
 113

Novel Interface for First Person Shooting Games on PDAs
Chen Wei

Collaborative Visual Computing Lab
Computer Science Department

University of Cape Town

cwei@cs.uct.ac.za

Gary Marsden
 Collaborative Visual Computing Lab

Computer Science Department
University of Cape Town

gaz@cs.uct.ac.za

James Gain
 Collaborative Visual Computing Lab

Computer Science Department
University of Cape Town

jgain@cs.uct.ac.za

ABSTRACT
This paper explores novel interfaces for First Person Shooting
(FPS) games on Personal Digital Assistant (PDA) devices. We
describe a new approach inspired by a study of the interaction
patterns used in desktop FPS games. Intelligent gesture
recognition, based on these patterns, is used to create an optimal
implementation of basic game functions (i.e., jump, shoot, walk
forward). This new interaction system is evaluated through a
prototype 3D FPS game. We believe the newly designed interface
more adequately leverages the interaction capabilities of current
PDAs, to better solve the problem of rapidly and accurately
executing a large number of gaming commands.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: User Centered Design

General Terms
Design

Keywords
Interaction techniques, gesture recognition, first person shooting
games, 3D mobile games

1. Introduction
Although considerably less powerful than contemporary desktop
systems, the ability of mobile hardware has improved to the point
where PDA devices such as the Dell x51v are now capable of
rendering simple three-dimensional (3D) environments. Whilst
the effects of Moore’s Law means that this improvement in
rendering capability will continue to increase, attention must be
give to the inherent difficulties in interacting with a small device
when playing a game as interaction heavy as a First Person
Shooter. Assuming a current PDA or smart-phone, executing
commands in gaming is restricted to the stylus pen and a limited
set of hardware buttons. Other problems we observed in the
preliminary stages of this research included user fatigue due to

holding the PDA, difficulties in coordination when performing
multiple commands simultaneously and restricted camera
movement. These problems present an interesting challenge, not
just to FPS players, but also serve as an extreme test case for new
interaction techniques for controlling and interacting with
complex information on a PDA screen.

Our goal is to uncover how best to take advantage of the baseline
interaction facilities found on current PDAs, namely stylus input
and hardware-button pressing. We wish to enable players to
manage a large number of commands and execute crucial action
commands simultaneously, so as to enhance the FPS game
playability.

To investigate new interaction techniques, a 3D FPS game engine
prototype, InteractionPro, written in C#, was created from
scratch. This prototype is able to offer a comprehensive
investigation of interaction through the help of the .net compact
framework 2.0 and Mobile DirectX. By creating this engine, we
were able to evaluate our technique empirically and show that it
has advantages over current systems.

2. Background of Mobile Game Interaction
The stylus pen is the standard input device on most Windows-
based PDA devices. The stylus, together with a hand-writing
recognition system, provides a pointing and clicking interface and
solves the problem of effective text input. With the help of the
four hotkeys, four directional buttons and one confirm button,
users are able to manipulate the PDA’s normal applications
smoothly. Although the convenience and efficiency of this input
system cannot compare to that of a desktop PC, it provides users
with an appropriate way of completing common tasks such as
entering text, surfing the web and taking notes.

It is this hardware configuration that we will use as our base-line
implementation, namely: a touch-screen, four soft-buttons and one
confirm button. Ever since the Palm Pilot was released, this layout
for a PDA has been followed by a majority of manufacturers (e.g.,
HP, Dell, Fujitsu, etc.). Whilst there are many devices that do not
meet this standard (most cellular handsets, for example, lack a
touch screen) and other gaming devices surpass this standard (the
Nintendo DS has a custom touch pad separate from the main
screen) we believe the PDA (as described above) to be the
‘modal’ configuration.

Game playing is very different from operating most GUI-based
applications. Many games have complex interactions which
demand a high degree of collaboration between both keyboard
and mouse. The initial investigation of this research showed us

OZCHI 2008, December 8-12, 2008, Cairns, QLD, Australia. Copyright
the author(s) and CHISIG. Additional copies can be ordered from
CHISIG (secretary@chisig.org).

OZCHI 2008 Proceedings ISBN: 0-9803063-4-5

 114

that it is very difficult to play these games using only the buttons
and stylus pen on a PDA. For instance, in playing GeoRally Ex[6]
on a PDA device, the user cannot make the race car accelerate and
turn left at the same time, which violates the intention of
‘accelerating while turning’. This is because the user is not able to
simultaneously activate two directional buttons.

