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Abstract

Modern radio interferometer arrays are powerful tools for obtaining high resolution images

of low frequency electromagnetic radiation signals in deep space. While single dish radio

telescopes convert the electromagnetic radiation directly into an image of the sky (or sky

intensity map), interferometers convert the interference patterns between dishes in the array

into samples of the Fourier plane (UV-data or visibilities). A subsequent Fourier transform

of the visibilities yields the image of the sky. Conversely, a sky intensity map comprising a

collection of point sources can be subjected to an inverse Fourier transform to simulate the

corresponding Point Source Visibilities (PSV). Such simulated visibilities are important for

testing models of external factors that affect the accuracy of observed data, such as radio

frequency interference and interaction with the ionosphere.

MeqTrees is a widely used radio interferometry calibration and simulation software pack-

age that contains a Point Source Visibility module. Unfortunately, calculation of visibilities

is computationally intensive: it requires application of the same Fourier equation to many

point sources across multiple frequency bands and time slots. There is great potential for

this module to be accelerated by the highly parallel Single-Instruction-Multiple-Data (SIMD)

architectures in modern commodity Graphics Processing Units (GPU). With many tradi-

tional high performance computing techniques requiring high entry and maintenance costs,

GPUs have proven to be a cost effective and high performance parallelisation tool for SIMD

problems such as PSV simulations.

This thesis presents a GPU/CUDA implementation of the Point Source Visibility calculation

within the existing MeqTrees framework. For a large number of sources, this implementa-

tion achieves an 18× speed-up over the existing CPU module. With modifications to the

MeqTrees memory management system to reduce overheads by incorporating GPU memory

operations, speed-ups of 25× are theoretically achievable. Ignoring all serial overheads, and

considering only the parallelisable sections of code, speed-ups reach up to 120×.
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Chapter 1

Introduction

Radio interferometry is the use of multiple radio-receiving elements (traditionally radio

dishes, but also can be individual dipoles or phased array stations) to enhance the reso-

lution and sensitivity of astronomy observations. While single dish telescopes convert the

electromagnetic radiation directly into an image of the sky (known as the sky intensity

map), interferometers calculate the interference patterns between pairs of receiving elements

to produce sample points on the Fourier-plane (termed visibilities). A subsequent Fourier

transform operation on a collection of samples produces the sky intensity map (Thompson

et al., 2009). This process is called image synthesis.

The reverse process (conversion from a sky intensity map into the corresponding Fourier-

plane visibilities) allows one to simulate what visibilities would be obtained given a certain

sky model and model of instrumentation distortions as well as other effects (e.g. atmospheric

effects and radio interference). This step is vital in the fitting loop of interferometer cali-

bration, whereby a simulation is repeatedly run with model parameters to obtain a best fit

to the data (and thus a best fit to the model parameters). A sky intensity map comprising

a collection of point sources (a source is simply an observable entity in the sky) may be

transformed into the corresponding point source visibilities with an inverse Fourier trans-

form (Smirnov, 2011d). This process is called a visibility simulation in general, and a point

source visibility simulation when a point source sky map is used.

Both the image synthesis and visibility simulation calculations — i.e. from visibilities to sky

intensity map and from sky intensity map to visibilities — require direct Fourier transforms.

This is computationally demanding as each pixel/visibility must undergo a Fourier transform.

1
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For example, computation of a modest 256 × 256 pixel image from 1, 000, 000 visibility

samples requires 256 ∗ 256 = 65, 536 Fourier transform calculations for each of the samples.

The reverse (simulation) process, from an image model to visibility samples, involves a similar

number of operations. Using a point source model of the sky to simulate 1, 000, 000 visibility

samples from a model comprising of 4000 point sources requires the computation of 4× 109

Fourier transforms.

Extant interferometers comprise anywhere from 6 (21 base-line pairs) to 30 elements (465

base-line pairs): the Australia Telescope Compact Array has 6 elements (McKay and Wark,

2009); the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands has 14 el-

ements (ASTRON, 2012a); the Very Large Array in New Mexico, USA has 27 elements

(Associated Universities Inc, 2012), and the Giant Meterwave Radio Telescope (GMRT) in

India with 30 elements (NCRA-TIFR). The LOw Frequency ARray (LOFAR) in the Nether-

lands has somewhat different architecture, comprising a phased array set up of 20, 000 small,

cheap antennas, grouped into 40 stations (780 base-line pairs) (ASTRON, 2012b). The next

generation of interferometers will be considerably larger: the Australian Square Kilometer

Array Pathfinder (ASKAP) is tabled to comprise 36 elements (CSRIO, 2012); the Allen

Telescope Array in California, USA, currently has 42 elements and is planned to extend

to 350 antennas at completion (SETI Institute, 2012); and the MeerKAT Array in South

Africa will have 64 elements (Horrell, 2012). The Square Kilometer Array (SKA) is likely to

comprise both a phased array interferometer and a traditional dish interferometer with “an

estimate of 2000 - 3000 ... antennas” (Dewdney et al., 2011). At 4.5 million base-line pairs,

this will present a significant computational challenge.

The standard, well-explored, acceleration solution for Fourier transform calculations is to

utilise the Fast Fourier Transform (FFT) algorithm. The FFT is one of the most widely-

used computer algorithms in the scientific world and accelerates discrete Fourier transform

calculations, reducing the complexity from O(N2) to O(N logN) (Cooley and Tukey, 1965;

Brigham and Morrow, 1967). For image synthesis, a two-dimensional FFT is used to convert

the visibilities into an image (Nussbaumer, 1982; Thompson et al., 2009), whereas current

visibility simulation software still uses the computationally expensive direct Fourier trans-

form method (Smirnov, 2012).

2



CHAPTER 1. INTRODUCTION

1.1 Role of High Performance Computing

Given its high computational cost and the lack of inter-dependencies in the input data,

visibility simulation is a clear candidate for exploitation by High Performance Computing

(HPC) and parallel processing technologies. The high computational load limits the com-

plexity of the simulation, as only simple point source maps can be run in reasonable time.

With the application of HPC technologies, these simulations can be accelerated, allowing for

more testing of more complex and realistic models in shorter time frames.

The traditional HPC system is a cluster, with inter-connected CPU nodes, each responsible

for a fraction of the total processing load. More recently, vector streaming systems such as as

Cell (Gschwind, 2006), ClearSpeed (ClearSpeed Technology Ltd, 2012; Kozin, 2009) and MD

GRAPE (IBM Research; SGI Japan), as well as GPU (Graphics Processing Unit) technology,

have been developed as alternative parallel computing solutions. Instead of using a large

number of serial processors that each perform one instruction on one register per clock cycle,

vector processors are able to perform one instruction on multiple registers simultaneously

with each clock cycle.

We focus on the GPU, the modern evolution of the graphics card. Like vector stream proces-

sors, a GPU can perform operations simultaneously on multiple data inputs using its many

compute cores. In the past, these processors would only be able to perform specific rendering

operations and specific 3D geometry transformations, which allowed 3D vertex information

to be transformed into 2D screen coordinates. Later these processors were extended into

programmable shaders which allows a programmer to chose how a vertex would be trans-

formed. Shader-based graphics cards would often have multiple shader processors running

in parallel to improve performance. Attempts to leverage these parallel shader processors

to do general purpose computation on the GPU (GPGPU) were successful; however, the

computation was always akin to fitting a square peg into a round hole, as general code must

be written in the guise of rendering operations. On modern GPUs, these disparate shader

processors were eventually unified into a single, more general, type of processor that could

subsume the all of the shader tasks. Current high-end GPUs consist of over 512 cores and

are able to execute general code on each of these cores in parallel.

GPUs fall into into the Single-Instruction-Multiple-Data (SIMD) paradigm, meaning that

there is a single task that is to be applied to many data points. This is in contrast to Multiple-

Instruction-Multiple-Data (MIMD) paradigm, which is applicable to problems within which

3
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there are many different tasks to be performed on many different data points (Patterson and

Hennessy, 2008). The direct Fourier transform in PSV simulations is a SIMD problem, as

the same Fourier calculation must be performed on all the data points. As such, it should

benefit from SIMD technologies such as vector stream processors and GPGPU (General

Purpose computing on the GPU) technologies. Vector stream processors are effective at

parallelising SIMD problems, but often have high entry and maintenance costs (Matsuoka

et al., 2009). GPGPU technologies utilise commodity graphics hardware and offer a far more

cost effective solution.

Currently leading the industry in GPU technology is nVidia and AMD, each with their own

GPGPU software and hardware. nVidia’s Compute Unified Device Architecture (CUDA)

features a compiled high-level, C-like language for computation on their modern GeForce

GPUs, whereas AMD (previously ATI) released a low-level language, FireStream, for general

computation on their Radeon GPUs (AMD, 2010). AMD’s current GPU efforts are focused

mainly on OpenCL (Open Compute Language). OpenCL is a language interface which

allows for a single piece of code to run on many different HPC hardware systems (Munshi,

2011). To date, both nVidia and AMD have OpenCL implementations, allowing for OpenCL

utilisation on both vendors’ hardware (Karimi et al., 2010). While OpenCL has improved

significantly in recent years, and looks to become the leading platform for heterogeneous

computing, CUDA remains the more prominent technology owing to its faster execution

times, mature API, and wide support in the form of libraries and tools (Karimi et al., 2010).

Given the need for an accelerated implementation of PSV computation, and the wide ac-

ceptance of CUDA, we have developed a CUDA version of the PSV model present in the

leading astronomy software suite, MeqTrees (Noordam and Smirnov, 2011). Our implemen-

tation exploits the SIMD nature of the PSV calculations with commodity graphics hardware,

thus allowing a computationally effective and cost-effective parallelisation solution.

The MeqTrees framework has been developed to compute any Measurement equation by

defining the equation as a Tree. It can perform a wide variety of computations (represented

as trees) and is defined by a simple Python script (Noordam and Smirnov, 2011). Its main

purpose is to perform third generation calibration (3GC). In practice, recorded visibilities

are subject to corruption by instrumental effects (these corruptions can be represented as

per-antenna complex gain terms — i.e. an amplitude and a phase per antenna — that varies

with time and frequency but not with direction). Calibration attempts to solve for these

effects, and to recover the true visibilities. First generation calibration (1GC) techniques
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involve switching from observations of the target with those of a known calibrator source

and then back. Second generation calibration (2GC) solves for per-antenna complex gains

and the unknown target sky region simultaneously, without having to break observation

of the target to externally calibrate. 3GC techniques extend this with the ability to take

direction-dependant gains into account. With each generation, the achievable signal-to-noise

ratios of interferometers increased as well, improving sensitivity of the data. MeqTrees is

designed to be flexible to allow for a multitude of 3GC instrumental and interference models

(Noordam and Smirnov, 2011).

Within its many modules, MeqTrees includes a PSVs module. This module produces a

simulated UV-plane based on a number of input data: interferometer setups, instrumental

models, noise models and sky map models. This is essentially a simulated interferometer,

and can be used to evaluate and improve the aforementioned models and for simulation in

of itself. As mentioned above, however, PSV simulation is computationally intensive as it

utilises a direct Fourier transform method.

1.2 Aims and Approach

The principal goal of this work is to accelerate PSV calculations performed by the current

CPU PSV component of the MeqTrees framework. We aim to achieve this by exporting

the CPU PSV component to the SIMD parallel architecture on modern GPUs. To enable

comprehensive parallel optimisation, we focus on nVidia’s CUDA devices and our code and

we integrated our code into the execution paradigm of the MeqTrees software package.

We port the computational parts of the PSV module into a new CUDA PSV module, which

we add to the MeqTrees framework, leaving the remainder of the framework unchanged. For

the CUDA PSV module, we create a naive implementation, and then iteratively add com-

mon CUDA optimisation techniques to determine their efficacy. In particular, we explore

methods to reduce the amount of off-chip memory accesses, methods such as effective use

of CUDA shared memory and exploitation of CUDA memory coalescing via optimal thread

organisation. We also explore processor utilisation to determine its importance in accelerat-

ing this computation. Data-sets of multiple sizes are used with two distinct interferometer

setups, namely the Westerbork Synthesis Radio Telescope and the MeerKAT (Karoo Array

Telescope), the Square Kilometre Array (SKA) pathfinder.
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Performance of the new CUDA PSV module is benchmarked against the CPU version, to

determine the magnitude of performance gain achieved by the CUDA GPU. To determine

the effect that each optimisation has on the final speed-up, various CUDA optimisations

are selectively removed and the code is benchmarked against the CPU version as well as

other GPU versions. These benchmarks are analysed to determine the best configuration of

optimisations for optimal memory and processor performance. We run our tests on nVidia’s

commodity Fermi architecture under numerous configurations and compare it to older hard-

ware to gain insight as to what technological advancements in the newer hardware are most

effective (such as off-chip memory caching and increased double precision floating point

operation throughput).

1.3 Contributions

The main contribution is the creation of a node in MeqTrees that utilised the processing

power of the GPU and the fact that it performed significantly faster than its CPU counter-

part. Although it is only a working prototype of a CUDA MeqTrees node, it can be incor-

porated fully into the MeqTrees code-base with some additional work. This was achieved by

implementing and optimising a CUDA PSV node, and discovering what technical challenges

there are for future attempts at implementing GPU functionality in MeqTrees.

This work notes the importance of the use of shared memory to reduce off-chip memory

accesses. The PSV problem is characterised by relatively small input vectors in comparison

to the output vectors. The actual process involves a large amount of GPU memory for

intermediate values, which are reduced to a smaller final output vector. Shared memory

allows us to do part of the reduction in on-chip memory before it is written to off-chip

memory, thus reducing off-chip memory writes significantly.

It is found that the serial (hence not parallelisable) section of the code becomes the main

bottleneck for accelerating the PSV node. It is a primary point to be taken from this work

that acceleration of the core computations alone will result in at most an order of magnitude

reduction in total running time, even if the core computation is sped up a thousand fold or

more. The reason behind this is that the previously small fraction of the MeqTrees overhead

becomes hinderingly significant when the core computations are accelerated. Whilst this

overhead is a result of MeqTrees’ flexibility and wide scope, in order to achieve speed-ups of

more than two orders of magnitude, this overhead should be parallelised or accelerated in
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some manner.

Massive radio interferometers such as the SKA will have computational requirements mul-

tiple orders of magnitude larger than any previous interferometer. These projects will have

sensitivity far exceeding anything before them, and thus will require even more precise and

accurate calibration models so as to improve signal-to-noise ratio. RFI has always been a

primary concern, but with 3GC calibration techniques, the need to test atmospheric inter-

ference has become just as important, as scientists and engineers strive towards better, more

sensitive equipment. PSV simulations allow for testing and acceleration of these models,

which enable faster turnaround and more complete simulations.

1.4 Thesis Outline

The thesis is structured as follows:

Chapter 2 reviews the basics of Radio Interferometry (specifically Point Source Visibility cal-

culations), GPGPU technology (specifically CUDA technology) and relevant Fourier trans-

forms, and explores the surrounding literature.

Chapter 3 explains the CUDA programming and hardware models, CUDA implemented

Thrust library, and common CUDA optimisation techniques.

Chapter 4 details the techniques with which the PSV node in MeqTrees is implemented. It

also outlines how MeqTrees defines equations as expression trees and specifically how PSVs

are defined. Furthermore, it explains the MeqTrees execution model and how the GPU node

is incorporated.

Chapter 5 details how results are measured, the metrics used and the experimental setup.

Chapter 6 shows the findings of these tests with discussions thereof. Conclusions and future

work are presented Chapter 7.

The Appendices present detailed explanations of image synthesis in radio interferometry (A)

and PSVs (B). These support the main body of the thesis and are referred to throughout.
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Background

This chapter serves to give the reader the understanding of radio interferometry and GPU

technology required to follow the remainder of the thesis. Radio interferometry and related

concepts are defined and the radio interferometry data pipeline is outlined with an emphasis

on the computational challenges that it presents. The MeqTrees framework, a central com-

ponent to this work, is then introduced. The evolution of GPGPU technology is summarised

in the context of High Performance Computing (HPC) technology. Furthermore, CUDA

and CUDA-related technologies are introduced. An overview of some literature (especially

pertaining to GPGPU technology in astronomy) is discussed in this chapter, but related

literature is largely contained in the relevant chapters.

2.1 Radio Interferometry

Radio interferometry is the use of multiple radio-receiving elements to enhance the resolution

and sensitivity of astronomical observations by measuring interference patterns between

receiving elements. This contrasts with traditional single dish telescopes that convert the

electromagnetic radiation directly into an image of the sky (or sky intensity map).

An interferometer measures visibilities, which are samples of the Fourier transform of the sky

intensity map, by correlating the signals received by each element with every other element

in the array. The interferometer will measure many visibilities in a snapshot observation, or

over a number of hours. When plotted on the same plane, the set of visibilities produces a

sampled Fourier plane of the observed region of the sky. An inverse Fourier transform (either

8
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a direct Fourier transform or a Fast Fourier Transform (FFT)) then produces the desired

observed sky intensity map.

The reverse process of producing (or simulating) visibilities from a model sky intensity map

is primarily used for testing various instrumental distortion models and thereby increasing

the signal to noise ratio and improving sensitivity.

2.1.1 Concepts and Definitions

A radio wave is electromagnetic radiation with a long wavelength, above 1mm and include

1 meter and even 1 kilo-meter wavelengths. Unlike optical signals that operate on shorter

wavelength and can be measured by reflecting and focusing electromagnetic radiation signals

by use of a reflective surface or by refracting the signal using a transparent (glass) lens, radio

waves are measured by focusing the signals into a receiver with large paraboloid dishes. Since

longer wavelengths reduce resolution, larger collecting areas are necessary to maintain an

acceptable resolution, as given in the following linear proportion:

R ∝ λ/D (2.1)

where R is the angular resolution in radian, λ is the wave-length, and D is the diameter of

the collecting surface (the dish). This phenomenon is referred to as the diffraction-limit, as

the resolution is limited by the diffraction of light, which at larger wavelengths, is worse. The

resolution in this case is angular since signals are received over a spherical sector of the sky.

The definition of angular resolution is the minimum angular distance to resolve (distinguish)

two point sources as distinct object, as opposed to pixel density. A lower R is equivalent to

an increase in pixel density. An increases diameter increases resolution, but also decreases

the Field-of-View (FoV).

In order to obtain a high enough resolution, larger and larger radio telescopes have been

manufactured in a variety of shapes. All dishes, however, essentially reflect and focus elec-

tromagnetic radiation onto a receiver, which then digitises the signal (Figure 2.1).

To date, the largest steerable radio telescopes in the world are about 100m in diameter,

such as the Effelsberg 100m Radio Telescope and the slightly larger than 100m Green bank

Telescope. The largest telescope is located in Arecibo, Puerto Rico; it is 305m in diameter,

but is built in a natural sink-hole and is thus immovable. Currently under construction in
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Figure 2.1: A dish with a feed horn
Incoming rays are reflected and focused onto a feed-horn, which converts the signal to a
voltage.

Pingtang County, China is the Five hundred meter Aperture Spherical Telescope (FAST),

built in a natural basin. All of these very large dishes, regardless of mobility, are costly to

build and maintain. The engineering and monetary requirements for creating significantly

larger dishes are becoming more and more infeasible with each advancement. It is thus

unlikely that higher resolution images can reasonably be obtained by simply building larger

dishes.

Another method for obtaining an effective larger collecting area is to use an array of smaller

telescopes (as shown in 2.2) rather than a single large one. This method, known as interfer-

ometry or aperture synthesis, measures the interference patterns between dishes and allows

synthesis of a telescope with an aperture equal to the greatest distance between telescopes.

This changes Eqn 2.1 to:

R ∝ λ/B (2.2)

where R is the angular resolution, λ is the wave length, and B is the longest baseline of the

array. The longest baseline of an array of telescopes is the longest distance between any two

telescopes. Whilst there do exist optical interferometers, interferometry is most effectively

used for radio signals owing to the difficulty in accurately measuring interference patterns
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Figure 2.2: The Karoo Array Telescope (KAT-7)
The KAT-7 consists of seven identical 12m parabolic dishes. This array is the testbed
upon which the 64 dish MeerKAT array is currently being built. (SKA South Africa,
2012; Wolleben, 2012)

in shorter wavelength signals.

Since an interferometer consists of many small dishes that can be placed far apart from each

other, it has the great advantage of being able to produce higher resolution images than

the traditional single dish method (see Appendix A for more details). Another advantage is

that an interferometer will have a FoV based on the diameter of the individual dishes, even

though the resolution is related to the longest baseline. Increase FoV means that more of

the sky can be surveyed at a time, and speeds up observation time proportionately.

Unfortunately, since interferometers measure interference patterns between pairs of antennae

rather than direct signals. the number of pairs in an N element interferometer is given by:

(N − 1)N

2
(2.3)

As such, additional processing is required to transform the interferometer output into usable

data. A notable disadvantage here is that this additional processing is very computationally

expensive and may require HPC technologies in order for the interferometer to serve as a
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feasible observational tool.

Whilst two telescopes of an interferometer can be placed very far apart from each other

to increase resolution, the total collecting area is still very small thus limiting sensitivity.

More telescopes in an interferometer array increases its total collecting area, which increases

sensitivity, but increasing the number of elements also increases the computational cost.

Specifically, the computational cost is quadratic with respect to the number of elements

in the array, since an interferometer measures interference between each pair of elements

2.3. The distance between the elements are called baselines. Any two elements constitute

a baseline pair. For new and upcoming interferometers with increasing numbers of array

elements, the computational cost grows significantly faster than the size of the array.

2.1.2 Radio Interferometry Data Pipeline

As an interferometer measures the interference patterns between pairs of antennae, there is

not a simple direct path from received signal to the analysed data. Thus a data pipeline has

developed and is as follows:

1. The array of telescopes collect their respective signals and are combined in a correlator

to produce a set of visibilities over a number of hours

2. These visibilities are then transformed into an image of the sky using a Fourier trans-

form. This results in a image of the sky convolved with the interferometer’s Point

Spread Function (PSF)

3. This image then undergoes some post-processing to remove the convolution in a process

called deconvolution.

4. A second phase of post processing is sometimes performed to remove background noise

in the data.

5. Data is analysed

Each pair of receiving elements collects one visibility or UV-sample over typically 0.1 to

30 seconds. Longer sample times means that more signal is received per sample, increasing

sensitivity, but also means there are fewer visibilities for the observation, which leads leads to

a more sparsely sampled Fourier domain and reduced ability to measure short term variability

in the observed source owing to time and bandwidth smearing (see Appendix B.4). Samples
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sets are collected over a few hours of observation. To give some indication of the sheer

amount of visibilities that are collected, consider a modest 16 element interferometer that

samples every 10 seconds over 8 hours (or 28, 800 seconds). According to Eqn 2.3, this is
16∗15

2
= 120 pairs, each collecting over 28,800

10
= 2, 880 time-steps, totalling 345, 600 samples.

The number of antenna pairs grows quadratically with the number of antennae. If we, in our

example, double the number of elements to 32, then the number of pairs would increase to

496, over four times the original of 120. The number of samples increases to 1, 428, 480 visi-

bilities. Thus, as interferometers become larger, the computational cost becomes increasingly

significant. Compounding this, advances in radio dish technology, such as increased sensitiv-

ity and reduced internal noise, allow for shorter sampling times and hence more samples per

baseline pair per hour. With modern interferometers reaching over 60 elements (1770 pairs)

and considering typical observing conditions of 1 second samples over 10 hours (36000 sam-

ple sets), the number of samples can balloon to over 60 million. With future interferometers

like the SKA, which should contain a few thousand elements, the computational challenge

becomes substantially more significant.

Adding to this already large number of visibilities, multiple frequency channels are often

measured simultaneously, typically 32 or 64 channels at a time. Thus 32 or 64 times the

number of visibilities. The number of visibilities recorded in an observation is

S =
N(N − 1)

2
× f × t

where N is the number of elements in the array, f is the number of frequency channels and

t the number of time-steps taken.

Mathematically, a plot of all the visibilities (called the UV-plane) is equivalent to a sampled

version of the Fourier plane (see Figure 2.3 for an example). Thus a Fourier transform of

the UV-plane results in the image plane, or sky intensity map. Appendix A has a detailed

overview of visibility collection and the underlying mathematics.

Although a Fourier transform of the UV-plane reconstructs the sky intensity map (Figure 2.4,

left), the reconstruction is not perfect . The actual reconstruction is the observed signal

convolved with the interferometer’s PSF (Figure 2.4, right). Whilst in optical telescopes the

PSF usually has a 2D Gaussian shape, the PSF of an interferometer is dependent of the UV-

plane distribution (PSF shown in Figure 2.4, middle) which is dependent on array layout and

the length of time over which the observation was performed. As such, the reconstruction is
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Figure 2.3: UV coverage example
UV coverage of a four-hour observation with the LOw Frequency ARray (LOFAR). While
it covers a large area, there are still many gaps between the samples. If this plane were to
be filled/fully sampled it would represent the Fourier Inverse of the observed sky intensity
map.

called the dirty image.

This dirty image is then ‘deconvolved’ to produce a clean image. Internal instrumentation

noise, as well as other noise caused by non-observational effects corrupts the post-convolution

signal , means a straightforward inverse convolution greatly amplifies this internal noise and

makes the deconvolved image unusable 1. Thus, approximate or heuristic deconvolution

algorithms are found to be more effective, and is a field of study in its own right (Taylor

et al., 1999). We do not investigate or implement deconvolution in this thesis.

