
42

WEB-BASED CORPUS ACQUISITION FOR SWAHILI LANGUAGE MODELLING

Alexander Kivaisi and Audrey Mbogho
Department of Computer Science

University of Cape Town
Alexander.Kivaisi@uct.ac.za Audrey.Mbogho@uct.ac.za

ABSTRACT

Finding large amounts of text data for use in natural
language technology is difficult for under-resourced
languages such as Swahili. The corpora that are readily
accessible for these languages are not sufficient to be used
in language technologies, whose requirements can run into
the hundreds of millions of words. This paper describes how
we can take advantage of search engines such as Google
together with crawling tools to collect Swahili text from the
Web. We also share the experience of cleaning up and
normalising the resulting text data. Finally, we show some
preliminary results of the evaluation of the language models
built from our corpus as well as results of how they compare
to those built from the Helsinki Corpus.

Index Terms— Under-resourced languages, corpus
acquisition, Swahili, language model

1. INTRODUCTION

Natural language technology applications, such as,
speech recognition, machine translation, and handwriting
recognition, require large amounts of training text data. For
such applications performance normally increases with
increasing amount of training data. In large vocabulary
continuous speech recognition systems [4], hundreds of
millions of words are needed to obtain accurate probability
estimation for the statistical language model. In [1], Banko
and Brill showed that for context sensitive spelling
correction, increasing the training data size increases the
accuracy for up to 1 billion words. Likewise in machine
translation, as described in [2], the more the training data,
the better the results.

Although the Web is growing tremendously all the time,
with large amounts of text data being added to it daily,
finding contents for a particular target language can be
difficult. First, it requires knowing the location of these
contents and how to collect them. As there are millions and
millions of Web pages, knowing which web site has content
in a given language is an enormous challenge. This situation
is clearly most severe for under-resourced languages.
Secondly, the process of cleaning up and normalizing the
contents is always crucial and needs extra care so as to
achieve high performance in the resulting language model.

This involves text-processing tasks such as removing
markup tags or unwanted text, clearing empty spaces or
lines to produce one-line single sentences, and expanding
abbreviations and acronyms. In particular, normalisation [4]
such as converting non-words into spoken words depends
on the target language, requiring some understanding of the
language so that the conversion rules can be defined and
word ambiguity can be resolved. Therefore, existing scripts
which have automated these tasks for other languages may
not be helpful.

The focus of this study is Swahili, an under-resourced
language spoken by over 100 million people in East and
Central Africa, mainly Tanzania, Kenya, the Comoros,
Rwanda, Burundi, Uganda and the DRC, and to a lesser
extent, Malawi, Zambia, Mozambique and Somalia (see
http://swahililanguage.stanford.edu/). For this reason, one
can approach the Web with a certain level of confidence
about the presence of significant Swahili content there. The
next section shows how the search engine Google was used
to locate Swahili contents. Section 3 shows how these
contents were collected by crawling into the web sites found
by the search. Cleaning up of the contents is explained in
Section 4, while Section 5 shares the experience of
developing the normalization rules. Section 6 shows some
preliminary results on the language model, while Section 7
discusses these results with reference to previous work.

2. WEB SEARCH
Searching for content on the Internet has always been

difficult because of the distributed manner in which the
content is stored. Because English dominates the Web,
content in less popular languages is hard to discover.

The search engine Google contains features that help to
narrow down the search results. The language selection
feature made it possible to list documents or domain names
written in Swahili. For our search queries, we used the more
common Swahili keywords ("na", "ya", "ni", meaning
“and”, “of”, “is”) which are likely to be found in any
Swahili document. SEOquake, a FireFoxaddon, helped to
export the list of URLs in the search results into csv files
(see Figure 1). These csv files were then merged into a text
file and URLs were truncated remaining with only root
domain names. Redundant domain names were then
removed from the list. The purpose of retaining only
domain names was to enable the web crawler to visit the

43

entire website by starting from the root and passing through
all the pages hosted on that domain. The whole process of
merging and truncating was done using a Perl script.

