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Abstract

The Bleek and Lloyd Collection contains notebooks that document the tradition, language
and culture of the Bushman people who lived in South Africa in the late 19th century.
Transcriptions of these notebooks would allow for the provision of services such as text-
based search and text-to-speech. However, these notebooks are currently only available
in the form of digital scans and the manual creation of transcriptions is a costly and time-
consuming process. Thus, automatic methods could serve as an alternative approach to
creating transcriptions of the text in the notebooks.

In order to evaluate the use of automatic methods, a corpus of Bushman texts and their
associated transcriptions was created. The creation of this corpus involved: the devel-
opment of a custom method for encoding the Bushman script, which contains complex
diacritics; the creation of a tool for creating and transcribing the texts in the notebooks;
and the running of a series of workshops in which the tool was used to create the corpus.

The corpus was used to evaluate the use of various techniques for automatically tran-
scribing the texts in the corpus in order to determine which approaches were best suited
to the complex Bushman script. These techniques included the use of Support Vector
Machines, Artificial Neural Networks and Hidden Markov Models as machine learning
algorithms, which were coupled with different descriptive features. The effect of the texts
used for training the machine learning algorithms was also investigated as well as the use
of a statistical language model.

It was found that, for Bushman word recognition, the use of a Support Vector Machine
with Histograms of Oriented Gradient features resulted in the best performance and, for
Bushman text line recognition, Marti & Bunke features resulted in the best performance
when used with Hidden Markov Models. The automatic transcription of the Bushman
texts proved to be difficult and the performance of the different recognition systems was
largely affected by the complexities of the Bushman script. It was also found that, besides
having an influence on determining which techniques may be the most appropriate for
automatic handwriting recognition, the texts used in a automatic handwriting recognition
system also play a large role in determining whether or not automatic recognition should
be attempted at all.

Keywords
Transcription, handwriting recognition, pattern recognition, optical character
recognition, machine learning, cultural heritage preservation.
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“Aken +énnd, ti e, n lka sshé au I 66-ssho- ’kuz s8€ ’Xuonmya kk:e n ssé ’kuzten n-kd

IXGé. N ss€ ttumm-a lké-ta- ki, ka kko- k:kommz au ka |né lhaué hz 5 ss¢ ttumim-G hi-kd
kko- kkommz tz e, Wi |\kué-ddd; hin ttumim- 1 I 6é-td t- k;ko ki Sswa-ka-lké-ka kko-kkormi,

1. Hé e, hi \kue ddd hin, ttumiim-i, 1; au 1Y 6é-ssho- /kuz kko, wa- 9 |ne ]karm kad, n ssé
|ka7“m ssin, 1 ssin ssho kko ttunim- a kko- kkommz e kkcm ssé ttan, hé ¢, kko- kkorhma €

|\han, || Jkhwé- ten. Hé &, 1 ssé |m kkomim, i (ai hi- hz) a ka tatts e, Wi lqweten |hin
//khwe ten, au Iy 6é-ssho- /kyz ya-g |né tta ka kalkaiten; au kd tatti e, n ddéa |née
Ikéi-ken Ihaué ; 1 ssin |né ddéi +kakkentkdkken hi, i |kagen ttiken.”

“Thou knowest that I sit waiting for the moon to turn back for me, that I may return to
my place. The I may listen to all the people’s stories, when I visit them; that I may
listen to their stories, that which they tell; they listen to the Flat Bushmen’s stories from
the other side of the place. They are those which they thus tell, they are listening to

them; while the other /)Eo/éu'—sshov—/kyiu (the sun) becomes a little warm, that I may sit in
the sun; that I may sitting, listening to the stories which yonder come, which are stories
which come from the distance. Then, I shall get hold of a story from them, because they
(the stories) float out from a distance; while the sun feels a little warm; while I feel that
I must altogether visit; that I may be talking with them, my fellow men.”

- || Kabbo’s Intended Return Home, Specimens of Bushmen Folklore (1911)
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Chapter 1

Introduction

Historical texts serve as a record of the past, detailing events, customs and beliefs that
have since disappeared. These records can serve as an aid in understanding our history
and informing our future. However, many historical texts are at risk due to natural forces
such as physical degradation, resulting in a worldwide effort to preserve them.

One of the forms of preservation is digital preservation, in which digital/scanned versions
of historical texts are created, catalogued and stored in digital libraries. These digital
documents can then be made accessible via the Web where digital library services facilitate
access and interaction. The forms of interaction commonly involve search and browse,
which are based on the metadata associated with the digital documents. However, the
text within digital documents provides an additional source of information that can be
exploited to provide enhanced ways of interacting with the documents and transcriptions
of the text allow for additional services such as in-text search and text-to-speech.

The Bleek and Lloyd Collection, which documents the language, culture and beliefs of the
Bushman people who lived in South Africa in the late 19th century, is an example of a
collection of historical documents that has been digitised and preserved in a digital library.
This collection, a UNESCO Memory of the World Collection, is available online as a set
of digital scans that can be browsed and searched based on the metadata associated with
the collection (Suleman|, 2007). As with other historical texts that have been digitised,
transcriptions of these texts would allow for the provision of enhanced services. For
instance, transcriptions of these texts would: enable the text in the notebooks to be
indexed and thus searched and compared to other texts; enable the development of text-
to-speech applications, which could be used for digital story telling; allow for linguistic
information about the Bushman languages to be compiled using automatic techniques;
allow for the text in the notebooks to be re-purposed, for instance to be reprinted in
books; and provide enhanced access to a source of indigenous knowledge.

: v on P o
Image : .;’?,-“'(r-c- 0 ﬁfiﬁr,(ﬂ s ,/.r":fr /{zll_’-
l,-’ — L
v ! V]
Transcription : 'gal'l e #kU.éJIl Iy(aUkl

Figure 1.1: A Bushman text line as an image and its associated transcription



Figure shows an example of a line of text from one of the Bleek and Lloyd notebooks
alongside its associated transcription. As can be seen from the figure, the text transcrip-
tion enables all of the above-mentioned benefits, which cannot be accomplished with the
digital image alone. Thus, transcriptions are clearly beneficial. However, manual tran-
scription is an expensive, tedious and time consuming task. Automatically transcribing
documents in a collection is one way of overcoming these difficulties.

1.1 Automatic Handwriting Recognition

“Automatic handwriting recognition” refers to the process by which a computer system
is able to identify and classify previously unseen handwritten text and, as a result, is able
to automatically transcribe handwritten documents. A common approach to automatic
handwriting recognition is to make use of machine learning algorithms that are capable of
learning how to recognise the text in previously unseen documents by being trained with
document /transcription pairs and learning the associations between them. An overview
of this process is shown in Figure [1.2| where the associations between digital documents
and their transcriptions are learned durlng the training phase and previously unseen data
is recognised during the recognition phase.
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Figure 1.2: The automatic handwriting recognition process consisting of a training phase
and a recognition phase



There are a number of elements that make up an automatic handwriting recognition
system, such as:

Machine learning algorithms that learn the associations between digital documents
and their transcriptions in order to form prediction models (Ratsch, 2008]).

Descriptive features, which are compact descriptors of an object that characterise it
and make it distinguishable from others (Pratt} [2007). In automatic handwriting recogni-
tion, descriptive features are extracted from document images and then, along with their
corresponding transcriptions, are used to train the machine learning algorithms and also
used as input for the prediction models during the recognition phase.

Segmentation levels, which are the units into which a page is divided in order for
additional processing to take place, i.e. character, word or text line.

A corpus, which is used as a testbed and is made up of the document /transcription pairs
that are used for training the machine learning algorithms and for recognition.

Statistical language models that contain statistical information about the distribution
of characters and words in a natural language and can be used to constrain output during
recognition (Marti, 2000).

It is desirable to have handwriting recognition systems that are accurate and robust to
variation within the data. However, the realisation of these goals largely depends on
the techniques used for automatic handwriting recognition, for instance, how machine
learning algorithms and descriptive features are combined and the extent to which a
statistical language model is used. In this study, a series of techniques for handwriting
recognition are investigated in order to evaluate their applicability to the Bushman texts
that appear in the Bleek and Lloyd Collection.

1.2 Motivation

There are a wide variety of techniques that can be used when designing a handwriting
recognition system (Bunke, 2003) and the use of specific techniques could have a signifi-
cant effect on recognition accuracy. Thus, the choice of which techniques are used is an
important decision, particularly the choice of machine learning algorithms and descrip-
tive features as these form the core of a recognition system. However, the choice of which
techniques are most applicable may not always be obvious. For instance, it is difficult to
make an informed decision as to which techniques may be best based on the findings of
studies where different handwriting recognition techniques have been applied to different
collections and where the experimental methodologies may have differed.

Thus, given the wide variety of techniques that are available when designing a handwriting
recognition system, the main goal of this study is to investigate which techniques lead to
the highest recognition accuracies when used for the automatic recognition of the Bushman
texts that appear in the Bleek and Lloyd Collection. High recognition accuracies are
desirable since they enable the successful provision of enhanced digital library services
- something that is difficult to do with poor transcription accuracies - and reduce the
amount of manual intervention that is required.



Since all of the techniques investigated in this study are applied to a single collection
of handwritten documents, a direct comparison can be made between them and used to
inform other studies - something that is difficult with independent studies. Furthermore,
while this study specifically focuses on the Bushman texts, the findings as to which tech-
niques are best may also be applicable to other collections of handwritten texts, especially
those that contain complex diacritics.

1.3 Problem Statement

To investigate the use of Support Vector Machines (SVMs), Artificial Neural Networks
(ANNs) and Hidden Markov Models (HMMs) in conjunction with various descriptive
features for Bushman word and text line recognition and to investigate how training data
and statistical language models can affect recognition accuracy.

1.4 Scope and Limitations

The focus will be on recognising texts written by two authors in the |xam language, which
is one of the Bushman languages that appears in the Bleek and Lloyd Collection, using
different techniques for handwriting recognition. It would be infeasible to investigate the
use of all possible techniques, thus a selection of techniques will be investigated in order
to provide an overview of the performance of different approaches.

1.5 Research Questions
The research questions investigated as part of this study are:

i. Which of a selection of Hidden Markov Models, Artificial Neural Networks and Sup-
port Vector Machines, when used in conjunction with various descriptive features,
performs best when automatically transcribing handwritten Bushman texts?

Machine learning algorithms are used for the classification and recognition of words
and characters. Previously, machine learning algorithms such as Hidden Markov Mod-
els (Rabiner, 1989)), Artificial Neural Networks (Haykin, [1998)) and Support Vector
Machines (Cortes and Vapnik, [1995) have been used to recognise handwritten texts.
The machine learning algorithms use descriptive features in both the training and
recognition phases and it is natural to expect that some descriptive features perform
better than others. This research question seeks to investigate which of the above
machine learning algorithms, when used in conjunction with different descriptive fea-
tures, performs best when automatically transcribing handwritten Bushman texts.

ii. What is the effect of the training data on transcription accuracy?

The accuracy achieved when performing automatic transcription is, naturally, depen-
dent on the data used for training. For instance, accuracy can be affected by the
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amount of training data that is available and the variation within that data. This
research question seeks to investigate the effect that training data has on performance
when automatically transcribing handwritten Bushman texts.

iii. To what extent can a N-gram language model improve accuracy when automatically
transcribing handwritten Bushman texts?

It may be possible to build a N-gram language model for the Bushman languages.
If the language model is built, it may be possible to use it to improve recognition
accuracy. This research question seeks to investigate the extent to which this can be
done.

The contribution of this research is insight into the best approach to automatically tran-
scribing handwritten Bushman texts and a comparison of the use of different techniques.
It is hoped that the findings are also applicable to other handwritten texts and can be
used to inform future studies, especially where the language contains complex diacritics.

This research differs from other research in that it is the first attempt at the automatic
transcription of handwritten Bushman texts.

1.6 Overview of this Thesis

The rest of this thesis is structured as follows. Chapter [2] reviews the literature and dis-
cusses the background to this study. This includes an introduction to the Bushman texts,
a review of techniques that have previously been used in handwriting recognition studies
and a discussion of some of the theoretical aspects related to handwriting recognition.
Chapter [3| describes two pilot studies that were conducted during the early stages of this
study in order to determine whether or not the study was feasible. A testbed was required
in order to investigate techniques for Bushman handwriting recognition and Chapter
discusses the creation of a corpus that was used as a testbed in this study, including a dis-
cussion of a custom technique that was developed to encode and represent the Bushman
texts and the development of a tool that was used for transcribing the Bushman texts.
Features play a large role in this study and thus are discussed in Chapter [5} This includes
a discussion of the derivation of the features, their invariant properties and how they are
used in this study. The experimental design used in this study is presented in Chapter [6]
while the actual experiments are described in Chapter (7| including the presentation and
analysis of their results. Lastly, conclusions and possibilities for future work are discussed
in Chapter [§



Chapter 2

Background

The previous chapter introduced the purpose and goals of this study and this chapter puts
the study into perspective by discussing the background to the study and the context in
which the research takes place. This chapter begins by briefly motivating the importance
and need for cultural heritage preservation. This study is based on the automatic recog-
nition of Bushman texts, and therefore the next section discusses the Bleek and Lloyd
Collection and corpora for handwriting recognition. An overview of handwriting recog-
nition is then given, followed by a description of each of the components that make up a
handwriting recognition system and their use in the literature.