The most widely used technique for producing the dirty image is to re-sample the Fourier

1Internal noise in this context is strictly undesirable local noise and not background observational noise.
Background noise from other sources in the sky will be preserved by a direct inversion.
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Ideal/Actual Image
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Figure 2.4: Example of an intensity map affected by a PSF
Left: Actual Intensity map of the sky. Middle: Point spread function of the interferometer.
Right: The convolution of the two. This is the data that the interferometer produces
(minus any noise).

samples onto a uniform grid and then perform a Fast Fourier Transform (FFT) (Thompson

et al., 2001). For image synthesis, a two-dimensional FFT (2D FFT) is used to convert

the visibilities into an image (Nussbaumer, 1982; Thompson et al., 2009). Since the FFT

requires discretised data, the visibilities are discretised (or ‘gridded’) such that they lie on

a uniform grid. This usually involves some form of transformation or convolution function

(Sault and Wieringa, 1994; Rau et al., 2009; Thompson et al., 2009).

Using an FFT is faster than calculating the direct Fourier transform on a per-sample basis.

To demonstrate the difference in computational complexity, consider a data set of S samples.

Using a per-sample transform based on a direct Fourier transform, an M ×M image ,where

M represents the pixel dimensions of the image, must be calculated for each of the S samples,

which requires O(M2) running time per sample — O(M2S) in total. These S images are

summed (or reduced) to a single image; this operation also has a running time of O(M2S).

For the direct Fourier transform (non-FFT) method of image synthesis, we need to calculate

P pixels:

P =
N(N − 1)

2
×M2 × f × t

where N is the number of elements in the array, f is the number of frequency channels, and

t the number of time-steps taken.

The visibilities can be discretised onto a uniform M×M grid/image using an FFT. The FFT

algorithm runs in O(N log(N)) for a data set of N values. An FFT on a 2D N ×M data set

is equivalent to performing N 1D FFTs on each of the rows (each row an M -length vector)

and then M 1D FFTs on each column (each column an N -length vector). This operation
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requires a O(M ·N log(N) +N ·M log(M)) = O(MN log(MN)) running time.

A 2D FFT on an M ×M grid would run in O(M2 log(M)) with an added O(S) step for

discretisation of each source. The resulting run time is O(S + M2 log(M)), which is faster

than the direct method of O(M2S) for large values of S.

The FFT, while faster, leaves the resultant image-plane slightly distorted owing to the cyclic

nature of the FFT, which causes PSF side-lobes to wrap around the image. Additionally, the

gridding step (discretisation) intrinsically distorts the input data thus causing slight aliasing

in the resultant image (Thompson et al., 2009). Almost all FFT implementations use some

form of padding to alleviate the cyclic ringing and a post-process to reduce the aliasing

caused by the gridding process (Thompson et al., 2009; Taylor et al., 1999).

2.1.3 Simulating Point Source Visibilities

Image synthesis is the act of transforming visibilities to a sky intensity map. The reverse

process — producing visibilities using a sky intensity map — is called visibility simulation.

Simulated visibilities are important for testing (and understanding) instrumental models,

something that is necessary to increase signal-to-noise ratios and to obtain more reliable and

sensitive data (Smirnov, 2011d).

In order to simulate visibilities, we need a sky intensity map upon which an inverse Fourier

transform can be performed. The simplest methods use a sky intensity map comprising a

collection of point sources, as this requires a simple Fourier transform (Gaussians can also be

used). In the MeqTrees software suite, PSVs are computed with a direct Fourier transform

(Smirnov, 2012). Theoretically, a sky map can be discretised (or gridded) and use an FFT

to obtain the visibilities. This discretisation of data and the effects of this are in early stages

of exploration. Appendix B gives a detailed breakdown of the PSV equation.

PSV data changes depending on the layout of the interferometer, the measured frequency

bands, the number of time intervals, and the point source model of the sky. Increasing the

number of receiving elements in the telescope array results in more visibilities but comes

with a concomitant quadratic increase in the processing required to calculate visibilities.

For an N element interferometer simulating P point sources, the number of visibilities to be

calculated is

S =
N(N + 1)

2
× P × f × t
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where f is the number of frequency channels and t the number of time-steps taken.

Each one of these visibilities V must be described in terms of which antennae pair they

derive from, q and q, at what time is was measured, t and the frequency channel, f . This

equation, called the Radio Interferometric Measurement Equation (RIME) is derived from

the antennae voltages at time t. While the classic RIME is defined in detail in Appendix A,

its formulation made it difficult to extent to take into account various noise models, a more

modern and flexible model has been developed (Smirnov, 2011a,b,c,d) and reads:

V ′pq(t, ν) =
∑
s

sinc
∆Ψ(νm)

2
sinc

∆Φ(tm)

2
Ksp(t, ν)BsK

H
sq(t, ν)

=
∑
s

sinc
∆Ψ(νm)

2
sinc

∆Φ(tm)

2
Bse

−2πi ν
c

(utpqσs)

(2.4)

where Vpq(t, ν) is complex visibility between antennae p and q at time t in frequency channel

f . Other terms in this equation are explained in full in Appendix C.

2.1.4 MeqTrees

MeqTrees (Noordam and Smirnov, 2011) is a software package used for so called third gener-

ation calibration (3GC) of radio interferometers and the reverse problem of visibility simula-

tion. In general, it is a software package for calculating any Measurement EQuation specified

as an Expression Tree. A measurement equation is an equation that relates the measured

signal to the observation. This is covered in more detail in Chapter 4. Expression trees are

defined by the user with Python scripts, making MeqTrees easy and flexible to use for most

radio interferometric calculations. MeqTrees has been used extensively for LOFAR, WSRT,

and MeerKAT and is planned for use in the SKA (Noordam and Smirnov, 2011) .

This thesis focuses on the implementation of a MeqTrees ‘node’ that calculates PSVs. A

CPU version of this node already exists in the MeqTrees framework and it is this node

against which our GPU results are bench-marked. This ‘PSV node’ is based on the Radio

Interferometry Measurement Equation (RIME), which is detailed in Appendix B.
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2.1.5 Parallelism Opportunities

In both image synthesis and visibility simulation, we see similar characteristics. Both perform

a Fourier transform for each of the pixels/visibilities that need to be calculated. Indeed, the

actual equation of each is the Fourier inverse of the other. For each case all the calculations

are the same, but with different input data. This lends itself to a solution employing the

Single-Instruction-Multiple-Data (SIMD) paradigm (Patterson and Hennessy, 2008).

Within the domain of high performance parallel computing, there are several ways to ap-

proach SIMD problems, most of which require the use of specialised hardware such as Cell

(Gschwind, 2006), ClearSpeed (ClearSpeed Technology Ltd, 2012; Kozin, 2009), and MD

GRAPE (IBM Research; SGI Japan). These solutions can be very expensive involving high

initial investments, specialised maintenance, and often high power-consumption rates (Mat-

suoka et al., 2009). In 1999 nVidia coined the term Graphics Processing Unit (GPU) to

describe the first graphics card in its GeForce range, the GeForce 256 (nVidia Corpora-

tion, 1999). Advancements in GPU technology culminated in 2006 when nVidia released its

Computer Unified Device Architecture (CUDA) devices (nVidia Corporation, 2006). CUDA

exposes the powerful computation ability of the GPU by allowing the user to control the

GPU with general code (nVidia Corporation, 2011b) rather than with graphics operations, as

had previously been the case (Owens et al., 2008). With lower entrance costs, less specialised

maintenance, and reduced power consumption (Matsuoka et al., 2009), CUDA has opened

up the field of General Purpose computing on the GPU (GPGPU). Other stream process-

ing technologies are available, for example OpenCL (Munshi, 2011), ATI’s Close to Metal

(CTM) (Hensley, 2007), AMD’s FireStream (AMD, 2010), and MicroSoft’s DirectCompute

(Microsoft Corporation, 2010). Many of these technologies over generalise the GPU hard-

ware so that it is not fully utilised or are still coming into full maturity as a useful API for

GPGPU computing (Karimi et al., 2010).

Our selected HPC platform is commodity nVidia GPGPU system for its effective cost to

processing power compared to other systems that require large initial and continued mainte-

nance costs, it’s SIMD processing model and because of nVidia’s mature API and framework

compared to other similar GPGPU technologies, as discussed in Section 1.1.
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2.2 Graphics Processing Units

Graphics Processing Units (GPUs), or ‘graphics cards’, were developed for the computer

gaming industry, where many pixel and vertex operations must be performed in parallel to

render a 3D scene with detailed geometry at an adequate rate (Owens et al., 2008).

Initially, these processors could only perform fixed rendering operations and specific 3D

geometry transformations, i.e. to transform 3D vertex information into 2D screen pixel frag-

ments. Fixed processors were later extended into programmable shaders, which enabled

programmers to control the GPU via OpenGL or DirectX API calls (Peercy et al., 2000).

Shader code allows programmers to choose how a vertex is transformed (with a vertex shader)

and how the final pixel stream is drawn to the screen (with a fragment shader). Shader-based

graphics cards often have multiple shader processors to improve performance as there are

many vertices and fragments on which to operate, but only one vertex and fragment shader

program. This Single-Instruction-Multiple-Data (SIMD) model is central to all modern GPU

devices.

Initial attempts to leverage shader processors to do general purpose computation on the

GPU (GPGPU) demonstrated impressive computational gain. Unfortunately performing

such computation requires general code to be written in the guise of rendering operations

using graphics primitives such as polygons, textures, and fragments. This adds an unneces-

sary level of abstraction that the programmer has to account for, involving unintuitive render

operations and multiple shader processors with different characteristics. Memory manage-

ment is arguably even harder, as the programmer had little or no access to the underlying

memory hierarchy of shader based GPUs (Buck et al., 2004).

Attempts to abstract these operations were first successfully implemented in the BrookGPU

API (Buck et al., 2004). BrookGPU converts Brook language code into Cg code, a shader

language, that can be executed on any hardware that is OpenGL or DirectX compatible.

The disparate shaders were eventually unified into a single, more general, highly parallel

type of processor that subsumed all of the shader tasks. This was called the unified shader

model and modern GPUs contain large numbers of these processors. As a result there is

increasing interest in harnessing these low-cost devices for more general purpose computing.

The unified shader model allowed for more modern APIs, such as OpenCL (Open Compute

Language) (Munshi, 2011). OpenCL abstracts code to be run on a variety of HPC platforms,

including multicore CPUs, Intel’s Cell processors and most GPUs. Both nVidia and ATI
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have released OpenCL implementations for their respective GPU lines.

Besides OpenCL, the two major GPU vendors (nVidia and AMD) have each released their

own APIs and GPU compilers for their respective hardware. Unlike OpenCL, these APIs are

developed in-house and thus are better able to utilise the specific hardware characteristics

of their respective devices. nVidia’s CUDA is a standalone API that runs on proprietary

nVidia CUDA-enabled GPUs, and like OpenCL it uses a SIMD model for general purpose

computation. CUDA is written in a C-like language which is interoperable with standard C

and C++ but has bindings and libraries for many other languages. ATI released Close-to-

Metal (Hensley, 2007), a low-level programming interface that allows programmers to access

low-level instructions of ATI GPUs. This developed into FireStream (AMD, 2010), released

by ATI’s successor AMD. Both these ATI/AMD technologies were short-lived and current

GPGPU efforts from AMD are focused on its OpenCL SDK.

More recently, nVidia has also released an OpenCL SDK, which with sufficient tweaking, is

no slower than standard CUDA code (Karimi et al., 2010). Even though these tweaks are

CUDA specific (and will not run as fast on an AMD device, for example), this shows promise

for OpenCL as a heterogeneous HPC framework that is able to exploit various devices to

their full ability. Nevertheless, at the beginning of this thesis, CUDA was clearly the best

GPGPU technology available.

Although OpenCL has improved significantly, CUDA remains the more widely used tech-

nology owing to its mature API and wide support in the form of libraries and tools. For

example cuFFT for Fast Fourier Transforms, cuBLAS for Basic Linear Algebra Solutions,

NPP (nVidia Performance Primitives) for image and video processing and many others

largely geared at mathematical and statistical problem solving (nVidia Corporation, 2012c).

A recent development incorporated in the official CUDA SDK is Thrust, a productivity-

based CUDA library which generalizes many common CUDA problems into easy-to-code

C++ function calls (Hoberock and Bell, 2012; nVidia Corporation, 2011a,b, 2012c). While

Thrust is not as efficient as a custom-made CUDA code in terms of GPU utilisation and

memory usage, it takes good advantage of CUDA hardware and in most cases is far easier

to code than custom CUDA code.

CUDA is able to achieve significant performance owing to its use of many lightweight threads,

which run on its many compute cores. Standard CPU threads (such as POSIX threads) are

run on multi-core systems with each core executing one thread at a time. If there are more

threads than cores, active threads can be switched in turn with inactive ones. This form of
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thread switching required a costly context switch. A thread’s context differs from system to

system but all contain at least a set of register values and an instruction pointer. Essentially,

the thread’s context consists of all the information needed by the thread to continue executing

after it has been inactive. CUDA’s thread model schedules many thousands of threads and

runs these in groups of 32. The 32 thread groups (called warps) run in lock-step on multiple

CUDA cores. This is in contrast to CPU threads which run independently on each core;

and whose contexts, once started, resides in on-chip memory until the threads have finished

execution.

Characteristics of CPU threads include expensive but infrequent context switches and mem-

ory latency hiding by use of multiple levels of cache on each CPU core. This model allows for

what is called task-parallelism, as each thread can execute its own task independent of any

other thread’s task. In contrast, CUDA threads are characterised by limited caching ability

but instantaneous and frequent context switches to hide memory latency, and although they

are able to execute on blocks of data per clock cycle, they have limitations when it comes

to executing divergent code. CUDA threads exhibit what is called data-parallelism as it is

suited to computation of a single task upon many data points.

Chapter 3 goes into more detail on the CUDA programming and hardware models, the

Thrust library, and common CUDA optimisation techniques.

CUDA FFT implementations: Owing to the importance of the Fast Fourier Transform

(FFT) algorithm to the scientific community, HPC implementations of the FFT have been

explored using shader based GPUs (Moreland and Angel, 2003), Field Programmable Gate

Arrays (FPGAs) (Duan et al., 2011), and OpenCL (Li et al., 2011). There has been extensive

interest in porting the FFT to CUDA, and many focus areas have been explored within

this sub-field: precision (Govindaraju et al., 2008; Qi et al., 2011), heterogeneous CPU-

GPU implementations (Ogata et al., 2008), large-scale FFTs (Chen et al., 2010), 3D FFTs

(Nukada et al., 2008), and tuning schemes to yield as much performance as possible (Gu

et al., 2010; Dotsenko et al., 2011).

CUDA in Astronomy: Within the field of astronomy, GPGPU technology has already

been used to accelerate computationally intensive algorithms (Thompson et al., 2009). For

example, a CUDA GPU implementation of gravitational lensing calculations runs roughly

two orders of magnitude faster compared to a single core CPU implementation (Bate et al.,
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2010). Monte Carlo dust temperature simulations by Jonsson and Primack (2009) produce

speed-ups of up to 69 times over the CPU using CUDA hardware. Ford (2008) used CUDA

hardware to accelerate calculations of Kepler’s Equation for Exoplanet Searches and obtained

speed-ups also in the 100× range, approximately. More recently, Clark et al. (2011) utilises

79% of modern GPU’s theoretical bandwidth for cross correlation calculations.

Although GPGPU techniques for calculating Fast Fourier Transforms (FFT) have been

widely explored, there seems to be little research on GPGPU calculations of direct Fourier

transforms.

2.3 Summary

This chapter outlines radio interferometry and how an interferometer (an array of radio

dishes) is used to produce an image of the sky. Simulating direct interferometer output from

a model image is known as Point Source Visibility (PSV) simulation and is an important

procedure in the calibration loop; however, it is very computationally expensive. Fortunately,

PSV simulations follow an SIMD paradigm, which is well explored in high performance

computing technology.

In particular GPGPU technology has shown itself to be effective in accelerating SIMD prob-

lems, with the added advantage of low entry and maintenance costs associated with com-

modity hardware.

It follows that radio interferometry PSV calculations can benefit from GPGPU technology

and techniques in terms of performance gain as well as cost effectiveness.
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CUDA

Modern GPUs possess a large number of simple Single-Instruction-Multiple-Data (SIMD)

processors that can be harnessed for general purpose computing. In recent years, this task

has been made easier with the development of general application programming interfaces for

GPUs such as nVidia’s Compute Unified Device Architecture (CUDA) technology, an SIMD

model for general-purpose computation on nVidia commodity GPU hardware (Hoberock and

Bell, 2012; nVidia Corporation, 2011a,b).

This chapter introduces CUDA device hardware, memory, and execution model. CUDA’s

unique execution centres around the use of its many lightweight threads. How these threads

are executed on CUDA hardware and how they access the CUDA memory hierarchy is

explained. This will give the detailed information needed to make sense of the optimisations

and considerations explored in the design and implementation of our PSV node.

3.1 CUDA Programming Model

CUDA supports a C-like syntax for its code that is interoperable with standard C and C++.

CUDA code is compiled and then ‘deployed’ to a CUDA capable device. The code is scheduled

for execution by thousands of lightweight threads. These threads are divided amongst the

device’s many compute cores. Although it is claimed that CUDA code is designed to run

on any CUDA capable device, in reality this is only partially true. A CUDA GPU has a

compute capability (CC), (1.0, 1.1, 1.2, 1.3, 2.0 or 2.1) with each CC generation backwards

compatible with devices of a lower CC (for example a CC 2.1 device will run code designed
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Figure 3.1: CUDA Processing Flow
This is a canonical example of CUDA processing flow. First, data that is to be processed
is copied to the GPU device. CUDA code is compiled by the CPU and emphdeployed to
the GPU and then executed in parallel on the many compute cores. The processed data
is then copied back to the CPU.

for a CC 1.3 device). Devices with CC 1.3 or greater have double precision floating point

operations. CC 2.x introduced automatic global memory caching and faster double precision

operations (only half the speed of single precision performance, as opposed to 1.x devices

which only have one-eight double precision performance).

The CUDA architecture defines two hardware abstractions: the device, which is a CUDA-

enabled GPU, and the host, which is the machine on which the device resides. In order to

execute code on the device, a C-like function (called a kernel) is executed or invoked. The

kernel executes simultaneously on the many lightweight threads of the CUDA device. Data

needs to be transferred to and from the device before and after, respectively, executing a

kernel function (as shown in Figure 3.1).

There are two main considerations to a CUDA implementation: how data is transferred

(memory management) and how this data is operated on (execution model). Unlike CPUs,
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which use multiple levels of cache to hide memory access latency (and hence to ensure

the processor is always being utilised), CUDA relies on its many lightweight threads and

instantaneous thread context switching to swap between threads that are waiting for memory

access requests and threads that require processing. This leads to scheduling characteristics

and a memory hierarchy that contrasts sharply with a traditional multi-core CPU system.

3.1.1 The CUDA Execution Model

To understand the CUDA execution model, we first need to understand how GPU hardware

and software components interact and how GPU instructions are scheduled. While seemingly

unintuitive at first glance, the CUDA software model mirrors the characteristics of the hard-

ware. Multiple schedulers are used to quickly switch between the many runnable threads.

Threads are grouped into blocks and blocks are arranged into a grid. The hardware contains

a number of Streaming Multiprocessors (SMs) that will be assigned a number of blocks. The

SM is then responsible for scheduling execution of all the threads of all its blocks. The user

does not control the schedulers directly, but has full control over the thread and block layout.

These layouts along with other factors, explained below, allow the programmer to indirectly

but deterministically affect efficient GPU utilisation.

Software Hierarchy - The Grid, Blocks, and Threads: CUDA code defines C-style

functions called kernels, which are executed in parallel by thousands of lightweight threads

on the many cores of the CUDA GPU. Threads are grouped into blocks, with up to 512 (CC

1.3) or 1024 (CC 2.x) threads per block. Blocks are grouped into a grid, which contains up to

65535×65535×65535 blocks. Figure 3.2 shows an example grid/block layout. The execution

of each block is independent of any other block, with no guarantee of block execution order

and no direct mechanism for inter-block communication. Threads within the same block can

communicate via shared memory (see Section 3.1.2).

Thread-Block Layout and Indexing: Blocks of threads are organised in 1-, 2-, or 3-

dimensions and will be interchangeably referred to throughout as blocks or thread-blocks.

Each thread-block dimension can be any size within certain CC specific limitations, but may

not exceed 512 (CC 1.3) or 1024 (CC 2.x) threads per block. The grid (of thread-blocks)

is also organised into 1-, 2-, or 3-dimensions. Grid dimensions can be any size up to 65535,

25



CHAPTER 3. CUDA

Figure 3.2: Example Grid/Block Layout
In the above, each green cube represents a thread. In this case, there are 5 × 5 = 25
blocks. Each block contains 3× 3× 3 = 27 threads.

meaning that a total of 655353 blocks can be held in a grid. The layout of the grid is simply

a programming convenience since, as will be seen below, blocks are scheduled on an SM in

an undefined order. The block layout, however, can have significant effects on performance.

When a kernel is run, all the threads will run the exact same CUDA code. Thread indexing

is thus vital in controlling a specific thread’s execution path and the data it operates on.

CUDA exposes two important variables, threadIdx and gridIdx, to allow the program to

determine which thread from which block is currently undergoing execution. CUDA also

uses blockDim and gridDim variables to determine the block and grid layout. Listing 3.1

shows an example CUDA kernel that squares all the values of a (512 × 512) array. If the

programmer were to specify a thread-block size of, say, (8× 4), they would need to specify a

(64×128) grid. As standard CUDA arrays are 1-dimensional only, a multi-dimensional array

would need to be flattened into a 1D array. Standard arrays are stored in global memory

that resides on the DRAM of the GPU (see Section 3.1.2 for details). There are, however,

non-global memory types available in CUDA which allow for multi-dimensional array access.
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1 __global__ ExampleKernel(float* array, float w, float h) {

2

3 // find index of this thread

4 int indexX = threadIdx.x + (blockIdx.x*blockDim.x);

5 int indexY = threadIdx.y + (blockIdx.y*blockDim.y);

6

7 // we need to work out the flattened index for the flattened array

8 int flattenedIndex = indexX+(indexY*w);

9

10 // we read the value from the array, square it, and write it back

11 float value = array[flattenedIndex];

12 array[flattenedIndex] = value * value;

13 }

Listing 3.1: Example CUDA Kernel
This CUDA kernel will take a w × h flattened array and square its values.

Hardware - The GPU, Streaming Multiprocessors, and Cores: The CUDA execu-

tion model arose directly from the design of the CUDA hardware. A CUDA GPU contains a

number of Streaming Multiprocessors (SMs), each comprising a number of scalar processors

(SPs) or cores (either 8, 32, or 48 cores per SM). There is thus a direct mapping between the

GPU hardware and the software components of CUDA: GPU-device to grid, SM to block,

SP/core to thread (Figure 3.3).

nVidia’s CUDA GPU cores were developed, in part, by combining vertex, geometry, and

fragment shaders into a unified shader unit capable of executing all the necessary shader

functionality. This unified shader unit became a single 32bit scalar processor — a CUDA

compute core. These cores are organised into groups of 8 (CC 1.x), 32 (CC 2.0) or 48 (CC

2.1) and collectively define a Streaming Multiprocessor (SM).

Any CUDA architecture will include a number of SMs, each being largely independent of

any other SM (nVidia Corporation, 2011b). This allows a CUDA GPU to scale by simply

adding more SMs to the GPU chip. Indeed, the principal difference between low-end and

high-end GPUs of the same series is usually the number of SMs on the chip and the amount

of on-board DRAM.

Each SM contains a number of CUDA cores and a number of special function units (SFUs).

These SFUs allow CUDA cores access to fast calculation of square-root, exponential, sine, co-

sine, and other commonly used mathematical operations. Each SM also has banks of shared

memory, cached constant memory, and local registers that are shared between its cores. SMs
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void kernel(double* input, 
                   double* output){
    int index = 
        (gridIdx.x*threadDim.x)+
        (threadIdx.x);
    double sin_val = 
        sin(input[index]);
    output[index] = sin_val;
}
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Figure 3.3: Thread/Block/Grid hierarchy relation to the GPU/SM/SP hierar-
chy
The blocks in a grid are allocated to the various Streaming Multiprocessors (SMs) in
no particular order. The blocks are split into half-warps of 16 threads each. Thus each
SM has a number of half-warps which it can execute at any one time. Each SM has a
number of Scalar Processors (SPs) or ‘cores’. The SM will select a half-warp and execute
the kernel code on the SPs in lock-step (on each SP per thread). If threads within a
block need to communicate, 16kB of on-chip shared memory is available. All threads
can access global memory at any time.

have one or more double precision floating point unit processors for 64bit instructions. 2.x

CC devices have L1 cache for global memory. Hardware specifications are given in Table 3.1.

Thread, Warp, and Block Scheduling: For any kernel execution, the numbers of

thread-blocks and threads per block are statically specified before the kernel is invoked.

When a kernel is executed, the CUDA device’s block-scheduler schedules a number of thread-

blocks to run on each of the SMs. Each SM splits its assigned thread-blocks into groups of

32 threads, called warps (for CC 2.x), or groups of 16 threads, called half-warps (for CC

1.x). For brevity, we say each SM holds b blocks resident at any one time and each block

has t threads, which are divided into w = dt/32e warps. Thus, each SM holds b × w warps

resident at any one time. We denote the i-th warp by wi.
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Compute Capability 2.1 2.0 1.3

CUDA cores per SM 48 32 8
Special Function Unit per SM 8 4 2

Double prec. FPU per SM 2 clock-cycles 1
32bit registers per SM 32K 16K

Threads per Block 1024 512
x-dimension per Block 1024 512
y-dimension per Block 1024 512
z-dimension per Block 64

Grid dimensionality 3 (x× y × z) 2 (x× y)
Block dimensionality 3 (x× y × z)

Warp schedulers per SM 2 1
Instructions issued per cycle per scheduler 2 1 1

Table 3.1: Compute Capability Specific Specifications
All nVidia devices operate in the same way, although devices with a different Compute
Capability (CC) will have different hardware characteristics. Most notably the 2.x range
of devices allows for larger thread blocks, has more cores per SM, more Special Function
Units (SFUs) per SM (for functions such as sin, cos, sqrt etc), 3D grid allocations and
additional warp schedulers. In the case of double precision operations, 1.3 devices have a
dedicated double precision Floating Point Unit (FPU) whereas 2.x devices compute double
precision operations built into the cores, but these take two clock-cycles to complete
instead of one.