Figure 1. Search results exported usingSEOQuake

We performed a manual cross-check, looking up one
URL after another to see how much Swahili content exists
on those web sites. It may be argued that we could have
narrowed down our search results by just focusing on
domain names of Swahili-speaking countries, for instance
domains ending in .tz, meaning URLs from Tanzania where
one is most likely to find content written only in Swahili.
Unfortunately, this was not the case since it turned out that
some of these web sites contain content in both English and
Swahili and, furthermore, the percentage of content that is
in English is sometimes much greater than the Swahili
content. Thus, domain names by themselves are not a
reliable guide on the language of the content. A trigram
language model can alleviate the task of detecting
documents of the desired type; however, there was none
available to us, and, in fact, the ultimate goal of this work is
to build a Swahili language model. A total of 4220 URLs
were found which had any number of Swahili words. Some
URLS had the same root domain name and in such cases,
only one such URL was retained. The number after
discarding redundant domain names was 1498. Lastly, a
manual check was conducted for the amount of Swahili
content. Only a final 36 domains were found to have a
significant number of Swahili sentences (proper or
improper).This final list was then used in the crawling tool
to download all the content.

3. COLLECTING THE CONTENT

For collecting the text data we used wget since it
provides all the necessary features required to perform the
work efficiently (see below for how the command was used
to launch this process). The command wget is a free tool for
retrieving content from the web. It supports downloading
via HTTP, HTTPS and FTP protocols. Its robustness allows
it to work over slow and unstable network connections. It
can work as a Web crawler by downloading recursively the
resources linked to each other. It also allows selection of
document types to download which is crucial when there is
limited bandwidth and storage.

wget -r -Nc -np -R
gif,jpg,jpeg,js,png,JPG,FLV,MP4,AVI,css,ico,flv,swf,mp4,
avi,mp3,mov -i ../list.txt

� -r :perform recursive download
� -Nc :skipping downloads that would download to

the existing files
� -np : don’t ascend to the parent directory
� -R : Reject files extension
� -I : download URLs found in a file

The final 36 domain names list file was then split into
five text files for simplicity, each containing at least 6
domain names. These files were then used one by one in the
wget command to retrieve the content from each of the
domain names. Since we were only interested in textual
information, pictures, videos, audio and other arbitrary
binary content were avoided. The process of downloading
the content from the domains on each text file took about a
day. The total download size of all content was
approximately 1.9GB of textual content, where most
consisted of html files and some consisted of pdf files, word
documents and text files.
�

4. CLEANING

Before starting with cleaning up the contents, all web
pages retrieved from a particular domain were merged into a
single text file. This made the cleaning process much
quicker and easier than if it were to be done for hundreds of
html files individually. By merging this way, each domain
name corresponded to a single text file for clean-up.

Since the conversion of pdf and word documents to text
files requires other tools and requires more text processing
to come up with clearly defined Swahili sentences, we
decided to extract the contents from html files which
seemed easier but also sufficient. Instead of removing the
web based tags we decided to extract the contents from
certain tags, which made it possible to retrieve more useful
content. Tags like <p>,
, <div>,<th>were used to

44

extract groups of linguistic sentences, while tags like <a>,
<script>,<style> were ignored as they contain presentation
information, and not content. Non-mapped Unicode
characters, empty lines and empty spaces were all removed.
Punctuation marks such as (.?!) were used to identify
sentences which were then listed line by line in a text file.
Other characters such as (*()[]{}"#><) were also removed

Furthermore, a Perl script was used to identify and
discard sentences with more than fifty percent of words
which appeared not to be in the Swahili dictionary. The
Swahili dictionary was created from the Helsinki Corpus
which contains more Swahili words than the Freedict, Tuki
or TeDje-SED dictionaries [3]. The presence of such
sentences was because at times splitting of sentence at
markers was not done perfectly which left some
grammatically incorrect Swahili sentences and some that
were merged with English words. Again not all the contents
were just in Swahili; some were a mixture of both languages
which made it difficult to filter out. However, our primary
goal was to collect as many Swahili sentences as possible
regardless of ending up possibly with 50% of English words
in the sentence. The minimum sentence length was about 4
words while the maximum length was about 99 words.
Table 1shows the data counts during the cleaning stage.