2.1 Cultural Heritage Preservation

In 1972 the UNESCO World Heritage Convention identified the need for identifying, con-
serving, protecting, presenting and ensuring transmission to future generations of cultural
heritage and natural heritage materials (Unescol 1972). Digital preservation strategies
support these requirements through the creation of mechanisms for preservation, pre-
sentation, access and future accessibility. Digital preservation allows for artefacts to be
accessed regardless of their physical location and, given the often fragile nature of the
artefacts, removes the risk of damage due to physical interaction with the artefacts. Fur-
thermore, digital preservation can even assist in the restoration of artefacts that have
become damaged (eHeritagel 2010).

In this section, two aspects related to cultural heritage preservation are discussed. The
first of these is the Bleek and Lloyd Collection (Suleman, 2007)), a collection of notebooks,
dictionaries and artwork that document the language and culture of the Bushman people
who lived in South Africa in the late 19th century. Thereafter the creation of corpora,
which are collections of texts and manuscripts, and their use in handwriting recognition
are discussed.

2.1.1 The Bleek and Lloyd Collection

The Bushman people are South Africa’s oldest human inhabitants (Lee and Balick, 2007)
and it is likely that they have a unique view of the world. However, many of the Bushman
languages, such as the |xam Bushman language, have completely died out (Suleman),
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2007). As with many ancient cultures, Bushman culture and beliefs were metaphorically
encoded and shared in the form of stories. These stories were written down in notebooks
by German linguists, Wilhelm Bleek and Lucy Lloyd in the 1870s and, together with art
and dictionaries, have come to be known as the Bleek and Lloyd Collection (Suleman,
2007). In its entirety, the Bleek and Lloyd Collection is a collection of notebooks, art
and dictionaries, which document the languages and culture of the Bushman people of
southern Africa and, more specifically, the languages and culture of the |xam and !'kun
Bushman people. The notebooks in the collection contain metaphorical Bushman stories
and, in most cases, their corresponding English translations appear alongside them. The
drawings in the collection complement the stories in the notebooks, while the dictionaries
contain English words and their corresponding Bushman translations. Figures [2.1]
and show examples of a notebook page, dictionary entry and artwork from the Bleek
and Lloyd Collection, respectively.
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Figure 2.1: A notebook page from the Bleek and Lloyd Collection

The Bleek and Lloyd Collection is jointly owned by the University of Cape Town, The
National Library of South Africa and the Iziko National Museum of South Africa and is
made up of 157 notebooks containing 14128 pages, 752 drawings and over 14000 dictionary
entries (Suleman) 2007). In 2003 the Lucy Lloyd Archive and Research Centre at the
Michaelis School of Fine Arts undertook to digitally preserve the collection and in 1997
the collection was recognised by UNESCO as a Memory of the World Collection (Suleman,
2007)), illustrating the importance of the collection.

2.1.1.1 Bushman Diacritics

The script used to represent the Bushman text is complex due to the diacritics that appear
above characters, below characters and both above and below characters. Diacritics can



Figure 2.2: A dictionary entry from the Bleek and Lloyd Collection

also span multiple characters. The result is that the text cannot be represented using
standard or non-standard Unicode. Thus far, more than 64 different combinations of
single and stacked diacritics have been discoveredEl that appear above characters, 13 that
appear below characters and 60 that appear both above and below characters. Table
2.1| shows some of the types of diacritics that appear in the texts, starting with simple
diacritics that appear above characters, then diacritics that appear above and below
characters and then diacritics that are stacked and that span multiple characters.

Table 2.1: Images of Bushman diacritics from the notebooks and their transcriptions
Image Transcription
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e

) s e
A n&'/&o

e
3. 107 Lo oo e b Pnlids
w4h. Baiat S tlan Bl pieasd

£,

Rt o 1t (91 gy

Figure 2.3: A piece of artwork from the Bleek and Lloyd Collection

The Bleek and Lloyd Collection presents a case study for digital preservation. The collec-
tion has gone through the various stages of digital preservation, including its identification,
which resulted in the creation of metadata, its preservation in digital library systems
(Suleman|, 2007; Williams et al.l 2010) and ensuring transmission and access through
publications (Skotnes, 2007) and publicly accessible websitef’] Furthermore, different
mechanisms have been developed to enable interaction with the collection
Suleman), 2010)). This study seeks to further the ways in which the Bleek and Lloyd Col-
lection can be accessed and interacted with by providing transcriptions of the Bushman
texts that appear in the notebooks.

2.1.2 Handwriting Recognition Corpora

A corpus is a collection of texts or manuscripts, such as the notebooks in the Bleek
and Lloyd Collection (Suleman), 2007) or the George Washington Manuscripts
Manmathal [2007)), which is a collection of manuscripts that were written by George Wash-
ington and copied and edited by his secretaries and that have been digitised by the Library
of Congress (Kane et al.,2001)). Transcriptions of the texts in a corpus allow for additional
digital library services to be provided, such as:

e The creation of an index of the manuscripts.

2http:/ /lloydbleekcollection.cs.uct.ac.za/



e Facilities to find similar passages in the text.

e Re-rendering and re-printing of the texts, which could be useful for hard to read
historical texts.

e The ability to search the text based on keywords.

Transcriptions of corpora also play a role in the handwriting recognition process, in which
they are used to train recognition engines in order to identify unseen data. There are a
number of handwriting recognition corpora that have been used for handwriting recogni-
tion. For instance, the ETLIB database is a database of handwritten Japanese characters
that contains 200 samples of 3036 character classes (Liu et al., 2010). This database has
been used in a number of character recognition experiments and recognition accuracy of
over 99% has been achieved (Kimura et al., [1997)). The IAM database (Marti and Bunke,
1999) is a database of handwritten English and contains over 40 000 handwritten words,
which come from almost 5000 text lines, written by approximately 250 different writers.
The text in the IAM database is based on the Lancaster-Oslo/Bergen corpus (Johansson
et al., [1978). The IAM database has been used in a number of handwriting recognition
studies (Graves et al., [2009; Espana-Boquera et al.| 2011; Vinciarelli et al., [2004)). A
version of the IAM database for historical handwriting also exists (Fischer et al., 2010).
The CEDAR database (Huang and Srihari, 2008) contains handwritten city names, state
names, zip codes and alphanumeric characters, which were scanned and collected at a
post office, while a database of handwritten Arabic words, written by 100 writers, also
exists (Al-Ma’adeed et al.| 2002)).

2.1.2.1 Corpus Creation

The existence of a high quality corpus is necessary for any system that performs automatic
recognition of text, whether handwritten or machine printed. Corpora for English or other
well-understood and well-studied languages are relatively easy to access and make use of.
Examples of widely-used corpora are the IAM database (Marti and Bunke, |1999) and the
George Washington manuscripts (Rath and Manmatha, 2007). However, for less well-
studied languages and scripts, it is often necessary to create a new corpus that can be
used for experimentation since it is unlikely that a suitable one already exists.

Creating corpora for modern languages is relatively easy compared to creating corpora
for historical languages. Usually, creating corpora for modern languages involves getting
a group of users to write words on forms that were specifically designed for creating the
corpora. For instance, M. Agrawal and Madhvanath| (2004)) used HP Tablet PCs to collect
data and create a corpus for complex Indic scripts and |Al-Ma’adeed et al. (2002) used
paper forms on which specific Arabic words were written and then scanned to create an
Arabic corpus.

The creation of corpora for historical texts is, however, more difficult than that of modern
texts. For instance, it is not possible to make use of forms to easily and accurately capture
specific data. Historical texts also introduce a number of difficult problems related to the
segmentation of lines and words due to poor handwriting and the effects of age, such
as ink-bleed and paper degradation. |Fischer et al.| (2010) note that, in many cases,
transcriptions of historical texts can only be performed by language specialists, whereas
for modern texts it can be performed by lay-persons. This is of course open to debate
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since it is possible to train lay-persons in transcribing the text or, alternatively, use a
crowd-sourcing approach, which has, in many cases, been shown to be more accurate
than specialists (Surowiecki, [2005)).

Fischer et al.| (2010) describe a tool for the creation of a corpus for the IAM Historical
Handwriting Database (IAM-HistDB). The specific manuscripts that they make use of
all appear to have been scribe-written and are presented in a neat fashion. The tool
described by [Fischer et al. contains algorithms that automatically segment text on a
page and that allows for users to manually correct any errors. The transcription of the
text is not performed as transcriptions for the text already exist. Instead, transcription
alignment is automatically performed and users are able to perform alignment correction.

Setlur et al.| (2003)) describe the complexities of the Devanagari script, which is the basis
of many Indian languages and the lack of consistency among researchers in terms of the
representation of the script, specifically in terms of what the granularity of a character
should be. They describe a Java-based tool for creating a corpus for Devanagari script
recognition, which automatically segments words and lines and also allows for user inter-
action. Once lines and words have been segmented, the Devanagari script is then captured
using a simulated keyboard or by typing transliterated text on the keyboard. The text is
stored in Unicode and the Devanagari output can be previewed by rendering the Unicode
using a Devanagari font.

This study requires the existence of a corpus for Bushman languages and the creation of
one is described in Chapter 4l However, before describing the creation of the Bushman
corpus, the next section provides an overview of automatic handwriting recognition, fol-
lowed by a more detailed description of each of its components in the sections thereafter.

2.2 Automatic Handwriting Recognition

Automatic handwriting recognition, driven by the goal to equal or surpass human recog-
nition, as well as its commercial applications, has been studied for over 40 years (Bunke,
2003). From a commercial perspective, it has been successfully used for address reading
and cheque processing, both of which have highly constrained or small vocabularies. How-
ever, constraints exist in both of these applications and knowledge of the task is readily
available (Bunke, 2003). Automatic handwriting recognition in unconstrained environ-
ments for which little task-specific knowledge exists, such as in the case of handwritten
historical documents, is a more complex task since additional information often does not
exist and therefore cannot be used to improve recognition results. Handwritten text has a
number of characteristics that further complicate the segmentation and recognition pro-
cess. For instance: text lines can be skewed; there can be variation in character formation
by a single author as well as variation in character formation and writing style between
multiple authors; and there can exist a lack of uniformity in character size, character and
word spacing and character slant. Furthermore, for historical documents a number of
additional complications are introduced such as the effects of degradation over time and
ink bleed, in which the ink from the other side of a page shines through (Manmatha and
Srimal, [1999).

Automatic handwriting recognition can be split into two categories: on-line handwriting
recognition and off-line handwriting recognition (Fischer et al., [2009)). On-line handwrit-
ing recognition involves input via an apparatus such as a stylus or mouse and allows for
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temporal information to be exploited in the recognition process. Off-line handwriting
recognition, on the other hand, involves the input of handwriting captured by a scanner
or camera and, as such, lacks temporal information (Bunke, 2003). This research deals
with the problem of automatic handwriting recognition of historical documents in the
Bleek and Lloyd Collection for which temporal information does not exist.

Automatic handwriting recognition usually involves a training phase and a recognition
phase (Figure and each of these phases can be broken down into a number of steps.
The training phase usually involves the preprocessing of training data using techniques
such as binarisation and segmentation, followed by feature extraction and then model
learning using a machine learning algorithm. The output of this phase is a prediction
model for the learned data. The recognition phase usually involves the same preprocessing
of testing data, followed by recognition using the models derived from the training phase.
The recognition phase often includes a post-processing stage in which statistical language
models are used to improve results (Marti and Bunke, 2002). The output of this phase is
the transcribed data.

Training Data
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Figure 2.4: The automatic handwriting recognition process consisting of a training phase
and a recognition phase

There have been a number of attempts at automatic handwriting recognition using a
variety of preprocessing/segmentation approaches, descriptive features, machine learning
algorithms and statistical language models. All of the above-mentioned techniques, to
some degree, usually play a part in the process of handwriting recognition. In the following
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sections, each of the aspects related to handwriting recognition will be discussed and,
where appropriate, examples of their use will be drawn from the literature.

2.3 Segmentation

Segmentation is often used during the preprocessing stage in order to separate lines of
text, words, characters and other units so that they can be individually recognised. Figure
shows an example of line, word and character segmentation.
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Figure 2.5: Line, word and character segmentation

There are a number of elements that affect the success with which segmentation can be
performed. For instance, the spacing of words and characters, the script used, the spacing
between lines, whether the writing is cursive or hand-printed, noise in the image and the
other issues that affect handwritten documents and that were discussed in the previous
section.

Therefore, it is naturally easier to segment certain types of text. For instance, it is easier
to segment clearly separated lines and words rather than ones that overlap and, in a
similar sense, it is easier to segment block-print text than cursive script.

In this section, some of the different approaches to segmentation will be discussed and,
where appropriate, their use in handwriting recognition studies will be discussed. The
discussion takes place in a top-down fashion, beginning with a discussion of line segmen-
tation and then going onto word segmentation, followed by character segmentation and,
lastly, segmentation at lower levels.
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2.3.1 Line Segmentation

Line segmentation involves segmenting images of text into lines. The segmented lines are
often further segmented into words and characters, but are also fed directly into hand-
writing recognition systems such as those based on Hidden Markov Models (HMMs) and
Recurrent Neural Networks (RNNs) and which allow for word and character segmentation
to be avoided. One of the difficulties in line segmentation relates to variation of skew both
within and between different text lines (Aradhya and Naveena, |2011)). In cases where the
author took care to write along a ruled margin, as is the case with the Bleek and Lloyd
Collection (Suleman, [2007)), skew is not necessarily a problem. However, in other cases it
is and can be corrected as a preprocessing step (Marti and Bunke, 2002). Alternatively,
segmentation algorithms can explicitly account for skew in text lines.

Another consideration when doing handwritten line segmentation involves touching, which
occurs when two components from different lines touch and overlap, which occurs when
components from one line extend into another line (Likforman-Sulem et al| 2007)). Figure
shows overlapping and touching components.