The problem of interaction in FPS games is much worse than car
racing games. It involves many more commands and more
complex user-interface coordination. A new interaction design is
proposed in this paper to solve these problems.

To date, we have found no other research looking at the problems
of interacting with similar games on PDAs. There has been
interest in how to render 3D games and virtual environments on
PDA devices [3,4,5], but none of this work analyses the choices
made in terms of the mechanics by which the user interacts with
that environment.

3. Methodology
The methodology adopted for this research follows a typical
interaction design lifecycle starting with an observation phase
followed by formative evaluations of prototypes and then a final
summative evaluation of a high-fidelity prototype [7].

• Observation: To understand the users, background research
on traditional interaction practices of FPS games on desktop
PCs was conducted. An application, named InteractionLog,
was built to log the patterns of behavior when playing games
on a desktop machine. Our goal is to make the sure the
interface supports the most common actions in the most
efficient way.

• Prototyping: In this research, a computer-based low-fidelity
prototype and a fully-functional prototype [8] were
implemented as the best combination to evaluate the usability
of the new interaction design in a low cost approach. The
low-fidelity prototype is a Flash application while the latter
one is a real PDA 3D application, namely, InteractionPro.

• Evaluation: There were two aspects to the final evaluation.
The first determined gamers’ satisfaction with the interface
based on heuristics for mobile game design. The second was
a quantitative investigation into the interaction logs
generated by users of the prototype.

4. Investigation and Design
When it comes to the usability evaluation of games on mobile
devices, Korhonen and Kovisto [10], recommend that the function
keys (the buttons that control the specific game commands)
should be consistent and follow standard conventions (e.g., the
keys ‘W’,‘S’,‘A’ and ‘D’ are conventionally used for moving
‘Forward’, ‘Backward’, ‘Left’ and ‘Right’, respectively).
However, for FPS games there are no “standard conventions” on a
PDA. Therefore, the first goal of this research is the development
of such conventions.

In order to develop conventions, we examined users’ behavior
whilst playing desktop FPS games, and then effective interaction
conventions were developed which best support those behaviors.

To examine usage of the keyboard and mouse (these are the only
input systems in FPS games on Desktop PCs), these questions
were asked:

1. What keys and mouse buttons are most frequently used
when playing a game?

2. How often are these keys and buttons used during the game?

3. How are these keys and buttons used together?

4. What is the relationship of the actions executed by these
keys and buttons?

To answer these questions by manual observation is impossible,
therefore custom logging software – InteractionLog – was built to
capture the results precisely and objectively.

4.1 InteractionLog
InteractionLog is a .net Windows application which logs
interaction events of the keyboard (key presses) and mouse
(button clicks and movement rate) in the background while the
player is playing any FPS game. All these user interaction events
are recorded in an XML file which is visualized; this visualization
can be performed instantaneously while the game is being played
or offline, to reduce lag on the game and for future reference. The
visualization, such as in Figure 1, helps with the analysis and
understanding of the relationships between different interaction
events.

Figure 1. Visualizations of 30 second logs from a Counter
Strike player. Avatar moves are shown in green, MouseButton
events in red, EventTriggers in blue and WeaponChanges in
purple. The upper plot shows assault rifle usage, while the
lower one shows sniper rifle usage.

 115

Counter-Strike 1.5 [12] was the FPS game chosen for the test. It is
one of the most popular FPS games ever created, and most FPS
game players are familiar with it. Ten volunteer Counter Strike
players with varying degrees of expertise were contacted and had
the InteractionLog application installed on their machines. After
one week of play, their log files were sent back for analysis.

Action commands vary from FPS game to game, but basic
functions are common across most games. These common
interaction actions are divided into four main types according to
their characteristics:

a) Avatar movement

b) Camera movement

c) Aiming and Firing

d) Advanced Function Commands (e.g., triggering events,
changing weapons, etc.)

These actions are highlighted in different colors in the visualized
plot. For instance, avatar moves are shown in green, camera
moves (mouse movement rate) in cadet blue, MouseButton events
in red, EventTriggers in blue and WeaponChanges in purple.
Taking Figure 1 as an example of the log, there are many time
sections (episodes) where the red, green and cadet blue segments
overlap. This means players often engage in the first three
activities simultaneously (moving the avatar, moving the camera
and firing). This situation frequently occurs when the player
intends to dodge the attack from opponents and shoot back.
Whilst the choice of weapon affects the exact pattern of usage
(e.g., an assault rifle is used in a completely different way to a
sniper rifle), the actions of moving, aiming and firing still tend to
be executed together. Clearly, the PDA solution must support
moving, firing and camera actions that can be executed
simultaneously without interference with each other.