The SM needs to execute all the instructions of the CUDA code on all threads of each block.

It does this by running an instruction on all threads of a warp in lock-step. This means that

if, say, the SM is executing instruction 10 of warp w5, then (simultaneously) core 0 executes

instruction 10 of thread 0 of warp w5, core 1 executes instruction 10 of thread 1 of warp w5

and so on, for all threads in a warp.

Each warp has its own instruction counter and its own registers (its context), meaning that

if instruction 10 of warp w5 is executed, on the next clock cycle instruction 16 of warp

w0 can be performed, after which instruction 11 of warp w5 can then be executed. This

instantaneous context switch contrasts with classic ‘heavy-weight’ CPU thread switch, in

which the instruction counter and registers must be copied to and from the CPU every time

a thread is switched, incurring a delay. CUDA context switches incur no overhead as they

involve only a switch to the next scheduled warp’s instruction pointer and registers, both of

which are already in on-chip memory (Figure 3.4).

This ability to instantaneously switch contexts between resident warps allows for effective
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Figure 3.4: Example Dual Warp Scheduler
Schedulers need only ensure that warps belonging to the same block do not execute
out of order, otherwise there is the possibility of blocks with threads that are ahead or
behind other threads in its block. Beyond this restriction, any warp can be called by
any scheduler at each clock cycle. In this case, warp 8 and 9 are of the same block and
thus instruction 11 must be completed for those warps before proceeding to instruction
12. Similarly for warps 14 and 15. Warps 2 and 3 are in separate blocks and thus their
instructions can be scheduled independently.
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hiding of the memory access latency because the scheduler can switch from a warp that is

waiting on a memory request to a warp that has operations to be executed. This character-

istic assumes that there will always be a warp available that has instructions waiting to be

executed. This is not always the case and the programmer should thus be aware this form of

memory access latency hiding is enabled by supplying sufficient threads and thread-blocks

to the CUDA GPU.

For a CC 1.x device, with only 8 CUDA cores per SM, the same instruction of a warp is

sequentially run twice on each core so that all 16 threads of the half-warp are consistent (as

it cannot leave some of the threads of a half-warp an instruction ahead or behind). During

these two cycles, the warp scheduler is able to schedule the next warp for processing. For a

CC 2.0 device, with 32 cores per SM, the warp can saturate all the cores and complete in

one clock cycle. For a CC 2.1 device, with 48 cores per SM, two instructions are scheduled

per clock cycle and thus all 48 cores can be saturated by one and a half warps. Details can

be found in the nVidia Programming Guide (nVidia Corporation, 2011b).

Figure 3.3 shows a simplified visual layout of the CUDA hardware and execution model.

Flow Control and Divergent Code: In the case of a flow control instruction (‘if’,

‘switch’, ‘do’, ‘while’ or ‘for’) whereby the instruction path of some threads might diverge

from that of others (i.e. branch divergence between threads in a warp), all execution paths

are executed sequentially rather than in parallel. In other words, when an ‘if’ statement

is encountered, the ‘true’ code-branch is executed first, followed by the ‘false’ code-branch;

they are not executed at the same time as might be done in a traditional multi-core system.

Threads that diverge down the ‘true’ branch will simply ignore instructions when the ‘false’

branch is being executed and the ‘false’ threads will ignore instructions in the ‘true’ branch.

Fortunately, if all threads in a warp follow the same execution path (i.e. all threads evaluate

to ‘true’ or all evaluate to ‘false’), only that particular branch (‘true’ or ‘false’) of code will

be executed. If a single thread diverges from the rest, both branches will be executed. This is

due to the lock-step fashion in which instructions are executed. Different threads are simply

unable to perform different instructions on the same clock cycle.

Since blocks of threads are divided into half-warps (16 threads on 1.x) or full-warps (32

threads on 2.x), all ‘if’ statements in a half-warp /full-warp should evaluate to the same

value and all loops should execute the same number of times to avoid a branch. This need
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Type Location Cached Access Scope Lifetime Characteristics
Register On-chip — r/w Thread Thread —

Local Off-chip No* r/w Thread Thread Used for registry spills
Shared On-chip — r/w Block Block Shared by threads in a block
Global Off-chip No* r/w Global Application Coalesced access

Constant Off-chip Yes r Global Application —
Texture Off-chip Yes r Global Application 1D/2D/3D Spatial Caching

Table 3.2: Register and Shared memory have very fast, on-chip access but is limited
in size. Global, Constant, and Texture Memory reside off-chip, which is slower but far
larger and have scope over all threads over all blocks for the entirety of the application’s
lifetime. Although constant and texture memory are read-only, they are both cached.
Texture memory has support for 1D, 2D, and 3D spatial caching and constant memory is
optimised for concurrent multiple thread access. Local memory∗ is effectively the same
as global memory, except that it is only used if the register memory is over-allocated.
Register allocations then ‘spill over’ into local memory. The slow off-chip access of
register spilling should be avoided if possible.
∗For 2.x devices, global and local memory are cached.

not mean that all threads in a block need to follow the same execution path, it is only the

half-warp/full-warp that must have consistent flow-control.

3.1.2 CUDA Memory Hierarchy

The CUDA memory hierarchy offers several memory types with different scope and caching

characteristics. Table 3.2 summarises the types of memory.

Memory on a CUDA device is divided into two broad categories: on-chip and off-chip mem-

ory. On-chip memory is analogous to a CPU chip’s register and cache memory: it is fast

(one clock cycle to access) but limited in size: (approx 100kB - 1MB on the CPU). A CUDA

GPU has 16kB-64kB of on-chip memory per SM. Off-chip memory refers to the on-board

DRAM that accompanies all CUDA chips. This memory is far slower to access than on-chip

memory (400-600 clock cycles to access) but is far larger (up to 2GB).

Off-chip memory has four forms: standard read/write global memory, 1D/2D/3D spatially

cached read-only texture memory, cached read-only constant memory, and local memory for

register overallocation (see Table 3.2). Any thread from any block can access any off-chip

memory location. In the case of global memory, if a number of threads access a contiguous

32



CHAPTER 3. CUDA

block of memory simultaneously, these requests are coalesced into aligned 128bit memory

requests instead. This could, for instance, reduce four 32bit requests into a single 128bit

request. Figure 3.5 shows this effect in greater detail.

On-chip memory is split into register memory and shared memory, with 2.x devices featuring

a 48kB of L1 cache to global memory. Each SM has 16kB of shared memory that is split

equally amongst the resident blocks. 2.x devices allow use of a portion of L1 cache as shared

memory, which increases shared memory size to 48kB and reduces L1 cache to 16kB. Each

SM also has 16kB-32kB of register space that is split equally amongst the threads of the

resident blocks. Registers are again subdivided between threads of each resident block. If

there is not enough register space, registers are spilled to off-chip local memory, with a

catastrophic increase in memory access time.

3.2 Thrust

Thrust is a productivity-based CUDA library which generalizes many common CUDA prob-

lems into easy-to-code C++ function calls, intended to mimic the coding conventions of

the Standard Template Library (STL) (Hoberock and Bell, 2012). CUDA arrays are de-

fined as device_vectors and all Thrust functions take as parameters a number of itera-

tors and possibly a functor that operates on these iterators. For instance, if we have an

device_vector<int> a vector with an iterator device_vector<int>::iterator a_itt,

we can use a function call of the form thrust::reduce(a_itt, plus<int>) where plus<int>

is the integer addition functor/function. To sort the array we would use thrust::sort(a_tt).

This is far easier to program than creating a whole CUDA kernel from scratch, and is already

largely optimised.

In order to accommodate constants, special permutations, and transformations there are

(respectively) constant, permutation, and transformation iterators as well as a zip iterator

to combine two or more vectors/iterators into a tuple vector. Chains of iterators can be

used to form more complicated operations. For instance, if we have a number of 2D points

in vectors x and y, we could use a zip iterator to iterate over them as a tuple (x, y). If we

need to iterate over every third point, we must layer the zip iterator inside a permutation

iterator. Unfortunately as code complexity increases, Thrust becomes unwieldy to code and

debug.
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Figure 3.5: Coalesced Global Memory Access
Images taken from nVidia’s CUDA C Programming Guide “Examples of Global Memory
Accesses by a Warp, 4-Byte Word per Thread, and Associated Memory Transactions
Based on Compute Capability” (nVidia Corporation, 2011b). If the access is sequential
and 64byte/128byte aligned, all devices exhibit coalescing. CC 2.x devices have the
added advantage of cached global access, and exhibit the most favourable coalescing
characteristics as they are able to handle misaligned and non-sequential accesses better
than older devices. CC 1.0 and 1.1 devices are not considered in this work owing to their
lack of double precision support, but nonetheless exhibit the most fragile of coalescing
characteristics, being unable to coalesce either misaligned or non-sequential accesses.
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3.3 General GPU Optimisation Techniques

Naive CUDA implementations usually result in at least a 2-3 times speed-up over fairly

optimised CPU code. Gaining significant speed-ups requires careful optimisation that con-

siders the CUDA hardware and execution model. There are a number of common CUDA

optimisation techniques that apply to a wide range of computational problems.

The CUDA C Best Practices Guide (nVidia Corporation, 2011a) contains a comprehensive

overview of CUDA related optimisations and techniques to maximize performance. The

following subsections are taken largely from this guide.

This section is split into roughly two parts, first part focusing on memory-based optimisa-

tions, and the second part focusing on processor-based optimisations.

3.3.1 Memory-Based Optimisations

As with many HPC technologies, memory throughput is as significant a bottleneck as pro-

cessor utilisation as low memory throughput leads to processors wasting valuable processing

time waiting for memory requests. CUDA is no different and data transfer from both CPU

RAM to GPU on-board memery and GPU on-board memory to GPU on-chip memory can

be a source of significant performance bottlenecks.

Latency Hiding using Asynchronous Transfers: Many CUDA computations require

multiple kernel invocations. More often than not this requires (i) data to be copied from

device to host, (ii) some processing on the GPU followed by (iii) a potential copy back of

data from device to host. This process may need to be repeated several times.

While data is being copied to and from the host, the GPU sits idle. In order to utilise

the GPU during this time, asynchronous data transfer can be used. This allows for the

GPU to continue processing one set of data while another set of data is being copied to or

from the host. Asynchronous transfers are well supported in CUDA and allows for hiding of

significant memory transfer latency between host and device. This does assume, however,

that the device has sufficient processing jobs to cover the memory transfer latency and

sufficient GPU DRAM to store multiple datasets (as at least two data sets are required, one

to be processed by the kernel and one to be copied).
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Global Memory Coalescing through Sequential Memory Access: An important

concept in global memory access is that of organising data stored in global memory into

32, 64, or 128bit aligned sequential segments, since the SMs request data from addresses

in either 32, 64, or 128bit transactions (depending on the CC) and coalesce these memory

transactions. If a number of threads in the half-warp (or warp) requests global memory data

from sequential memory addresses in the same instruction, these requests are combined or

coalesced into fewer 64bit or 128bit requests containing the data requests of two or more

threads in one. Un-cached global memory requests incur a 400 − 600 clock cycle delay.

Thus by decreasing the number of memory requests from global memory though coalescing,

off-chip memory throughput can be drastically improved.

The exact rules for coalescing can be found in Appendix G.3.2 and G.4.2 of the CUDA

Programming Guide (nVidia Corporation, 2011a). A visual example is given in Figure 3.5

Banked Shared Memory Access: Shared memory is organised into 16 (1.x) or 32 (2.x)

banks. Each bank can be accessed simultaneously by the SM’s cores once per clock cycle.

This means 16/32 potential shared memory reads per cycle. The memory banks are organised

so that each successive 32bit word is assigned to each successive bank.

This is especially important for how a warp accesses shared memory. Say we have a warp

that wishes to access shared memory, and that shared memory has 32 banks. If each thread

in a warp accesses its own unique memory bank then all those requests will be fulfilled in the

same clock cycle. However if 2 threads access different words in the same bank, this request

must be serialised into 2 separate requests and will take 2 cycles to complete. This is known

as a two-way bank conflict. Figure 3.6 shows how strided access or access of contiguous 64bit

data-types can cause a two-way bank conflict.

Using Shared Memory to Reduce Global Memory Writes: During kernel execution

a common optimisation strategy to reduce the number of global memory accesses is to use

shared memory rather than global memory to do intermediate processing. In general, shared
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Figure 3.6: Shared Memory Banked Access
Both examples show the threads at the top accessing the shared memory banks at the
bottom. The left example shows each thread accessing each consecutive 32bit shared
memory bank (thread 0 accesses address 0, thread 1 accesses address 1, etc.). In this
case, there are no bank conflicts and all 32 operations occur in the same clock cycle.
However, on the right, each thread accesses every second 32bit element (either accessing
non-sequentially or accessing contiguous 64bit data-types).In this case, thread 0 accesses
address 0, thread 1 accesses address 2 and so on, except that now thread 16 will access
address 32, which is in the same bank as address 0. Thus a two-way bank conflict is
encountered and 2 clock cycles are required.

memory is used as follows:

1. Transfer data from global memory into fast, on-chip, shared memory

2. Process this data using shared memory

3. Copy back the processed data from shared memory to global memory

A shared memory solution usually results in reduced global memory reads and writes, and

this can speed-up execution time, especially for memory-bound problems. Because of the

limited size of shared memory, data may need to be processed in batches. Most problems

can benefit from the use of shared memory to reduce the number of global memory accesses.

However, this strategy must be tailored to the memory access characteristics of problem.

3.3.2 Processor-Based Optimisations: Occupancy

Each SM can hold a limited number of thread-blocks in its on-chip memory at any given

time. Since all the resident (or active) blocks on an SM are in on-chip memory, switching

between them is a matter of switching a pointer, which is instantaneous. However, for
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technical reasons, the number of active blocks actually resident on an SM might be less than

the maximum it can hold.

This concept is broadly expressed as occupancy. Low occupancy means that there are fewer

resident blocks on the SM and thus limits the number of warps that can be scheduled and

utilised by an SM’s warp scheduler. A simple definition of occupancy is the actual number of

blocks that can be resident on an SM at any given time over the maximum number of blocks

that can be resident on an SM at any give time. The actual definition is more detailed —

the reader is referred to nVidia Programming Guide (nVidia Corporation, 2011b) and the

CUDA C Best Practices Guide (nVidia Corporation, 2011a). Nonetheless a fairly detailed

explanation with examples is given below.

The maximum number of resident blocks per SM is determined by the block size. An SM

can only hold a certain number of warps resident (32 warps for CC 1.3, 48 for CC 2.x) and

each block will use a certain number of warps, w. The maximum number of resident blocks

per SM is therefore b w
32
c for CC 1.3 and b w

48
c for CC 2.x. The actual number of resident

blocks per SM is determined by the following three factors:

Warps per SM hardware limitation : Each SM can only manage a certain number of

warps at any one time (32 warps for CC 1.3, 48 for CC 2.x). For all CCs, SMs can only

manage 8 blocks. If there are many threads per block and thus many warps per block, the

SM will not be able to hold as many blocks. For example, if the blocks have 16 warps (512

threads) each, and the SM can only hold 48 warps, then the SM can only hold b48
16
c = 3

blocks. On the other hand, if each block has only 2 warps (64 threads), then the SM can

technically hold up to b48
2
c = 24 blocks. An SM can only hold a maximum of 8 blocks,

regardless of the maximum theoretical number of warps it can hold. Thus only 8 blocks (16

warps) can be held. This represents an under-utilisation of the SM (only 16
48

= 33%).

Shared memory limitations: Every block requests an amount of shared memory before

a kernel invocation. Every SM, however, has a limited number of shared memory to divide

amongst its resident blocks (16kB for CC 1.3, 48kB or 16kB for CC 2.x). If too much shared

memory is requested per block, then the SM can only accommodate a reduced number of

blocks at any time. For example if each block requests 12kB of shared memory, and the SM

only has 48kB, then only b48 kB
12 kBc = 3 blocks can be active at any given time. However, if

only 3kB per block is requested, then b48 kB
3 kB c = 12 blocks can be active. Since hardware
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limits the number of resident blocks on an SM to 8, the ability to allocate 12 blocks to an

SM means that a total of 4 blocks worth of shared memory (4×3kB = 12kB in this example)

could be allocated with no loss in occupancy.

Limited number of register space per SM: Each thread requires a certain number of

registers (depending on the kernel code) but there is only a limited amount of register space

per SM (16kB for CC 1.3, 32kB for CC 2.x). If a kernel uses too many registers it will cause

a decrease in the number of active threads that the SM can concurrently run. For example, if

each thread requires 45 registers and each block contains 256 threads, then the block requires

20 ∗ 256 = 5120 registers. On a CC 1.3 device, only b16384
5120
c = 3 blocks can be resident on

the SM. On a CC 2.x device, b32768
5120
c = 6 blocks per SM can be resident. Increasing the

number of threads per block decreases occupancy as more registers are needed. Decreasing

the number of threads per block might increase occupancy, but at the risk of under-utilising

the SM.

Any of these three factors will limit the number of blocks that can be resident on an SM, and

thus limit the occupancy. Higher occupancy usually means better performance. However,

100% occupancy does not necessary mean that the best block/thread layout has been used.

Similarly, a low occupancy does not necessarily mean that the solution can be improved.

3.3.3 Occupancy-Related Considerations

Spatial Organisation and Optimal Thread-Block Size

Splitting up the computation into blocks and threads allows for spatial organisation of the

computation. This not only has the advantage of making more intuitive sense to the pro-

grammer, but also allows spatial caching to come into effect, especially when texture memory

is used. Consider an image in which each pixel must undergo some form of transform. The

image can be split into 16 × 16 sub-images, with each sub-image assigned to a block with

16 × 16 threads, and each thread operating on a single pixel. Spatial caching ensures that

for any query pixel, the neighbouring pixels are cached. Since CUDA enables each thread

to access its location within its block, as well as its block’s location in the grid, a pixel’s

location and the location of its neighbouring pixels can be calculated.
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Latency Hiding

GPUs use fast context switching and a very large number of schedulable threads to ensure

their cores are always occupied with executable instructions. This is mainly used to hide

memory access latency and differs from the model used by CPUs, in which large, multiple-

level caches are used hide memory latency.

Reading and writing to the GPUs DRAM can incur a 400-600 clock cycle latency. This

latency can be hidden by occupying the SM with a sufficient number of threads that the

warp scheduler may call upon to occupy the CUDA cores. The number of threads needed

to hide global memory access latency depends on how many global accesses are performed

and the number of threads/blocks that are active on the SM.

It must be stressed that too many global memory accesses cannot be hidden by thread

scheduling alone. It is thus always a good idea to reduce global memory accesses whenever

possible.

Block Size

There are no simple rules to specify the number of blocks and threads that should be used

for any particular problem. Unfortunately, different sized grids and blocks usually have a

drastic effect on performance.

Larger blocks mean that the limited available registers and shared memory must be divided

amongst more threads. This can reduce occupancy on the SM, and runs the risk of register

spilling. Register spilling occurs when there is insufficient on-chip space for registers and

slow, off-chip memory is used instead. This is a very undesirable outcome as local memory

incurs the same 400-600 clock cycle delay that global memory incurs.

Conversely, too few threads per block means that the SM might be under utilised and also

will not have enough warps available to hide global memory access latency effectively. A

concurrent consideration is that the dimensions of the block will have significant effects on

memory access patterns, which in turn affects coalescing and caching efficacy.

Careful planning and a fair degree of testing is required to find the optimal block size for

a particular problem. Two important guiding ‘rules’ can, however, be followed: (i) The

number of threads in a block should be a multiple of the warp size, otherwise the last warp
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in every block will have unused threads, and thus unused cores. (ii) A larger number of

smaller blocks is generally preferable to a smaller number of larger blocks in order to better

occupy the SMs, as well as to ensure that the grid has enough blocks to allocate to all the

SMs on the GPU.

Grid Size

Generally the grid needs to contain enough blocks to occupy all the SMs. An insufficient

number of blocks means that the SMs might not be allocated enough blocks to run at full

occupancy. Larger grids incur no extra overhead, so grids can and should be as large as

possible.

If we have a GPU with S SMs, with each SM being able to hold B blocks resident at any

time, the grid need only be larger than S ∗B in order to ensure that all SMs are maximally

occupied.
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Design and Implementation

This chapter introduces the MeqTrees execution model and briefly outlines the Thrust PSV

prototype. The main body of the chapter is the description and discussion of the CUDA

design and optimisation considerations such as memory requirements, effective usage of

shared memory, and multidimensional array indexing. The remainder of the chapter outlines

and details the numerous steps in the CUDA implementation and explores issues that arose

during development.

4.1 Problem Definition

An interferometer, typically an array of radio dishes, will produce a set of visibilities by

feeding it’s individual voltage outputs to a correlator which correlates signals from pairs of

dishes. Visibilities are collected by each pair of antennae every few seconds over a period of

several hours. These visibilities are also filtered into various frequency buckets.

As we are simulating visibilities rather than observing them, we have to simulate a visibility

for each pair of antennae for each time-step and for each frequency. We do this by means

of a point source sky intensity map. The sky intensity map is simply the brightness of the

observed section of the sky. We are given a sky intensity map comprising many point sources.

A source is simply any observable entity in the sky. A point source is, as the name implies,

a source that is described by an infinitely small, but observable, dot. This contrasts with a

complex source which has a definite (or resolved) shape. A point source sky intensity map
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is defined as a list of point sources, where each point source s, has a location σs and a

brightness Bs.

The following equation defines a visibility between two interferometer antennae, p and q, for

S point sources at time t and frequency ν, as defined in Appendix B:

V ′pq(t, ν) =
∑
S

sinc
∆Ψ(νm)

2
sinc

∆Φ(tm)

2
Ksp(t, ν)BsK

H
sq(t, ν)

=
∑
S

sinc
∆Ψ(νm)

2
sinc

∆Φ(tm)

2
Bse

−2πi ν
c

(utpqσs)

(4.1)

Here c is the speed of light, utpq is the relative position of antennae p and q at time t, and

sinc∆Ψ(νm)
2

and sinc∆Φ(tm)
2

are smearing factors defined in Appendix B.4.

In the MeqTrees framework, the t values are partitioned into groups of typically 16 or 32

(but this is user definable), which we will call time-slot groups. Visibilities for each antenna

pair (p, q) and for each time-slot group are calculated sequentially. Thus we are tasked with

creating a MeqTrees node that calculates Vpq(t, ν) for each t in the time-slot group and for

all ν.

Our approach is to decompose this PSV calculation by splitting the problem into its three

intrinsic dimensions — sources (S), time-slot group (T ), and frequency (F ). The same

visibility calculation is applied to each point source s, across each time-slot t, and frequency-

band ν. This is a Single-Instruction-Multiple-Data (SIMD) computation which is well-suited

to a GPU implementation.

To tackle this problem we assign a single GPU thread to each point in this 3D data-set of

size (T × F × S). Each thread calculates the visibility for its specific (t, ν, s) sample. To

optimise this problem, we calculate multiple sources per thread in order to leverage shared

memory and reduce global memory accesses. Another pass is run to reduce the data-set over

S, summing the values to a (T ×F ) data-set. Figure 4.1 shows an example of this data-cube.
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Layout of
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calculates a 2x2 
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or more sources

Figure 4.1: Visual representation of the PSV data-cube
In this case, we have a data-cube sized 16 × 8 × 32 for the three intrinsic dimensions
(T×F×S). This is split into 2×8 thread-blocks, with each thread in a block calculating
the 2 × 2 PSV matrix for one source or the sum of matrices for multiple sources. The
matrix is actually flattened in memory, represented in one dimension {a,b,c,d}. A
reduction step sums the data-cube over the source dimension, resulting in a T ×F array
of 2× 2 matrices.

4.2 MeqTrees Execution Model

The MeqTrees framework defines functions in Measurement EQuation Trees or expression

trees (Noordam and Smirnov, 2011). For example, Figure 4.2a shows Eqn (4.1) expressed

as a tree in MeqTrees. This abstract use of nodes to form an equation tree allows for easy

construction of the complicated equations needed in radio interferometry.

The user might define only one tree, or they might instead define a ‘forest’ of trees that

are executed in any desired order. All MeqTrees nodes and forests are specified in Python

scripts and are thus relatively easy to define.
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1 def run(timeslot_size, num_timeslot, antennae_pairs):

2 # for each timeslot block (0-7, 8-15, 16-24, ...)

3 for t in range(0, num_timeslots, timeslot_size):

4 # for each antennae pair

5 for p in antennae_pairs:

6 end_t = min(num_timeslots, t+timeslot_size)

7 # run the Node for pair p, over [t, ..., end_t-1] timeslots

8 calc_visibilities (p, t, end_t)

Listing 4.1: Python-style pseudo-code of PSV execution in MeqTrees
calc visibilities(p, t, end t) will run the PSV tree (normal or monolithic) which
calculates the visibilities for antennae pair p over timeslots [t, end t-1] for all frequen-
cies.