Touching Overlapping

Components Components

<’ 4 . , --/
T/ﬁ/&’?(, Il Sree y /’%() ‘.—

<’ /,.. < ”
Té((/a-/{z /;z.‘czfrz c’ ﬂﬁ((/; /’/ffo /(5:(_

Figure 2.6: Overlapping and touching components in a text line

Existing techniques for line segmentation include projection profile based techniques,
where the distribution of pixels along the horizontal axis is used to identify the spaces
between lines. For instance, a projection profile technique was used to segment lines of
handwritten documents in the Gurmukhi script (Kumar et al., 2010b). A projection pro-
file technique was also used by Marti and Bunke| (2001)) in investigating the effect that
vocabulary size and language models have on unconstrained handwriting recognition.
Another technique for line segmentation involves smearing the image to create blobs in
the foreground (Aradhya and Naveenay 2011)), for instance, using the The Run Length
Smoothing Algorithm (Wong et al.| [1982).

Aradhya and Naveena| (2011)) proposed a line segmentation technique for segmenting texts
written in the Kannada script. Their proposed technique involved identifying the Con-
nected Components (CCs) in an image and then growing the bounding boxes of the CCs
in a horizontal direction to create single CCs for each text line. Piece-wise projection
profiles have also been used where a document is separated into vertical strips and then
the projection profiles for each strip are calculated and line segmentation points for each
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vertical strip are identified (Pal and Dattal 2003)). The piece-wise separation points can
then be joined and the text lines segmented (Pal and Datta, 2003]).

Kumar et al.| (2010a) developed a technique for segmenting handwritten Arabic text
lines, which, like the Bushman texts, contain diacritics. Their technique initially removes
diacritics, then segments the text lines and reattaches the diacritics to the text lines
afterwards. The Hough Transform (Duda and Hart|,|1972)) has also been used for text line
segmentation. For instance, Likforman-Sulem et al.| (1995) used the Hough transform to
hypothesise segmentation points in the Hough domain and then validated them in the
image domain.

2.3.2 Word Segmentation

Word segmentation involves segmenting lines of text into words or, alternatively, segment-
ing whole pages of text into words without first segmenting them into lines. Segmentation
of machine printed text lines into words is relatively simple compared to the case for hand-
written documents. This is due to machine printed text having uniform and well-defined
spaces between and words. This is different to the case for handwritten documents, where
there is often a lack of uniformity and consistency in spacing between words (Seni and
Cohen, |1994).

Gap metrics are commonly used for word segmentation, where the spaces between adjacent
characters are used to identify the spaces between words. Makridis et al. (2007) made
use of a gap metric-based word segmentation algorithm in which all CCs in a text line
were identified. The CCs were then sorted by their z-coordinate and adjacent CCs that
had a distance greater than some threshold between them were identified as belonging to
two different words. |Mahadevan and Nagabushnam| (1995) used the Euclidean distance
between the centers of gravity of the convex hulls of two adjacent CCs as a gap metric.
Louloudis et al.| (2009) took a slightly different approach to the gap metric calculation
in which they calculated the distance between overlapping components rather than CCs,
where overlapping components are CCs whose vertical projection profiles overlap.

In studies by [Sargur N. Srihari (1997) and [Huang and Srihari (2008)), Artificial Neural
Networks (ANNs) were used to identify word segmentation points. Manmatha and Srimal
(1999) segmented words in text lines based on “blobs” in a scale space representation of
an image. The Hough transform (Duda and Hart} [1972)) has also successfully been used to
segment handwritten words (Satadal Saha and Basu, |2010). In a previous study involving
the Bleek and Lloyd Collection, handwritten words in the |[xam Bushman language were
segmented by exploiting the domain knowledge that the Bushman words were underlined
(Williams and Suleman, [2010). The lines underlying the Bushman words were identified
using CC analysis and projection profiles were used to identify word boundaries.

In handwriting recognition studies, |Fischer et al. (2009) used perfectly segmented lines
and words in order to transcribe text in handwritten medieval documents that were writ-
ten in Middle High German. [Fischer et al. automatically segmented lines and words;
however, any segmentation errors were manually corrected. Projection profiles were used
by [Vamvakas et al.| (2008) to segment words in historical documents. In recognising scribe-
written Syriac manuscripts, Clocksin and Fernando| (2003) segmented words based on the
distances between the bounding boxes of CCs.
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2.3.3 Character Segmentation

Character segmentation involves segmenting words or text lines into their individual char-
acters. The characters can either be in a cursive script or hand-printed and the purpose of
the segmentation task is to find the point that separates adjacent characters. As was the
case with words, non-uniformity with regards to the spaces between characters contributes
towards the difficulty in segmenting them.

Vamvakas et al.| (2008)) segmented characters in historical documents using a technique
based on foreground and background analysis (Chen and Wang, 2000). To segment the
characters in scribe-written Syriac manuscripts, Clocksin and Fernando| (2003) used a
method whereby they scored each pixel with a likelihood of being a segmentation point,
where those with the highest likelihood had a narrow horizontal stroke and were close to
the baseline.

To segment Bangla characters, Pal and Dattal (2003) identified the CCs in a word and then
used a set of heuristics to determine whether each CC contained an isolated character or
connected characters. [Khan and Mohammad| (2008)) used an ANN to assist in character
segmentation. The ANN was trained with correct segmentation points and then used to
classify unseen segmentation points as either being correct or incorrect.

In dealing with Vietnamese characters, which contain diacritics, Nguyen and Bui| (2008))
note that separating diacritics from handwritten base characters is a difficult problem.
As a result, they performed recognition of Vietnamese characters without separating the
diacritics. This is different to the case of Kumar et al. (2010a)) who, when segmenting
text lines, removed diacritics and then reattached them at a later stage.

Words can also be segmented into intermediate constituencies between the word repre-
sentation and individual characters. An example of segmentation at an intermediate level
between words and characters was performed by (Chen et al.| (2010) where they segmented
Arabic words into sub-words also referred to as parts of Arabic words (PAWs). The
segmentation of Arabic words into PAWs was taken further by [Sari et al.| (2002) where
they identified local minima in the PAWs and then used morphological rules to deter-
mine whether or not the local minima were valid segmentation points and segmented the
individual characters accordingly.

This review has demonstrated that there are a number of possibilities for the level at
which segmentation can take place and some common segmentation strategies have been
discussed. It is expected that the level at which segmentation takes place is dependent
on the nature of the data, where complexities of the script or the layout of text in a
manuscript may require that a certain segmentation strategy be adopted. The intended
use of the segmented data may also have an effect on the segmentation strategy chosen
as well as the descriptive properties of the features used to describe the data and the
capabilities of the machine learning algorithms used in training models and recognising
unseen data. In the next section, descriptive features and the role that they play in
handwriting recognition is discussed.

2.4 Descriptive Features

Descriptive features are primitive characteristics of an image that make it distinguish-
able (Pratt, 2007). For instance, the curvature of shapes or the distribution of pixels in
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an image could be considered as descriptive features. Objects in a digital image can be
described by their descriptive features and unidentified objects in an image can be recog-
nised by comparing their descriptive features to the descriptive features of known objects
(Nixon and Aguado, 2008)). This is the premise on which handwriting recognition works,
where the features of known words and characters are used to train recognition models.
The recognition models can then be used to classify unknown words and characters based
on their descriptive features.

Nixon and Aguado| (2008) describes four important properties of descriptive features in
order for them to be useful for recognition:

Two objects should only have the same descriptors if they are the same.

Descriptors should be congruent such that two similar objects will have similar
descriptors.

It is convenient for descriptors to be invariant to scale, rotation and translation.

Descriptors should be compact so that objects are described in an efficient way.

Nixon and Aguado|note that there is no set of descriptors that accurately and completely
describes general objects and the best descriptive features to use largely depend on the
application. Different descriptive features have been used in handwriting recognition for
a number of different scripts and collections, both modern and historical. In this section,
the use of different descriptive features for handwriting recognition will be discussed.

2.4.1 Features for Handwriting Recognition

There are a number of different features that have been used for handwriting recognition.
For instance, Undersampled Bitmaps (UBs), which are based on the density of the nor-
malised number of black pixels within a block in an image, were used by |Oliveira et al.
(2006) for the recognition of handwritten digits. (Oliveira et al.| found UBs to perform
better than principal component analysis. UBs were also used by [Vamvakas et al.| (2008))
as the features for a system for optical character recognition of historical documents. A
similar set of features was used by [Vinciarelli et al.| (2004).

Geometric Moments (GMs), which are statistical global descriptors of the shape of an im-
age, were used by (Clocksin and Fernando| (2003) as features for classifying and recognising
scribe-written historical Syriac documents. Essentially, moments are weighted averages
of pixel intensities (or a function thereof), which is what allows for them to be used as
features for handwriting recognition. (Clocksin and Fernando| used the normalised central
moments as well as Hu’s (1962) second, third and fourth moments as features for whole
character images, overlapping and non-overlapping windows in a character image and a
polar transform (Tistarelli and Sandini, |1993) of a character image. Abd and Paschos
(2007) also made use of GMs as features for recognising Arabic characters; however, their
system was a hybrid system in which structural features, including the number of dots
and number of holes in an image, were also used.

Histograms of Oriented Gradients (HoGs) were used as features by [Howe et al.| (2009)
for the transcription of Latin manuscripts. HoGs describe the shape and appearance of
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objects in an image by the distribution of local gradients. The images used by Howe et al.
had been binarised and the gradients fell into eight directions, plus a grouping for areas
with zero gradient. The images were partitioned into grids and the HoGs were extracted
at three resolutions.

Marti and Bunke (2002) proposed nine geometric features, which are extracted from an
image using a sliding window. The first three of these features characterise the window
from a global point of view, while the other six are used to give more details about
the writing. These features have been used by |[Marti and Bunke| in a number of studies
involving handwriting recognition (Marti and Bunke, 2002; Marti, [2000; Marti and Bunke,
2001)). Among other uses of the feature set, Fischer et al. (2009) used it for the automatic
transcription of perfectly segmented medieval historical documents and [Indermiihle et al.
(2008) used it in a study comparing writer-specific training and HMM-adaptation.

Favata and Srikantan (1996) used the Gradient, Structural, Concavity (GSC) set of fea-
tures for a variety of problems, including digit recognition, printed character recognition
and handwritten character recognition. The GSC feature set detects gradient features at
the local level, structural features at the intermediate level and concavity features at the
global level, and uses them to classify and recognise images (Favata and Srikantan, {1996)).
The GSC feature set was also used by Awaidah and Mahmoud, (2009) for the recognition
of Arabic numerals.

Gabor Filters (GFs) have been used in character recognition to extract stroke information
from characters (Wang et al., 2005)). This is possible due to GF's being orientation-specific
(Chen et al., 2010) and, since the Gabor Filter is applied at multiple orientations, these
features capture information about the orientation of strokes in an image. GF-based
features have been shown to work well for automatic handwriting recognition since they
operate directly on greyscale images rather than requiring the images to be binarised
(Chen et all 2010). |Chen et al.|(2010) found GF-based features to perform better than
the GSC (Favata and Srikantan) 1996|) set of features and graph-based features when
recognising handwritten Arabic sub-words. Furthermore, Chen et al.| found that using
a combination of GF-based and GSC features further improved results. However, in a
study comparing structural features, Fourier descriptors, GF-based features and pixel rep-
resentation features, Haboubi et al.| (2009) found GF-based features to perform relatively
poorly compared to the other features when recognising Arabic text. The recognition
accuracy of the GF-based features was 19.3% while, for structural features, Fourier de-
scriptors and pixel representation features, it was 71.1%, 79.2% and 87.1% respectively. In
a study comparing GF-based features and gradient features for recognising handwritten
digits in two separate handwritten character databases and a printed Japanese charac-
ter database, Liu et al| (2005) found that the GF-based features performed better than
the gradient features for two of the three databases. In recognising handwritten Kan-
nada Kagunita, which are compound characters that are formed by combining vowels and
compounds in the Kannada script, Ragha and Sasikumar| (2010) used GFs to acquire a
directional version of an image. They extracted moment features from the directional
images and found that they provided an improvement on recognition accuracy compared
to the original images.

The Discrete Cosine Transform (DCT), related to the Fourier transform, was originally
proposed by |[Ahmed et al.| (1974) and expresses a function or signal in terms of a sum of
different cosine functions at different frequencies (Nguyen and Bui, 2008). In the original
paper on the DCT, |Ahmed et al. (1974) note that it can be used as features for pattern
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recognition, especially the first coefficients in which most of the variance in an image is
encoded. DCT coefficients have been used as features for handwriting recognition. For
instance, [Nguyen and Bui| (2008) used optimum cosine descriptors for multiple strokes in
order to recognise Vietnamese characters. |AlKhateeb et al.| (2008) used DCT coefficients
for the recognition of handwritten Arabic words. [AlKhateeb et al. found that with less
that 15 DCT coefficients their ANN did not converge and that additional coefficients
beyond the first 40 did not offer any improvement in results. DCT coefficients were
used by [Brakensiek and Rigoll (2001)) where they extracted the coefficients from a sliding
window and then used them for character and word recognition.

Rath and Manmathal (2003) extracted features from columns of words that had been
preprocessed to remove slant and skew and that did not contain ascenders or descenders
from other words. Both single value features and multi-value features were extracted
from each column of a word image. Single value features included the projection profile,
partial projection profiles, upper/lower word profiles, background-foreground transitions
and greyscale variance. Multi-value features included features from Gaussian smoothing
and Gaussian derivatives (Rath and Manmatha, 2003). This same set of features was
used by |Lavrenko et al.| (2004]) for word recognition of the text in the manuscripts from
the George Washington Collection at the United States Library of Congress.