The two most common activities observed were those of firing
and moving. Again, the plot in Figure 1 shows 42 shots fired and
15 separate avatar movements inside the 30 second period.
Solutions must make such actions rapidly accessible.

Finally, the advanced function commands, such as weapon
changing, happened in isolation, which means they can be
supported in a less direct fashion.

4.2 Observed Play on PDA
In order to gain some insight into how complex it was to interact
with an FPS game on a PDA, seven players were recruited to play
DoomGL. All the recruits had played FPS games on the desktop,
but none had played it on the PDA. A number of serious problems
were observed:

• Not all commands were accessible. This is because of the
limitation of the physical buttons embedded on the PDA
device. Despite the directional buttons, the hotkeys on the
PDA are assigned to the ‘Game Menu’,‘Map View’, ‘Status
Bar’ and ‘Door Open’ actions. The available commands are
insufficient for a complete FPS game. For example, there are
46 commands in Counter-Strike 1.5.

• Users did indeed struggle to press the fire button whilst
moving the avatar. The form-factor of the device required
users to employ a single thumb for moving and firing,
meaning that it was not possible to execute both actions

simultaneously. This problem is serious since combined
‘Dodging and Firing’ are frequently necessary.

• Camera movement is overly restricted by the fixed size of the
PDA screen. Unlike using a mouse on a large desk, the stylus
movement range on the PDA screen is fixed and very
limited. The fixed movement rate makes it difficult to
balance between micro-adjustments (e.g., aiming at the target
through tiny adjustments) and big-turns (e.g., to change the
camera horizontal angle by 100 degrees).

• Most users felt that their left hand was exhausted after
playing DoomGL since they were holding the entire weight
of the PDA in that hand and the left thumb had to stabilize
and balance the device. In DoomGL, the PDA has to be held
in a landscape fashion, with the left hand solely supporting
the whole weight of the device from the edge. This is more
tiring than holding the PDA in a portrait orientation as it
severely affects the stability of holding the PDA and fatigues
the hand, wrist and arm.

4.3 New Interaction Design
Interaction design in mobile games is very different from a normal
application interface design. Korhonen and Kovisto’s [10]
guidelines for heuristic evaluation on “Game Usability” give
guidance on what is desirable from a game interface. Specifically:

 “Navigation is consistent, logical and minimalist”

 “Game controls are convenient and flexible”

With these goals in mind, we developed “Gesture Interaction” a
new interface which uses a stroke recognition system combined
with the optimum implementations of basic game functions.

The term “Gesture” refers to the fact that many of the functions
are now available by recognizing gestures made with the stylus on
the screen. By adopting a gesture-based system, we can address
the “convenient and flexible” goals. The system is “convenient” in
that the screen is there all the time (you do not need to access
commands by invoking a menu or command box), it is also
“flexible” in that there are, potentially, an infinite number of
gestures that may be recognized. Whether or not these gestures
are “consistent, logical and minimalist” will need to be
determined through experimentation.

Figure 4 shows the different command strokes we adopted for the
first prototype. The bold dot on each stroke represents where it
starts from. These initial gestures were the result of a tradeoff
between suggestions from gamers and strokes that could be
recognized rapidly and unambiguously. Other functions were
provided as follows:

• The avatar’s movement is controlled by the Directional Pad
(D-Pad) which follows FPS game convention.

• The camera view is controlled by the stylus pen. The view
from the avatar follows the movement of the stylus pen (e.g.,
the view turns to the left when the stylus pen slides to the left
on the screen and looks up when the stylus slides upward). It
guides the direction the avatar faces; turning or steering the
avatar’s movement. The avatar’s pitch range for looking up
or down is limited between 1.5 and -1.5 radians. This range
prevents the confusion caused by the avatar turning upside
down.

 116

While the ‘Gesture Enable’ button (the ‘Return’ button) is being
pressed down, strokes can be drawn anywhere on the screen. The
recognition of the stroke and the execution of the commands will
occur as soon as the stylus pen is removed from the screen in the
‘Gesture Enable’ mode.

Shooting is now also invoked through the stylus. From our
observations of PDA DoomGL, we created two separate shooting
modes, namely: ‘AutoAiming & Shooting’ and ‘Manual Shoot’.
These work as follows:

• ‘Manual Shoot’ is triggered by double tapping the stylus
anywhere on the screen, causing the avatar to start shooting
toward the center of the screen.