Table 1. Statistics for cleaned-up web corpus

Total number of sentences 488,273
Max number of words per
sentence

99

Min number of words per
sentence

4

5. NORMALISATION

Normalization is the process of converting non-standard

words, which includes numbers, currency, abbreviations,
acronyms and dates, into spoken words. This process is very
crucial when it comes to applying the language model in
applications such as automatic speech recognition in order
to have better recognition results. Leaving these non-
standard words will introduce noise in the training data
causing the language model not to perform well when
applied to speech recognition. Although the set of non-
standard words varies from one language to another,
fortunately, they can be handled in a manner that is
independent of language. The process, mostly involves a
standard set of steps, which can be applied to any language.
However, resolution of word ambiguity can demand more
attentionas it depends on the word context, and requires
familiarity with the language itself, which can be hard
sometimes depending on the dimensions of the problem.

The process of normalization begins with splitting the
input text into tokens, followed by identifying the types of

non-standard words and their categories. It then finishes
with performing the expansion. In this work, we started
with the straightforward identification of these types and
performing the expansion. Tokenization was performed
separately during the cleaning up. Perl regular expressions
were used to define the rules of identifying the categories.
We adopted similar rules to those used in [9].The order of
identifying the types of category was important in order to
deal with ambiguity. For instance, dates with this format
(12/23/2002) had to be detected first before fractions
(12/23). The following non-standard word types were
chosen for normalization: time, numbers (cardinal,
fractions, and decimals), emails, web addresses, telephone
numbers and fax numbers, abbreviations and acronyms (see
Table 2 for some examples).

Table 2.Normalisation examples

Category Format Conversion
(Swahili
example)

Conversion
(English
example)

Email Abc_123
@
yahoo.com

A b c underscore
mojambilitatu at
yahoo nukta
com

A b c
underscore
one two
three at
yahoo dot
com

Times saa 12:30 Saasitananusu

Half past
twelve

Dates 30-02-
2002 or

Thelathinimwezi
wapilimwaka
elfumbilinambili

Thirtieth of
February
two
thousand
and two

Decimals 3.4

Tatunuktanne Three point
four

Fractions ½ nusu half
Cardinal 34 Thelathininanne Thirty four

6. LANGUAGE MODELS

We built different types of n-gram language model for
both the text prepared from the web and Helsinki corpus
[7]. The text from the Helsinki corpus, to our knowledge the
only large tag Swahili corpus currently available online, was
prepared in a similar fashion to that from the web. Sentence
separation and cleaning up of empty lines or spaces was
already done, which made the task of cleaning up much
easier.

We used the SRILM toolkit [8] to build the languages
models. These language models were built using different
types of smoothing techniques and different sizes of the
Swahili dictionary (20K, 50K, 64K and 95K) in order to
analyse the effect of both on the language model by
computing the model’s perplexity. Ultimately the goal of

45

this work is to evaluate the language models according to
their performance in machine translation tasks, but this is
left to future work.

We also combined the two sets of data in order to
analyse the performance of the language model as we
increased the size of the text data set. Figures 2 to 11 show
the experimental results, first on comparison between
different smoothing techniques and finally on performance
of each language model as the size of the data set increases.

The following smoothing techniques were applied:
� GT Good Turing
� AB Absolute Discounting
� WB Witten-Bell Discounting
� RD Ristard’s Natural Discounting
� O – KN Original Kneser-Ney Discounting
� M-KN Modified Kneser-Ney Discounting
� O-KN-I Original Kneser-Ney interpolated

Figure 2. Helsinki corpus, 20K dictionary

Figure 3. Helsinki corpus, 50K dictionary

Figure 4. Helsinki corpus, 64K dictionary

Figure 5. Helsinki corpus, 95K dictionary

Figure 6. Web corpus, 20K dictionary

46

Figure 7. Web corpus, 50K dictionary

Figure 8. Web corpus, 64K dictionary

Figure 9. Web corpus, 95K dictionary

Figure 10. Both corpora, 3-gram LM

Figure 11. Both corpora, 4-gram LM

47

7. DISCUSSION

From the results shown in Figure 2 to Figure 9, we can
see that the perplexity value decreases as the order of n-
grams increases but then it becomes steady or saturated as it
reaches higher orders for different smoothing techniques.
The OOV rates for both the Helsinki Corpus and the Web
Corpus decrease by similar factors as the size of the
dictionary increases. (One thing to be cleared about the
OOV rates is that our goal was not to compare them
between the two corpora but to see the impact of dictionary
sizes on the language model.) The language models created
from the Helsinki corpus and the Web corpus are quite
similar in terms of performance but they do differ slightly in
terms of out of vocabulary words (OOV). The web corpus
has more out of vocabulary words due to diversity of data
coming from the web compared with the Helsinki corpus for
which most of the data is taken from old newspapers which
contain proper Swahili sentences. Interpolated original
Kneser-Ney (O-KN-I) smoothing outperforms other
smoothing techniques.