4.2.1 Point Source Visibility Execution Model in MeqTrees

MeqTrees can run calculations by defining a forest of trees (see Figures 4.2a and 4.2b for

examples). The manner in which these forests are defined is completely up to the user. In the

case of our PSV calculations, each tree in the forest represents one antenna pair and a range

of time-slot groups. During computation, each tree is executed sequentially, as described

below. Listing 4.1 shows the execution model in pseudo-code.

For example, if we have five antennae {0, 1, 2, 3, 4}, the PSV for the antenna pair (0, 1) would

be completed, then (0, 2) and so on until all pairs are calculated. Self pairs such as (0, 0),

(1, 1) etc, equate to 0 and are simply ignored (see Appendix A.7).

Each PSV node only computes a maximum of 32 time slots per antenna pair, thus splitting

each antenna pair’s calculations into groups of 32 (which we call time-slot groups). Groups

of 32 time-slots are a limitation set in the MeqTrees framework. Given this limitation,

with the above calculation for five antennae, {0, 1, 2, 3, 4} over 50 timeslots, MeqTrees would

calculate the base-pair (0, 0) over t ∈ [0, 31], then (0, 1) over t ∈ [0, 31] until all base pairs

are completed. It would then continue to the next time-slots group: (0, 0) over t ∈ [32, 50],

then (0, 1) over t ∈ [32, 50] and so on.

Point Source Visibility Tree/Node: The MeqTrees framework contains two versions

of the PSV module: A traditional tree (Figure 4.2a) and a single node ‘tree’ (Figure 4.2b).

The single node tree foregoes MeqTrees’s usual method of equation definition (a tree of

nodes) and combines all the calculations into one node. This is less intuitive but reduces
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Figure 4.2: GPU/CPU PSV Measurement Equation Trees
(a) Tree expansion of Point Source Visibility Calculation representing the calculation
SpqKsp(t, ν)BsK

H
sq(tm, νm). The many simple nodes show how flexible MeqTrees is,

allowing a user to design a problem flow visually. However, this increased number of
nodes does create some MeqTrees overhead. (b) Tree expansion of Point Source Visibility
Calculation for CUDA implementation. Compared to the original tree (a) this is far
simpler, thus reducing overheads. However, the inner workings of this PSV node are far
more complicated.
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node-to-node overheads that are present in MeqTrees.

Our implementation is a port of the single node PSV module. This was done to avoid the

extra node-to-node overheads, and to avoid the need for multiple GPU implementations

of more general computations (such as signal phase-shifts, Hermitian transforms, matrix

multiplication, etc.), which lie beyond the scope of this work. The inner workings of the

CUDA version of the single node are described by the flow chart in Figure 4.3 and detailed

in Section 4.5.

4.2.2 MeqTrees Memory Management

MEQtrees has a “straightforward but very powerful scheme of dependency tracking [that]

allows a node to figure out when a result may be usefully cached [...]” (Noordam and

Smirnov, 2011). This allows for persistent storage of data in CPU RAM, which in turn gives

easy access to that data from any other node. Unfortunately the mechanisms that allow

for persistent allocation and storage are only implemented for CPU memory and not GPU

memory. This leaves all GPU node executions agnostic to any previous allocations on any

other GPU node.

Whilst a GPU node does not have direct access to data allocated on CPU RAM, it can be

connected with a child node that preallocates that data, which it does have access to. An

analogous allocation node for data allocated to the GPU RAM is not supported and would

require changes to the internal workings of MeqTrees or at very least an undesirable and

potentially messy workaround. Porting the memory allocation to work with GPU memory

would be an important addition for any future potential MEQtrees GPU implementation.

This is left for future work.

4.3 Thrust Prototype Implementation

We initially created a PSV implementation using Thrust but quickly discovered that the

PSV’s many inputs and the order in which they need to be permuted caused Thrust’s lay-

ered iterator approach to become too unwieldy to code and debug. The custom CUDA im-

plementation includes the calculation of ‘uncorrupted visibility’ equations, augmented with

‘time/bandwidth smearing’. Time/bandwidth smearing was never attempted with Thrust,
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only the uncorrupted visibility equation, see Appendix Eqn (B.10). At the time this work was

undertaken, Thrust’s reduce-by-key function demanded so much memory that the Thrust

implementation needed up to four times more memory than that of our custom CUDA PSV

implementation.

Listing 4.2 shows the way in which Thrust performs transformations using functors, which is

a class function that accepts one input (which may be a tuple, allowing for multiple inputs)

and produces one output. The Thrust transform takes an input array and calculates the

output for each element in parallel using the functor. Our problem has many inputs, most

of which must be computed for each element in other input arrays since we are essentially

calculating a 3D cube of data. The output is dependent on on multiple inputs in various

combinations and leads to the need for multiple layers of Thrust iterators.

The Thrust prototype was implemented as follows: a PSV functor was created that takes as

parameters ν ∈ R,utp ∈ R3,σs ∈ R3,B ∈ R (an 8-tuple) and calculates the visibility as

in Eqn (B.10). This has to be done for all ν × t × s permutations. First, the 8 inputs are

placed into a zip iterator. Each of these input arrays must be permuted in a certain order

such that all ν × t × s are covered. Permutation iterators require that the permutations

are stored on the GPU device. This takes up valuable GPU memory. The workaround

for this is to use a counting iterator (an iterator that counts through the natural numbers:

0, 1, 2, ...) and to wrap that in a transform iterator that converts the counting iterator to the

appropriate indices required by the permutation iterator. This way the permutation iterator

is referencing the index as calculated ‘on the fly’ by the transformed counting iterator, rather

than pre-calculating the indices and storing them on the GPU.

Below shows an enumeration of the different Thrust iterator layers as they are added. We

start with a number of input vectors stored in GPU memory device_vector<double>,

each of which has an iterator device_vector<double>::iterator (which we shall call

DoubleIterator)

1. Start with a counting iterator (0, 1, 2, 3, 4...)

• thrust::counting_iterator<int>

2. This must be transformed so that the flattened multi-dimensional arrays are permuted

correctly, the transformation is called IndexFlatten:

• thrust::transform_iterator<IndexFlatten, thrust::counting_iterator<int>>

We shall call this TransformedIndexIterator
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3. We permute along each device_vector<double>:

• thrust::permutation_iterator<DoubleIterator, TransformedIndexIterator>

We shall call this TransformedPermuteIterator

4. We define a TransformedPermuteIterator for each of the input vectors, freq (ν ∈ R),

u, v, w, (utp ∈ R3) l, m, n (σs ∈ R3) and brightness (B ∈ R) and zip them together

into a tuple:

• thrust::zip_iterator(freq, u, v, w, l, m, n, brightness)

5. We transform this zipped tuple iterator to obtain an array of unreduced output

(unreduced_output) using the PsvFunctor as described in Listing 4.2:

• thrust::transform(zipped_data_iterator, unreduced_output, PsvFunctor())

6. This output is reduced (or summed) over the sources using:

• thrust::reduce_by_key(source_key_iterator, unreduced_output, output,

equals<double2>, add<double2>)

7. We now have our final output vector, which is copied back to the CPU and stored

This implementation was successful but only yields a 4× speed-up compared to the CPU

version. Whilst Thrust has proven itself a good high-level programming library for perfor-

mance code on CUDA GPUs, it is the opinion of this author that the multiple layers required

for this problem makes implementation and debugging just as challenging as custom CUDA

code. It was thus decided that the custom CUDA version held more potential for better

performance.

4.4 CUDA Design considerations

Our CUDA implementation requires careful consideration of the execution model and GPU

architecture in order to obtain maximum parallel execution speeds. For this work, CUDA

devices of compute capability (CC) 1.3 or greater are required, since double precision floating

point operations are not supported on lower CCs. CC 2.x devices are recommended since

they have features such as global memory caching and better double precision floating point

operation performance, but our algorithm can be compiled with CC 1.3 and higher.

49



CHAPTER 4. DESIGN AND IMPLEMENTATION

1 typedef thrust::tuple< double, double, double, double, // freq, u, v, w

2 double, double, double, double2 // l, m, n, B

3 > PSVTuple;

4 struct PsvFunctor {

5 double _2pi_over_c = -0.0000000209584502;

6 double2 operator()(PSVTuple t) {

7

8 #define FREQ thrust::get<0>(t)

9 #define D_U thrust::get<1>(t)

10 #define D_V thrust::get<2>(t)

11 #define D_W thrust::get<3>(t)

12 #define D_L thrust::get<4>(t)

13 #define D_M thrust::get<5>(t)

14 #define D_N thrust::get<6>(t)

15 #define D_B thrust::get<7>(t)

16

17 double argument = _2pi_over_c*FREQ*(D_U*D_L+D_V*D_M+D_W*D_N);

18 double realVal = sin(argument);

19 double imagVal = cos(argument);

20

21 double2 psv;

22 psv.x = D_B.y*realVal + D_B.x*imagVal;

23 psv.y = D_B.y*imagVal + D_B.x*realVal;

24

25 return psv;

26 }

27 }

Listing 4.2: Thrust PSV Functor
An outline of the Thrust PSV functor used to calculate the visibilities. Thrust’s transform
function usually takes in a number of separate arrays, which are coupled or ‘zipped’ into
an array of tuples. Each element of the zipped array is run on a separate thread on the
CUDA device to produce an output array. In our case the 8 input arrays are far smaller
than the output array. For instance, each element in l, m, and n must be multiplied by
each element in freq. It would be a huge cost on the limited memory to make an array
that has multiple copies of freq, so we permute over the arrays instead. Note that this
example excludes certain important lines of Thrust code for readability.
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4.4.1 GPU Memory Requirements

Available on-board GPU RAM is far smaller in size than CPU system RAM, with only around

1− 2GB available on commodity GPUs. For this reason GPU implementations usually have

to pay close attention to the amount of memory used, and to create workarounds when the

problem cannot fit entirely into GPU memory.

For PSV calculations, the size of the problem dimensions (i.e. the number of frequency

bands, the number of time-slots, and the number of sources), changes the required amount

of GPU memory. To specify, the number of double precision floating point numbers required

to be held in GPU memory (N) is:

N = |u| + |∆u| + |Φ| + |Ψ| + |σ| + |B| + |ν| + |t| + |o| + |i|
= 3t + 3t + ν + t + 3s + 2(4)sν + ν + t + 2(4)νt + 2(4)sνt

= 8t+ 2ν + 3s+ 8sν + 8νt+ 8sνt

= 16768 + 16902s for t = 32 and ν = 64

(4.2)

where the relative distance between antennas, u and its change over time ∆u, the smear

factors, Φ and Ψ, the direction of the source σ, the brightness of the sourceB, the frequency,

ν, and time, t are input vectors with values as defined in Appendix B, o is the output vector,

i is the intermediate-output vector, and |x| is the number of elements in vector x.

Timeslots (t) and frequency bands (ν) are the least problematic dimensions. While realistic

measurement sets may have thousands of time and frequency, we simplify the scope by

processing a series of smaller chunks, in the order of 32-64 slots per each dimension. Since

calibration solves for gains that vary over short time frames and frequency scales, we have

good operational justification for this split and thus have no reason to deal with chunks any

larger.

as the time dimension is limited to 32 buckets and frequency to 64 in the MeqTrees frame-

work. These numbers are not expected to increase in the foreseeable future.

The number of sources, however, is expected to grow significantly. The more sources that can

be simulated, the better and more general the final simulation can be. The t and ν vectors

are small in relation to the number of sources, which can exceed 5, 000. If the amount of

memory required to run the simulation exceeds the amount of memory on the GPU, we split
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the problem into manageable sections and sequentially process each section.

Assuming that we are using double precision floating point numbers (64-bits or 8-bytes each)

and we have a GPU with g = 1GB = 230bytes of on-board memory, with 32 time-slots

and 64 frequency bands, we can compute:

g > 8N

230 > 8(16768 + 16902s)

s <
230 − 8(16768)

8(16902)
= 7939 sources

(4.3)

Consequently, if we wish to compute 10, 000 sources, the first 7, 939 sources are calculated

with one kernel invocation after which the result for the remaining 2, 061 are calculated with

a second kernel invocation. These extra kernel invocations do affect overall performance and

are an unavoidable consequence of the limited on-board memory.

Fortunately, as demonstrated below and detailed in the next section, calculating multiple

sources per CUDA thread reduces the amount of required output memory. Say we calculate

m sources per thread, we now reduce the amount of space needed to storem sources (m×t×ν)

to the amount of space we would use to store just one (t× ν). This reduces the size of the

intermediate-output (i) memory by a factor of m, which results in a decrease of floating

point numbers we need to store:

N = |u| + |∆u| + |Φ| + |Ψ| + |σ| + |B| + |ν| + |t| + |o| + |i|
= 3t + 3t + ν + t + 3s + 2(4)sν + ν + t + 2(4)νt + 2(4)sνt

m

= 8t+ 2ν + 3s+ 8sν + 8νt+ 8
m
sνt

= 16768 + (515 + 16387
m

)s for t = 32 and ν = 64

= 16768 + 2563s for m = 8

(4.4)

This modifies Eqn (4.3):

g > 8N

230 > 8(16768 + 2563s)

s <
230 − 8(16768)

8(2563)
= 6, 539 source slots

(4.5)
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Since in this case we are calculating m = 8 sources per thread, we can now calculate 6539m =

52, 312 sources without needing to split the problem into multiple invocations.

Use of multiple sources drastically decreases global memory usage and, as will be seen in the

next section, improves run times.

4.4.2 Shared Memory and Multiple Sources per Thread

Shared memory is fast on-chip memory accessible by all threads in a block. It enables

inter-thread communication but is limited in size (16−48kB). Threads from different blocks

cannot see outside their shared memory allocation, so classic shared-memory message passing

techniques do not apply. The great advantage of shared memory is that memory accesses are

as fast as register accesses — 1 or 2 clock cycles per access — whereas global memory access

incurs a 400− 600 clock cycle wait. The CUDA GPU attempts to hide this global memory

access latency, as well as read-after-write latency, by swapping out those blocks of threads

that are waiting for memory requests with blocks of threads that can perform computation.

Reducing latency requires that there are enough runnable threads available to the scheduler.

However, creating too many threads means that the already limited register and shared

memory space must be further divided among these many threads. Reducing the number

of global memory accesses is generally a good way to obtain faster code execution (nVidia

Corporation, 2011b).

A common strategy is to utilise shared memory as much as possible for GPU calculations,

and write to global memory only after the final value has been calculated. This is the strategy

we adopt for our Visibility Kernel, the kernel that performs the majority of the computation.

Without any modifications, the kernel writes to global memory 4 times, since it calculates

one source (a 2 × 2 matrix). We opt instead to calculate multiple sources (m) per thread,

which requires that we write 4m values to global memory. This by itself does not affect

execution times, since we are performing m times as many global memory accesses while

using m times fewer threads. However, when using shared memory, we calculate the values

for m sources but store the 4m values in shared memory instead of global memory. These

4m values are reduced (summed) to 4 values in shared memory. At the end of the kernel,

only the 4 reduced values are written to global memory instead of all 4m, thus reducing the

number of global memory writes by a factor of m.
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Array Access
Dimensions Total

Time Freq. Source Matrix Dimensions
u

Input

4 1 (t)
v 4 1 (t)
w 4 1 (t)
∆u 4 1 (t)
∆v 4 1 (t)
∆w 4 1 (t)
Φ 4 1 (ν)
Ψ 4 1 (t)
σ 4(×3) 1 (3ν)
B 4 4 4 3 (ν × s× 4)
ν 4 1 (ν)
t 4 1 (t)
i

Output
4 4 4 4 4 (t× ν × s× 4)

o 4 4 4 3 (t× s× 4)

Table 4.1: Dimensions of Input and Output Vectors
This problem can be framed as computation of a 4D data ‘cube’, with different inputs
given the different cube dimensions (time, frequency, source, and matrix elements). Al-
ternatively, it can be framed as computation of a 3D data-cube of 2× 2 matrices (which
are represented as a 4 × 1 array in memory). The inconsistency with σ being an inter-
leaved array of 3-tuples and u, v, w being 3×1D arrays is due to the way in which those
data are stored by MeqTrees, as explained in Section 4.5.1. u, v, w values are already in
separate contiguous arrays and interleaving them into one array on the CPU is a relatively
slow operation.

Furthermore, as shown in the previous section, calculating multiple sources per thread has

the added benefit of using less global memory compared to calculating a single source per

thread. Instead of allocating storage space for s sources (1 thread storing results for 1 source),

we only need to allocate space for s/m sources (1 thread storing results for m sources).

4.4.3 Input and Output Array Indexing

As CUDA does not support multi-dimensional arrays outside of texture memory (see Sec-

tion 4.4.4 below), such arrays need to be flattened into a 1D array. Many of the input and

output arrays are multi-dimensional, as shown in Table 4.1.

Because of the large number of multidimensional arrays, a level of abstraction was employed

for indexing flattened arrays. Consider accessing element B[5][200][2] from the array

54



CHAPTER 4. DESIGN AND IMPLEMENTATION

B[f][s][j]. We would have to calculate the element index as (5*s*j)+(200*j)+2, where

s is the number of sources, and j(= 4) is the number of elements in a 2 × 2 matrix. This

index calculation becomes problematic as we have to rewrite this line of code every time we

need to access an array. The primary issue arises when we wish to change the order of the

dimensions (say, to B[j][f][s]), as we would have to rewrite every line that indexes B. This

is arduous and error-prone; thus an abstraction was found to be very useful in development.

In our implementation, the function getMultiDimIndex(a,aTotal, b, bTotal, ...) is

used in conjunction with various permutations (for example get B index(s, sT, f, fT,

j, 4), get output index(t, tT, f, fT, j, 4), etc). Slight speed-ups might be gained

from manually inserting the flattened index code rather than using abstracted function calls.

However, defining these functions as inline functions means that the compiler eliminates any

slight function call overheads. More importantly, abstracting this operation saves a lot of

time in terms of coding productivity and sanity.

4.4.4 Texture and Surface Memory

Texture memory was utilised in early iterations to reduce un-cached off-chip memory reads.

Texture memory can be allocated as 1-,2-,or 3-dimensional arrays with spatial caching. This

was of particular relevance to CC 1.3 devices, which unlike CC 2.x devices do not feature

automatic global memory caching. Since texture memory is read-only, we could only use it

for accessing input arrays.

As shown in Section 4.4.1, the size of the output arrays far exceeds that of the input arrays.

We found that texture memory, even on CC 1.3 devices, has a negligible effect on total run

times as most of the run time is taken up by writing results to the large output arrays.

We thus focused on optimisations that reduced off-chip memory writes rather than reduced

off-chip memory reads.

CC 2.x devices support surface memory that has similar spatial caching characteristics to

texture memory, but may also be written to. This is useful for problems in which intermediate

results are read back into memory with complicated and unpredictable dependencies (such

as iterated N-body simulations). Our implementation only has one such instance whereby

intermediate data is read by the kernel (a reduction step right at the end). The reduction

kernel might benefit from surface memory’s spatial caching; however, this was not explored

as the reduction kernel’s run time is relatively small, thus optimisations for the visibility
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kernel were considered first.

4.5 CUDA Parallel decomposition

Three CUDA kernels are required for our GPU implementation of the PSV algorithm: a

visibility kernel, a reduction kernel, and a re-order kernel. After the input data is copied to

the GPU device, the visibility kernel calculates all of the visibilities over all of the sources.

The reduction kernel then sums (reduces) the data over all the sources. Finally, the reorder

kernel packs the data into contiguous memory so that it can be copied back to CPU RAM

with one streaming command.

The steps required for this process are summarised below:

1. Allocate GPU global memory for inputs and outputs

2. Reorder and copy Brightness (Bs) and direction (σs) data from CPU to GPU

3. Copy all other data (arrays for upq,∆upq, t,ν, Φ and Ψ) from CPU to GPU

4. Zero GPU global memory for output and intermediate output

5. Run CUDA kernel: calculate visibilities for each source (over time and frequency) and

store in intermediate output

6. Run CUDA kernel: Reduce/add all visibilities over all sources

7. Run CUDA kernel: Reorder and add to final output

8. Copy data back to CPU

Figure 4.3 shows a flow chart of the CUDA PSV node execution.

4.5.1 Memory allocation

At the start of node execution, memory on the GPU needs to be explicitly allocated, after

which data can be copied to that space. The amount of memory allocated depends on the

number of timeslots, frequency bands, and most importantly, the number of sources that we

wish to compute. Details on the exact space requirements are given in Section 4.4.1.
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MeqTrees
backend

Reorder
input data

Allocate
GPU memory

Copy reordered
data to GPU

Visibility kernel

Was the 
problem

split?

Copy data
back to CPU

No

Will the output
fit into GPU
memory?

Split the 
problem

Zero GPU
memory

Are there
more sources to

calculate?

Yes

Reduction kernel

Reorder kernel
(add to output)

No

Yes

Start node
execution

Finish node
execution

Copy other 
data to GPU

No

Yes

CUDA Kernel Executions

CPU Memory Operations

Avoidable CPU Operations

MeqTrees Overhead

CPU 
Flow Control

Figure 4.3: Flowchart of the execution of the PSV node
Green and red squares represent CPU operations, with red squares representing operations
that are needlessly re-run every node execution, instead of once at the beginning of the
simulation. Orange squares represent GPU operations.
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As mentioned in Section 4.2.2 a disadvantage of porting the MeqTrees PSV calculations

to GPU is the lack of persistent inter-node GPU memory. The PSV node is run once per

antenna pair and once per time-slot group. The only input vectors that are dependent on the

node are upq,∆upq, t, Φ, and Ψ. The vectors ν, Bs, and σs should not require reassignment

to the GPU every node execution. However, since there is no way to allocate and then pass

those vectors from node-to-node, ν, Bs, and σs must be reallocated every time. This causes

significant increases in total run time.

Reordering B and σ: The Bs and σs input vectors require re-ordering to effectively

exploit memory access coalescing on the GPU. One important consideration here is that Bs

and σs are stored in MeqTrees as Vells or VellSets in such a way that they must be extracted

element by element. The inner working of Vells and VellSets will not be explained here and

the reader is referred to Noordam and Smirnov (2011) for more details. Furthermore, these

VellSets do not necessarily organise their data so as to exploit the access characteristics

of CUDA memory. However, since we have to extract the values for Bs and σs anyway,

we simply place these values in our own array in the preferred order during the extraction

process.

The principle reason we wish to re-order the data is to exploit CUDA’s global memory

coalescing. CUDA runs threads in groups of 32 or 16, called warps or half-warps (respec-

tively). All threads in a warp/half-warp execute in lock-step. Naively, if the warp/half-warp

performs a memory request, 32/16 simultaneous memory requests are issued, one for each

thread. However, CUDA hardware is designed to coalesce these requests into a smaller

number of 128-bit and 64-bit requests (the exact coalescing characteristics depends on the

compute capability). An example of how reordering affects memory coalescing is shown in

Figure 4.4 and discussed in Section 4.5.4. Details of coalescing can be found in Appendix

F.3.2 and F.4.2 of the CUDA programmers’ handbook (nVidia Corporation, 2011b).

A significant problem associated with VellSet extraction is speed: it can be very slow, es-

pecially for a large number of sources. Since each GPU node execution is independent of

previous execution of any other GPU node, Bs and σs must be extracted and reordered

for all s, every time a GPU node is called rather than just once at the beginning of the

simulation. Section 6.3 shows how this increases raw computation time by up to 30%.
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Copying remainder of data: Unlike Bs and σs, which only need to be copied onto

the GPU once per simulation, input vectors for utqp,∆utpq,Φ, and Ψ (as well as the vectors

holding values for ν and t) must be recopied every node execution. Fortunately, these vectors

are small in comparison to Bs and σs, so while this copying operation is unavoidable, it is

not very costly.

Intermediate-output and output memory: Results must be stored in GPU memory

then copied back to the CPU once execution is complete. As such, we have to allocate enough

memory for the final output (ν× t×4) vector. If we performed these calculations serially we

would write the result for source s0 to this result vector, then calculate source s1 and add

that to the final result vector and so on for the remaining sources. Since we are performing

the calculations of all of the sources in parallel, we cannot have a single vector of dimension

(ν × t × 4) to which we add the values, as this would lead to multiple race-conditions and

invalid results. Instead we need to allocate s vectors of dimension (ν× t×4) vectors, so that

each source can written to its own vector. The result is reduced using a parallel logarithmic

reduction algorithm — see Section 4.5.5.

Instead of computing s sources in parallel, one by one, sources are bucketed into groups of m

sources and s/m groups of sources are computed in parallel, with each group calculating m

sources serially. This provides significant performance gains — see Section 4.4.2 for details.

4.5.2 Visibility Kernel

The visibility kernel is the kernel that performs the calculation of the visibilities described in

Eqn (4.1). Since this kernel has the largest running time of all our kernels, the most effective

optimisations are implemented here.

Figure 4.1 shows the decomposition of the problem along its three dimensions (time, fre-

quency, and sources). Each individual thread is responsible for one PSV calculation at one

timeslot, one frequency, and for one source. These threads are grouped into a number of

thread-blocks, with each thread-block responsible for a certain cross section of the data cube.

In our initial design, each CUDA thread calculated the result for one source at one frequency

and one timeslot. However, we found that calculating multiple (m) sources for one frequency

and one timeslot per thread utilised the processors more efficiently. Once calculated, the
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threads stores the visibility (or m visibilities) in global memory.

As mentioned in the previous chapter, the Streaming Multiprocessors (SMs) of a GPU can

hold a limited number of blocks resident at any one time. To maximise computational

throughput, we must ensure that the SMs of the GPU are always fully occupied. In order to

ensure this, we have to have a sufficient number of blocks in total so as to fill the SMs. We

have control over how we split our problem up, meaning that we can partition the problem

into as many or few blocks as we wish. We need only work out what number of blocks is

optimal.

We start by calculating the minimum number of blocks required for full utilisation. This

number is dependent the number of block per SM (b), which is determined by the occupancy.