• ‘AutoAim & Shooting’ is engaged when the stylus pen is
tapped on an enemy drone in the scene and persists shooting
for as long as the stylus is kept on the touch-screen. The
center of the camera is panned to the tapped position. As
soon as the panning motion is finished, shooting starts.

Only one function command button, the ‘Return’ button, is used
in the new interaction style. The remaining four hotkeys can be
used for other function commands, which greatly enhances the
efficiency of this interaction style. However, these buttons are not
assigned any commands forcing users in the final evaluation to
use the ‘Gesture Interaction’ method. In some ways, this biases
the evaluation against the proposed system as it is clearly
desirable to map functions to buttons if they are available.
However, we felt that greater insight would be gained into which
were the crucial functions by insisting that all interactions (other
than avatar movement) rely on gesture input.

4.4 Flash Prototype
A computer-based low-fidelity [8] prototype which presents the
new interaction design was built before implementing the fully
interactive PDA high-fidelity [8] prototype. This prototype was
built using Flash on the desktop. The aim of this prototype was to
validate the main concept of the new interface through user
comments. It was also intended to evaluate other major usability
issues such as unclear terminology, graphical representation issues
and appropriate positioning of interface elements. Other issues
like physical handling and operation, comparison with other
similar products and performance-related issues were evaluated
by the final fully functional high-fidelity prototype.

Due to the functional limitations of Flash, the Flash prototype
simulates the interface and the newly designed interaction method
only; not the game. It is not fully 3D - movement is simulated by
panning.

Seven players who attended the test of Doom-PDA were called
again to evaluate the prototype informally. (Obviously direct
comparisons with Doom could not be made due to the limited
nature of the prototype.) They were introduced to this Flash
prototype and explored it at their own pace. Individual semi-
structured interviews were conducted with the users after
exposure to the prototype. All of the participants were pleased
with the main conception of the new interaction design, which are:

Figure 2. Flash Prototype Design

(a) Separating the functions ‘Firing’ and ‘Moving’ between two
hands.

(b) Optimizing the function of ‘Aiming and Shooting’.

(c) Triggering commands through ‘Drawing Strokes’.

Encouraged by this informal feedback, we set about creating a
high-fidelity, highly-interactive prototype to garner more realistic
formal feedback.

4.5 PDA Prototype
The final high-fidelity prototype is a 3D FPS game called
InteractionPro, which is implemented specifically for the Dell
x51v. It was developed in Visual Studio .net 2005 (C#) Compact
Framework v2. It uses Mobile Direct3D as the 3D API.

The aim of this prototype is to evaluate the novel interface design
of FPS games on PDA devices. Our approach is to compare the
results of two different interaction styles in a series of game tasks.
These two different interaction modes are:

Interaction A (Doom Mode). This mode uses a traditional button
pressing interaction style as in Figure 3.

Figure 3. The Function Distribution of Interaction A

 117

Interaction B (Gesture Mode). This mode uses the newly
designed interaction style which involves ‘Stroke Drawing’,
‘Stroke Recognition’ and an optimized set of commands as in
Figure 4.

Figure 4. Interaction B (Gesture Mode)

Once the application launches, users can choose one of the two
interaction styles. The selected style will be used in all stages of
the game (a user cannot switch between the styles once the game
starts).

There are in total four stages in this application. These four stages
are designed to test different interaction aspects, which are
‘Moving and Jumping’, ‘Shooting’, ‘Moving and Shooting’ and
‘Function Execution’. These are the four most common activities
observed in game play and are discussed in detail below. All the
testers’ movements whilst running the application were recorded
into an XML file. The data recorded includes the time the user
spent on the different stages, the number of times each button was
pressed, how long each key was held and the mouse movement
rate (which logs the pixel distance (pd) of the stylus pen on the
touch-screen between every 50ms – pd/50ms).

The mini 3D game engine involved in this application was created
from scratch. Unlike traditional game engines which try to make
the game attractive and entertaining, the aim of this mini 3D game
engine is to help investigate the new interaction system in a fast
and effective way. This required unique functionality, such as the
action logging described above, which is not found in other game
engines.

5. Expert Evaluation
5.1. Experiment Implementation
Ten people evaluated the system. These were all IT literate
students, two of whom had never played an FPS before. The
experiment was run as a within-group study, where the order of
exposure to systems was balanced. There were seven sessions
during each experiment, which took around one hour on average.
These sessions were:
1. Introducing the experiment and the interaction styles.
2. Running the application as a practice round using the first
interaction style to familiarize the tester with the application and
the interaction. Each participant was given a simple task to
complete and were able to take as long as they liked in order to
complete the task successfully.

