releases.ubuntu.com/precise/
http://releases.ubuntu.com/precise/
http://dx.doi.org/10.1007/BF02910863
http://wiki.org/wiki.cgi?WhatIsWiki
http://uctscholar.uct.ac.za/R/N8XKKNNCY76DM8GQG33X3C8LCDJ7N6MUKFFKAHMT67HVDJN9TT-03715?func=results-brief
http://uctscholar.uct.ac.za/R/N8XKKNNCY76DM8GQG33X3C8LCDJ7N6MUKFFKAHMT67HVDJN9TT-03715?func=results-brief
http://uctscholar.uct.ac.za/R/N8XKKNNCY76DM8GQG33X3C8LCDJ7N6MUKFFKAHMT67HVDJN9TT-03715?func=results-brief
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://dx.doi.org/10.1108/14684520110410490

Index

A

Analytic hierarchy process, 28

Apache

Apache Server, 59

Apache/2.x, 74

ApacheBench, 59

Solr, 59, 69, 85, 86

Cores, 69

Data Import Handler, 69

B

Bitstream, 15, 20

Bleek and Lloyd, 44, 85

Bleek& Lloyd, 6

Browse, 69

C

CDSware, 14

D

Database, 56

Dataset, 59

DELOS, 6, 52

Design Rationale, 24, 32

Digital Libraries, 5, 6, 9–11, 52

Concepts, 9

Standards, 10

Frameworks, 11

5S, 11

DELOS, 13

Kahn/Wilensky, 12

Interoperability, 9

Metadata, 10

Naming Schemes, 9

DOI, 9

PURL, 9

Software, 14

CDS Invenio, 14

DSpace, 15

EPrints, 15, 64

ETD-db, 15

Fedora-Commons, 16

Greenstone, 16

Omeka, 16

Digital Library System, 6, 52

DSpace, 15, 59, 79, 81, 85, 86

Dublin Core, 15, 18, 20, 58, 60, 71

E

EPrints, 15

ETD, 8

Execution Environment, 59

F

File-based Stores

BagIt, 22

DokuWiki, 23

Git, 23

Pairtree, 23

G

Grounded theory, 27

H

HTML, 10, 20

HTTP, 15

I

Index, 69, 71, 72, 85, 86

Ingestion, 64, 65, 81, 83, 85

Interoperability, 9

J

Java, 16

Jetty, 59, 69

K

Kiviat, 85

Kun, 44

L

LimeSurvey, 53

128

Lucene, 86

M

MARC, 14

Memoing, 28, 32

Meta-analysis, 30

Metadata, 10, 11, 14, 15, 17, 18, 20–22, 56, 58,

60, 64, 66, 67, 79, 85

Schemes

Dublin Core, 10

LOM, 10

METS, 10

MODS, 10

Minimalism, 17

MySQL, 14, 15, 17

N

NDLTD, 60

NETD, 8

O

OAI-PMH, 10, 11, 15, 19, 60, 85

Data Provider, 74–77, 85

resumptionToken, 75

Verbs, 19, 74

GetRecord, 74

Identify, 62

ListIdentifiers, 74–76

ListRecords, 74–77

ListSets, 63, 74, 75

Open Coding, 32

OpenDOAR, 30

P

Pairwise comparisons, 28

Parsing, 66–70, 78, 81, 85

PDF, 10, 14

Perl, 15, 74

PHP, 17

Preservation, 32, 34

Python, 14

R

Random Sampling, 60

RDMS, 20

Repository, 53, 56

REST, 16

RSS, 10, 78

S

SARU, 47

Search, 66–70, 81, 83, 85

Servlet, 15

setSpec, 60

Siege, 59, 74, 75

Simplicity, 18–20, 53, 56, 58

SOAP, 16

Software Design Decisions

Design Rationale

IBIS, 24

QOC, 24

Formalised Ontological Representation,

24

Software design decisions, 24

Storage Schemes

File Systems, 22

NoSQL, 21

RDBMS, 21

Survey, 56

U

Ubuntu, 59

Unix, 17

W

Web, 53, 56

Wiki, 18

Workload, 60, 61, 64–67, 69, 71, 72, 74, 75, 78,

79, 81

WWW, 53

X

Xam, 44

XLink, 16

XML, 10, 11, 16, 19, 60, 68

XMLFile, 74

XPath, 66, 68, 69

Z

Z39.50, 10

129

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1. Introduction
	1.1 Motivation
	1.2 Hypotheses
	1.3 Research questions
	1.4 Scope& approach
	1.5 Thesis outline

	Chapter 2. Background
	2.1 Digital Libraries
	2.1.1 Definitions
	2.1.2 Application domains
	2.1.3 Summary

	2.2 Fundamental concepts
	2.2.1 Identifiers
	2.2.2 Interoperability
	2.2.3 Metadata
	2.2.4 Standards
	2.2.5 Summary

	2.3 Frameworks
	2.3.1 5S framework
	2.3.2 Kahn& Wilensky framework
	2.3.3 DELOS reference model
	2.3.4 Summary

	2.4 Software platforms
	2.4.1 CDS Invenio
	2.4.2 DSpace
	2.4.3 EPrints
	2.4.4 ETD-db
	2.4.5 Fedora Commons
	2.4.6 Greenstone
	2.4.7 Omeka
	2.4.8 Summary

	2.5 Minimalist philosophy
	2.5.1 Dublin Core
	2.5.2 Wikis
	2.5.3 XML
	2.5.4 OAI-PMH
	2.5.5 Project Gutenberg
	2.5.6 Summary

	2.6 Data storage schemes
	2.6.1 Relational databases
	2.6.2 NoSQL databases
	2.6.3 Filesystems
	2.6.4 Summary

	2.7 Design decisions
	2.8 Summary

	Chapter 3. Design principles
	3.1 Research perspective
	3.1.1 Prior research observations
	3.1.2 Research questions
	3.1.3 Summary

	3.2 Research methods
	3.2.1 Grounded theory
	3.2.2 Analytic hierarchy process
	3.2.3 Summary

	3.3 General approach
	3.3.1 Data collection
	3.3.2 Data analysis
	3.3.3 Design principles
	3.3.4 Summary

	3.4 Summary

	Chapter 4. Designing for simplicity
	4.1 Repository design
	4.1.1 Design decisions
	4.1.2 Architecture
	4.1.3 Summary

	Chapter 5. Case studies
	5.1 Bleek& Lloyd collection
	5.1.1 Overview
	5.1.2 Object storage
	5.1.3 DLSes

	5.2 SARU archaeological database
	5.2.1 Overview
	5.2.2 Object storage
	5.2.3 DLSes

	5.3 Summary

	Chapter 6. Evaluation
	6.1 Developer survey
	6.1.1 Target population
	6.1.2 Data collection
	6.1.3 Results
	6.1.4 Discussion
	6.1.5 Summary

	6.2 Performance
	6.2.1 Test setup
	6.2.2 Test dataset
	6.2.3 Workloads
	6.2.4 Benchmarks
	6.2.5 Comparisons
	6.2.6 Summary

	6.3 Summary

	Chapter 7. Conclusions
	7.1 Research questions
	7.2 Future work
	7.2.1 Software packaging
	7.2.2 Version control
	7.2.3 Reference implementation

	Appendix A. Developer survey
	A.1 Ethical clearance
	A.2 Survey design

	Appendix B. Experiment raw data
	B.1 Developer survey
	B.2 Performance benchmarks
	B.2.1 Workload
	B.2.2 Ingestion
	B.2.3 Search
	B.2.4 OAI-PMH
	B.2.5 Feed

	Bibliography
	Index