Based on different training data set sizes, the perplexity
also decreases as data increases on different n-gram orders
as shown in Figures 10 and 11. These results confirm those
published earlier by Goodman in [6] based on comparison
of different smoothing techniques against different n-gram
orders and against varying sizes of training data.

8. CONCLUSION AND FUTURE WORK

This paper reported the work on how to collect Swahili
content from the World Wide Web and prepare it to be used
in building n-gram language models for various values of n,
and subjected to various smoothing techniques. The process
was accomplished with the assistance of Google search
engine, a crawling tool and some Perl scripting for text
processing. The process included both manual and
automated tasks. The paper also shared our experience on
performing text normalization, which was mainly done by
constructing rules expressed in Perl. Finally, the preliminary
language model results were presented which were similar
to those reported in past work.

The web corpus data was not well cleaned up and the
words were not tagged. It contained ungrammatical Swahili
sentences, unwanted words and English words, which can
give false results during real application such as speech
recognition or machine translation. We are hoping in the
future to use a morphological analyser to look for
grammatical errors and spelling mistakes so that we can
improve the quality of the corpus by reducing the OOV rate.
The quality of the web corpus will be evaluated during the
next phase of our research, when we apply it to machine

translation. This will be compared with the performance of
the Helsinki Corpus in the same task. For tagging the
corpus, support vector machines or other classification
algorithms could be used to perform this process more
efficiently and effectively.

In text normalization, some conversion words such as
(@-at, /-forward slash) were borrowed from the English
dictionary. In the future, we are hoping to do more research,
finding proper Swahili substitution words of these types of
symbols. In Swahili-speaking countries, there are bodies
responsible for language maintenance tasks, such as
composing new words for modern phenomena. We hope to
make contact with these and be able to tap into their
resources. The language models created were not tested to
check performance on real applications. The ultimate goal
of this work is to perform such an evaluation by using these
models in a machine translation system, which we intend to
do in the last stage of this research.
.

12. REFERENCES

[1] M. Banko and E. Brill. 2001. “Scaling to very very large
corpora for natural language disambiguation,” In Proceedings of
the ACL, pages 26–33, Toulouse, France,9–11 July.

[2] T. Brants, A.C. Popat, P. Xu, F.J. Och, and J. Dean, “Large
Language Models in Machine Translation”, in Proc. EMNLP-
CoNLL, 2007, pp.858-867.

[3] G. De Pauw, G-M de Schryver & P.W. Wagacha. 2009. “A
Corpus-based Survey of Four Electronic Swahili–English
Bilingual Dictionaries,” Lexikos 19: 340–352.

[4] T.T. Vu, D.T. Nguyen, L.C. Mai, and J. Hosom, “Vietnamese
large vocabulary continuous speech recognition,” in Proc.
INTERSPEECH, 2005, pp.1689-1692.

[5] R. Sproat, A.W. Black, S.F. Chen, S. Kumar, M. Ostendorf,
and C. Richards, “Normalization of non-standard words,”
presented at Computer Speech & Language, 2001, pp.287-333.

[6] J.T. Goodman, “A bit of progress in language modeling
extended version,” [R]. MSR-TR-2001-72 Technichal report,
Microsoft Research, 2001.

[7] B. Wójtowics, Investigationes Linguisticae, vol. XI, Pozna�,
December 2004.

[8] A. Stolcke, “SRILM - An Extensible Language Modeling
Toolkit,” in Proc. Intl. Conf. Spoken Language Processing,
Denver, Colorado, September 2002.

[9] N. Genserovskaya, “Text Normalisation for Irish Speech
Synthesis,” Final Year Project, School of Computer Science and
Statistics, Trinity College, Dublin 2, Ireland, May 2007.