Ruiz-Pinales and Lecolinet| (2000) used the Hough transform to derive local directional
features from zones in an image for cursive handwriting recognition. Structural features,
which relate to the structure of the image (Heutte et al., 1998), have been used for
recognising Arabic handwriting. Examples of these structural features include lines, dots
and loops (Lorigo and Govindaraju, [2006). Arabic characters, like characters in the
Bushman languages, contain letters that have the same bases but differ due to their
diacritics.

As this section has shown, there are a large variety of features that have been used for
handwriting recognition. The discussion above is, of course, in no way a complete dis-
cussion of all features, the number of which some have speculated ranges in the hundreds
(Arical 1998)). However, this section has given a general overview of some of the features
that have been used in the literature and provided a background to their use in handwrit-
ing recognition. It is difficult to perform a direct comparison among these features due
to the different ways that they have been used. However, in Chapter |5| the features that
are used in this study are analysed in greater detail in terms of their invariant properties.
Furthermore, this study provides a direct comparison of the use of several different fea-
tures to recognise handwriting while other variables remain fixed. Descriptive features,
such as the ones described above, are often used in training machine learning algorithms
so that they can be used to recognise unseen data. In the next section, machine learning
will be introduced and some of the ways that machine learning algorithms have been used
for handwriting recognition will be discussed.

2.5 Machine Learning

The field of machine learning has evolved from the research area of artificial intelligence
and the goal to make machines able to mimic the intelligence of humans (Réatsch, [2008)).
Machine learning specifically focuses on the ability of machines to “learn,” which is under-
stood as inductive inference (Ratsch, 2008). One can differentiate between unsupervised
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learning, in which an attempt is made to discover hidden irregularities, or supervised
learning in which labels are associated with training data for the purpose of classification
(Ratschl [2008)). This study focuses on supervised learning and therefore it is the only
type of learning discussed here.

Formally, the goal of supervised learning for classification or prediction is to find a func-
tional mapping f() between input data I, in the form of features describing a pattern,
and a class label C, such that (Ratsch, 2008):

C=f{) (2.1)
Examples of the features that describe a pattern were discussed in Section [2.4]

There are a number of classification or machine learning algorithms, including k-nearest
neighbour, linear discriminant analysis and decision trees (Ratsch) [2008)). However, for
handwriting recognition, Support Vector Machines, Artificial Neural Networks and Hid-
den Markov Models have proven to be popular and are the machine learning algorithms
investigated in this study. In this section, each of these machine learning algorithms will
be introduced and the ways in which they have been used for handwriting recognition will
be discussed.

2.5.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a Markov model in which the states of the model are
not directly observable, but rather can be observed through another stochastic process
(Rabiner, 1989). This is in contrast to regular Markov models in which states translate
to observable physical events. In this section, HMMs and their use in handwriting recog-
nition will be discussed. The discussion begins with a description of the discrete Markov
process and then a description of HMMs and their properties. Lastly, some examples of
where HMMs have been used for handwriting recognition will be discussed. This section
discusses HMMs from a relatively high level.

2.5.1.1 Discrete Markov Process

In a Markov model, a system can be described as being in any one of N states 57, Ss, ..., Sy
at any given time (Rabiner, 1989)). At a regularly-spaced time interval the system is able
to move from its current state to any other state in the model (including back to itself)
with some probability. The state that the system is in at time ¢ is given by ¢;. The
probability description of the current state being ¢; is dependent on a full specification of
the model and is given by (Rabiner} 1989):

Plg: = Sjlqi—1 = Si, qt—2 = Sh, ... (2.2)

However, in the case of the discrete, first-order Markov chain, this probability description
is only dependent on the current stage and previous stage such that:

Plg: = Sjlqi—1 = Sil. (2.3)

This allows for the creation of a set of state transition probabilities for a transition a;;
from S; to S, such that:

aij = Plg; = Sjlge—1 = Si] 1<4,j <N, (2.4)
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where the state transitions have the following properties:

N
> ay=1. (2.6)
j=1

An example of a Markov chain with 5 states as well as the transition probabilities between
the states is shown in Figure

22
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Figure 2.7: A Markov chain with 5 states and state transition probabilities between the
states

Given a model that consists of 3 states, a sequence of observations O = {Sy, S, S, S3, 52},
and a state transition matrix A where,

0.3 0.1 0.6
04 0.1 0.5

then the probability of the observation sequence given the model and state transition
probability matrix can be expressed and evaluated as:

P(O|Model) = P|[Sy, Sa, S1, S, Sa| Model]
= P[S1] - P[S2|S1] - P[S1]Sa] - P[S3]S1] - P[Sa|S3]
=T Q12 - A21 - Q13 * G432
=1-(0.1)(0.1)(0.6)(0.1)
=0.6 x 1073,

where 7; is the initial state probability and is given by:
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In the discussion above the states at each time step have been observed. The next section
will discuss HMMs in which the states at each observation are hidden.

2.5.1.2 Hidden Models

In a HMM, the states are not directly observable and a key issue is determining how
many states should be in the model and what the states correspond to (Rabiner, [1989).
In essence, a HMM is defined by a number of elements, which are illustrated in Figure
2.8 and are discussed below.

22 a33

Observation
Sequence

Figure 2.8: A Markov model

Model Properties A HMM is described by the following parameters:

e The number of states in the model: In a Markov model there are N states.
In a regular Markov model these states are directly observable, however, in a HMM
these states are not observable and only the observation sequence O is known. In
Figure [2.8] a Markov model is shown with a total of six states. In many cases, all
states are connected and reachable from every other state in what is known as an
ergodic model. However, there are some model designs, such as the left-to-right
model, in which every state is not reachable from every other state (Rabiner} |1989).

e The number of observation symbols per state: For each state in the HMM,
there are M distinct observation symbols (Rabiner, [1989)). The symbols correspond
to the output of the system being modelled. These observations make up the ob-
servation sequence O.

e The state transition probability distribution: There is a distribution A of
state transition probabilities between any pair of states S; and S; such that
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e The observation symbol probability distribution: In state j, there is a symbol
observation probability distribution B = b;(k) where:

bj(k) = Plug at t|lg; = S5;], 1<j<N,1<k<M, (2.9)
where v, at t is the symbol observation at time ¢.

e Initial state probability: There is an initial state probability m where:

Parameter Estimation The parameters of a HMM need to be estimated in order to
use the model for recognition. Given a set of training samples for a particular model,
one of the ways that the parameters of the model can be determined automatically is by
using a re-estimation procedure known as the Baum-Welch Re-Estimation (Young et al.,
2006). An explanation of the Baum-Welch Re-Estimation technique is beyond the scope
of this section, however, in essence it works by first making a rough guess as to what
the parameters might be and then re-estimating the parameters by computing posterior
estimates and maximum likelihood estimates (Baum et al., |1970).

Recognition Asisshown in Figure[2.§8] the output of a HMM is an observation sequence
O = 01,09, ...,0r. Using character recognition as an example, given a HMM M, for each
character C; and an observation sequence O, then:

P[O|Cy] = PO|M;). (2.11)

Using Equation [2.11] the probability of the observation sequence belonging to each char-
acter class can be calculated. This is commonly performed using the Viterbi algorithm
(Rabiner;, (1989)).

2.5.1.3 Use in Handwriting Recognition

HMDMs have been used for recognition of handwritten texts in a number of studies. They
have been used both for line and word recognition and one of the benefits that they
provide is that do no not require text lines to be segmented into words and for words to
be segmented into characters since the segmentation is a result of the Viterbi decoding
(Indermiihle et al., 2008). In this section some studies that have used HMMs will be
discussed. |Howe et al. (2009) used a HMM-based recogniser in a study in which they
investigated freeform character recognition in historical documents. [Su et al.| (2007)) made
use of a HMM-based recogniser for the transcription of handwritten Chinese text. [Su et al.
modeled 1965 Chinese character models and were able to achieve a maximum accuracy
rate of 55.58%. Marti and Bunke| (2002) made use of a HMM-based recogniser in a
study in which they investigated the effect of vocabulary size and statistical language
models on a cursive handwriting recognition system. [Indermiihle et al. (2008)) used a
HMM-based recogniser in a study in which they compared writer-specific training and
HMM-adaptation and found that the best strategy for building a handwriting recognition
system for a specific author was to take a general handwriting recognition system and
then adapt it to that specific author with a small amount of training data created by
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that author. |Fischer et al.| (2009) used a HMM-based recogniser for the recognition of
scribe-written medieval texts and achieved a word accuracy rate of 88.86%.

In a pilot study that took place as part of this research (see Chapter [3) a HMM-based
recogniser was created to recognise a subset of the Bushman texts in the Bleek and Lloyd
Collection (Williams and Suleman, 2011).

Zimmermann and Bunke| (2002)) and (Giinter and Bunke (2003)) have studied techniques for
optimising the parameters of a HMM for handwriting recognition and showed how these
optimisations could increase recognition accuracy by around 10% (Giinter and Bunke,
2003). HMMs were also used for text line recognition by [Toselli et al.| (2007) where they
compared the effort required to create perfect transcriptions of text. The comparison was
made between a fully automated system where errors were corrected post-recognition and
an interactive process whereby a human corrected recognition errors as they occurred and
it was found that correcting errors as they occurred led to a 22% reduction in the effort
required to produce error free transcriptions.

This section has discussed HMMs and their use for handwriting recognition. In the next
section, ANNs, which have also successfully been used for handwriting recognition will be
discussed.

2.5.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) attempt to mimic the biological neural networks that
exist in the human brain for very specific tasks and are usually implemented in software
or electronics (Haykin| [1998). ANNs have a number of beneficial properties such as:
they are non-linear; they have input-output mapping; they are adaptive; they have an
evidential response; they provide contextual information; they are fault tolerant; and they
are uniform in terms of design and analysis (Haykin, 1998).

In this section, ANNs will be discussed and the discussion is based on Haykin’s (1998)
book on Neural Networks. The discussion begins with an introduction to ANNs and how
they work followed by some examples of where ANNs have been used for handwriting
recognition.

2.5.2.1 The Neuron

A neuron is an information processing unit and is fundamental to the working of an
ANN (Haykin) [1998). A basic model of a neuron is shown in Figure and the various
components that make up a neuron are discussed below.

Input Signals The input signals x1, s, ..., x,, are the signals that are fed into the neu-
ron, k, which performs the summing function.

Synaptic Weights The synaptic weights are the strengths assigned to each of the
connections between the inputs and the neuron k. These synaptic weights have either
positive or negative values (Haykin) [1998). The synaptic connection from input ¢ to
neuron k is represented by Wi;.
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Figure 2.9: A neuron

The Bias The bias, by, is an externally applied value that has the effect of either
increasing or decreasing the net value of the summation of the synaptic weights in the
model (Haykin, [1998).

Summing Function There is a summing function that sums the products of each of
the input signals and their corresponding synaptic weights. The sum of these products,
ug is given by:

up =Y ;Wi (2.12)
j=1

The addition of the bias then produces the output of the summing function which is given
by v such that:

vk:bk—i—uk

= ZSL’jij, Ty — —|—1, Wk(] = bK (213)
7=0

Activation Function The activation function, ¢(-), limits the amplitude of the output
of a neuron (Haykin|, [1998)). The amplitude function is also commonly referred to as the
squashing function and it squashes the range of the output of the neuron to some finite
range, normally [-1;1] or [0;1] (Haykin| [1998). The output, y, of the neuron, k, can then
be described by:

Y = ©(vk) (2.14)

There are generally three basic types of activation functions that are used: the threshold
function, the piecewise function and the sigmoid function.

Activation functions usually have the range [0;41], though it is possible to adapt them
such that they have the range [-1;+1] (Haykin, |1998).
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2.5.2.2 Network Architectures

ANNs can have a specific architecture (structure) and there are, in general, three dif-
ferent network architectures: single-layer feed-forward networks, multi-layer feed-forward
networks and recurrent networks (Haykin| |1998). In this section, only multilayer ANNs
are discussed since it is the only architecture used in this study.

Multi-layer Feed-forward Networks Multi-layer feed-forward networks contain one
or more hidden layers of neurons that intervene between the input layer and the output
layer (Haykin, |1998). The addition of hidden layers allow for the extraction of higher-
order statistics and is especially useful when the input layer is large (Haykin, 1998). In a
multi-layer network, the input to each layer generally comes from the preceding layer and
the output from the final layer makes up the output of the whole network (Haykin, |1998)).
An example of a multi-layered feed-forward network is shown in Figure In the figure,
there are nine input nodes, a hidden layer consisting of four hidden neurons and an output
layer consisting of two neurons. The network in Figure is said to be fully connected
since every neuron in one layer is able to reach every neuron in its adjacent layer. In cases
where this is not true, the network is said to be partially connected (Haykin, [1998]).

2.5.2.3 Learning

Learning in a neural network takes place through the adjusting of the synaptic weights
and bias and the learning process in an ANN is essentially made up of the following series
of steps:

1. Stimulate: The ANN is stimulated by a series of inputs in its environment.

2. Adapt: The ANN undergoes a series of changes by adapting its free parameters
(synaptic weights and bias) based on the stimulation it has received.

3. Respond: The ANN should respond differently as a result of the stimulation and
subsequent adaptation (Haykin, [1998)).

The way in which the ANN adapts its free parameters is determined by the learning algo-
rithm used. There are five basic learning rules for ANNs and these are: error-correction
learning, memory-based learning, Hebbian learning, competitive learning and Boltzmann
learning (Haykin, 1998).