3. Running the application as a formal evaluation round using the
same interaction style. In this stage, participants were required to
complete four different scenarios.

4. Running the application as a practice round using the
alternative interaction style. Again, participants could take as long
as they wished to familiarize themselves.

5. Running the application as a formal evaluation round using the
alternative interaction style. Again, the four scenarios were
identical to those in stage 3.

6. Answering the questionnaire. There is no standard
questionnaire for evaluating mobile games. Instead we adapted
the relevant mobile game design heuristics of Korhonen and
Koivisto [10]. For example, guideline 8 is – “Game controls
should be convenient and flexible”. We then created a question
asking the user to rate the interaction styles relatively in terms of
convenience and flexibility.
7. Semi-structured and critical-incident interviews with the user.

5.2. Experiment Results
Three categories of data were collected from the experiments:

1. The logs containing all the data of the interaction events during
the experimentation.

2. The questionnaires representing the subjective feelings of
players towards the new interaction.
3. The text of the interviews with the testers after the experiments.

The information of interaction events was compiled to an XML
file and imported to a database. A visualization application called
InteractionAnalysor was built to draw graphs of these results for
better understanding and investigation of the new interaction style.

5.3 Individual Stages
Stage1: Moving and Jumping
In the first stage, the most basic actions in FPS games, ‘Moving’
and ‘Looking & Jumping’, are implemented. The aim of this stage
is to test how the stylus mechanism handles these basic functions.
The task of this stage is to walk through a long aisle by following
the red arrows indicated on the wall, jump over two bumps and
arrive at the terminus as soon as possible. As Figure 5 shows, the
aisle includes 90 degree turns (left/right), 180 degree turns
(left/right) and ‘W’ bends. There are also two bumps in the route
that require the testers to execute ‘Jump’ commands.

Figure 5. The map of the stage 1 (left) and the First Person

View in the stage (Right)
As expected, testers spent more time using gesture input than
Doom-style interaction because it takes longer to draw strokes
than press buttons. But this slight delay did not affect the sense of
presence [13] of the testers according to the questionnaire. The
result of the questionnaire shows that testers prefer ‘Gesture-
mode’ to the ‘Doom-mode’ in triggering the ‘Jump’ command in
this stage. Both scores in this question are fairly low, indicating

 118

testers did not find it intuitive to trigger ‘Jumping’ in this stage.
See Figure 6.

B(Gesture) 3.9

B(Gesture) 3.8

B(Gesture) 3.8

A(DOOM) 3.6

A(DOOM) 3.7

A(DOOM) 3.7

1 2 3 4 5 6 7

OverAll

Stage 4

Stage 1

Figure 6. The score of satisfied with ‘Jumping’ in all stages

As ‘Jumping’ is frequently used in combination with other
movement commands, such as walking and looking, testers
spending a long time practicing the combination.

In Doom-mode, the tester executes a ‘Jump’ by pressing the
button left of the D-Pad. Once the avatar is in the air, the tester
has to move the left thumb from the ‘Jump’ button to the D-Pad
immediately to press the ‘Forward’ button before the avatar falls
back to the ground. Some of the testers withdrew their stylus pen
from the PDA’s screen so as to use their index finger to press
‘Move Forward’ on the D-pad. They re-engaged the stylus after
the ‘Jump Forward’ motion was finished. During the interviews
after the experiments, users explained that this way of ‘Jumping
Forward’ is a habit carried over from the desktop. This habit is
hard to change in a short period. This mechanism of ‘Jumping’ is
uncomfortable to the users in Doom-style interaction.

In Interaction ‘B’ (Gesture), the way to execute ‘Jumping’ is by
holding the middle button (‘Return’) down, then drawing a
straight upward stroke anywhere on the screen. The ‘Return’
button must be released once the avatar is in the air, so as to press
the ‘Forward’ button to jump forward instead of jumping straight
up. Testers were not familiar with this new mechanism. Some of
them became irritated after repeatedly failing to execute the
‘Jump’ command.

Figure 7 shows that in ‘Gesture’ mode, it took on average eight
seconds more to complete the stage than it took in ‘Doom’ mode.
This is understandable due to the extra ‘Stroke Drawing’ motion
the ‘Gesture’ mode has. But the main concern of the evaluation of
a game is the user’s subjective feeling. Users showed similar
levels of satisfaction with ‘Jumping’ in ‘both modes (Interaction
B scoring marginally higher).