It is also dependent on the number of SMs per GPU device (r). Hence, the minimum number

of thread-blocks required is br.

We must also calculate the number of blocks the kernel will allocate. This is determined

by (i) the number of sources, time-slots and frequency bands (s, t, ν), which represents the

number of points in our data cube; (ii) the size of the thread-block (z), since each thread in

a block computes one point of the data cube (we allocate stν threads, and thus allocate stν
z

thread-blocks) and; (iii) the number of sources calculated per thread, we actually compute m

sources per thread, meaning that we require stν
m

threads, hence we only allocate stν
zm

thread-

blocks.

Comparing the two values, we require that br ≤ stν
zm

, or s ≥ brzm
tν

. z is the size of the thread-

block and represents a subsection of the t and ν dimensions, and as such cannot be larger

than tν, in other words z ≤ tν, or 1 ≥ z
tν

. We now find that s ≥ brzm
tν
≥ brm.

We find that the number of sources (s) must be larger than the product of the number of

blocks per SM (b), the number of SMs per device (r), and the number of sources calculated

per thread (m). We consider that the maximum number of blocks per SM is b = 8, and since

no current or planned CUDA GPU exceeds r = 48 SMs per device, we can conservatively

say s ≥ (8)(48)m, or s ≥ 384m.

So we finally find that the minimum number of sources required to fully occupy the GPU is

dependent on the value of m. If we calculate m = 32 sources per thread, we require at least

12, 288 sources to fill the SMs, whereas m = 2 would only need a minimum of 768. We see

that smaller problems could be hindered by a high m value, which would reduce the number

of blocks we allocate, whereas larger problems would not benefit from lower m values.
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In practice we find that b can range all the way from 1 to 8, depending on occupancy. A low

b value means even less total thread-blocks are required for full utilisation of the SMs. The

effect of different m values is explored in the Section 6.2 in the Results Chapter.

4.5.3 Visibility Kernel Execution Steps

The visibility kernel (Listing 4.3) performs the following tasks (at the following lines):

Ln 9: Calculate thread index

Ln 17: Define and clear shared memory

Ln 20: For each source:

Ln 22: Calculate the smear factor

Ln 32: Calculate the exponential

Ln 37: Calculate the matrix and accumulate to shared memory

Ln 42: After all sources are processed, write the accumulation to global memory

The simplified kernel omits some uninteresting lines of code, mainly macro definitions that

switch between use of shared and global memory, and switch between use of multiple sources

or a single source. If the kernel does not use shared memory, the results are accumulated

straight to global memory instead of shared memory which obviously forgoes the write back

from shared to global memory at the end of the kernel. If the kernel is calculating only one

source, s_start and s_end (line 12) are not calculated and the loop at line 20 is omitted.

Calculating a Thread’s Location: Each thread resides within a 2D block, stored as

1 × fb × tb (blockDim in code). These blocks reside within a 3D grid, sg × fg × tg. Each

thread is responsible for calculating the visibilities of a number of sources, over one time-slot

and over one frequency-slot. Therefore we need to determine exactly which time-slot (t_i,

line 10), frequency-slot (f_i, line 11), and source range (s_start, s_end, line 12) we are

evaluating. In Listing 4.3, line 9 to 12 we can calculate these values using the thread’s

location within the block (threadIdx), the dimensions of the block (blockDim), the block’s

location within the grid (blockIdx), and how many sources per thread should be computed

(srcs_per_thread).
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1 CUDAPointSourceVisibilityKernel( // Inputs

2 /* σs(R
3), Bs(C4), t(R), ν(R) */ double3* lmn, double2* B, double* time, double* freq,

3 /* (utpq, vtpq, wtpq), (∆utpq, ∆vtpq, ∆wtpq) */ double* uvw, double* duvw,

4 /*
∆Ψ(νm)

2 , ∆Φ(νm)
2 */ double* df_over_2, double* f_dt_over_2,

5 /* array sizes */ int ntime, int nfreq, int nsrcs, int srcs_per_thread,

6 /* global memory output */ double2* intermediate_output_complex ) {

7

8 // Calculate thread index and shared memory index

9 int s_i = ((blockIdx.x*blockDim.x) + threadIdx.x); // input index, source

10 int t_i = ((blockIdx.y*blockDim.y) + threadIdx.y); // input index, time

11 int f_i = ((blockIdx.z*blockDim.z) + threadIdx.z); // input index, freq

12 int s_start = s_i*srcs_per_thread; int s_end = s_start + srcs_per_thread;

13

14 int t_si = threadIdx.y; // shared (memory) output index, time

15 int f_si = threadIdx.z; // shared (memory) output index, freq

16

17 __shared__ double2 shared_mem []; // declare shared memory ([blockDim.y][blockDim.z][4])

18 ... // clear shared memory (need a 2× 2 double2 matrix for each thread in the thread-block)

19

20 for (int s = s_start ; s < s_end && s < nsrcs ; ++s) {

21 // Calculate smearing factor with −2π
c (utpq · σs) and −2π

c (∆utpq · σs)
22 double smearFactor = 1.0;

23 double argument = _2pi_over_c * ( u[t]*lmn[s].x + v[t]*lmn[s].y + w[t]*lmn[s].z);

24 double dargument = _2pi_over_c * (du[t]*lmn[s].x +dv[t]*lmn[s].y +dw[t]*lmn[s].z);

25

26 double dphi = d_f_dt_over_2[t] * dargument;

27 if (dphi != 0.0) smearFactor = sin(dphi)/dphi; // sinc
(∆Φ(νm)

2

)
28 double dpsi = d_df_over_2[f] * argument;

29 if (dpsi != 0.0) smearFactor *= sin(dpsi)/dpsi; // sinc
(∆Ψ(νm)

2

)
30

31 // Calculate the PSV exponential term, exp (−2π iνc (utpqσs))
32 double realVal; double imagVal;

33 sincos(d_freq[f]*argument, &realVal, &imagVal);

34 for (int j = 0 ; j < 4 ; ++j) {

35 int b_i = get_B_index(s, f_i, j);

36 int share_index = get_shared_mem_index(t_si, f_si, j);

37 shared_mem[share_index].x += (d_B[b_i].y*realVal + d_B[b_i].x*imagVal) * smearFactor;

38 shared_mem[share_index].y += (d_B[b_i].y*imagVal - d_B[b_i].x*realVal) * smearFactor;

39 }

40 }

41 // Copy data in shared memory to global memory

42 for (int j = 0 ; j < 4 ; ++j) {

43 int global_index = get_intermediate_output_index(s_i, t, f, j);

44 int share_index = get_shared_mem_index(t_si, f_si, j);

45 d_intermediate_output_complex[global_index] = shared_mem[share_index];

46 }

47 }

Listing 4.3: Simplified visibility kernel code
Visibility kernel code formatted for readability. Some operations are left out for brevity.
This code is what each thread will execute and calculates multiple sources per thread
using shared memory.
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Defining and Clearing Shared Memory: Each block is allowed a certain amount of

shared memory for all of its threads to use. For our implementation we need 4 ‘double2’s

per thread per thread-block for the 2×2 matrix (a double2 is a 128byte data-type consisting

of 2×64byte doubles, used to represent a complex number). The shared memory array will

thus be 4*threadIdx.y*threadIdx.z (threadIdx.x is always 1). All these values must be

initialised to zero otherwise the reduced values will be undefined.

Calculating Smear Factor: As described in Section B.4, the unmodified visibility func-

tion assumes that the signal is measured at a constant time t at a certain frequency f . This

is not actually the case as the signal is measured over a frequency band, affecting the phase

coherence, and measured over some period of time, affecting the relative location of the

antennae shifts. As a result the accuracy of the visibility equation is reduced. To correct for

this a smearing factor, Mtfs, is multiplied against the visibility.

Mtfs = sinc
∆Ψ

2
sinc

∆Φ

2
(4.6)

where

tm = (t0 + t1)/2, νm = (ν0 + ν1)/2,

∆Ψ = arg Vpq(t1, νm)− arg Vpq(t0, νm),

∆Φ = arg Vpq(tm, ν1)− arg Vpq(tm, ν0)

Here arg(·) denotes the complex argument or complex angle and sinc(·) is defined as

sinc(x) =

{
sinx
x

if x 6= 0

1 if x = 0

(Smirnov, 2011a; Thompson et al., 2001; Taylor et al., 1999)

The argument of the visibility equation is:

arg Vpq(t, ν) = arg

[
exp

(−2πi

c
ν(ut · σs)

)]
=
−2πi

c
ν(ut · σs)
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From this we calculate:

∆Ψ = arg Vpq(t1, νm)− arg Vpq(t0, νm)

=
(−2πi

c
νm(ut1 · σs)

)
−
(−2πi

c
νm(ut0 · σs)

)
=
−2πi

c
νm(∆t |u∆t| · σs)

= νm ∆t · −2πi

c
(∆ut · σs)

∆Φ = arg Vpq(tm, ν1)− arg Vpq(tm, ν0)

=
−2πi

c
ν1(utm · σs)−

−2πi

c
ν0(utm · σs)

= ∆ν · −2πi

c
(utm · σs)

(4.7)

Before kernel execution, we pre-calculate arrays holding values for νm∆t
2

(f_dt_over_2) and
∆ν
2

(df_over_2) and use those to calculate the smearing term, sinc(∆Ψ
2

)sinc(∆Φ
2

). This is

shown at lines 22 - 29 in Listing 4.3.

Calculating Phase-Shift: This is the visibility calculation and is expressed by:

Ptfs = exp
(−2πi

c
f(ut · σs)

)
In Listing 4.3 (line 23) the argument to the exponential is calculated:

_2pi_over_c * freq[f](u[t]*lmn[s].x + v[t]*lmn[s].y + w[t]*lmn[s].z)

where u[], v[], w[] are the arrays holding the relative antennae location at different times,

lmn[] is the array holding the directions (σ) of the different sources, freq[] is an array of

frequency slot values, and _2pi_over_c is −2π over the speed of light (c)

To calculate Ptfs = eik (for k = −2πf(ut·σs)
c

), we use Euler’s formula P = cos(k) + i sin(k)

In the kernel one call to the sincos() function is used instead of two separate sin() and

cos() function calls (line 33)

Writing to shared/global memory: If shared memory is used, the visibility matrix for

each source, s, is calculated and added to shared_mem[j][f][t]. At the end of the kernel,
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this sum is added to global_memory[j][s][f][t] (lines 37, 38). If shared memory is not

used, the results for each source s, are added straight to global_memory[j][s][f][t].

Since the global memory array is organised in the order global_memory[j][s][f][t], the

time dimension is most tightly packed. This tight packing in conjunction with the block

layout allows for memory coalescing to take place. In our code, we make use of multiple

get_*_index functions (lines 37, 38, 43, 44) in order to easily experiment with different

array orderings.

4.5.4 Visibility Kernel Tuning

As mentioned before, different thread-block layouts will result in different occupancies and

different memory access characteristics. Occupancy is entirely determined by the size of

the thread-block layout, and not by the dimensions (see Section 4.6.2). Memory access

patterns, on the other hand, are very sensitive to changes in thread-block layout dimensions.

Thread-block dimensions are in time and then frequency (t × f). The number of timeslots

are chunked in MeqTrees to 32 and the number of frequency channels are chunked to 64.

This means our maximum thread-block layout is 32× 64, which is 2048 threads. As CUDA

does not support more than 1024 thread per block, we must reduce one or both dimensions.

We find another limitation using shared memory, where using any more than 256 thread per

block means that more than the maximum 16kB of shared memory per SM is required (see

Section 4.6.2). If we utilise CUDA’s ability to expand this shared memory to 48kB (at the

cost of L1 cache) this limit is only extended to 512 threads per block.

Furthermore, more threads per block does not necessarily lead to better performance. Thus,

we test a variety of thread-block layouts of various sizes to determine what characteristics

(namely size of the time dimension, frequency dimension, and overall size of the thread-block)

are responsible for faster or slower execution times.

It would be ideal to use an auto-tuning system that would determine an optimal thread-

block layout, probably employing some heuristic parameter search. We leave any form of

auto-tuning for future work and instead manually test a wide range of different thread-

block layouts. We do this because our primary goal is to determine which thread-block

characteristics cause which effects on execution time of this prototype. It is too much to

cover every single thread-block layout thus we only test in powers of two (1, 2, 4, 8, 16, 32, 64)
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and we do not cover all permutations of this. As will be seen in Section 4.6.2, certain

configurations allow for larger or smaller thread-blocks, which alters the range of thread-

blocks we test.

4.5.5 Reduction Kernel

Reduction allows one to combine (or reduce) many values into a single value. One of the

simplest forms of reduction is summation, whereby all values are added together to give

one value. For our work in particular, we have an intermediate output vector of dimension

(s/m) × ν × t. In other words, we have (s/m) vectors of dimension ν × t which must be

summed together. We call this ‘reducing the vector over (s/m)’.

In CUDA all thread-blocks calculating visibilities are executed in parallel and in an undefined

order. Consequently, to reduce values using a single global total would generate multiple

race-conditions and produce inconsistent results. Thus, we perform a two step, calculate-

and-then-reduce method rather than simply adding the visibilities to an array as we calculate

the values. The reduction step is implemented on the GPU rather than on the CPU since

the data already resides on the GPU, and takes far less time to execute on the GPU than

on the CPU.

The reduction kernel uses summation to combine the visibilities of all the sources into one

value. The intermediate results are stored in an (s/m) × f × t × 4 vector which must be

reduced to a t×f ×4 vector. Reduction on the CPU means that all (s/m)×f × t×4 values

need to be copied to CPU memory and then reduced serially, adding the values together

one-by-one. It is much faster to reduce on the GPU where the array already resides. We use

a logarithmic parallel reduction algorithm (Nickolls et al., 2008), which repeatedly adds half

of the array to the other half, until only one element remains. The steps are as follows:

1. For N element array

2. For each (2n)th element, add the (2n+ 1)th element to it

3. We now have an dN/2e element array

if dN/2e = 1

4. There is one element in the array — it is the reduction/sum

else dN/2e > 1
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4. Repeat step 1 with the dN/2e elements

After the first iteration, dN/2e elements remain. Repeat this to get dN/4e elements, then

again to get dN/8e elements and so on until only one element remains. Similar to the

visibility kernel, each thread is responsible for one frequency, one time-slot, and two sources

(the (2n)th and (2n + 1)th source). The reduction kernel is run once for each reduction

step, each successive kernel run reducing the number of elements by half. This completes

the reduction in dlogNe steps. See Figure 4.5 for a worked example.

4.5.6 Reorder Kernel

This kernel ensures that the reduced output is contiguous in memory and hence can be

copied back with just one copy command. If reordering is not done, the reduced output will

be fragmented in memory, necessitating multiple copy operations.

Fragmentation occurs as a result of the memory order used to exploit CUDA’s global memory

coalescing. The intermediate/unreduced output is structured as a 4 × s × f × t flattened

array (see Section 4.4.3). When reduced, the array dimensions becomes 4×1×f× t, and the

array is not necessarily contiguous in memory (see Figure 4.5). The reorder kernel compacts

and reorders the non-contiguous 4×1×f× t array into a contiguous t×f×4 array. Copying

back to the CPU can now be performed in a single streaming command.

4.6 CUDA Implementation Issues

The following section is split into two primary considerations: memory management and

processor management. Our problem is characterised by a small amount of input data with

a relatively large amount of output data. Throughout the chapter the various memory write

optimisations and considerations have been discussed.

We start this section with a recap of the memory management issues that were detailed

throughout the chapter. Following this we discuss the other major component: how to

keep the many CUDA processors occupied with instructions. We do this by discussing our

implementation’s occupancy (defined in Section 3.3.2) and what factors affect it. Although

not as large a consideration considering the large memory requirements of this problem,
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we analyse our implementation with respect to occupancy and how this might improve

computational throughput.

4.6.1 Memory Management

For most CUDA implementations, memory management can be as large a factor as processing

speed in determining computational throughput. Porting visibility calculations to the GPU

has its own unique memory considerations.

Part of MeqTrees’s flexibility arises from the manner in which it defines its calculations.

Nearly any mathematical expression or measurement equation can be built using a tree

of nodes (see Figure 4.2a for an example). As mentioned previously, our implementation

replaces the many-node expression of the visibility equation with a single node, thus reducing

overheads significantly. The CUDA version is essentially a port of the single-node CPU

version. Unless otherwise stated, when we refer to the node we mean this single-node GPU

implementation.

As discussed in Section 4.5.1 we note that the manner in which MeqTrees passes data from

node to node, understandably, does not apply to the GPU memory management model.

This would require either modification of the inner working of MeqTrees or an undesirable

workaround and is left for future work.

4.6.2 Occupancy

Our kernel implementation, particularly the visibility kernel, is register-heavy and utilises a

large amount of shared memory. This has a significant effect on the occupancy of the SMs

as it limits the number of blocks that can be active/resident on an SM at any given time.

The major factors that determine occupancy are (i) the number of registers the kernel needs,

(ii) the amount of shared memory per thread-block requested, and (iii) the number of threads

per thread-block (refer to Section 3.3.2 for details on how occupancy is determined). The

number of registers can only be changed by changing the code (they are fixed otherwise). In

our implementation, we require 64 bytes of shared memory per thread. In many problems,

shared memory is shared amongst the threads and can be independent of the number of

threads per block; however, as we are simply using shared memory to store output data, the
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amount needed per block is directly proportional to the number of threads in the block. The

number of threads per block is variable and affects occupancy by changing the amount of

shared memory required and the amount of registers required. The different configurations

are given in Table 4.2.

CC 1.3 devices are limited to 512 threads per block. In our implementation there are not

enough registers or shared memory to run the kernel with 512 threads. With a 2.x device,

while there is enough register space, the amount of shared memory still limits occupancy.

2.x devices have 48kB of L1-cache for global memory and, like 1.3 devices, 16kB of shared

memory. This can be configured such that 48kB is reserved for shared memory with only

16kB of L1 cache. In our implementation, the extra shared memory eases the significant

shared memory pressure, allowing thread-blocks of 512 threads. If we attempt to exploit all

the shared memory (768 threads), we run out of registers, as shown in Table 4.2.

Higher occupancy usually means better performance. This was, however, not observed in

our implementations, where higher occupancy had a negligible effect on performance. See

Section 6.5 for more details.

Shared Memory Limits: Each thread-block calculates visibilities over a range of time-

slots, T , and a range of frequency bins, F , with each thread calculating the visibility for one

time-slot and one frequency bin. Each visibility is a 2 × 2 complex-valued matrix and as

such requires 8 double precision floating-point numbers (64 bytes). Thus, each block required

T × F × 64 bytes of shared memory to store its array of complex doubles. More threads

per block means that the required shared memory per SM increases. Too many threads and

the SM will not be able to allocate enough of its limited shared memory. In the current

implementation, the amount of shared memory cannot be reduced. Thus shared memory

limits on occupancy cannot be eased without a different approach.

Register Pressure: The large number of registers (30-45) can be partly attributed to the

use of double precision floats (which takes up twice as much register space as floats) and to the

size of the visibility kernel code itself. Attempts were made to reduce the number of registers

per thread by avoiding unnecessary declaration of variables in the kernel. Reduction by only

4-6 registers is possible. For the most part the CUDA compiler optimises away any minor

changes in CUDA code, making manual register reduction mostly redundant. Unfortunately,

upon closer investigation, the number of registers per thread would have to be reduced from
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CHAPTER 4. DESIGN AND IMPLEMENTATION

45 to 32 to have any effect on occupancy, making minor register reduction largely redundant.

Splitting the Kernels

A solution to the above mentioned register pressure problem is to split the kernel into

multiple sequential runs, with each run performing a part of the execution. Since each

kernel is responsible for fewer calculations, less registers are required per kernel. For our

problem, it is possible to calculate each smearing factor in its own kernel and then multiply

those by the visibilities in another kernel and vice-versa.

In general, there are a number of Jones matrices against which each visibility must be mul-

tiplied, as explained in Section B.2.1. A prototype kernel was implemented that performed

all matrix multiplication operations within a single kernel. This required too many regis-

ters, causing register spilling and very poor performance. A potential solution is to split the

problem up such that each kernel does the multiplication step of one Jones matrix. Splitting

the kernels allows for a variable number of Jones matrices in the visibility equation, but, as

we show below, nullifies our current shared memory optimisation.

The main problem encountered when exploring the use of multiple kernels is that we can

no longer exploit shared memory, as we are no longer able to evaluate multiple sources per

thread.

Currently each thread calculates the summed visibilities with smearing factor for m sources,

i.e. S1V1 +S2V2 + ...+SmVm, where Si the ith smearing term and Vi is the ith visibility. If we

split this up we have to first calculate S1, S2, ..., Sm with a smearing factor kernel, and then

V1, V2, ..., Vm with a visibility kernel, multiplying them to get S1V1, S2V2, ..., SmVm. These

must then be summed to get our result: S1V1 + S2V2 + ...+ SmVm.

However, this approach means that we use more memory per source as we need storage

space for each SiVi value instead of storage space for each summation,
∑m

i=1 SiVi, only.

See Section 4.4.1 for exact memory usage characteristic for shared memory compared to no

shared memory.

Furthermore, we lose the memory throughput advantage of using shared memory. Normally

we only have to write 4 values to global memory, as we reduce the m visibilities in shared

memory. With multiple kernels, we must reduce the values only after all the visibilities have

been calculated (i.e. after all the kernels have executed), meaning we cannot reduce the m
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visibilities in shared memory.

The other major issue is that any decrease in execution time achieved by reducing the register

pressure must be offset by the overhead cost of the extra kernel invocations.

These considerations are left for future work as they are more applicable to the larger project

of a CUDA implementation of PSV simulation using multiple Jones terms, which is beyond

the scope of this thesis.

4.7 Summary

There are many design considerations that are required to implement an efficient CUDA

kernel, without which much of the power of CUDA hardware would remain unexploited.

Chief among these, for our problem at least, are CUDA hardware optimisations that reduce

global memory writes, in particular coalescing and the use of shared memory for intermediate

calculations. Processor-based optimisations focused around the occupancy metric are not of

primary concern, as will be seen in Chapter 6 (Results).
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Chapter 5

Evaluation Methods

Having detailed the implementation of the CUDA PSV node, we now evaluate the efficacy of

our design choices and optimisations. This chapter outlines the evaluation process and the

experimental setup for testing. Our principal analysis metric is the speed-up of the CUDA

PVS node over the CPU PSV node: essentially how many times faster the GPU version

runs compared to a CPU version. Our main goal is to determine how effective our various

optimisation and design choices are at accelerating the PSV node and which factors hinder

acceleration.

In the previous chapter, we noted that MeqTrees splits the computational problem up into

sequential sections, each section representing one run of our PSV node. It is only these

computational sections that we parallelise. Between these computational sections, MeqTrees

performs a number of overhead operations required for the subsequent computational sec-

tion of code, e.g. traversing the equation trees, copying input and allocating output memory,

among other things (see Figure 5.1). These ‘MeqTrees overheads’ are part of the core me-

chanics of the MeqTrees framework and were not considered for acceleration in this project.

As such, we refer to these sections of code as the ‘non-parallelisable’ section of code (although

outside of this work they could theoretically be parallelised) as they are serial as far as we

are concerned. In contrast, we refer to the computational sections of code as ‘parallelisable’.

Our CUDA PSV implementation is validated and benchmarked against the CPU PSV node

already in the MeqTrees framework (Smirnov, 2012). Both nodes operate in the same manner

within MeqTrees and require the same input, excepting that our PSV node lacks certain

advanced functionality. When comparing run times of the GPU and CPU nodes, identical
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input parameters are used for both, and both are run under the same conditions and on the

same computing equipment.

The two primary factors which affect the overall run time of a PSV simulation are the number

of antennae used and the number of point sources simulated. Secondary factors include the

number of frequency bands and the number of time-steps; however these are constant for

all our tests. We used two sets of antennae for our tests: the Westerbork Synthesis Radio

Telescope (WSRT) (14 antennae and thus 91 base-pairs), and the planned MeerKAT array

(64 antennae and thus 2016 base-pairs). Note that each interferometer setup measures over

different times: the WSRT measures 72 time-steps, while the MeerKAT array has a longer

exposure of 480 time-steps. An artificial sky model comprising a uniform square grid of point

sources is used in all our simulation tests. A ‘gridded’ sky model is not realistic, but if we

consider the RIME equation, Eqn (4.1), we see that the locations of the sources (σs) are

independent of the computational complexity. Hence, only the number of sources, and not

their locations, affect the running time of the simulation.

We divide our run time into three logical sections, one computational and two overhead

sections, with the intent of analysing the effect of each. We do this by defining speed-ups

that selectively and deliberately include and exclude certain overheads. Besides the effect of

overheads, we wish to determine how effective our optimisations and design choices are. We

test over many configurations of our implementation, namely various thread-block layouts,

different shared memory usages, problem sizes, and interferometers. We have detailed our

experimental setup and how we have run all our tests. The following chapter gives the results

of these tests and highlights expected (and unexpected) results. We show which cases lead

to speed-ups (or lack thereof), which of our optimisations prove to be effective and which

are shown to be ineffective. We discuss these findings with reference to the CUDA hardware

and the MeqTrees software to determine the root cause of each of our design considerations.

5.1 Code Classification

Figure 5.1 shows the execution time-line of a simulation run, and demonstrates how Meqtrees

switches back and forth between our computational node and its internal ‘MeqTrees over-

head’ operations. Whereas Figure 4.3, in the previous chapter, details the internal workings

of our PSV node. We note three different divisions of the PSV node: the kernel executions

(orange in Figures 4.3 and 5.1), the memory operations (green), and the avoidable memory
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operations (red). Avoidable memory operations are those memory operations that could

have been amortised if MeqTrees contained GPU-based memory management. Currently

they are needlessly redone in each PSV node (typically thousands of times), whereas it

should be done once for the whole simulation.