Supervised Learning in a Neural Network Supervised learning is the type of learn-
ing used in this study. Unsupervised learning is beyond the scope of this study and as
such is not discussed here. In supervised learning, the ANN is provided with the desired
output for a specific training vector. The difference between the actual output and the
desired output is then determined and the free parameters of the ANN are adjusted it-
eratively until the ANN is able to produce the correct output and can then be used for
recognition (Haykin| 1998). This type of learning is known as error-correction learning
and is depicted in Figure[2.11} The figure shows how both the “teacher” and the learning
system are presented with the same training vector and the “teacher” has knowledge of
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Figure 2.10: A multi-layered feed-forward network

what the desired output is. This desired output is compared to what the learning system
produced as output to produce an error signal that is used with the training vector to

adjust the network parameters.

2.5.2.4 Use in Handwriting Recognition

ANNSs have been used in a number of studies to recognise handwriting. For instance,
Ruiz-Pinales and Lecolinet (2000) used the Hough transform to compute local direc-
tional features for cursive handwriting recognition and then used a three-layered ANN for
recognition. Ragha and Sasikumar (2010) used a multi-layer ANN to recognise Kannada
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Figure 2.11: Supervised learning in a ANN

Kagunita characters. Singh et al. (2009) used an ANN to recognise handwritten Hindi
characters from which they had extracted gradient features using a Sobel operator.

A Recurrent Neural Network (RNN), which is a network architecture in which there is
at least one feedback loop (Haykin) 1998)), was used by (Graves et al.| (2009) to recognise
texts in the IAM database and found to perform significantly better than a state-of-the
art HMM by achieving a recognition rate of 74.1%, which was a relative error reduction in
excess of 40% in some cases. Espana-Boquera et al.| (2011]) used a hybrid ANN-HMM for
recognising the same texts in the IAM database under the same set of test conditions and,
interestingly, found the two systems to perform exactly the same despite the differences
between the RNN and hybrid ANN-HMM model architectures. A hybrid ANN-HMM
system was also used by Tay et al.| (2003) for recognising handwritten cursive French
words.

Fischer et al. (2009) created a system for recognising handwritten medieval manuscripts.
Their system made use of a bi-directional long short-term memory (BLSTM) ANN, which
is a special case of a RNN, as well as HMMs for each letter, which were then concatenated
to build HMMs for words. The ANN contained two hidden layers and [Fischer et al.| et
al found the ANN-based classifier to perform better than the HMM-based classifier with
each classifier achieving word accuracy rates of 93.32% and 88.69% respectively. The
same BLSTM ANN was used by [Frinken et al. (2009) in a study in which they analysed
a combination of classifiers for handwriting recognition.

Frinken and Bunke|(2010) created a semi-supervised handwriting recognition system based
on the BLSTM ANN. The system was trained with labelled data and then used to recog-
nise unlabelled data. The recognised data was then sorted by recognition confidence
and the data with the highest levels of confidence were used to retrain the ANN. A se-
ries of experiments showed how this semi-supervised approach significantly improved the
performance of the recognition system.

This section has discussed ANNs and their use in handwriting recognition. In the next
section, Support Vector Machines are discussed.
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2.5.3 Support Vector Machines

The Support Vector Machine (SVM) was proposed by (Cortes and Vapnik| (1995) as a
machine learning technique for a 2-group classification problem. The goal of a Support
Vector Machine (SVM) is to find hyper-planes capable of separating points in hyperspace
(Cristianini and Shawe-Taylor, 2000). In this section SVMs will be introduced, beginning
with a description of SVMs and then a discussion of some studies that have used SVMs
for handwriting recognition.

Given a set of labelled data (z;,;),i = 1,2,...,n, where x, € R" and y € {1, —1}", the z;
are mapped to a higher dimensional space, which is potentially infinite, by the function
¢ and, for a linear SVM, the SVM attempts to find a linear separating hyper-plane in
this new space that maximises the space between different classes (Hsu et al., [2003)). An
example of this is shown in Figure [2.12]

Optimal Hyperplane

Figure 2.12: Optimal hyperplane that maximises the space between classes

SVMs are traditionally linear classifiers, however, non-linear classifiers can be created
(Boser et al.l 1992).

There are four kernel functions which are popularly used (Hsu et al., 2003), where v, r
and d are the parameters of the kernel.

i . ) = T
Linear Kernel: K(z;,z;) = z; ;.

Polynomial Kernel: K (z;,z;) = y(z7z; + )", 7 > 0.

Radial Basis Function (RBF) Kernel: K (z;,z;) = exp(—|| z; — z; ||*), v > 0.

Sigmoid Kernel: K (z;,x;) = tanh(yaxlz; + 7).

The use of SVMs for classification involves data scaling, model selection, training and
testing.
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2.5.3.1 Multi-Class Support Vector Machines

SVMs were originally proposed for 2-class classification, however, they can be used for
multi-class classification where the number of classes exceeds 2. There are generally two
approaches to multi-class classification. The first approach is known as the “one-vs-all”
approach and involves constructing N support vector machines for the N classes and then

classifying one class against the other N —1 classes (Abd and Paschos, 2007). The second
N(N —1)

approach, known as the “one-vs-one” approach, involves constructing ————= support

vector machines in order to create 2-class classifiers for every pair of different classes.

2.5.3.2 Use in Handwriting Recognition

In proposing a methodology for Optical Character Recognition (OCR) for historical docu-
ments, Vamvakas et al. (2008) made use of a SVM with a RBF kernel. The same SVM and
kernel were used by |Clocksin and Fernando (2003) to recognise scribe-written Syriac text
and by |Chen et al. (2010) for Arabic sub-word recognition. Similarly, Abd and Paschos
(2007) also used a SVM with a RBF kernel to recognise Arabic characters. A SVM
with a linear kernel was used by [Shrivastava and Gharde| (2010)) to recognise handwritten
Devanagari digits.

Nguyen and Bui| (2008) used a SVM with a RBF kernel as well as an ANN to recognise
Vietnamese characters. Nguyen and Bui| found the RBF SVM-based classifier to perform
better than the ANN-based classifier because it minimised the structural risk. Nguyen
and Bui used a two layer recognition system in which the first layer involved recognising
characters without diacritics, while the second layer involved recognising the diacritics.

Feng and Manmatha| (2005)) performed an investigation comparing SVMs, maximum en-
tropy models and naive Bayes learning algorithms and their applicability to the publicly
available George Washington collection of letters. They compared their results to a study
on the application of a HMM to the same dataset (Lavrenko et al., [2004)). [Feng and
Manmatha| found that naive Bayes outperformed the SVM, maximum entropy models
and HMM, with a maximum accuracy of 64% while the others scored 52.8%, 52.3% and
58.6% respectively. Even though the naive Bayes outperformed the SVM classifier, SVM
classifiers still remain a popular machine learning algorithm and for that reason are in-
cluded in this study. The naive Bayes is not included for reasons related to scope, but
future work could investigate the use of other classifiers for recognising the Bushman
texts.

In a pilot study for this research, a SVM with a RBF kernel was used to recognise
characters in a neatly rewritten version of a Bushman story from the Bleek and Lloyd
Collection and a recognition accuracy of approximately 80% was achieved (Williams|,
2010).

This section has briefly introduced SVMs and their use in handwriting recognition. The
studies cited have shown that the RBF kernel is a popular choice for SVMs. A possible
reason for this is that the RBF is more discriminant than the linear kernel (Chen et al.|
2010) but has fewer parameters than the polynomial kernel. A RBF kernel requires that
the kernel parameter v and penalty C' be specified, for which the optimal values can easily
be found using a grid search (Chang and Lin, 2001). For other kernels that have more
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parameters, a grid search is not appropriate and other methods need to be employed in
order to determine the parameter values.

In handwriting recognition, machine learning algorithms are trained to recognise unseen
data. In this section, three popular machine learning algorithms have been discussed,
including a theoretical description and their use in handwriting recognition in the liter-
ature. It was shown that the different machine learning algorithms have been used for
studies in recognising a wide variety of languages and scripts. The use of HMMs, ANNs
and SVMs for the automatic recognition of Bushman texts is described in Chapter [0} In
the next section, statistical language models, which commonly form part of a handwriting
recognition system, are discussed.

2.6 N-Gram Language Models

In natural language the distribution of words and characters is not uniform and, as such,
statistical information about these distributions can be used to improve handwriting
recognition results and correct errors (Marti, [2000). In order to create a language model,
assumptions need to be made about the statistical nature of a language or language char-
acteristics can be extracted from representative samples of the language using automatic
techniques (Marti, 2000).

An N-gram language model is a statistical language model in which the probability of a
unit is based on the previous N — 1 units that occurred before it (Jurafsky and Martin,
2008). For instance, in the phrase, the dog ..., the word barked is likely to have a higher
probability of following the sentence than the word meowed and this can be determined
based on an N-gram language model that models the probability of the words barked and
meowed coming after the word dog. For a unigram language model, the probability of a

unit occurring is simply based on the actual distribution of units in the language (Marti,
2000).

Formally, given a sequence of units, uq, us, us, ..., u,_1, u, that can also be represented as
u?, the probability of them occurring can be represented by:

P(ubu?vufﬂa"-;un—laun)a (215)
and using the Chain Rule of Probability, this can then be calculated by:
P(u?) = P(uy) P(ug|uy ) P(us|u?)... P(ty_1|ul ™) P, [u? ). (2.16)

Because calculating the probability of a unit occurring based on all units that occurred
before it is complex for a long sequence of words, an N-gram language model calculates
the approximate probability of a unit occurring, based only on the N — 1 units that occur
before it (Jurafsky and Martin, 2008). For instance, in a bigram language model the
probability of a word occurring can be approximated by,

P(uy) = P(up|tn-1). (2.17)
This approximate conditional probability can be generalised for any NV, such that

P(un|uy™) ~ P(uglup ). (2.18)
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A shortcoming with N-Gram language models is that no training corpus can ever be
general enough to accurately represent an entire language, resulting in zero probabilities
for certain occurrences of words (Jurafsky and Martin, [2008)). In order to correct this,
a technique called smoothing is used to replace zero probabilities with non-zero values
(Jurafsky and Martin, |2008). Another technique for improving N-gram language models
when there is not enough training data is called back-off and involves using a lower order
N-gram in place of higher order N-grams (Jurafsky and Martin, 2008]).

2.6.0.3 Use in Handwriting Recognition

N-gram language models have been used in handwriting recognition to improve recognition
accuracy by incorporating statistical information about the language being recognised
into the classifier. |Vinciarelli et al.| (2004)) tested unigram, bigram and trigram statistical
language models on three different English datasets in order to see the extent to which
they were able to improve recognition results. For the Cambridge dataset, which was
written by a single person, |Vinciarelli et al. showed that unigrams, bigrams and trigrams
performed equally well in improving recognition and accuracy, but noted that the N-grams
were only useful in recognising short functional words. For the IAM dataset, which was
written by multiple authors, it was shown that an increase in the order of the language
model produced a significant improvement. Lastly, for the Reuters dataset, [Vinciarelli
et al. showed that bigrams and trigrams performed better than unigrams, with bigrams
performing marginally better than trigrams.

Marti and Bunke (2001) demonstrated the influence that the size of a vocabulary has
on the effect of a N-gram language model. Marti and Bunke showed that for a small
vocabulary, a bigram language model improved accuracy by 2.74% from 78.53% to 81.27%.
However, on a larger vocabulary that contained 7719 words, the use of a bigram language
model improved accuracy from 40.47% to 60.05%.

Brakensiek and Rigoll| (2001) note the benefits of character-based N-gram language models
for an improvement in recognition of unseen vocabularies. |Brakensiek and Rigoll| showed
how the use of 5-gram and 7-gram character language models decreased relative error
rates by 70% for degraded documents and 50% for documents in a handwritten database.
In another study, John F. Pitrelli (2001)) demonstrated how the use of a unigram language
model corrected 45% of the errors made by a system which made use of a character-based
language model. Lastly, when recognising words in letters from the George Washington
Collection, Lavrenko et al.| (2004) showed how a unigram word language model reduced
word error rates from 53% to 45% and how a bigram word language model further reduced
word error rates to 41%.

In this research, a N-gram language model is built for the Bushman languages that appear
in the Bleek and Lloyd Collection and then evaluated in order to determine the extent to
which it can improve recogniser performance.

2.7 Discussion

This chapter has provided a background to this study. The discussion began with an
introduction to cultural heritage preservation and its goals of identifying, conserving, pro-
tecting, presenting and ensuring the transmission of cultural heritage materials to future
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generations. Transcriptions of handwritten documents assist in fulfilling these goals by
ensuring that the documents’ contents are available, even if the physical artefacts them-
selves no longer exist. However, manual transcription is a tedious and time consuming
task and automatic transcription can provide an alternative means of achieving the same
result. This chapter has discussed some of the techniques that can be used for automatic
transcription and has shown how widely they vary. Furthermore, it has suggested that
it is not always obvious which techniques may be the most appropriate when creating a
handwriting recognition system and that the choice of techniques depends on a number
of factors, such as the nature of the documents that are to be recognised. This chapter
has also discussed some of the core concepts related to handwriting recognition including
the use of corpora for recognition, segmentation, descriptive features, machine learning
algorithms and statistical language models and, in doing so, has provided a background
to the vast amount of research done in this area and the research presented in this thesis.
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Chapter 3

Pilot Studies

Two pilot studies were conducted at an early stage of this study in order to investigate
the feasibility of this research. The first pilot study involved the recognition of characters
in a neatly re-written version of a Bushman story (Williams, 2010). The second pilot
study involved the recognition of a small subset of text lines of Bushman text using a
Hidden Markov Model (HMM) (Williams and Suleman|, [2011). In this chapter, these two
pilot studies are briefly discussed.