Stage Interaction Respawns Total
Time(s)

Average of Mouse
Rate(pd/50ms)

Doom(A) 34.52 3.65 1
Gesture(B) 42.45 3.49
Doom (A) 32.21 4.45 2

Gesture (B) 42.12 4.46
Doom (A) 2.25 44.42 4.78 3

Gesture (B) 1 37.41 3.66
Doom (A) 126.31 8.08 4

Gesture (B) 187.62 9.96
Figure 7. Table of the Log Results

Although the ‘Gesture’ mode is slightly better than the ‘Doom’
mode, the score clearly shows that the users were not happy with
‘Jumping’ in all stages.

We suspect the main reason behind the users’ dislike of the
‘Jumping’ command in ‘Gesture’ mode is because of the lack of
practice and unfamiliarity with the way it is performed: ‘Jump’ is
the only command that needs ‘stroke drawing’ in stage 1

Some of the testers blamed their failure in executing the command
on the stroke recognition system. However, the system’s logs
showed that the stroke recognition system was indeed working
correctly but the testers were failing to execute the command in
the correct way: some of them released the middle button before
finishing strokes whilst some of them removed the stylus pen
from the screen and released the middle button at the same time.
All of these testers had trouble coordinating the rhythm of using
the middle button and stylus pen together to accomplish the
‘Jumping’ action.

Of course, it could be that these results are simply reflecting a
lack of familiarity with a new interaction method and that these
scores would improve over time. On the other hand, this data
provides strong motivation for implementing ‘Jump’ using a
hardware button, should the target device have one available.

Stage2: Stationary Shooting
A ‘Shooting’ action consists of ‘Camera View Changing’,
‘Aiming Adjustment’ and ‘Firing’. The goal of this stage is to
compare these actions, which are very different in the two
interaction styles. To remove confounding factors and focus on
these basic actions the avatar remains stationary in this stage.
Testers were expected to be very familiar with these actions using
the traditional ‘Button Pressing’ style. In this style, ‘Firing’ is
triggered by pressing the ‘Firing’ button and ‘Aiming and ‘Look
Around’ are handled by the stylus pen, which is similar to the use
of the mouse on desktop PCs. In the new interaction style, these
three actions are coordinated only by the stylus pen.

In this stage, there are ten ‘Drones’ (white cubes) randomly
floating around in front of the avatar. Once one of these ‘Drones’
gets shot, it respawns in another randomly generated position in
front of the avatar. Users have to shoot twenty drones to
accomplish this stage.

All the testers accomplished this stage easily. Although the new
shooting style takes longer than using the Doom game style, as is
shown in Figure 7, it offers much more fun and convenience.
Results from the questionnaire and interview confirm this – see
Figure 8 below.

A(Doom) 4

A(Doom) 3

A(Doom) 3

A(Doom) 3

B(Gesture) 6

B(Gesture) 7

B(Gesture) 7

B(Gesture) 7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Shoot moving object for

conveniece

Shoot stationary object

for convenience

Shoot moving object for

fun

Shoot stationary object

for fun

 119

Figure 8. The scores in Stage 2. The upper graph reflects a

binary preference choice; for example the first line shows that
4 participants preferred the Doom-style, whilst 6 preferred

the gesture system. The bottom graph represents an average
of a Lickert scale used to rate satisfaction level

The testers experienced the new shooting style ‘Auto Aiming &
Shooting’ in this stage. Some of them verbally expressed that they
enjoyed this new shooting mechanism. The average score for
satisfaction with this shooting method is 5.

Stage3: Moving & Shooting
Situations in which players need to dodge and shoot
simultaneously happen frequently in most FPS games. The design
of Stage 3 is intended to simulate this kind of situation. The
interaction actions taken in this situation are very intensive and
good coordination between ‘Moving’, ‘Aiming’ and ‘Firing’ are
essential. The main goal of this stage is to test the performance of
the new interaction system is such intensive situations.

This stage consists of a closed cuboid room, which is shown in
Figure 9. The room is divided into two sections by a wall with a
hole in the middle. There are in total six drones (white cubes) in
the big section. There are four stationary drones at the corners and
two drones floating around randomly. The red cube in the plot
represents the starting position of the avatar. Once the avatar starts
moving, the player is not allowed to stop for more than two
seconds, otherwise, the player will be respawned at the starting
position. The wall in this room blocks the avatar’s direct view of
the drones from the starting position. This requires that the user
move, changing this stage from a ‘Stationary Shooting’ stage to a
‘Moving and Shooting’ stage.