We divide the total execution time of a simulation run into three distinct sections: the

PSV node run time (excluding the avoidable memory operations), the avoidable memory

operations, and the MeqTrees overhead. These three sections of code are timed separately

and constitute the total run time completely; there are no other contribution to the total

running time.

The ‘MeqTrees overhead’ or back-end execution is responsible for managing memory and

calling the relevant nodes (our CUDA PSV node in this case), represented in Figure 5.1 by

the purple ‘M’ blocks. A second class of overhead arises from the avoidable reordering and

copying operations that are performed for each PSV node execution. For our implementation,

there are a number of arrays allocated on the GPU and data that must be reordered on the

CPU and copied to GPU memory. A substantial fraction of this data is needlessly reallocated,

reordered, and recopied, as these operations are performed every time the node is called, but

only is required to be performed once at the beginning of the simulation. This cost could be

avoided by modifying the underlying MeqTrees framework (red in Figure 5.1)

Although we cannot amortise the unnecessary reorder and recopy operations in this work, we

are able to measure their contribution to the total running time of the GPU simulation. When

measuring core computational times, we subtract these contributions from the GPU times

in order to estimate the time it would have taken if these operations were not performed.

We note that we only do this when comparing the computational sections of code. Unless

otherwise stated, we leave the total running times unaffected.

It is important to emphasise that the speed-up of the GPU PSV node is in comparison

to a single core of a CPU node, although MeqTrees does contain multi-core capabilities, a

meaningful comparison between this and a GPU version would be difficult.

5.1.1 Timing Metrics

As we have split our execution times into three distinct sections, we define three timing

metrics:
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1. Real Time/Speed-up:

Total GPU time versus Total CPU time.

2. Achievable Time/Speed-up:

Total GPU time, excluding unnecessary memory operations, versus Total CPU time.

3. Constrained Time/Speed-up:

Total GPU time, excluding unnecessary memory operations, and excluding MeqTrees

overhead, versus Total CPU time excluding MeqTrees overhead.

The first metric, Real speed-up, is the actual speed-up achieved and represents the most basic

comparison between CPU and GPU run times. The Achievable speed-up is the speed-up

if we were to ignore the avoidable memory allocation and copy operations and shows what

could be achieved given additional GPU memory management in MeqTrees. This represents

an estimation of speed-ups that could be achieved in future work. The third, Constrained

speed-up, directly compares GPU to CPU computation times and represents the speed-up

gain of only the computational aspects of the execution. Whilst Constrained speed-up is not

practically achievable, it gives a better metric for how much the GPU accelerates the core

computation.

5.2 Testing Parameters

Problem size and number of antennae have a clear effect on run times. Larger datasets and

more antennae lead to slower run times, but greater speed-up on the GPU. We focus on

effects independent of problem size, particularly our optimisation and design choices: (i)

The thread-block layout used in conjunction with our array packing order, which affects

exploitation of global memory coalescing; (ii) use of shared memory to perform intermediate

operations, whereas they would normally be done on global memory; (iii) use of newer

hardware, namely a CC 2.0 device versus a CC 1.3 device, the former of which affords us a

choice of L1 cache to global memory or three times the shared memory of CC 1.3 devices

as well as increased double precision floating point operation throughput compared to CC

1.3 devices; and (iv) the performance when using a smaller interferometer to see if our

acceleration is as effective with small as well as large datasets.

CUDA groups its many lightweight threads into 1D, 2D, or 3D thread-blocks with user-

defined dimensions. We employ a 2D thread-block layout comprising a time and frequency
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dimension. This, in conjunction with optimal input and output array packing, can have

an effect on memory throughput, as coalescing effects require contiguous data. Different

layouts also have different processor occupancy characteristics. We test over a multitude of

thread-block layouts to determine its effect on coalescing and occupancy.

Comparison of shared memory versus global memory essentially tests the use of our shared

memory optimisation (Section 4.4.2) versus the standard version that does not employ any

shared memory optimisation. As the number of sources computed per thread, m is key to

the shared memory optimisation, we not only test our implementation with and without use

of shared memory, but also test different m values. Early tests showed that use of texture

memory had no clear effect. Consequently, we did not use this type of memory in our final

version. As discussed in Section 4.4.4, surface memory, which is similar to texture memory,

was not applicable to our implementation.

Tests are performed on nVidia GeForce GTX 285 and GTX 470 devices. The GTX 285 has a

compute capability of 1.3 whilst, the newer GTX 470 is a 2.0 device. Whilst the GTX 470 is

constituted from newer technology, both have a similar peak estimated theoretical GFLOP

performance of around 1.1 GFLOPs. However, the GTX 470 has a lower memory bandwidth

at 133.9 GB/s compared to 159.0 GB/s of the GTX 285. Despite the GTX 285 being top

of its range1 and the GTX 470 the second in its range, the GTX 470s newer computation

technology ensured that it outperformed the GTX 285 significantly (nVidia Corporation,

2012a,b).

We test with CC 2.x devices as it allows for switching between L1 cache to shared memory

configurations. There is 64kB of on-chip memory per streaming multiprocessor, part of

which is reserved for shared memory and part for L1 cache to global memory. The standard

distribution is 16kB for shared memory and 48kB for L1 cache, but the user can opt to switch

this configuration to 48kB of shared memory and 16kB of L1 cache, which would afford more

shared memory, but at the risk of less cache and hence less cache hits. This will allow us to

test efficacy of global memory L1 cache. We can also test if tripling the amount of shared

memory has any effect as well, as more shared memory allows for higher occupancy which

could increase processor utilisation. Since our implementation makes exclusive use of double

precision floating point operations, we test the increased double precision performance of the

CC 2.x devices over CC 1.3 devices.

As well as the MeerKAT array (2016 baseline pairs and 480 time steps), we test the smaller

1Excluding the GTX 295 which contains two GPU chips on one card.
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WSRT interferometer (91 baseline pairs and 72 time steps). We configure MeqTrees to

split the PSV simulation into groups of 32 times steps per baseline pair, thus the MeerKAT

array has 30240 ‘pair groups’ (2016 pairs over 15 time slot groups) and WSRT has 273 ‘pair

groups’ (91 pairs over 3 time slot groups). When a PSV node is called, GPU or CPU, it will

calculate the visibilities of only one of these groups. The PSV nodes are called sequentially

(see Figure 5.1) and it is these individual PSV nodes that are accelerated, not the simulation

as a whole. We test if simulations that have fewer ‘pair groups’, and thus fewer PSV node

calls, run at the same rate (groups per second) as simulations with many ‘pair groups’.

5.2.1 Experimental Setup

Our experiments were run on a computer with an i5 2.66GHz CPU (2 hyper-threaded cores,

4 logical cores) with 3GB of DDR RAM. This machine also has an nVidia GTX 470 CUDA

GPU with 1GB of on-board RAM. The operating system used is a 32-bit Ubuntu 11.10

standard desktop installation. We initially used an nVidia GTX 285 CUDA GPU (1GB

RAM), which has a compute capability (CC) of 1.3, but this was swapped out for the newer

470 device with a CC of 2.0. We report how these different devices performed along with

the main body of our results.

We ran all our tests from the command line with the meqtrees-pipeliner available in the

MeqTrees software suite (Smirnov, 2012), with the simulation configuration specified via

command line parameters. Configuration determines, among other things, which interfer-

ometer setup is being used (in our case, WSRT or MeerKAT), the list of test cases to run,

whether CPU or GPU is being used, and — if the GPU is used — what thread-block layouts

to test with.

The two simulated interferometers differ in three primary areas: firstly the number of an-

tennae, and hence the number of pairs to process (91 base-pairs for WSRT versus 2016

base-pairs for MeerKAT); secondly, the location of these antennae; and thirdly, the amount

of time-steps each computes.

Other configurable options are the number of sources calculated per thread, the shared

memory to global L1 cache layout (16/48kB or 48/16kB), whether to use the shared memory

optimisation, and different array packing orders.

For instance, we run a configuration that will execute a number of simulations, each using a
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thread-block layout from a list ({32 × 1, 32 × 2, 32 × 4, ...}) and data-set size from another

list ({1, 9, 25, 49, 81, ...}). Other options are configured before hand, such as use of shared

memory how many sources per thread and L1 cache size versus shared memory size. The

script will take the first problem size (1 source) and simulate it with each of the given thread-

blocks, it will then simulate the second size (9 sources) with all the thread-block, and so on

until all problem sizes have been processed. For each run we recorded the total time, the

computational time, and the overhead times.

Additionally, owing to the long time it takes to run a single configuration over all necessary

thread-blocks and problem sizes (usually around 2 days of constant computation per config-

uration) we only perform one test run per configuration instead of averaging multiple runs.

We tested the variance in run times between multiple test runs of the same configuration.

We found negligible differences, even for long test run configurations, but we could not do

this for all configurations in reasonable time.
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Chapter 6

Results and Discussion

In this chapter, we present the results of the evaluation experiments. We explore the effects

of different thread-block layouts, memory packing, shared memory, the MeqTrees overheads,

compute capability (CC) 2.x CUDA hardware, L1 global caching, occupancy, and testing on

smaller datasets such as the WSRT array. We also discuss less significant results, such as our

Thrust prototype, use of CUDA texture and surface memory, and the effect of unnecessary

reorder and recopy overheads in the PSV.

The Thrust PSV node prototype was found to be much slower than the custom-developed

CUDA kernel showing 4× speed-up for Thrust versus 16× speed-up for the custom ker-

nel. We found that the high dimensionality of the problem made it a poor fit for Thrust’s

abstracted problem-solving functions and did not explore this approach further.

For our custom CUDA kernel, the best configurations made use of shared memory. More

optimal thread-block layouts were characterised by a larger time dimension as this allowed

it to take better advantage of coalescing owing to our specific array packing order. Use of

48kB of shared memory increased the occupancy but did not show significantly faster run

times than the standard configuration with 16kB.

We find that use of newer CUDA hardware (CC 2.x) had the expected outcome of running

faster than comparable hardware of the previous generation (CC 1.3). This is due to a

multitude of new features that reduce the number of off-chip memory accesses and utilise

the hardware more efficiently for double precision floating point operations.

As mentioned in the previous chapter, we test with the 64 element MeerKAT array (2016
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baseline pairs) and the 14 element WSRT interferometer (91 baseline pairs). The size of the

dataset has a large impact on performance. We note that the composition of the dataset

does not have an effect on run times, only the size of the dataset. A larger dataset is better

exploited by the GPU hardware’s parallelism. As such, we find that speed-ups increase as

problem sizes increase, but converge past a certain dataset size. Similarly the interferometer

setup used has an effect; we find smaller interferometers are not as well exploited by GPU

hardware.

When comparing configurations, it is important to note that we find consistent differences

between all three metrics (described in Section 5.2). If one configuration is faster or slower

than another, it is the same along all three metrics. This is since only the core computations

are accelerated, whilst all other sections of code run in the same time. Thus when core

computations fun faster or slower, the whole simulation runs faster or slower, respectively

and in all cases.

6.1 Impact of Array Ordering and Thread Layout

Thread-blocks are organised in a 2D layout, the size of which affects the final running time,

specifically affecting the ability of the kernel to take advantage of coalescing effects. Fig-

ure 6.1a shows the running times of the CPU version compared to the GPU version. The

large disparity makes for difficult comparison, hence our decision to analyse the speed-ups

rather than the times themselves. We are better able to see the differences in Figure 6.1b,

which shows just the GPU run times over all the thread-block layouts. In Figure 6.1c we show

the real speed-ups achieved over a number of thread-block layouts. In Figure 6.1d shows the

constrained speed-up, and represents an exaggerated version of the real speed-ups.

We can see that thread layout plays a significant role in achieving faster run times: time× fre-

quency layouts with more than 32 threads that have a larger time dimension perform better

overall. We see that layouts with a time dimension of greater than or equal to 8 perform

the best. This arises from the way in which the data is packed and then accessed: all arrays

are ordered such that ‘time’ is the final dimension and the arrays are thus contiguous in

memory when accessed over ‘time’. Threads run in lock-step with 16 thread half-warps,

and each of the 16 threads reads a global memory location simultaneously. Since our array

order is sequential, the half-warp requests contiguous memory locations and these multiple

requests thus coalesced into fewer request. This is covered in detail in Sections 4.5.1, 4.5.4
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Figure 6.1: Real and Constrained Run Times and Speed-ups for all thread-block
layouts (MeerKAT array, nVidia GTX 470)
Thread layouts are displayed as (t × ν) and colour coded by time dimension. (a) The
running time of the simulation of all thread block layouts. (b) The same with running
times of the CPU simulation times included. (c) The Real speed-ups achieved. (d) The
Constrained or computational speed-ups achieved. Thread-block layouts with a time
dimensions of 8 or greater benefit the most from memory coalescing.
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and Figure 4.4. As shown in Figure 6.1d, when the time dimension falls below 8 threads,

computational speed-up starts to dip, as threads are no longer requesting as many contigu-

ous memory locations simultaneously and coalescing is only partially exploited. Although

the top half of the test runs differ by 30%, in terms of real time speed-ups the difference is

much more subtle (Figure 6.1c).

6.2 Shared, Surface, and Texture Memory

The use of shared memory results in a further 30% speed-up (Figure 6.2a). For computation

time only (Constrained speed-up), the improvement is close to 80% for large numbers of

point sources (Figure 6.2b). The use of shared memory in conjunction with calculation

of multiple sources per thread reduces the number of global memory writes significantly,

leading to significant performance gains. Calculation of multiple sources per thread has

the advantage of decreasing global memory writes, but also reduces the number of threads

available to the scheduler, which in turn restricts its ability to use context switches to

hide latency. For large problems, we find that increasing the number of sources per thread

increases performance, but that any more than 16 sources per thread shows no appreciable

benefit.

As discussed in Section 4.4.2, the number of sources calculated per thread (m) affects the

number of global memory writes; however, m also affects the total number of blocks that

are allocated to the grid, with a larger m value benefiting simulation of larger data sets. In

Figure 6.2, we see that speed-ups improve with larger m values, but shows no improvement

past m = 16. Note that computing one source per thread (m = 1), finish in similar times

to runs that used no shared memory at all. This is due to the fact that the shared mem-

ory optimisation relies on reducing the number of global memory accesses by performing

intermediate calculations on the shared memory. As expected, with m = 1, we have the

same number of global memory accesses as the non-shared memory case, resulting in no

performance benefit and even a slight decrease in run time because of increased complexity

of the shared memory optimisation code.
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Figure 6.2: Comparison of speed-up relative to CPU for shared memory versus
global memory (MeerKAT array, nVidia GTX 470 & Intel i5 2.66GHz)
Thread-block layout 32×1. (a) Real speed-ups of shared versus global memory, (b) Con-
strained speed-ups of shared versus global memory. Although the difference between
shared memory and global memory usage is relatively small for Real times, there is actu-
ally an 80% improvement on the computational times. (c) Real speed-ups of differing m
values. (d) Constrained speed-ups of differing m values. Note how the m = 1 speed-ups
are slightly lower than that of global memory only.
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Figure 6.3: Real and Achievable speed-ups for all thread block layouts
(MeerKAT array, nVidia GTX 470 & Intel i5 2.66GHz)
(a) Real speed-up of all the thread-block layouts. (b) Achievable speed-up of all the
thread-block layouts. Achievable speed-up calculated by subtracting the contributions
of copy and reordering operations that should be amortised into the whole simulation.
These operations are needlessly rerun for every node execution.

6.3 Impact of MeqTrees Overheads

Figure 6.3 shows the speed-up results for all tested thread-block layouts with and without

the unnecessary copy and reorder operations that the GPU version performed, as explained

in Section 4.5.1. Whereas we get 18× speed-up in the normal case (Figure 6.3a), if we

remove the time taken to perform the recopy and reorder operations, we could achieve up to

24× speed-up (Figure 6.3b). Although we cannot be sure that this would be the outcome

were we to implement a PSV node that amortised these unnecessary operations, a significant

portion of the total run time, 20% − 25%, is taken up by these operations and they could

be amortised. A possible avenue of exploration besides upgrading the MeqTrees internal

working, would be to implement an ‘overlord’ node that could manage the GPU memory

pointers and keep them persistent across all PSV node executions. This would not be a

general solution, as an overlord node would probably have to be created for each specific

MeqTrees problem. This avenue was not explored in this work.

Considering only the running time of the parallelisable sections of code, without MeqTrees

overhead, a Constrained or ‘core’ speed-up of more than 110× is possible (Figure 6.4). This
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Figure 6.4: Real and Constrained speed-ups for all thread-block layouts
(MeerKAT array, nVidia GTX 470 & Intel i5 2.66GHz)
This graph shows the speed-up results for all tested thread block layouts with and without
all overheads. The Constrained or core speed-up metric is a measure of how much faster
the parallalisable sections of code performed, whereas the real speed-up is a measure of
speed-ups an end user would experience.

large difference in speed-up points to a bottleneck in the MeqTrees framework. Under the

CPU version, MeqTrees overhead accounts for an acceptable 4% of the total running time

(Figure 6.5a - black line). However, with the faster running time of the GPU, MeqTrees

overhead constitutes up to half the running time in the CUDA PSV node (see Figure 6.5a).

An interesting corollary of this discussion is the maximum theoretical speed-up based on the

percentage of run time that is taken up by MeqTrees overhead. The percentage overhead

asymptotes at between 40% − 60% for the GPU executions (depending on the exact GPU

run) and around 5% for the CPU execution (Figure 6.5a). If we were to reduce the running

time of the computational sections of code to 0 seconds, we find that by a corollary of

Amdahl’s Law we would only be able to achieve a maximum speed-up of 25× (Figure 6.5b

- black line).

Amdahl’s Law states that for a parallelised program, of which a ratio of B ∈ [0, 1] is strictly

serial and thus 1 − B is fully parallelisable, then the time it takes for n parallel threads to

complete execution of that program is given by T (n) = T (1)(B+ 1−B
n

), where T (1) is the time

it would take to run the program with 1 thread (serially). A corollary of this law is that we

can define the theoretical speed-up for n threads, which we called S(n) = T (1)
T (n)

= 1
B+(1−B)/n

.
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Figure 6.5: Percentage time of MeqTrees overhead compared to total running
time (MeerKAT array, nVidia GTX 470 and Intel i5 2.66GHz)
(a) The percentage of runtime taken up by the Meqtrees overhead. (b) The maximum
theoretical speed-up, calculated by assuming that the computational parts of the GPU
run time takes 0 seconds (a theoretical infinite Constrained speed-up).

Increasing n towards infinity,

P (B) = lim
n→inf

1

B + 1−B
n

=
1

B

gives us the peak theoretical speed-up, beyond which no further speed-up is possible without

modifying B, how much of the program is parallelisable Amdahl (1967).

Considering that the overhead takes up approximately 4% of the total running time, or a

ratio of 0.04. If the CPU simulation runs in x seconds, then overheads (non-parallelisable

sections of code) account for 0.04x seconds. If we now assume that we can reduce the

parallelisable (constrained) run time to zero, we have a total run time of 0.04x. Calculating

the speed-up we find it is x
0.04x

= 1
0.04

= 25×. In terms of Amdahl, the peak theoretical

speed-up P (0.04) = 1
0.04

= 25×

The MeqTrees overhead is calculated by subtracting the node running time from the total

running time. We expected that the MeqTrees overhead would be the same in both the

CPU and GPU test runs. However, we found that the MeqTrees overhead measured in the

CPU run was approximately 25% greater than the MeqTrees overhead in the GPU versions

(Figures 6.6a and 6.6b). This extra overhead time is not significant for competitively large
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Figure 6.6: Discrepancy between CPU and GPU overheads
(a) The run times of the MeqTrees overheads in the CPU and GPU versions and (b) the
percentage difference between them. Whilst the overheads should be exactly the same
for both the CPU and GPU implementations, we find that they differ by 25%. (c) The
total running times for CPU and GPU versions and (d) the percentage of time taken up
by MeqTrees overhead for CPU and GPU versions. Considering the total run time of the
CPU, the overhead discrepancy is small; however, for the GPU run time this discrepancy
can be significant.
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CPU run times (Figures 6.6c), as the total fraction of overheads compared to run time is

only about 5% of run time: meaning a 25% discrepancy causes only a 1.25% difference in

running time. However, as a fraction of GPU run times, overheads are as much as 60% of

the total run time (Figure 6.6d), a discrepancy of 25% leads to an overall discrepancy of up

to as much as 15%.

We were unable to determine the cause of this discrepancy. We measure MeqTrees overheads

by subtracting the computational time from the total running time. We could be tempted to

modify our timing metrics to conservatively adjust for this discrepancy, but we do not for the

following reasons: the Real speed-up is comparison of the total running times reported by

the operating system and thus there is no need for modification. The Constrained speed-up

ignores all overheads and measures the effect of the computational section of code only, thus

this discrepancy does not need to be accounted for. The theoretical maximum speed-up is

very sensitive to the overhead run time values, and thus sensitive to this discrepancy. We

therefore include the peak speed-up calculated given the slightly reduced overhead times

Figure 6.5b (non black lines). The reduced overheads lead to a slightly higher theoretical

maximum speed-up, converging at 30× for large test cases.

This implies that without speeding up the MeqTrees overhead, we will be unable to achieve

greater than 30× speed-up. As mentioned before, our version can speed up the core calcula-

tions by two orders of magnitude. We find that overheads account for more than half of the

total running time in the GPU case. So whereas prior to our GPU implementation, it was

clear that the calculations (the parallelisable sections of code) were a significant fraction of

run time, now both the overheads and the calculations are equally significant. Additional

significant speed-ups could be achieved by further speeding up the parallelisable sections of

code, but also by reducing overhead time.

6.4 Performance for the WSRT Array

The Westerbork Synthesis Radio Telescope (WSRT) is a 14 element array interferometer (91

pairs), smaller than the MeerKAT interferometer which has 64 elements (2016 pairs). While

they have a different number of pairs to process, the rate at which each set is processed

should remain the same for both. Assuming all other factors (number of sources, number

of total time-steps, number of frequency band) are the same, MeerKAT simulates over 480

time slots (15 groups of 32) and WSRT into 72 time-steps (3 groups of 32 with the third
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group comprising of 8 actual time-steps and 24 padded dummy time-steps that equate to

0, as we configure MeqTrees to compute in 32 time-step batches). The speed-up values in

Figure 6.7 show that with the smaller dataset, smaller speed-ups are achieved. We would

expect both datasets to run at similar rates as they only differ by the number of times the

PSV node is called, and not the computational load of each PSV node call.

In the MeqTrees execution model (Section 4.2.1) we noted that MeqTrees splits the problem

over groups of antenna pairs over 32 time-steps. Therefore, MeerKAT calculates 2016 pairs

over 15 time slot groups (30240 ‘pair groups’) and WSRT only 91 pairs over 3 time slot

groups (273 ‘pair groups’). In Table 6.1 we show the running times per pair group. We find

that, for the CPU version, the MeerKAT simulations run almost twice as fast per pair group

than the WSRT simulations across both computation code and overhead code. The GPU

code runs the MeerKAT version 3 times faster than the smaller WSRT. If we consider the

computational/parallelisable component of the program only, this increases to 4 times, with

overheads scaling in a similar fashion to the CPU version.

As discussed in Section 4.2.1, the visibility calculations for each antennae pair are executed

in serial. This should imply that GPU utilisation remains as efficient, no matter the number

of ‘pair groups’. However, as mentioned above, we find that the larger MeerKAT array runs

two to three times faster per antennae pair as the smaller WSRT array for both the CPU

and GPU runs.

Ideally we should run further tests on additional arrays or additional sizes to determine the

exact nature of the difference in efficiency. If we find that efficiency increases proportionately

with array size, as the two data-points might imply, then this implies a number of potential

causes. Caching characteristics on the GPU could be more efficient for larger cases. Owing

to the padding in the WSRT input data, there might be divergent code. Also, time taken

for kernel invocations is proportionately shorter for larger test cases, owing to longer kernel

running times. Any combination of these and possibly other as yet discovered effects could be

at play. Full investigation of these considerations are left for future work when many other

array layouts can be compared and efficiency characteristics based on array size, dataset

information order on disk and file size of these datasets among others.
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Figure 6.7: Speed-ups of PSV calculations with the smaller Westerbork Synthe-
sis Radio Telescope compared to the MeerKAT array (WSRT array/MeerKAT
array, nVidia GTX 470 versus Intel i5 2.66GHz)
The smaller WSRT array (14 elements — b, d) does not perform as well with the larger
MeerKAT array (64 element — a, c). The overhead still takes up a large proportion of
running time (40%) which limits any real speed-up. Although the WRST array has less
impressive speed-ups (9× from 16× and 35× from 120×) compared to MeerKAT array,
it still runs significantly faster than the CPU code.
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MeerKAT WSRT Difference

Pairs 2016 91
time-steps 480 72

Time slot groups 15 3
Pair groups 30240 273

CPU

Run Time 14427.67 s 252.65 s
per group 0.4771 s 0.9254 s 51.55%

Core Time 13818.72 s 241.35 s
per group 0.4569 s 0.8840 s 51.68%

Overhead Time 608.95 s 11.3 s
per group 0.0201 s 0.0413 s 48.66%

GPU (32× 4)

Run Time 806.21 s 20.32 s
per group 0.0266 s 0.0744 s 35.75%

Core Time 329.69 s 12.24 s
per group 0.0109 s 0.0448 s 24.33%

Overhead Time 476.51 s 8.08 s
per group 0.0157 s 0.0295 s 53.22%

Table 6.1: Running times per time slot group per pair (MeerKAT and WSRT
array, nVidia GTX 470 versus Intel i5 2.66GHz)
When we adjust the total, core, and overhead running times, we see that the larger
dataset runs faster than the smaller dataset. Furthermore, this effect seems to be even
more pronounced in the GPU version’s core running time, although the overheads of both
the CPU and GPU version show a similar change in computation rate.