3.1 Pilot Study I: Recognition of Neatly Rewritten
Characters

The purpose of the first pilot study was to provide an initial investigation into the feasibil-
ity of the study. This pilot study focused on the automatic recognition of a limited set of
characters from a |xam Bushman story. The recognition was performed using a Support
Vector Machine (SVM) (Cortes and Vapnik, [1995)) to classify the characters. The text
that was recognised was a neatly rewritten version of the first page of A Story of the
Girl who made the Milky Way (Figure B.1]), which appears in one of Lucy Lloyd’s |xam
notebooks. Two authors participated in this study with the purpose of evaluating the
ability to recognise the handwriting of multiple authors. On this notebook page there are
39 different character classes, which are shown in Figure [3.2

Authors created both training and testing data. Author 1 provided 10 samples of each
character in the story as training data and author 2 provided 3 samples of each character
in the story as training data. Each author then neatly wrote out the story, which was
then used as testing data for recognition. An example of the story in English, |[xam and
classified into character classes is shown in Figure [3.3|

3.1.1 Implementation

The implementation of this pilot study involved line, word and character segmentation,
feature extraction and the training of the SVM. The pages of text were segmented into
words, lines and characters using Connected Component (CC) analysis (Kong and Rosen-
feld} [1996)). In cases where there were segmentation errors, they were manually corrected
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Figure 3.1: The notebook page showing A Story of the Girl who made the Milky Way

or the pages of text were digitally altered until they could be perfectly segmented using
the automatic techniques.

Each character was normalised by resizing it to a 32x32 pixel block, which was then
thresholded. A 4x4 pixel sliding window was used to calculate Undersampled Bitmaps
(UBs) (see Section and normalised over the range [0-1].

A SVM with a Radial Basis Function (RBF) kernel was trained using the features from
each training sample provided by the authors. Three recognition models were trained:
one for each author individually and one for the two authors combined. The three models
had the following properties:

1. Model A1: Author 1 - 388 samples.
2. Model A2: Author 2 - 117 samples.

3. Model A1.2: Authors 1 & 2 - 505 samples.

3.1.2 Evaluation

The pilot recognition system was evaluated using the testing data, which was a neatly
rewritten version of the story by each author and which had been excluded from the
training set. Cross validation was not used in this pilot study since each author specifically
created testing data for the experiment; however, cross validation was used in all of the
other experiments described in this dissertation. The testing data was automatically
segmented and features were extracted for each character. These characters were then
recognised for each of the six (3 x 2) author/model combinations below:
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Figure 3.2: Characters that appear in A Story of the Girl who made the Milky Way
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English xam Classification
] T ;
My mother said to me NSTia#kakka-k© 33312474 3418 6181843918 10
L Ly ' o
that the girl arose ti e 'kuita kkoan 2614 11 35182716266 181822121
L 9} Yo
she put thin hah tkite 26131619 13121 26181626 11
her hands in the wood ya h¥ *%9-tka alh 324 134 341843926184 129
Y IS} jLion et
ashes, she threw 'kui, hun ||[kau-ki 35182815 132720 361837391814
4 Y
up the wood ashes into [kaiten !'kui au 36183826920 35182815 129
the sky, she said tgwast nhatl +k ¥k 35123023129 13120 3418618
%) vy R
to the wood ashes ka !'kui !'kui'e 184 35182815 35182814 11
c L
here, they shall —2‘1', hi kkwan ss& 3 1317 181830619 252510
<
become the milky way Ik83-ke¥ ddi ' kS 36182443918920 8816 351823

Figure 3.3: English, |xam, and transcribed/classified versions of A Story of the Girl who
made the Milky Way

e Story by Author 1 and Model Al.

Story by Author 2 and Model Al.

Story by Author 1 and Model A2.

Story by Author 2 and Model A2.

Story by Author 1 and Model A1_2.

Story by Author 2 and Model A1_2.

Table [3.1] shows the recognition accuracy as defined by Equation [6.1] and Figure [3.4] shows
the recognition output of the page that achieved the highest accuracy, alongside the
correct transcription of the same page. Figure [3.4] shows sample character images since

this pilot study was conducted before the Bushman text encoding scheme described in
Chapter [4 had been developed.

Table 3.1: Transcription accuracy for first pilot study
Model A1 Model A2 Model A1 2
Author 1 77.17% 28.35% 79.53%
Author 2 36.22% 62.99% 71.65%

The results show that using an author’s training set to transcribe that author’s hand-
writing can be done with a satisfactory level of accuracy - approximately 77% and 63%
for authors 1 and 2 respectively. Similarly, the results show that using one author’s
training set to transcribe another author’s handwriting results in poor levels of accu-
racy. Transcribing the handwriting of author 2 using author 1’s training set only led to
approximately 36% accuracy. However, by augmenting the relatively large training set
of author 1 with the relatively small training set of author 2, the accuracy increased to
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Figure 3.4: Comparison of most accurate transcription with correct transcription for first
pilot study

approximately 72%. This finding is in line with the findings of |Indermiihle et al.| (2008)),
in which HMMs were used to transcribe handwritten historical documents and where it
was shown that augmenting a general training set with author specific training samples
improved accuracy. The highest accuracy - approximately 80% - was achieved using the
augmented training set of both authors. A possible reason for this is that the augmented
training set accounts for more variability due to the different writing styles of the authors.

This pilot study showed the feasibility of the recognition of Bushman characters using a
SVM with maximum recognition accuracies of approximately 80% and 72% for authors 1
and 2 respectively. This pilot study, however, made use of a neatly re-written version of a
Bushman story with a limited character set, thereby limiting the generalisation of these
findings. Nonetheless, the findings still suggested that it was possible to automatically
distinguish among the different character classes, even with their complex diacritics.

3.2 Pilot Study II: Text Line Recognition Using a
Hidden Markov Model

The first pilot study recognised characters in a neatly rewritten version of one of the
Bushman stories and achieved a best recognition accuracy of approximately 80%. The
shortcoming in the initial pilot study was that it made use of user created data and only
used a limited character set. This second pilot study was an attempt to overcome some
of these shortcomings by investigating the feasibility of text line recognition of real data
using a HMM.
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3.2.1 Implementation

The system included a preprocessing step in which the pages in the Bleek and Lloyd
Collection were binarised and the lines of text in the pages segmented using a horizontal
projection profile based on the number of foreground-background transitions (Marti and
Bunke, 2001). The segmented text lines were transcribed using the custom tool built
for capturing Bushman text and encoded using the custom TEX-based encoding (see
Chapter {4)).

A recognition system based on a left-to-right continuous HMM with 12 emitting states
and 16 Gaussian components was built. HMMs were trained for each of the charac-
ter/diacritic combinations and for the characters ignoring diacritics and then combined
to create word level models. Features were extracted using a sliding window approach
where 9 geometrical features (Marti and Bunke, 2001) (see section and the first 3
coefficients (excluding the zero-frequency component) of the Discrete Cosine Transform
(DCT) (Ahmed et al., |1974) (see Section were extracted for every window. The
system was tested using each of these features independently as well as in combination.

3.2.2 Evaluation

74 pages from one of the notebooks in the Bleek and Lloyd Collection were used in this
pilot study. The pages were automatically thresholded and then segmented into 995
separate text lines that contained a total of 336 different character/diacritic combination
classes. Of these 995 lines, 296 were excluded from the training and testing phases due
to noise or bad segmentation and one sample was excluded because it could not be fully
represented using the IXTEX encoding used in this study. The system was evaluated using
10-fold cross validation (see Section using the remaining 698 samples, which were
randomly allocated to 10 folds. The results reported are the averages of the results of the
10 folds.

Three experiments were conducted as part of the evaluation. In the first experiment,
HMDMs were trained for each character/diacritic combination and character/diacritic com-
binations were recognised. In the second experiment HMMs were trained for each charac-
ter/diacritic combination and diacritics were ignored during recognition, i.e. if the base
characters were correctly recognised then it was marked as correct regardless of any di-
acritics. In the third experiment, HMMs were trained using transcriptions that ignored
diacritics and recognition was also performed ignoring diacritics.

The recognition accuracies, as defined by Equation (which is not a percentage), are
shown in Figure 3.5l As can be seen from the figure, the recognition accuracy for the
character /diacritic combinations in Experiment 1 was the lowest, averaging at 43.84. It is
speculated that the main reason for this is the large number of combinations of characters
and diacritics that are possible and the lack of training samples for many of the models.
The results from Experiment 2 showed that by ignoring the diacritics in the recognition
process, the recognition accuracy increased by about 10. Lastly, the recognition accuracy
for Experiment 3 was 49.69, thereby demonstrating that ignoring diacritics during training
and recognition only leads to a small improvement in recognition accuracy. This finding
suggests that the use of a multilayer classifier may not be viable since, even if the first
layer ignored diacritics during recognition, the input to the second layer, which would be
responsible for differentiating among diacritics, would be of poor quality.
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Figure 3.5: Results of the second pilot study for Bushman text line recognition

This second pilot study attempted to improve on the first by working with data from the
notebooks instead of user created data. These texts contain more complex diacritics than
the first pilot study, which makes the recognition process difficult due to the number of
character/diacritic combinations that exist. The effect of this complex representation is
that, for the majority of cases, there are fewer than 3 training samples. It was shown that
an improvement could be achieved when diacritics were ignored. However, the diacritics
play an important role in the Bushman languages, thus making this an infeasible approach.

The findings of these pilot studies showed that the recognition of Bushman texts is possi-
ble. However, they also suggested that additional techniques could be employed in order
to improve recognition accuracy.
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Chapter 4

Corpus Creation

In Chapter [2| the background to this study was discussed and, included in this discussion,
was a description of some corpora that exist for handwriting recognition. A corpus for
handwriting recognition usually contains a number of handwriting samples and their asso-
ciated transcription and is used both for supervised learning, in which models are trained
using the handwriting samples and their associated transcriptions, as well as for evaluat-
ing accuracy in which the recognition output is compared to the known transcriptions of
text. Corpora already exist for many well-understood and well-studied languages, some
of which have already been discussed in Chapter 2 However, in the case of historical
texts, it is often necessary to create new corpora since suitable corpora for recognition
usually do not exist.

This chapter describes the creation of a handwriting recognition corpus for Bushman
languages. The corpus created represents a gold standard of transcriptions of the Bushman
texts that appear in the Bleek and Lloyd Collection. In this context, a gold standard refers
to the best available set of transcriptions, which, in an absolute sense, may or may not be
a true representation of the text. This chapter begins by describing the custom method
that was developed as part of this study to allow for the Bushman text to be represented
electronically. This is followed by the description of a tool that was created to allow for
pages of Bushman text to be segmented and transcribed and that was used in a series of
workshops that were run as part of this study in which the corpus was created.

4.1 Bushman Text Representation

The Bushman text is complex due to the diacritics that appear above, below, and above
and below characters and that can span multiple characters. Since the script used to
represent the Bushman text cannot be represented using Unicode, it was necessary to
create a custom solution. This custom solution involved the use of EXTEX and the TIPA
package (Rei, 1996)), which allows for the processing of International Phonetic Alphabet
(IPA) symbols in IXTEX. The TIPA package does not support many of the diacritics that
appear in the Bushman text by default but does allow for the creation of custom macros
that can be used to create nested and stacked diacritics that are similar to those found
in the Bushman text. Thus an encoding was developed that took advantage of this fact.

In the encoding that was developed, each Bushman diacritic is represented using a back-
slash (\) followed by a command that specifies the diacritic. For example, \uline{}
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represents a U-shape with a line above it. In order to add diacritics to characters,
the characters are enclosed within the braces of the diacritic command. For example,
\uline{a} would produce a. It is possible to attach a diacritic to multiple charac-
ters by enclosing multiple characters within the braces of the diacritic command, as in
\uline{ba}. The encoding also allows for diacritics so be Cstacked and nested, as can be

seen in \cover{\onedot{\twodots{a}}} which produces .

Using the custom macros the Bushman text can be encoded and an approximate visual
representation, which is limited by the drawing capabilities of the TIPA package, can
be created. Future work includes the possibility of creating a custom font for Bushman
script. These encodings are not commutative and the meaning and visualisation depends
on the order of the encoding operators, i.e. \dialine{\onedot{al}} produces a whereas
\onedot{\dialine{a}} produces a. This non-commutative nature is important since it
affects the order in which the diacritics appear, which is desirable from a preservation
perspective. It is possible that the same diacritics appear in the text in different stacking
orders, thus suggesting that the stack order potentially affects the meanings of the words
themselves.

Table shows how Bushman text can be encoded using ETEX and the custom TIPA
macros and also shows the approximate visual representation. The full set of the encodings

of all supported Bushman diacritics and their approximate visualisations are provided in
Appendix [A]

Table 4.1: Encoding and visual representation of Bushman text using custom TIPA
Macros

Text Line Encoding Visual Representation
— = — lga\dialine{u} \twodptsu{e} . | -
Jpovee 5 A hviasi Aaeed | \texthash{}ku\barblinet{a}n lgau ¢ #kuan katiki

\ybelow{k}a\uline{u}k\u{i}
. / 'k\uline{u} \twodotsu{i} . .
ool & ade s [dei-gas.| y\dialine{a}ke\u{n} kit i yakeni !kui-ya .
'ku\uline{i}-y\uline{a} .