Figure 9. The top view of the stage3 (Left) and its view (right)
This is the most challenging phase in the entire application. Both
of the participants who had no previous FPS experience failed to
accomplish this stage. Even the experienced FPS testers had
trouble finishing. However, the new interaction style shows better
performance results than the original. Figure 7 indicates that using
the ‘Gesture’ mode enables users to finish the stage in less time
and with less mouse movement than the ‘Doom’ mode.

The most difficult part in this stage is the execution of the
‘Shooting’ command. Using this function in ‘Doom’ mode is
especially inefficient, since users have to release the ‘Moving’
buttons first and then press the ‘Return’ button (all of these

buttons are controlled by the left thumb), which means the avatar
is only able to shoot in a stationary situation. This impedes
performing the combination of dodging and counter attacking and
severely impacts gameplay[10]. The new interaction design
converts the execution of the ‘Firing’ command from the user’s
left hand to the right hand, which solves the problem of
implementing the most commonly used commands, ‘Moving’ and
‘Firing’, simultaneously. The coordination of these functions has
clearly been improved, and the testers were satisfied with these
new changes, as shown in Figure 10.

Only a few testers tried the ‘Auto Aiming & shooting’ mechanism
in this stage. This is because the habit of performing this shooting
mechanism in an intense task had not had time to form; in intense
game situations, they forget about this function. However, testers
who used this method rated it above average.

Stage4: Function Execution
In addition to the basic ‘Shooting’ and ‘Walking’ actions, the
interactions of advanced commands such as ‘Weapon Changing’,
‘Events Handling’, ‘Menu View’, ‘Map View’, etc., are also part
of FPS gameplay. Although these commands are used less than
the basic commands, according to the study in the InteractionLog
section, they are necessary and crucial for enhancing the game
usability and playability.

In order to prevent the results from being affected by advanced
commands, task designs of previous stages focused only on the
commands which were to be evaluated. The evaluation of the
advanced function commands is different from those basic
function commands.

Figure 10 – Scores from Stage 3. Again, the upper graph is a
summary of binary choice and the lower graph is an average

of Lickert scores.
‘Gesture’ interaction style can execute many more function
commands than the ‘Doom’ style due to the potentially unlimited
patterns of strokes. On the other hand, the efficiency of button
pressing is much faster. Irrespective of the speed or the number of
commands the interaction style is capable of, the ultimate purpose
of this evaluation in PDA games is to find out whether the players
like and accept the new interaction style while playing the game.
Therefore, the aim of this stage is to test the interactions

 120

performance of executing these functions in a proper FPS game
context.

Figure 11. The top view of the maze

Based on this, a maze was created for this stage, as shown in
Figure 11. Users have to find their way to the ‘Exit’ and kill all
the drones (each must be killed with a specific different weapon).
Users can get help information by executing the ‘Map View’
command to see the top view of the maze. The map shows the
structure of the maze, the location of the ‘Exit’, ‘Avatar’,
‘Drones’ and the type of the weapon required for killing the
drones.

Figure 12. The scores in Stage 4. The top graph is a summary
of binary preference choice and the bottom two are averages

of Lickert scales.
Due to the fact that the number of physical buttons on the PDA
x51v is very limited, only four advanced function commands are
implemented in this stage, namely: ‘Map View’, ‘Next Weapon’,
‘Previous Weapon’ and ‘Jump’. Besides this, in ‘Gesture’ mode,
users can draw the strokes ‘A’,’B’,’C’ and ‘D’ in a graffiti style to
specify which weapon to use directly instead of pressing the
‘Next’ or ‘Previous’ weapon multiple times.

Again, the new interaction mode took more time than the ‘Doom’
mode as shown in Figure 7. However, the satisfaction scores
shown in Figure 12 would tend to favor the new system.

In addition to the unlimited commands, the entertainment and
convenience offered by the new interaction system was rated as
satisfactory. Another advantage of the new interaction design is
shown in Figure 14. In interaction ‘A’ (Doom) which the upper
diagram shows, the tester had to press the other four hotkeys
around 40 times in this stage. These four hotkeys are also in the
charge of the left thumb. Therefore, the left thumb has to take care
of nine buttons in total, which is double the number in ‘Gesture’
mode. This unbalanced command assignment confused the testers
severely. Users sometimes triggered undesired commands by
mistake in Doom-mode.