6.5 Effect of Occupancy, L1-Cache, and CC 2.0

Occupancy does not have a significant effect on speed-up (Table 6.2); far more benefit accrues

from other considerations, such as the use of shared memory versus global memory, which

results in an increase from a 16.34× to an 18.10× speed-up. In the case of the Constrained

speed-up, the computational part of the simulation runs almost twice as fast when using

shared memory against using global memory only (125.14× at 17% occupancy versus 69.9×
at 67% occupancy). Table 6.2 shows that tests with with similar occupancies show no

noticeable correlation between performance and occupancy, for example we find that there

are runs at 17% occupancy with speed-ups as disparate as 108.87× and 125.14×, and runs

at 33% occupancy with similar speed-ups of 104.55× and 124.21×.

In all cases (Table 6.2) the fastest run time happened to have the highest occupancy. That

the values are so similar along all occupancies suggests other factors play a more important
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Best Speed-ups
Real Achievable Constrained

speed-up speed-up speed-up Best

CC
Threads Sh.m

Occ.
All Some No block

/Block /SM overheads overheads overheads dims

2.0

32

48kB

33% 17.57 23.75 110.04 32×1
64 33% 17.89 24.24 118.46 32×2

128 42% 18.00 24.48 124.21 8×16
256 33% 17.68 23.95 110.68 32×8
512 33% 17.64 23.78 104.55 32×16
32

16kB

17% 17.67 23.90 108.87 32×1
64 17% 17.89 24.30 116.25 32×2

128 17% 18.10 24.62 125.14 8×16
256 17% 17.88 24.19 114.25 32×8
32 17% 16.05 21.03 66.38 32×1
64 16kB 33% 15.90 20.74 63.05 32×2

128 (un- 67% 15.76 20.55 61.61 32×4
256 used) 67% 16.34 21.51 69.99 8×32
512 67% 16.07 21.14 67.71 32×16

1.3

32
16kB

25% 16.19 21.22 71.42 32×1
64 25% 16.61 21.90 79.40 32×2

128 25% 16.21 21.33 71.11 16×8
32

16kB
25% 13.85 17.42 38.51 32×1

64
(un-

50% 15.17 19.59 51.76 32×2
128

used)
50% 15.45 20.00 54.27 32×4

256 50% 15.25 19.73 52.98 32×8

Table 6.2: Effect of occupancy on speed-up
This table outlines the speed-ups achieved given certain occupancies. Occupancy (Occ.)
is entirely determined by (i) the Compute Capability (CC) of the device (ii) the amount of
shared memory available and (iii) the number of threads per block. For each thread-block
size, we show the speed-up results of the best thread-block layout.
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role. This can be most clearly seen for the CC 2.0 device where no shared memory is

used, in which the layout with 17% occupancy performs slightly better than the 33% and

66% occupancy layouts. There is no apparent correlation between occupancy and speed-ups,

if there were they would be minor in comparison to other considerations such as the use of

shared memory, which almost doubles performance.

CC 2.x devices allow for a choice of 16kB/48kB or 48kB/16kB configurations for shared mem-

ory/L1 cache (respectively). With 48kB of shared memory, instead of 16kB the occupancy

increases up to two times. We see (Table 6.2) that there is little difference between the two

configurations, with a negligible difference in speed-ups with the 8× 16 thread-block layout

between 48kB versus 16kB (124.21× versus 125.14× respectively) despite the difference in

occupancy (42% versus 17% respectively). Figure 6.8 shows the difference between use of

the two global L1 cache versus shared memory configurations for both Real and Constrained

speed-ups. The two configurations show no discernible difference in speed-ups. This implies

that L1 cache could have little to no effect on speed-ups. Which would be expected as our

input memory operations are tiny in comparison to our output memory operations. This

could also mean that the advantage gained from the increased shared memory is cancelled

by the disadvantage of less cache.

Figure 6.9 shows the difference between a CC 1.3 (GTX 285) and CC 2.0 (GTX 470) devices.

The overall Real speed-up increases from 16.61× to 18.10× (Table 6.2). We see that with

all expected overheads present in MeqTrees, the Achievable speed-up increases from 21.90×
to 24.62×. Although only a 10% difference, consider that the Constrained/core execution

times are almost twice as fast, going from 79.40× to 125.14× faster. The primary difference

between the cards is the newer technology as they both have comparable performance statis-

tics, with GTX 285 slightly outperforming the GTX 470. CC 2.x devices have a number

of additional features, chief among these is the global memory L1-cache and the increase

double precision performance. We found earlier that the amount of L1-cache has little effect

on performance, thus we can conclude that the extra double precision performance has at

least a significant effect.

CC 1.3 devices have a double precision unit for each SM (8 cores) they can perform double

precision calculations at 1/8th the speed compared single precision performance. CC 2.x

devices forego a special double precision unit and incorporate the operation inside the CUDA

cores, however they take 2 clock cycles to complete a double precision operation instead of

one. This means that double precision performance is 1/2 that of floating point performance
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Figure 6.8: Effect on speed-up of 16kB versus 48kB shared memory configura-
tion (MeerKAT array, nVidia GTX 470 and Intel i5 2.66GHz)
(a) 16kB versus (b) 48kB shared memory configuration (Real speed-up). (c) 16kB versus
(d) 48kB shared memory configuration (Constrained speed-up). When considering the
Real and Constrained times, the spread is almost identical and as such we are unable to
come to any noteworthy conclusions based on this data alone.
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Figure 6.9: Comparison of results for GTX 285 vs GTX 470, Real and Con-
strained speed-up (MeerKAT array, nVidia GTX 285/GTX 470 and Intel i5
2.66GHz)
(a) Real speed-ups of the GTX 285 and (b) GTX 470. (c) Constrained speed-ups of the
GTX 285 and (d) GTX 470. The GTX 470 shows a tighter grouping than the GTX 285 in
Real speed-up. But we see from the Constrained speed-up that the GTX 470 outperforms
in all cases, with about double the performance of the GTX 285.
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(as confirmed by Nikolaj et al. (2009) in the Fermi white-paper). This should have given us

a 4-fold increase in performance, instead of the 2-fold increase seen in Figure 6.9. Further

investigation shows that the GF100 architecture (which is the base of the commercial GTX

470 and GTX 480) limits its double precision performance to only 1/4th of its floating

point performance (Wasson). This explains why the GTX 470 only performs twice as fast

as the GTX 285. If we were to test these results on a Tesla device with similar memory

bandwidth and computational characteristics, such as the High Performance Computing

focused Tesla M2070 (150 GB/s, 1030 GFLOPS) (nVidia Corporation, 2012a), we would

expect performance twice as fast as the GTX 470.

Although the core computations will double in speed, as mentioned above (in Section 6.3),

the MeqTrees overheads would limit any real speed-up values. For instance, a speed-up of

18.00× (with core speed-up of 124.21×) would only improve to 19.34× (with core speed-up

of 248.42×) if we were to halve run time of the computational part of the code with a Tesla

device.

6.6 Discussion

Here we evaluated the performance of our GPU implementation under a number of speed-up

metrics, each intending to show different aspects of parallel scaling. Most importantly, we

show the Real speed-ups, to determine how fast the program is for practical usage. We

achieved speed-ups of around 18× for large data sets, a significant improvement over the

CPU code: turning a 9-hour simulation into a 30 minute simulation.

We further calculate that we could reach speed-ups of 25× if we were to forego unnecessary

reorder and copy operations. For just the core computations, we reach speed-ups of 120×.

The MeqTrees overhead, while acceptably small for the CPU version, become a serious

impediment when accelerating the core computations on a GPU. This bottleneck limits any

real speed-ups that an end user could experience to about 30×, despite an acceleration of

two orders of magnitude to the core computation. To further accelerate overall run times,

the MeqTrees overhead would have to be accelerated in some manner as well.

Two optimisations that are key to achieving significant speed-ups in CUDA: the effective

use of shared memory and the improved double precision performance gained from newer

hardware. Use of shared memory allows us to reduce the number of global memory reads
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and writes. Since the PSV simulation requires many memory operations, this shows a two-

fold increase in performance. The introduction of CUDA’s compute capable 2.x devices also

improves our performance. Although global caching is a major feature of CC 2.x, it does not

necessarily improve our results. The main boost comes from the improved double precision

floating point performance of the CC 2.x’s. We noticed that with two devices of similar

memory and computation characteristics, but different compute capabilities, that the newer

hardware outperformed the older by a factor of two. This could be improved to a factor of

four if HPC focused Tesla GPUs were used.

We conclude that significant GPU acceleration of point source visibility calculations can

indeed by achieved by CUDA devices. Although this is a ‘proof of concept’ prototype

and not ready for use in public, in its current state it sets a platform for future work.

Although our Thrust implementation is not successful, it does highlight that development

time is an important factor if this project is to be made academically viable. Significant

speed-up of PSV calculations means that more point sources can be simulated in the same

amount of time, allowing for more realistic simulations, which aids in the development of

more accurate radio frequency interference and atmospheric models. Accurate modelling of

radio interference effects is key to third-generation calibration techniques, which will allow

for interferometers to see fainter and more far off sources than with previous calibration

techniques. More generally, this speed-up shows that SIMD problems in the MeqTrees

framework can be accelerated with the use of GPU by at least an order of magnitude without

modification to the framework, albeit with a significant investment in development time.

In order to fully exploit GPU hardware, a workaround or modification to the MeqTrees

framework might be required. This said, there is potential for encompassing GPU integration

into more nodes in the MeqTrees framework, or create a general system within MeqTrees to

offload intensive SIMD computational sections of a tree from the CPU to the GPU.
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Conclusions

Accelerating execution times of Point Source Visibility (PSV) simulations results in the

ability to perform more substantial PSV simulations in the same amount of time. This,

in turn, allows for more complex sky models with more point sources and simulation of

larger interferometer arrays. More complex sky models with many point sources enables

more accurate and realistic testing of more accurate calibration models. It also allows for

larger interferometer arrays to be tested within reasonable time frames. However we see that

modern and forthcoming interferometers will consist of many more array elements, up to two

orders of magnitude more antennae. With this increase in antennae, the computational cost

increases as well, demanding an increase in the ability to execute the required simulations

within acceptable running times.

Our work set out to apply CUDA technology to PSV calculations in the MeqTrees framework.

This project explored areas of radio interferometry, specifically PSV calculations, MeqTrees,

GPGPU technology, and CUDA hardware, which we brought together to create a PSV

simulation node on commodity GPU hardware that runs an order of magnitude faster than

its CPU counterpart.

There are a number of points, both technical and qualitative, to take away from this work.

Chief among the technical points is the reduction of global memory throughput, which

significantly improved overall performance. We also learn of the difficulties involved in

development, trading off performance for development speed and vice-versa. Another key

point is that MeqTrees is not designed with GPUs in mind, the inherent dynamic and

flexible model of the MeqTrees framework clashes with the GPU model which benefits from
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a more static and rigid implementations. This is not to say that GPU integration is not

appropriate for MeqTrees — indeed, in the case of PSV calculations, it was found show

many computational benefits — just that it is a non-trivial problem.

The project started as an exploration into image synthesis on the GPU, where image synthesis

is the transformation of visibilities into an image of the sky. We achieved around a 20×
speed-up compared to a custom CPU image synthesis implementation. We discovered that

the reverse problem, visibility simulation, from an image of the sky to simulated visibilities,

was a key feature in the MeqTrees framework, and it was decided that this problem would

have more impact on the academic community. Fortunately, visibility simulation is simply

an inverse Fourier transform, an almost identical problem to what had been addressed in

the image synthesis project.

For development of this new PSV simulation, we had access to the MeqTrees framework,

with an already developed and academically utilised PSV node. Writing a GPU node to

compare against this held potential for greater impact than an image synthesis application.

A major disadvantage to the image synthesis project was that we did not have any standard

CPU-based package to compare our results to. Moving to a PSV simulation project meant

that we could now validated our data against CPU data using the standard software package,

MeqTrees.

We also had to tackle the problem of simulating multiple frequency bands and multiple time

slots. While this increased the complexity of the problem, it afforded us an opportunity to

decompose the problem in 3 dimensions (time, frequency and sources), which neatly matched

the CUDA software model.

Our naive implementation was tested on the nVidia GTX 285 with the smaller WSRT dataset

and achieved a reasonable 8× speed-up over the CPU version. We soon considered the effect

of array ordering on coalescing, and modified the code to exploit it. This only boosted

performance to about 11− 12× speed-up.

We also attempted to prototype a Thrust version of the PSV node. We found that develop-

ment was not as tricky as custom CUDA code as there were less CUDA-specific nuances that

needed to be considered. However, development was far from smooth, as many complicated

errors stemming from the multiple Thrust iterator layers slowed development speed, making

it almost as complex (albeit in a different manner) as coding an optimised CUDA kernel.

This combined with poor performance meant that we decided to focus on the custom version
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instead.

We upgraded our hardware to the new GTX 470 which afforded us global memory caching,

better double precision floating point performance and extra shared memory. It was at this

time that we explored the use of shared memory which improved results to around 14− 15×
speed-up. Although not much higher than the 12× speed-up we had before, we had achieved

a 40× core speed-up.

When testing with the larger MeerKAT dataset we found that results could reach even

higher values, achieving an 18× speed-up, and more importantly, a 120× core speed-up.

We realised that real speed-ups were increasing at a slow rate, which lead to our discovery

that the bottleneck lay no longer with the computation, but with the overheads. The exact

bottleneck we encountered is described by Amdahl’s law, as the non-parallelisable sections of

code, the running time of which makes up a constant ratio of the total running time, limits

the maximum theoretical speed-up achievable.

Part of these overheads included many reordering and recopying operations performed by our

GPU PSV nodes and thus we have emphasised that proper GPU memory management for

MeqTrees should be the primary focus of any further GPU implementations within MeqTrees.

Whilst a memory management module could be implemented by the current unmodified

MeqTrees framework, this is a messy and potentially unhelpful approach to the more general

problem of bringing the computational efficiency of the GPU to MeqTrees. Both exploration

of a memory management module implemented on top of MeqTrees and modification of the

MeqTrees internal working to incorporate GPU memory management, is left for future work.

Another substantial problem that we encountered was the need for the PSV module be

general enough to compute PSV with multiple Jones arguments, which are 2×2 matrices that

each describe a linear effect on an incoming radio signal (see A for details). MeqTrees allows

for the PSV equation to be modified with multiple Jones matrices to describe propagation

effects.

We attempted to implement multiple Jones matrices with our kernel; however this was

unsuccessful and slow because of excessive register pressure brought on by the complexity of

the equation. We attempted a prototype implementation with multiple kernel invocations to

relieve this pressure. Whilst this worked, the multiple invocations are not compatible with

our shared memory optimisation. This and the extra CUDA overhead brought on by extra

kernel invocations was slow and also proved unsuccessful. It was decided that the problem
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of generalising the PSV node to incorporate multiple Jones terms was a project that should

be left for future work.

No multi-core implementations were attempted in this work. It would be out of the scope of

this project to speculate about what performance gains might be achieved by any multi-core

implementation. Whilst we do not focus on any potential effects of a multi-core implemen-

tation, many of our discussions can be transferred from the GPU sphere to the multi-core

CPU sphere. We could theorise what a multi-core implementation might do: for instance an

8-core machine running at ideal linear speed-ups might produce an 8-fold acceleration (8×
speed-up). As this would speed up the parallelisable sections of code only, and not the over-

heads, this would amount to about a 6× speed-up overall. We found that (Section 6.3) with

4% overheads in the CPU version, we can never achieve a greater than 30× Real speed-up,

no matter the method of acceleration. So even, say a 128-node compute cluster, accelerating

the computational sections of code by 128×, would only achieve a single order of magnitude

(18×) faster run times overall, similar to our CUDA acceleration. This is only if the serial

overheads cannot be accelerated as well, offloading the overheads to an HPC platform, be

that GPU or multiple cores, could result in speed-ups of greater than two orders of magni-

tude over the current implementation. Exploration of MeqTrees overhead acceleration is left

for future work.

With this, we conclude the work presented in this thesis. The PSV acceleration problem,

characterised by a requirement for a large amount of off-chip memory for storage of in-

termediate results, benefited most from optimisations that reduced throughput to global

memory. Optimisations such as use of shared memory to perform intermediate operations in

on-chip memory, rather than storing it first in global memory and operating on it at a later

stage. We also pack memory in an optimal manner as to exploit CUDA’s global memory

coalescing. We have achieved significant 18× speed-up over a single core CPU implementa-

tion using modern commodity GPU hardware. We have discovered the importance that the

overheads, or more generally the serial sections of code, can have on this sort of problem.

In our case, no amount of acceleration of the parallelisable sections of code would lead to

anything more than an order of magnitude speed-up (30×), noting that we were able to

achieve acceleration of two orders of magnitude (120×) for the core computations over the

CPU counterpart. Although non-trivial to code, we find that benefits can be gained from

CUDA-based acceleration, especially given an appropriate memory management model.

There are rich veins of possibilities that could stem from the work presented here. Not all
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problems are suited to SIMD solutions (such as the way in which PSV simulations are),

but many data-intensive problems are present in radio interferometry and in MeqTrees.

The challenge in making any potential GPU implementation MeqTrees implementation lies

primarily in reducing the overheads by at least the same rate at which core computations are

accelerated, and accelerating the computational nodes whilst retaining the great flexibility

MeqTrees provides. These are not simple tasks but this thesis hopes it has shown a tentative

first step towards achieving such a feat.
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Appendix A

Basics of Interferometry

All explanations in the following subsections are taken either directly or indirectly from

Lecture 1 of Synthesis Imaging in Radio astronomy II by Taylor et al. (1999) in conjucn-

tion with additional understandings from Interferometry and synthesis in radio astronomy

(Thompson et al., 2001) and An Introduction to Radio Astronomy, Second Edition (Burke

and Graham-Smith, 2002). Many details are left out as a matter of pragmatism. Please

refer directly to these books for a more robust explanation.

A.1 General Direction

The end goal of this section is to derive a function of the observed intensity of incoming

electromagnetic radiation by use of a synthesised aperture using two signal receivers (two

radio dishes).

First, the phenomenon being observed is mathematically formulated as an electromagnetic

field at the location of the phenomenon. Then, after some simplifying assumptions are made,

the electromagnetic field at the location of observation is derived.

Using this information, the Spatial Coherence Function is derived in terms of the observed

intensity of the field. At this point, it needs to be noted that the Spatial Coherence Function

contains values that an interferometer measures.

After this, the Spatial Coherence Function undergoes a Fourier inversion to make it a function

of the observed intensity (the value we wanted in the first place). Then real-world limitations
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are taken into consideration. Such as discretisation and sampleing of the signal, declination

of the observed source, adjustment for curvature of the earth and multi element (more than

2) arrays.

A.2 The Spatial Coherence Function

A.2.1 The Observed Electric Field

Say we are to measure some astrophysical phenomenon at location R (boldface to denote a

vector quantity). This phenomenon, we assume, emits electromagnetic radiation and thus

we can say it “causes a time-variable electric field” denoted by E(R, t).

As time variable fields are ‘inconvenient’ to work with mathematically, we only consider a

finite time interval of this field. Instead of E(R, t), we use the coefficients of the real part

of the sum of the Fourier series of E(R, t) (Taylor et al., 1999) 1. We call this Eν(R), thus

eliminating the time variable. Note that Eν(R) is complex.

If r denotes the location of measurement, or test-location, we can now formulate Eν(r) by

joining the fields produced at the test location:

Eν(r) =

∫∫∫
Eν(R)Pν(R, r) dx dy dz (A.1)

Where Pν(R, r) describes how the electric field at R influences the electric field at r (called

the propagator). The integral is taken over all of space.

A.2.2 Simplifying Assumptions

At this point, some simplifying assumptions are introduced. Firstly, and purely as a mathe-

matical convenience, all electromagnetic radiation is treated as a scalar field, not as a vector

field 2. Mathematically, this means Eν(R) becomes Eν(R). This can be accounted for and

is so in practice, but explanation of this not be included in this background chapter. Refer

1This is due to the linearity of Maxwell’s equations.
2This allows for scalar multiplication as opposed to vector multiplication and effectively is likened to

ignoring polarisation phenomena (Taylor et al., 1999)
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to Lecture 1, Section 5.2 of Synthesis Imaging in Radio astronomy II (Taylor et al., 1999)

for explanation of the polerization adjustment.

The second is that all points of interest are a very long way away. This denies us almost all

ability to describe depth of the phenomenon, but allows us to formulate surface brightness on

the conceptual celestial sphere. A very large sphere of radius |R|, that contains no additional

radiation within it. We only consider the radiation on the surface of this sphere, denoted by

Eν(R)

The third assumption is that the celestial sphere is empty. Thus, in this case, according to

Huygen’s Principle, the propagator (Pν(R, r) in Eqn A.1) takes a particularly simple form

We can now say:

Eν(r) =

∫
Eν(R)

e2πiν|R−r|/c

|R− r|
dS (A.2)

Where c is the speed of light, S is the surface of the celestial sphere and Eν(R) is the

distribution of the electric field on the surface of the celestial sphere.

A.2.3 Correlation of the Field

In order to progress we formulate the correlation of the field at points r1 and r2. We define

the correlation of the field as

Vν(r1, r2) = 〈Eν(r1)E∗ν(r2)〉

where the angled brackets denotes an average over time and the asterisk denotes the complex

conjugate. By the first assumption we can thus say

Vν(r1, r2) = 〈Eν(r1)E∗ν(r2)〉

Vν(r1, r2) is the signal that the radio dishes collect after they have been correlated, basically

the raw data this thesis is concerned with. The first dish collects 〈Eν(r1)〉, which is the

signal received at that dish averaged over time by the correlator. The second dish collects a

similar averaged signal, 〈Eν(r2)〉 at the exact same time and this is then conjugated. These

are multiplied together to get

〈Eν(r1)〉〈E∗ν(r2)〉 = 〈Eν(r1)E∗ν(r2)〉 = Vν(r1, r2)
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Let us expand Vν(r1, r2) using Eqn A.2 to substitute Eν(r) we get:

Vν(r1, r2) = 〈Eν(r1)E∗ν(r2)〉

= 〈
∫
Eν(R1)

e2πiν|R1−r1|/c

|R1 − r1|
dS

∫
E∗ν (R2)

e−2πiν|R2−r2|/c

|R2 − r2|
dS〉

(A.3)

We wish to combine these two integrals into a double integral, for this reason we replace S,

the surface of the celestial sphere with two dummy spheres, S1 and S2, centered around dish

one and two respectively. We now obtain:

Vν(r1, r2) = 〈
∫
Eν(R1)

e2πiν|R1−r1|/c

|R1 − r1|
dS1

∫
E∗ν (R2)

e−2πiν|R2−r2|/c

|R2 − r2|
dS2〉

= 〈
∫∫
Eν(R1)E∗ν (R2)

e2πiν|R1−r1|/c

|R1 − r1|
e−2πiν|R2−r2|/c

|R2 − r2|
dS1 dS2〉

(A.4)

A.2.4 Spatial Coherence Function

At this point, a fourth simplifying assumption is introduced; that radiation from astronomical

objects are not spatially coherent. What this means is that the integral over the two celestial

spheres, Eν(R1) and Eν(R2), can collapse into a single integral over S. We also note that if

R1 6= R2 then 〈Eν(R1)E∗ν (R2)〉 = 0, which logically implies that if 〈Eν(R1)E∗ν (R2)〉 6= 0 then

R1 = R2. We know that 〈Eν(R1)E∗ν (R2)〉 6= 0 as this would imply we receive no signal, so

we now can say R = R1 = R2. So:

Continuing from Eqn A.4:

Vν(r1, r2) = 〈
∫∫
Eν(R1)E∗ν (R2)

e2πiν|R1−r1|/c

|R1 − r1|
e−2πiν|R2−r2|/c

|R2 − r2|
dS1 dS2〉

= 〈
∫
Eν(R)E∗ν (R)|R2|e

2πiν|R1−r1|/c

|R− r1|
e−2πiν|R−r2|/c

|R− r2|
dS〉

(A.5)
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We do some tidying up,

Vν(r1, r2) = 〈
∫
Eν(R)E∗ν (R)|R2|e

2πiν|R−r1|/c

|R− r1|
e−2πiν|R−r2|/c

|R− r2|
dS〉

=

∫
〈Eν(R)E∗ν (R)|R2|e

2πiν|R−r1|/c

|R− r1|
e−2πiν|R−r2|/c

|R− r2|
〉 dS

=

∫
〈Eν(R)E∗ν (R)〉|R2|e

2πiν|R−r1|/c

|R− r1|
e−2πiν|R−r2|/c

|R− r2|
dS

(A.6)

and we get

Vν(r1, r2) =

∫
〈|Eν(R)|〉2|R2|e

2πiν|R−r1|/c

|R− r1|
e−2πiν|R−r2|/c

|R− r2|
dS (A.7)

We now write s for R
|R| and the observed intensity, Iν(s), for 〈Eν(s)〉2|R2| = 〈Eν(R)〉2|R2|.

Using the second assumption (great distance to sources and celestial sphere) we can now for-

mulate the equation in terms of a 2-dimensional angle 3, instead of a 3-dimensional position.

The integral is now taken over the solid-angle space at a distance of R rather than over a

sphere inside of normal 3-dimensional space. This means dS is replaced by |R2|dΩ.