'k\barbelow{\dialine{o}

1] 0= ,%‘:{ T \circbtwodotsa{a}\onedot{n}}
g Jgreree <% -1\ xebelow{k}\uline{uo}nn\u{i}

Nuu{u}h\uline{e} .

v ! v i~ '
'koén k tionni lihe .
- X

4.2 A Specialised Tool for Creating the Corpus

A specialised tool called x64’x08, which means “to write” in the |xam Bushman language,
was developed to create a corpus of Bushman texts. x6d’xoa is an AJAX (Mahemoft,
2006) Web-based tool that allows multiple users to segment pages and transcribe text
by making use of automatic algorithms as well as manual user interaction. The x64’x04
workflow begins with text selection in which Bushman text is selected and this is followed
by preprocessing of the Bushman text. Segmentation of lines and words then takes place
and, finally, text lines are transcribed. An overview of the steps involved when using
x0a’x04 is shown in Figure 4.1l and described in the sections below.
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Figure 4.1: Steps involved during corpus creation

In addition to the core functionality of segmenting and transcribing text, xo0d’xoa also
acts as a job management and monitoring tool. Each user has an account on the system
and x0a’'x0a randomly assigns segmentation and transcription jobs to users and keeps
track of the jobs completed by each user. By keeping track of the jobs completed by each
user, the system makes it possible to evaluate each user in terms of their efficiency and
the quality of the data they produce. Furthermore, users are provided with feedback on
the amount of work that they have done relative to other users, which could possibly act
as a motivating factor.

x6a’x04 will be discussed in detail in this section, starting with a description of how the
text is selected and the preprocessing steps that take place and then a description of
the line and word segmentation processes. Thereafter, the component that allows for
Bushman text to be transcribed is discussed.

4.2.1 Text Selection

In many cases, notebook pages in the Bleek and Lloyd Collection contain both English
text and Bushman text alongside each other. Since the focus of this study is on the
creation of a corpus of Bushman text, the first step is to select the Bushman text using
a cropping tool. As can be seen in Figure there is a clear separation between the
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English text, which appears on the left side of the page and the Bushman text, which
appears on the right side of the page. This arrangement of English and Bushman text
is generally consistent across the collection and the writers used in this study, though
there are some exceptions. The user is able to use a rectangular selection tool to draw a
box around the Bushman text, as can be seen in Figure which is then automatically
cropped. In cases where the page contains no Bushman text, the user is able to click the
No Segmentation button and the page will be ignored.

Info

Welcome to the segmentation
part of the workshop. During
this part of the workshop you
will assist in checking and
correcting the output of
automatic page segmentation

Menu

Home

MNew Segmentation Job
MNew Transcription Job
Logout

To start, please look at the
page on your left, identify the
Bushman text on it and draw a
rectange around it. Try to get
as much Bushman text as
possible without getting
English text. Don't worry
though if you do get English
text, we can always fix it later!

-

e s
L, few Metee A
=

No Segmentation

Figure 4.2: Interface showing how Bushman text is selected and separated from English
text

4.2.2 Thresholding

Thresholding is an image processing technique in which a colour or greyscale image is
converted to a binary image consisting of only black and white pixels. After the Bushman
text has been selected and cropped, thresholding of the cropped area takes place. The
thresholding used in this study is based on a local adaptive approach (Sezgin and Sankur,
using a sliding window. In this approach, the centre pixel for each window placement
is considered and compared to the mean for the window. If the centre pixel is greater
than the mean by a bias value then it is considered to belong to the foreground, otherwise
it is considered to belong to the background. Thresholding of the image requires no input
from the user. Figure 4.3 shows an example of what thresholded text looks like.

4.2.3 Segmentation

Once a page of Bushman text has been preprocessed by cropping and thresholding it,
the next step in the corpus creation workflow involves segmenting the page. Pages of
Bushman text are first segmented into individual lines, which then have their slant cor-
rected and can be edited by the user. Once this is completed the individual text lines are
segmented into words. Both the line segmentation and the word segmentation operations
are semi-automatic in that they make use of automatic algorithms to identify candidate
segmentation points. These candidate segmentation points can either be approved by the
user with no modification or the user can make changes by adding, removing and moving
segmentation points.
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Figure 4.3: Interface showing thresholded Bushman text

4.2.3.1 Line Segmentation

Line segmentation involves segmenting a page into its individual text lines. To do this, an
approach based on the horizontal projection profile is used (Marti and Bunke, 2001)).
In this approach, each horizontal pixel-row is analysed to determine the number of
foreground-background transitions and a horizontal projection profile is created for the
image. The projection profile models the distribution of pixels along each row of the
image, where rows that contain text have relatively high values in the projection profile
and those that contain no text have relatively low or zero values in the projection profile.
In the projection profile, minima represent the spaces between individual lines; however,
noise and the spaces between diacritics and their base characters can create false minima.
For this reason, the projection profile is smoothed using a Gaussian filter. An example
of a projection profile before and after Gaussian smoothing is shown in Figure [4.4] which
clearly shows how smoothing eliminates false minima.

Minima in the smoothed projection profile represent the candidate spaces between lines.
However, before the page is segmented into lines, the candidates are presented to the user,
who is given the option to move the candidate line segmentation locations by dragging
them with the mouse and add or delete candidate line segmentation locations. Figure
shows an example of the interface when the candidate line segmentation locations are
automatically identified by the line segmentation algorithm.

4.2.3.2 Slant Correction

Different authors have different styles of writing and one source of variation among differ-
ent authors comes from the angle of slant with which they write. Text normalisation can
be used to minimise the variation among different authors and allows for a handwriting
recognition system that is more robust when recognising the handwriting of multiple au-
thors. One technique for text normalisation is slant correction, in which the slant of text
is corrected so that the text appears upright. Slant correction is performed by calculating
the slant of the text in a text line and then shearing the text line to correct the slant.
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Figure 4.4: Projection profile for line segmentation before and after Gaussian smoothing
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clicking on it

‘When you are done and if you
are satisfied with all of the
segmentation points, click
"Segment Lines!" to continue.

Figure 4.5: Interface allowing users to view line segmentation candidates and change them

The technique used in this study for slant correction is the same as that used by
(2004)) and is based on a vertical projection profile technique.

In a vertical projection profile technique, the image is sheared at a number of discrete an-
gles and the vertical projection profile at each sheared angle is calculated. The projection
profile that gives the most variation is considered as being the straightened image since
less slant in an image leads to more variation in the vertical projection profile, largely as
a result of the effect of the ascenders and descenders (Pastor et al.; 2004)). Thus, once the
angle at which the most variation in the projection profile has been calculated, the image
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can be sheared and the slant corrected. Figure 4.6/ shows an example of a text line before
and after having its slant corrected.

alT iy T A lbigy T

(a) Original text line (b) Slant corrected text line

Figure 4.6: A text line and its slant corrected version

4.2.3.3 Line Editing

Once the individual text lines have been segmented and the slant has been corrected,
they are presented to the user for further editing before word segmentation takes place.
The user is given the option to manually edit each of the individual lines by either fur-
ther cropping it, re-applying the slant correction operation if they feel that the result of
the previous slant correction operation was unsatisfactory or even deleting the text line
entirely.

4.2.4 Word Segmentation

Once the user is satisfied with the individual text lines, the next step involves word
segmentation. Word segmentation is performed on each of the individual text lines seg-
mented in the previous step and the word segmentation algorithm used in this study is
based on the distances between CCs (Makridis et al., 2007). The first step in segmenting
a text line into its individual words involves identifying and labelling the CCs (Shapiro
and Stockman, 2001). CCs are then sorted by their z-coordinates and the horizontal
distances between every pair of adjacent CCs is calculated. When CCs overlap vertically,
the distance between them is set to 0. For instance, this can occur when diacritics appear
above a character but do not form part of the same CC. If the distance D between two
adjacent CCs C; and Cj4 is greater than the threshold 7" then C; and C;,; are considered
as belonging to two separate words and the central point between them is marked as a
candidate word segmentation point; otherwise, C; and C;,, are considered as belonging
to the same word. The threshold 7' is calculated as:

S (Distance(C;, Ciy1))/2
n

T = , (4.1)
where n is the number of CCs in the image. This function for calculating the value of T’
was empirically found to produce good results. As was the case with line segmentation,
the candidate segmentation points are presented to the user and the user has the option
to move segmentation points as well as add or delete segmentation points. Once the user
is satisfied with the segmentation points, each line will be segmented into its individual
words. Figure shows an example of the word segmentation interface.
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Figure 4.7: Interface allowing users to view word segmentation candidates and change
them

4.2.5 Transcription

The text that appears in the notebooks needs to be captured in a machine readable format,
which is described in Section [£.1] in order for future processing to take place. x0&d’x0a
supports transcription through a Web interface, which is shown in Figure [£.8] There are
several components that make up this interface. The first of these is the text line that
is to be transcribed, which appears at the top of the interface and is randomly selected
from all the text lines in the corpus. Below the image of the line to be transcribed is
a text input box that allows the user to type in the characters that appear in the text
line. In order to add diacritics, the user highlights the text to which the diacritics are to
be added in the text input box, and then clicks on the appropriate diacritic in the right
panel of the interface. This has the effect of enclosing the highlighted text in the diacritic
using the encoding method described in Section 4.1} The user is able to view the results
of the encoding by clicking on the Convert to Latex button, which then shows the IXTEX
rendering of the text at the bottom of the interface.

The interface caters for diacritics that appear above text, below text and above and below
text. The diacritics that it supports were pre-determined by scanning through a subset
of the notebooks in the Bleek and Lloyd Collection and noting the different diacritics
encountered. However, new diacritics are constantly being discovered while working with
the collection and thus it is possible that some diacritics might be encountered that the
interface does not support. If this occurs, the user is able to click on the No Representation
button and the line will be marked as not being supported by the interface. At a later
stage these lines can be reviewed and the previously unseen diacritics that they contain
can be added to the interface. The No Representation button can also be used when
the user feels that a text line is not suitable for transcription, such as when the text line
contains English text, when words have been crossed out or when large amounts of noise
occurs in the image. When the user is satisfied with their transcription, they can click
the Save Transcription button and the transcription will be saved.

The steps in the use of x04’x04 are summarised in Table[4.2]and the level of user interaction
is indicated. The use of this tool is, however, not limited to use with Bushman text but
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Figure 4.8: Interface for transcribing the Bushman text

could potentially be adapted to suit other historical texts that cannot be represented using
Unicode. x0d’x0a was used in this study to create a handwriting recognition corpus for
Bushman languages and its use in a series of workshops is discussed in the next section.

Table 4.2: Steps involved in corpus creation

Step Operation User Interaction Required
1 Text Selection Yes

2 Thresholding No

3 Line Segmentation  Optional

4 Slant Correction No

5 Line Editing Optional

6 Word Segmentation Optional

7 Transcription Yes

4.3 Bushman Corpus Creation

A series of corpus creation workshops were held as part of this study in which students were
recruited as data capturers and used x04’x04 to create a handwriting recognition corpus for
Bushman languages. None of the data capturers spoke or understood Bushman languages
and were primarily undergraduate students, though some post-graduate students also
participated. For the workshops, 900 pages from the Bleek and Lloyd Collection were
randomly sampled and added to x6a’x6a as segmentation jobs. In this study, handwriting
recognition was investigated for single and multiple authors and thus the pages that were
sampled contained the writing of two authors. Three corpus creation workshops were held
with groups of different sizes. The workshops and the data collected are briefly described
below.
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4.3.1 First Corpus Creation Workshop

The first corpus creation workshop took place on a Saturday and lasted for 7 hours.
Twenty-nine data capturers, the majority of whom came from a computer science or
electrical engineering background, participated in this workshop. The purpose of the first
corpus creation workshop was to segment the pages of Bushman text and then transcribe
the text. The workshop began with an introduction to the problem and a discussion of
the goals of the workshop and the anticipated outcome and use of the data. Given the
complexities of the Bushman script, the data capturers were encouraged to talk to one
another and work collaboratively when segmenting and transcribing the text.

4.3.1.1 Segmentation

The segmentation part of the first corpus creation workshop began with a short demon-
stration of how segmentation was to be performed. Segmentation jobs were randomly
allocated to users by the job management system, which kept track of who the jobs were
allocated to and what changes each individual user made. Text lines were the standard
input method for capturing the Bushman text and therefore the text lines that each page
was segmented into were added to a list of transcription jobs.

In total there were 900 segmentation jobs, of which 729 were completed and segmented
into 7950 text lines. There are a number of reasons why the other 171 jobs might not
have been completed, such as them not containing Bushman text.

4.3.1.2 Transcription

Transcriptions were captured for some of the individual text lines segmented during the
segmentation part of the workshop. The data capturers were given a demonstration of
how to perform transcription and some known special cases that arise in the Bushman
text were highlighted. The data capturers were encouraged to work collaboratively to
determine what the characters were and the importance of consistency was stressed.

Of the 7950 transcription jobs created during the previous step, 1548 were completed and
459 were marked as having no representation. The text lines that were marked as having
no representation were investigated in preparing for the second and third corpus creation
workshops (discussed below) and, where appropriate, new diacritics were added to the
x0a’x04 interface and the lines re-inserted as transcription jobs.

There are two reasons for 5951 transcription jobs not being completed. The first is that
there was insufficient time to complete all of the jobs in one sitting and the other is that
some users were more efficient than others. Since the goal of the workshop was to create
a high quality corpus, the contributions of each user were evaluated in terms of accuracy
and efficiency and the data capturers who produced the best quality data most efficiently
were invited to participate in the second and third corpus creation workshops.