Figure 13: The force exerted on the user’s hand is much
greater in the landscape-oriented Doom than in our portrait-

oriented system.
A further problem with the thumb being in charge of the nine
buttons is that it affects how comfortably the PDA can be held.
The left palm supports the weight of the device, with the left
thumb controlling the balance and grasping of the device. The less
movement and jumps the left thumb has to make between
different buttons, the more stable and comfortable holding the
device becomes. With the lower mouse movement rate afforded
by the ‘Gesture’ mode, users did not feel fatigue from holding the
PDA device at all, even though they had to hold it for longer. An
explanation for this is shown in Figure 13.

6. Conclusion
A summary of the results are shown in Figure 15. Overall, there
was no significant difference (p=0.148) between preference scores
for each system. The only significant result (p=0.033) was in the
new firing mechanism we developed, which players rated as
increasing playability.

So overall the experiment results show that the new interface is
certainly no worse than existing systems and, in the case of firing,
is capable of making FPS games on PDA devices more practical
and enjoyable than current implementations. Although the user
spends more time using ‘Gesture Interaction’ than current
interaction styles, the new style solves major problems including
function limitation, user fatigue due to holding the PDA,
difficulties in coordination when performing multiple commands
simultaneously and restricted camera movement.

 121

Figure 14. InteractionAnalysor which compare two

interaction mode in an intuitive way. It shows activities of the
interaction events in a certain period of time.

Figure 15. The overall results

Our interface does have the following advantages over current
systems:

 Distribution of crucial commands to both hands creates
good performance which is especially obvious in intense
battle situations.

 The new interaction system is easy to learn. All the testers
picked it up quickly. None of them needed to look at the
stroke instructions after running the application for a short
time.

There is still work to be done, however, and it is clear that some
functions, such as ‘Jumping’, still need to be improved. We
believe that a sensible balance between gesture recognition and
hardware buttons should support this and provide even greater
satisfaction to game players.

In section 4, we stated that there were, as yet, no standard
conventions for the controls on PDA-based FPS games. Although
we do not believe our research to be mature enough to be adopted
as a standard, it does point the way to what that standard might
look like – it will almost certainly incorporate some form of
gesture recognition and automatic firing system. We hope that
other researchers will be able to build on our work to create a
canonical set of gestures and a firing system that strikes an
engaging balance between automation and user controls.

7. REFERENCES
[1] Quake3CE. http://www.bit-tech.net/news/2005/11/11/q3ce_

powervr
[2] DoomGL. http://www.doomworld.com/doomgl/doomgl.htm

[3] Apsman, W., Woodward, C. ,Hakkarainen, M., Honkamaa P.,
and Hyakka, J. (2004) Augmented reality with large 3D
models on a PDA: implementation, performance and use
experiences. In Proc. SIGGRAPH 2004, Singapore. 344-351.

[4] Marsden, G. and Tip, N. (2005) Navigation control for
mobile virtual environments. In Proc. MobileHCI 2005,
Salzburg, Austria. 279-282.

[5] Webber, M., Pfieffer, T., and Jung, B. (2005) Pr@senZ -
P@CE: mobile interaction with virtual reality. In Proc.
MobileHCI 2005, Salzburg, Austria. 351-352.

[6] GeoRally EX. http://www.ionfx.com/product_EX.php

[7] Preece, J., Sharpe, H. & Rogers, Y. (2007) Interaction
Design. John Wiley and Sons.

[8] Lim, Y., P, A., Periyasami, S. and Aneja, S. (2006)
Comparative analysis of high-and low-fidelity prototypes for
more valid usability evaluations of mobile devices. In Proc.
NordiCHI 2006, 14-18 October 2006. 291-300

[9] Nielsen, J. and Mark, R.L. (Eds.). (1994) Heuristic
evaluation. In ‘Usability Inspection Methods’, New York:
John Wiley & Sons.

[10] Korhonen, H. and Koivisto, E. (2006) Playability Heuristics
for Mobile Games will be held through the Expert
Evaluation. In Proc. MobileHCI 2006, September 12-15,
2006, Helsinki, Finland. ACM Press. 9-16.

[11] Federoff M. (2002) Heuristics and Usability Guidelines for
the Creation and Evaluation of FUN in Video Games. Thesis
at the University Graduate School of Indiana University, Dec
2002.

[12] Counter Strike 1.5.
http://www.steamgames.com/v/index.php?
area=game&AppId=240&cc=USA

[13] Barfield, W., Zeltzer, D., Sheridan, T. & Slater, M. (1995)
Virtual Environments and Advanced Interface Design.
Oxford University Press, UK.