We again use the second assumption (massive distance to observed source) to neglect small

terms in the order of |r/R|. R is in the order of light-years, whereas r is in the order of

thousands of kilometres. Thus, we can say |R− r| ≈ |R|.

From Eqn A.7:

Vν(r1, r2) =

∫
Iν(s)

e2πiν|R−r1|/c

|R− r1|
e−2πiν|R−r2|/c

|R− r2|
dS

≈
∫
Iν(s)

e2πiν|R−r1|/c

|R|
e−2πiν|R−r2|/c

|R|
dS

=

∫
Iν(s)

e−2πiνs·(r1−r2)/c

|R|2
dS

=

∫
Iν(s)

e−2πiνs·(r1−r2)/c

|R|2
|R2|dΩ

=

∫
Iν(s)e−2πiνs·(r1−r2)/c dΩ

3Or solid-angle, measured in steradians. This is analogous to the 1-dimensional radian.
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and we get

Vν(r1, r2) =

∫
Iν(s)e−2πiνs·(r1−r2)/c dΩ (A.8)

Eqn A.8 only depends on the difference of the vectors (r1 − r2) and not their absolute

positions. If we formulate the function Vν(r1, r2) as this difference, say Vν(rd) for rd = r1−r2,

then we call this function, the spatial coherence function of the field Eν(r).

A.2.5 Fourier Inversion of the Spatial Coherence Function of the

field Eν(r)

The fifth and final assumption is implemented in order to make spacial coherence function of

the field Eν(r) invertible by Fourier Transform. There are actually two alternative forms of

this. Both project what is a spherical measurement onto a plane. One onto a plane centred

at the observation location, the other centred on the edge of the celestial sphere. Some

explanations given are not fully robust, for a full explanation refer to Synthesis Imaging in

Radio Astronomy (Taylor et al., 1999). Namely Lectures 1, 2 and 19.

A.2.6 Spherical Measurements Projected onto a Plane

The first variation of the fith assumption is that we can to confine measurements to a plane

centered on the observation location going through r1 and r2
4. This allows us to work on

a 2D plane, rather than in 3D space. Since we may choose the plane, we choose the one

perpendicular to s passing through the centre of the celestial sphere. We transform rd into

wavelength form, so that r1 − r2 = (u, v, w ≡ 0)λ, w is equivilant to 0 as it is perpendicular

to s. This coordinate system this yields s as (l,m,
√

1− l2 −m2)

We may now make further changes to Eqn A.8

Vν(r1, r2) =

∫
Iν(s)e−2πiνs·(r1−r2)/c dΩ

4If the plane through r1 and r2 is not perpendicular to s, the original formulation of Eν(R) as E(R, t)
can be adjusted by adding a time delay τ . With the correct delay, any r can falls on the plane perpendicular
to s.
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Transforming to wavelength form and noting that λ = c/ν

Vν(λ) =

∫
Iν(s)e−2πi(l,m,

√
1−l2−m2)·(u,v,0) dΩ

Expanding λ to (u, v, w) and s to (l,m,
√

1− l2 −m2)

Vν(u, v, w ≡ 0) =

∫
Iν(l,m,

√
1− l2 −m2)

e−2πi(ul+vm)

√
1− l2 −m2

dΩ

The integral is adjusted to reflect this, the w term is removed from Vν as it will always be 0

(by the fourth assumption)

Vν(u, v) =

∫∫
Iν(l,m,

√
1− l2 −m2)

e−2πi(ul+vm)

√
1− l2 −m2

dl dm

Since we are confining Iν to a plane it makes no sense for it to have a third term, we can say

Iν(l,m,
√

1− l2 −m2) = I ′ν(l,m)

Vν(u, v) =

∫∫
I ′ν(l,m)

e−2πi(ul+vm)

√
1− l2 −m2

dl dm

We can now absorb the square-root into the intensity function to reformulate it as the

modifidied intensity Iν(l,m) = I ′ν(l,m)/
√

1− l2 −m2. Thus,

Vν(u, v) =

∫∫
Iν(l,m)e−2πi(ul+vm) dl dm (A.9)

A.2.7 Observed Sources Contained in a Small Region of the Sky

We now take a different route and assume that we are receiving electromagnetic radiation

from a sufficiently small section of the sky. This means we are only receiving around a small

arc σ. We ignore everything outside of s = s0 + σ. Since s and s0 are unit length vectors,

we can say

1 = |s| = s · s = s0 · s0

= (s0 + σ) · (s0 + σ)

= s0 · s0 + 2s0 · σ + σ · σ

≈ 1 + 2s0 · σ
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Since 2s0 · σ ≈ 0, we can say s0 and σ are perpendicular within a negligible range. We now

use a coordinate system whereby s0 = (0, 0, 1). This implies r1 − r2 = (u, v, w)c/ν and that

s = (l,m, 1).

Thus we take Eqn A.8

Vν(r1, r2) =

∫
Iν(s)e−2πiνs·(r1−r2)/c dΩ

as s · (r1 − r2) = (l,m, 1) · (u, v, w)c/ν = (ul + vm+ w)c/ν, we get

V ′ν(u, v, w) =

∫
Iν(l,m, 1)e−2πi(ul+vm+w) dΩ

=

∫
Iν(l,m)e−2πi(ul+vm)e−2πiw dΩ

= e−2πiw

∫
Iν(l,m)e−2πi(ul+vm) dΩ

We adjust the integral to reflect the new coordinate system

V ′ν(u, v, w) = e−2πiw

∫∫
Iν(l,m)e−2πi(ul+vm) dl dm

We now define Vν to absorb the floating exponential, Vν(u, v, w) = V ′ν(u, v, w)e−2πiw. As w

is independent we can write Vν(u, v, w) as Vν(u, v) and we now get

Vν(u, v) =

∫∫
Iν(l,m)e−2πi(ul+vm) dl dm (A.10)

A.2.8 The Fourier Transform

With either assumption, we get a function with which we can take the Fourier transform.

Turning

Vν(u, v) =

∫∫
Iν(l,m)e−2πi(ul+vm) dl dm (A.11)

into

Iν(l,m) =

∫∫
Vν(u, v)e2πi(ul+vm) du dv (A.12)
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In Eqn A.3 we defined Vν , the correlation of the field. Vν is the data that a two element

radio telescope array outputs. Iν is the observed intensity, or intensity distribution. So we

have succeeded in formulating our desired output in terms of the input available to us.

There are volumes of maths behind interferometry including how to adjust for noise, atmo-

spheric conditions and some of the assumptions we made above. The maths given here is

sufficient for the purposes of this thesis.

A.3 Real World Adjustments and Consideration

A.3.1 Local Adjustments for Angle of Declination

To observe sources that are not a zenith, one needs to angle the telescopes appropriately.

This has two effects, firstly it introduces a time delay as one of the telescopes receives the

signal slightly later than the other. Secondly, the original baseline B is also shortened as the

projected distance between telescopes is shortened (see Figure A.1).

Figure A.1: Affect of declination on time delay in receiving signal
Two dishes d meters away from each other. When not pointed towards zenith (straight
up), the signal from the source (red) must travel an extra d cos(θ) meters for the further
dish, this results in a c · d cos(θ) seconds (where c is the speed of light) delay that the
further dish must account for.
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A.3.2 Intercontinental Adjustments

As can be seen by in Figure A.2, similar considerations are needed when the baseline spans

continents. The maths becomes slightly more complicated to account for curvature of the

earth but the same considerations as the local case apply. An additional consideration for

intercontinental distances used in VBLI is that there might be angles at which the earth

obscures the signal from one of the telescopes, reducing accuracy and sometime making

VBLI impossible.

Figure A.2: Affect of earth’s curvature on time delay in receiving signal
For very long distances between dishes, the curvature of the earth affects the angle at
which the dishes are pointed. The rightmost dish is pointed almost at the horizon,
whereat the leftmost dish is only at a slight angle. Otherwise the mathematics remains
the same as is shown in figure A.1

A.4 The UV-Plane: Larger Arrays and the Rotation

of the Earth

In the literature the sampled Fourier plane, Vν , is called the UV-plane. In reality, measure-

ments are subject to an additional noise component due to thermal noise in the receiver

or in the sky; this manifests itself as Gaussian noise in the real and imaginary part of the

measures visibility. We denote this effect with V ′ν . A two element array taking one reading
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will give us a single complex-number at u1, v1 on the UV-plane. In other-words we have a

value for Vν(u1, v1). If we were to visualise the distribution of V ′ν it would look like in Figure

A.3(d).

This is only a single uv-sample, real world interferometers have thousands and even hundreds

of thousants of samples of the UV-plane. The following sections explain how interferometers

create more samples, and just as importantly, how to cover the uv-plane as widely and

completely as possible. Using more than two elements means that more points are sampled

(N(N+1)
2

samples for an N element interferometer) and sampling over time means that N(N+1)
2

samples can be collected every second. How the elements are arranged and what direction

the elements are pointed has a significant effect on the final uv-plane coverage.

Certain characteristics of the uv-coverage results in certain characteristics of the resultant

dirty image when transformed. The further out that the uv-plane is covered, the better

small, high resolution sources can be detected. Covering the uv-plane closer to the center

reveals more diffuse large sources. A combination of wide and close samples are needed to

detect both the compact and diffuse sources. Covering the uv-plane more uniformly means

that the produced dirty image of the sky will more accurately represent the true intensity of

sky. The more dense the coverage, the more sensitive the dirty image.

Please note that all the UV-plane images in this section are basic simulations and real

world UV-planes take slightly different forms. The u-v plane is measured in wavelengths λ,

more commonly kilo-wavelengths. For these contrived examples we assume the units in the

figures are in meters. The UV-plane is also given in meters, but is usually converted to the

appropriate wavelength scale. So for instance, for an observed signal with λ = 4m, 100m

converts to 25 wavelengths. For λ = 20cm = 0.2m, 100m converts to 500 wavelength.

In Figure A.3(d) you can see there are two points, but we only have one sample. This is

because we may use V ′ν formulated with r1−r2 as well as r2−r1. We can say V ′ν = Vν1,2∪Vν2,1

where Vνi,j is the UV-plane formulated by ri − rj.
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Figure A.3: A UV-plane of a 2 element interferometer
(a) Simulated locations of two antennas, r1 and r2, in real world space. (b) Two over-
lapping vectors, one from r1 to r2 and r2 to r1. (c) The vectors r2− r1 and r2− r1. (d)
The resultant UV-plane distribution with a sample at r2 − r1 and by symetry, r1 − r2
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A.4.1 More-Than-Two Element Arrays

We extend the definition of V ′ν to accommodate more receivers. We now say for N receivers

that

V ′ν =
N⋃
i=1

N⋃
j=1

Vνi,j (A.13)

If it is the case that i = j, then Vνi,j = Vνi,i = 0

As seen in Figure A.4, with the 3 element array, the effect on the UV-plane is immediately

apparent. So we have a sample point for each pair of receivers. This results in N(N−1)
2

samples for an array sized N . This fortunate property implies that the number of sample

points grows at a quadratically at the number of receivers grow. For a 25 element array we

have 25×26
2

= 325 samples, for 50 telescopes, 1275 samples. For 100 elements the number of

samples rises to 5050, for 300, it is 45150 samples.

Even larger arrays produce a far better distribution, as seen in the 15 element array in Figure

A.7.

A.4.2 Covering the UV-Plane Using the Rotation of the Earth

Samples taken by a radio interferometer are usually over a time period of 1 to 10 seconds.

So over an 8 hour period, about 3000 to 30, 000 samples sets can be taken. Naively one

might think that an 8 hour sample would yield the same results as we would be sampling

the same point on the UV-plane 3000 times. The usefulness of taking all these samples over

a long time period becomes apparent when considering how the earth’s rotation changes the

relative location of the interferometer elements. This causes a slight change in angle to the

source, which causes the UV-plane to be sampled at a slightly different location each time

(Fig. A.6). Thus, we gain far greater UV-plane coverage (Fig. A.7).

One can intuitively visualise that a giant theoretical radio dish the shape and size of the

UV-plane would be equivalent to an entire array. Thus a wider diameter of this dish (a

wider baseline) would result in a higher resolution. Better coverage in the middle of this

theoretical dish means that there is more “collecting area” and thus more electromagnetic

radiation can be received.
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Figure A.4: A UV-plane of a 3 element interferometer
(a) Simulated locations of antennas in real world space. (b) Vectors from each array to
each other array. (c) The same as (b), but centred at 0. (d) The resultant UV-plane
distribution with a sample for each antenna pair, with symmetry.
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Figure A.5: A UV-plane of a 15 element interferometer
(a) Simulated locations of antennas in real world space. (b) Vectors from each array to
each other array. (c) The same as (b), but centred at 0. (d) The resultant UV-plane
distribution with a sample for each antenna pair, with symmetry.
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Figure A.6: A simple example of the effect of the earth’s rotation
As the earth rotates, the relative vector between antenna A and B change.

As mentioned above, samples are usually taken in a 1 to 10 second interval. Any shorter

and the noise-to-signal ratio will increase to beyond acceptable levels 5, as longer sampling

time amortises internal noise by increasing the amount of signal recieved (observed noise

is not amortised in this way). Too long will result in fewer sample points and hence less

UV-coverage. Engineers are constantly striving to reduce noise in observations and thus

shorten the sampling time. This results in more samples and hence greater computation

time. To be conservative, say we have a 25 element array taking 10 second samples, this

results in about one million samples. Future planned arrays like the SKA Africa will have

3,000 elements (Dewdney et al., 2011). With a 1 second sample time over 8 hours this results

in 129,643,200,000 (one hundred billion) samples!

5Though shorter and shorter intervals are being achieved with new technology
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A.4.3 Declination of Observed Signal

The angle of declination of the source has an important effect to the u-v coverage. Although

the way in which the radio receivers are distributed relative to each other has a direct effect

on the UV-plane’s distribution, the direction the array is facing will also have an effect. The

lower the declination of the source being tracked, the more squashed the distribution will

be. As is demonstrated by in Figure A.8. The reason for the squashed distribution is clear

from Figure A.2 whereby the angle at which the telescopes are pointed causes baseline B to

shorten to the projected baseline B cos θ where θ is the angle from zenith.

A.5 Other Considerations

A.5.1 Hermitian Nature of the Correlation of the Field:

In Vνi,j the signal from the jth radio dish is conjugated, and since in Vνj,i the signal from

the ith radio dish is conjugated it can be shown that Vνj,i(u, v) = Vνi,j(u, v). This makes

the real part of V ′ν even since Re(Vνj,i) = Re(Vνi,j) and its imaginary part is odd since

Im(Vνj,i) = Im(−Vνi,j). V ′ν and is therefor a Hermitian function. As a direct result, we can

say that Iν is a real-valued function. This point has some minor implications later on but

also confirms that Iν is a physical quantity.

A.5.2 The Sampling Function

To simplify the maths, rather than creating a modified version of V ′ν that represents the

discretely sampled nature of the UV-plane, we introduce a sampling function S(u, v). S(u, v)

is equal to zero everywhere, except on values of u, v where the UV-plane is sampled. S is

such that the integral over it is equal to 1. We modify Eqn A.12 and introduce IDν , the

observed intensity affected by discrete sampling, commonly called the dirty image.

IDν (l,m) =

∫∫
V ′ν(u, v)S(u, v)e2πi(ul+vm) du dv (A.14)
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Due to the nature of S, we may formulate it as a type of Dirac-Delta function. A Dirac

Delta function or distribution satisfies these two properties:

δ(x) =

+∞, x = 0

0, x 6= 0
(A.15a)

∞∫
−∞

δ(x) dx = 1 (A.15b)

Similarly, a 2D version can be defined

δ(x, y) =

+∞, x = 0 and y = 0

0, x 6= 0 or y 6= 0
(A.16a)

∞∫
−∞

∞∫
−∞

δ(x, y) dx dy = 1 (A.16b)

To more formerly define S, we use an (offset) 2D Dirac-Delta function, δ, to describe the

sampling of the UV-plane:

S(u, v) =
M∑
k=1

δ(u− uk, v − vk) (A.17)

Thus we have defined S(u, v) that mathematically picks point samples from the Fourier plane.

We use this sampling function in the next section to define the computational methods for

calculating the image plane.
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Figure A.7: The UV-distribution over time
As the earth rotates, samples can be taken at slightly different angles each time. In this
simulated set the samples are quite far spaced. The distance between samples are usually
far smaller in real life.
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Figure A.8: A demonstration of the UV-plane at different declinations
(a) Shows the UV-plane over some time at zennith at various times. (b) and (c) Is the
same distribution run for the same time but at a lower declination.
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Appendix B

Point Source Visibilities

In order to simulate the visibilities an interferometer would produce, one needs to under-

stand the relationship between the sky-intensity map (the brightness of the sky) and the

signal received by the observing elements. Unlike single dish telescopes, interferometers do

not have a straightforward relation and require correlation, Fourier transform, phase shifts,

propogation effects and other factors. This complex relationship for interferometers is known

as a Measurement Equation

Smirnov’s paper series on the Radio Interferometry Measurement Equation (RIME) refor-

mulates the classic radio interferometry visibility equation into a more robust and general

equation based on Jones matrices.(Smirnov, 2011a,b,c,d) An overview of the equation is

given in the remainder of this chapter.

Interferometers essentially work in pairs, each pair at each point in time produces one visi-

bility. A visibility represents a single sampled point on the Fourier plane of the sky-intensity

map. The relative position of the two antennae dictate where on the Fourier plane the sam-

ple will fall. By cross correlating the input voltages of the two antennae, the value of the

sample is obtained.

How many samples we obtain depends on how long we sample the sky for and how many

telescope pairs we have. A more robust explanation is given in Appendix A.4

We will first define the output of the interferometers in terms of its voltages. We then assume

there is single point in the sky that we are observing and derive the measurement equation

for just that. We then extend the formulation to multiple sources, multiple time-slots and
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multiple frequencies. We finally explain and account for time/bandwidth smearing.

B.1 Formulation of the Interferometer Equipment

Interferometric observations are obtained by measuring the interference patterns between

two receiving elements (antennae), p and q, each of which outputs a voltage νp and νq.

The voltage is proportional to the amplitude of electromagnetic radiation received. These

measurements are taken and averaged in the corrolator over a short time interval, typically

1-10 seconds. These time-averaged signals are respectively called 〈νp〉 and 〈νq〉. Various

frequency bands are measured simultaneously.

In reality the signals are usually recieved using two receptors (either up/left or left/right

circular) and each antenna will therefore have two voltage outputs ν = (νl, νr). When two

outputs are correlated, it produces four outputs, 〈νplν∗ql〉, 〈νplν∗qr〉, 〈νprν∗ql〉, 〈νprν∗qr〉, better

represented in matrix form:

Vpq = 2

(
〈νplν∗ql〉〈νplν∗qr〉
〈νprν∗ql〉〈νprν∗qr〉

)
= 2

〈(
νpl

νpr

)
(ν∗qlν

∗
qr)

〉
= 2〈νpνHq 〉 (B.1)

where ∗ denotes the complex conjugate. 1

B.2 A single uncorrupted point source

We assume the existence of a quasi-monochromatic signal, a single point in the sky fixed in

time and space. We define some orthonormal coordinate system x− y − z where the z axis

runs along the path of propagation, i.e. from source to antenna. Call this source

e =

(
ex

ey

)
(B.2)

where e is a complex vector. Assuming that the signal path is linear, one can represent a

linear transform as a 2×2 matrix, J (a Jones matrix (Jones, 1941)). With this, one can take

1The factor of 2 adjustment is not important for this work’s purposes, but is kept as a matter of referential
accuracy.
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into account multiple (linear) effects along the signal path with multiple Jones matrices:

e′ = JnJn−1...J1e = Je (B.3)

We now refer back to Eqn (B.1), and assume the voltage received by the antenna is the

original signal e affected by a number of linear transformations, J :

ν =

(
νl

νr

)
= Je (B.4)

Since p and q are not in the same location, the signal travels along different paths to get

them. We use Jp and J q to represent the separate linear transformations for the separate

paths the signal travels down to antennae p and q, we expand Eqn (B.1) using Eqns (B.2)

and (B.4) and obtain:

Vpq = 2Jp

(
〈exe∗x〉〈exe∗y〉
〈eye∗x〉〈eye∗y〉

)
J q

= JpBJ
H
q

(B.5)

where B =

(
〈exe∗x〉〈exe∗y〉
〈eye∗x〉〈eye∗y〉

)
is called the brightness matrix.

If the antennae p and q were receive the same signal at precisly the same time, the visibility

equation would simply be Vpq = B. However, because of the declination of the signal, there

is always a delay and hence a phase-delay is introduced (see Appendix A.3.1), as follows.

For antennae p, q at locations up = (up, vp, wp) and uq = (uq, vq, wq) respectively and point

source propagating in direction σ = (l,m, n =
√

1− l2 −m2), the phase difference is

defined as:

κp = 2πiλ−1(upl + vpm+ wp(n− 1)) (B.6)

where λ is the wavelength of the signal. This phase-shift effect can be defined as a 2 × 2

matrix:

Kp =

(
e−ikp 0

0 e−ikp

)
= e−ikpI2,

where I2 is the 2× 2 identity matrix. 2

2When Kp is multiplied by another matrix, it is equivalent to a scalar multiplication by e−ikp .
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The phase-shifted RIME then becomes

Vpq = KpBK
H
q (B.7)

When this is expanded, we obtain a more canonical version of the visibility function (Thomp-

son et al., 2001):

Vpq = e−ikpBeikq = Be−ikp+ikq

= Be−2πiλ−1(upql+vpqm+wpq(n−1))
(B.8)

where λ is the wavelength and upq = up − uq.

B.2.1 A single corrupted point source

In the real world, signals are corrupted by a variety of effects. Whilst important, this

consideration was not in the scope of this work and is left for future work. In cases where

there are multiple corrupting effects the Jones matrix might look something like:

J sp = GpEspKsp

and the full RIME would look as such (Smirnov, 2011a):

Vpq = JpBJ
H
q = GpEpKspBK

H
q E

H
q G

H
q

where K, E and G are 2×2 Jones matrices representing a linear transform. Full details can

be found in Smirnov’s paper series on RIME (Smirnov, 2011a).

B.3 Multiple sources, times, and frequencies

This basic single uncorrupted point source RIME (Equation B.7) can be extended to incor-

porate multiple time, t, and frequency, ν, bands, as:

Vpq(t, ν) = Kp(t, ν)BKH
q (t, ν) (B.9)
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where

Kp(t, ν) = e−2πi ν
c

(utp·σ)

and c is the speed of light. The term utp, now represents the relative change in location of

the antenna over time.

Simulation of multiple point sources in the sky is easily achieved as a sum of the visibility

function over all N sources

Vpq(t, ν) =
∑
s

Kp(t, ν)BKH
q (t, ν) (B.10)

where

Ksp(t, ν) = e−2πi ν
c

(utp·σs)

The term σs represents the direction to source s.

B.4 Time and bandwidth smearing

Visibilities are measured over an averaged time period, [t0, t1], and frequency band, [ν0, ν1].

The RIME formulation in Equation B.10 calculates the visibilities as if t = t0 and ν = ν0

rather than using the range [t0, t1] × [ν0, ν1]. This integration results in a loss of measured

amplitude, which is known in interferometry as time and bandwidth smearing. This must

be accounted for in the calculation in order to evaluate predicted visibilities accurately.

Equation B.10 is reformulated as an integral (Smirnov, 2011d):

〈
V ′pq
〉

=
1

∆t∆ν

∫ t1

t0

∫ ν1

ν0

Vpq(t, ν) dν dt

=
1

∆t∆ν

∫ t1

t0

∫ ν1

ν0

Ksp(t, ν)BsK
H
sq(t, ν) dν dt

(B.11)

If this integration is not used in the calculation the result is a loss of measured signal and

is a common known problem in interferometry known as time/bandwidth smearing.3 If it

is assumed that the time and frequency change linearly over a bucket, the integral can be

3It is also known as time/bandwidth decorrelation. For phase delay calculations (Kp in RIME) this effect
is referred to as smearing. For any other linear transform or effect it is more commonly referred to as
decorrelation.
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calculated with the following: ∫ x0

0

eix dx = sinc
x0

2
ei
x0
2

Using this integral approximate, the visibility equation with time/bandwidth smearing for a

single source becomes: 〈
V ′pq
〉
' sinc

∆Ψ

2
sinc

∆Φ

2
Vpq(tm, νm) (B.12)

where

tm = (t0 + t1)/2, νm = (ν0 + ν1)/2,

∆Ψ = arg Vpq(t1, νm)− arg Vpq(t0, νm),

∆Φ = arg Vpq(tm, ν1)− arg Vpq(tm, ν0),

arg denotes the complex argument or complex angle (Smirnov, 2011a; Thompson et al., 2001;

Taylor et al., 1999), and sinc is defined as sinc(x) =

{
sinx
x

if x 6= 0

1 if x = 0

B.5 The Final Visibility Equation

The full visibility equation reads:

V ′pq(t, ν) =
∑
s

sinc
∆Ψ(νm)

2
sinc

∆Φ(tm)

2
Ksp(t, ν)BsK

H
sq(t, ν)

=
∑
s

sinc
∆Ψ(νm)

2
sinc

∆Φ(tm)

2
Bse

−2πi ν
c

(utpqσs)

(B.13)

In this way, the RIME equation is extended to incorporate multiple point sources, mul-

tiple time, frequency bands as well as account for time/frequency bandwidth smearing.

Whilst Smirnov’s formulations can also account for various interference effects and Direction-

Dependent-Effects (something classical “pre-RIME” formulations struggled to incorporate),

this work only implements the time/frequency smearing factor, one of the primary causes

for loss of measured signal in RIME.

Equation (B.13) is the one that will be accelerated using GPGPU methods.
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