4.3.2 Second and Third Corpus Creation Workshops

Two additional corpus creation workshops were held after the first and each lasted ap-
proximately 6 hours and the data capturers who were the most efficient and accurate
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during the first corpus creation workshop were recruited for these additional workshops.
Since all of the segmentation jobs had been completed during the first workshop, this
workshop focused solely on the transcription task.

A total of 1700 text lines were transcribed during these two workshops. In addition to
this, approximately 10% of text lines were re-transcribed in order to allow for the quality
and consistency of the corpus to be assessed. 10% of the text lines from the first workshop
were also re-transcribed in order to gain an idea of the quality of the data created during
the first workshop.

4.4 Corpus Preprocessing and Transformation

Even though the data capturers were encouraged to work collaboratively when transcrib-
ing the text, there were a number of complexities in the text that led to confusion. Some
of these sources of confusion were noted during the workshops and others were discov-
ered later during an analysis of the corpus. The result of this confusion is that it could
lead to the same characters and diacritics being erroneously classified as being different
by different data capturers. In addition to these sources of confusion, there are also a
number of erroneous encodings of the text that make text processing difficult, such as
double quotation marks appearing in the text. Therefore, preprocessing or “cleaning” of
the corpus was used to remove the erroneous encoding as well as to minimise the effects
of the confusion that arose during transcription. In this section, the term symbol is used
to refer to any single character, character/diacritic combination or space while the term
class is used to refer to the classification of a symbol or word.

The preprocessing and transformation of the corpus creates new versions of the corpus by
removing conflicting transcriptions that arose as a result of confusion and by cleaning the
corpus for easy text processing. For this reason, and for further experimentation, each
version of the corpus was given a new name to make it identifiable. To start, the original,
unedited corpus is referred to as Corpus-Original or Corpus-O and each version of the
corpus that was created builds on the previous version.

In this section, the preprocessing of the corpus that results in the creation of the new
versions of the corpus will be discussed. Beginning with the original corpus, Corpus-
O, the transformations required to allow for text processing to take place and which
resulted in the creation of Corpus-Functional, or Corpus-F, are described. As mentioned,
there were sources of confusion about the data that arose and were highlighted during
the workshops. Thus, the next section describes the transformations to address these
sources of confusion and which resulted in the creation of Corpus-Workshop or Corpus-
W. Thereafter, an automatic analysis of Corpus-W was performed in order to identify
characters and diacritics that were commonly classified as being different by different data
capturers. The transformations to account for these different classifications by different
data capturers led to the creation of Corpus-Analysed or Corpus-A. The transformations
that take place are summarised in Figure 4.9

4.4.1 Corpus-Original

Corpus-Original or Corpus-O is the unedited corpus created by the data capturers during
the corpus creation workshops. This corpus contains the errors that could potentially

51



Corpus-Original Corpus-Functional Corpus-Workshop  Corpus-Analysed

o 1nbte N e B R

Created by data Cleaned for text Transformations to Transformations to
Capturers processjng remove sources of remove sources of
confusion identified confusion identified

in workshops through analysis

Figure 4.9: Corpus transformations that take place and result in the creation of new
versions of the Bushman corpus

cause the software to function incorrectly as well as any other errors introduced by the
data capturers.

4.4.2 Corpus-Functional

Corpus-Functional or Corpus-F builds on Corpus-O to create a corpus that allows for text
processing to occur without error, for instance, by escaping special characters. The follow-
ing transformations were performed to create Corpus-F: ! to \excl{}; # to \texthash{};
| to \textbar{}; and " to ’’.

4.4.3 Corpus-Workshop

Corpus-F was created by performing transformations that allowed for text processing
to take place. Corpus-F, however, does not account for any of the sources of confusion
that arose from the data. There were five cases of confusion that became immediately
obvious during the workshops and transformations were created to correct them. These
sources of confusion were brought up several times by the data capturers. These five
cases are discussed below and examples from the text are given. The outcome of these
transformation rules is to create Corpus-Workshop or Corpus-W, which builds on Corpus-
F by applying the transformations discussed below.

e Comma and Period Placement

Figure (a) shows an example of where confusion can arise when placing the
comma during transcription. Intuition suggests that the comma should follow the
ﬁgst word, which in Figure [£.10] (a) would result in a transcription that appears as
hi hi, du whéitén. However, in the figure, the comma is clearly closer to the second
word, which would result in a transcription that appears as hi hi ,du whaitén. This
confusion about placement of a comma occurred frequently during transcription and
is corrected during the preprocessing, where all commas are set to appear directly
after a word, with no additional spacing. The same correction is made for period
symbols in the text.
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e Semi-colons
Figure m (b) shows an example of a text line that appears to be a semi-colon.
However, this could also be confused as being a comma with noise appearing above it.
This was brought up by multiple data capturers several times during the workshop
and it can be assumed that it was a legitimate source of confusion and that data
capturers differed in their transcription of the character. Thus, to eliminate this
confusion, all semi-colons that appear in the transcriptions are converted to commas.

e Additional Spaces

Leading and trailing spaces appear in text lines because of the way that they are
segmented and due to them not always being perfectly cropped. In addition to this,
sometimes the spaces between words in a single text line differ enough to suggest
that there may be double spaces separating some of the words. Figure m (c)
shows an example of a leading space and large and small spaces between adjacent
sets of words. Because data capturers may have chosen to represent these additional
spaces in different ways, preprocessing is used to remove any additional spaces by
removing leading and trailing spaces in transcriptions and by replacing two or more
adjacent spaces with a single space.

e TvsT
The first character in Figure [£.10] (b) shows an example of the T symbol, which can
easily be confused with a uppercase T, which rarely appears in the text. Though
this was brought to the data capturers’ attention, it is likely that 7 was mistaken
for an uppercase T on multiple occasions. Given the rare frequency of an upper-
case T appearing relative to the common appearance of 7, all uppercase Ts in the
transcriptions are converted to Ts.

1
{1 = bt
(a) Image 111ustrat1ng confusion about comma place-
ment

T s | Vhaikia

S 3
(b) Image illustrating semicolon and confusion be-
tween T and T

ok Ko 1S Dess

(¢) Image 1llubtrat1ng additional spacing

Figure 4.10: Examples of common sources of confusion from corpus creation workshops

The output of the above transformations is Corpus-W, which is based on the sources of
confusion that were raised by the data capturers during the corpus creation workshops.
An example of a text line transformation from Corpus-O to Corpus-W is shown in Figure

AI11

23



Corpus-0O:
" Th\uline{i} ; tk\u{u} ,hi #ki |ka "

Corpus-W:
"\tshape{}h\uline{i}, tk\u{u} , hi \texthash{}ki \textbar{}ka"

Figure 4.11: An example of a text line transformation from Corpus-O to Corpus-W

4.4.4 Corpus-Analysed

Beyond the obvious sources of confusion from the workshop, there was also the possibility
that cases existed where the data capturers largely disagreed about what certain symbols
were. To identify these sources of confusion, the 10% of the collection that was re-
transcribed was compared to the original transcriptions of the same text lines. The
differences between the two transcriptions were analysed using the Levenshtein distance
(Levenshtein, 1966) (see Section and all substitutions that took place were noted.
In the calculation of the Levenshtein distance, character and diacritic combinations were
considered as being a single symbol. For this reason, the substitutions that took place
were analysed both with and without the base characters. For instance, when analysing
with base characters, the substitutions from \diabar{a} — \dbar{a} and \diabar{b}
— \dbar{b} would be considered as substitutions for two different symbols due to the
different base characters. However, when the substitutions were analysed without the base
characters, \diabar{a} —\dbar{a} and \diabar{b} — \dbar{b} would be considered
as two occurrences of the same substitution and suggest that the confusion arose due to
the diacritics and not the base characters.

The frequency of each substitution was counted and the average number of substitutions
was calculated. This was done for substitutions both with and without base characters.
Substitutions that occurred with an above average frequency were then further analysed
in order to investigate what proportion of the character’s occurrences were substituted for
the other. For instance, if \ubar{} occurred 10 times in the text and was substituted by

\diabar{} 5 times, then the substitution proportion would be 0 or 50%. If a character’s

substitution proportion with another character was above some level D then it was marked
as a candidate for transformation, where D = 100%, 75%, 50%, 25%. Each transformation
candidate was then individually analysed in order to determine if it was suitable for
transformation to occur and, where applicable, the transformation was applied.

Separate corpora were created for each substitution proportion level D resulting in the
creation of Corpus-Analysed-D, where D = 100%, 75%, 50%, 25%. For instance, Corpus-
Analysed-50 or Corpus-A-50 is built on Corpus-W and transforms symbols where the
substitution proportion from the original transcriptions to the re-transcribed versions of
the text was at least 50%. The same occurs for other values of D.

Table [4.3| gives the transformations that occurred in order to create the various versions
of Corpus-Analysed-D. In the table, when the transformation occurs regardless of base
character, the transformation is shown as applied to a placeholder X; otherwise, when
the transformation is character-specific, the base character is shown.

o4



Table 4.3: Corpus-Analysed-D transformations

‘ Original | Transformed ‘
Corpus Symbol Encoding Visual Encoding Visual
X \onedotdbar{X} X \dialine{X} X
A-100 % \xbelow{\ubelow{X}} X \xbelow{X} }X(
L \barbubart{X} }_( \barblinet{X} X
AT ol \ukappie{X} X \u{X} X
] \ubar{x} X \dialine{X} X
&
- 7y \dialine{k} k K k
: \cover{i} ; \u{i} i
A K K k k
oy - -
Py \wover{X} X \u{X} X
H / / \textdoublepipe{?} [
A-25 % \hcirclebelow{X} X \circlebelow{X} X
e \dialine{n} n \onedot{n} n
.;‘ \dbar{n} n \onedot{n} n
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4.5 Corpus Analysis

Table summarises the quantity of data collected during the corpus creation workshops.
In total, 7950 text lines from 900 pages in the Bleek and Lloyd Collection were segmented.
Of these 7950 text lines a total of 3158 lines or 39.7% were transcribed. Of these 3158
lines, 302 or 9.6% were re-transcribed in order to allow for the quality of the data created
to be assessed. In this section, the consistency within the corpus, as measured by the
Levenshtein distance (Levenshtein, |1966) between the original transcriptions and the re-
transcribed data, will be evaluated, followed by an analysis to determine the frequency
count of symbols and words in the corpus.

Table 4.4: Summary of data collected during corpus creation workshops
Lines Segmented Transcriptions Overlap

Workshop 1 7950 1458 137
Workshop 2 0 1000 98
Workshop 3 0 700 67
Total 7950 3158 302

4.5.1 Corpus Consistency

In addition to the quality of the corpus, the consistency between the different data cap-
turers is important. Consistency is important for the training of recognition models since
variation between interpretations of symbols negatively affects the accuracy with which
these models can correctly recognise unseen data. Since the interpretation of the more
complex symbols in the text is, to a certain extent, subjective, the consistency among
transcriptions among the different data capturers was evaluated in order to gain insight
into the extent to which the data capturers were consistent with their interpretations.
Consistency in the corpus was measured based on the normalised Levenshtein distance
(Yujian and Bo|, 2007) between the original transcriptions and the re-transcribed versions
of the same text lines. This section begins with a description of the Levenshtein Distance
(Levenshtein, [1966)), followed by an experiment in which the consistency of the corpus
was evaluated.

4.5.1.1 The Levenshtein Distance

The edit distance between two strings is the number of edit operations required to trans-
form one string into another (Wagner and Fischer, 1974). The Levenshtein distance is
one of the most common measures used to calculate the edit distance between strings
and is used in this study to measure the consistency between the original text lines that
were transcribed and the re-transcriptions of 9.6% of those text lines. The edit operations
that the Levenshtein distance takes into consideration are substitutions, deletions and
insertions (Levenshtein, |1966).

Formally, for an alphabet 3, 3* is the set of finite strings in ¥ and A ¢ ¥ is the null string.
The string X € X* is given by X = xy, 29, ..., x,, where x; is the ¢th symbol in X and
n is the length of X given by |X|. a — b, a — XA and A — b represent the substitution,
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deletion and insertion edit operations respectively. Oxy = Oy, Oq, ..., Oy represents a set
of edit operations to transform X into Y. A weight function v is the cost of an edit
operation where 7(Oxy) = 3. 7(0;) produces a non-negative real number that is the
cost of the transformation. The Levenshtein distance (LD) is then given by:

LD(X,Y) = min{(Oxy)} (4.2)

The Levenshtein distance is a number that represents the minimum cost or number of edit
operations that are required in order to transform one string into another. This number
is normalised as the Normalised Levenshtein distance (NLD) presented by [Yujian and Bo
(2007), which gives a measure of similarity in the range [0-1] and is based on the following
equation:

2. LD(X,Y)

NLD(X,Y) = (IX|+[Y]) + LD(X,Y)’

(4.3)

where o« = maz{y(a — \),y(A = b)}.

4.5.1.2 Measuring Levenshtein Distance in Bushman Text

The encoding of the Bushman text, as described in Section [4.1] uses a multiple char-
acter encoding to represent a single symbol. For instance, \ubar{a} uses 8 characters
to represent the single & Bushman symbol. To account for this, the encoding of char-
acter /diacritic combinations are considered as a single symbol. For example, \uline{a},
\uline{\ dialine{a}} and a are all considered as single symbols and a difference between
them and any other symbol will increase the Levenshtein distance by the weight function
.

In the next section, an experiment that was conducted to investigate the corpus consis-
tency is presented.

4.5.1.3 Experiment: Corpus Consistency

e Purpose

— To gain insight into the consistency of the transcriptions of the text in the
corpus.

e Procedure

— The Levenshtein distance is used to measure the similarity between the original
transcriptions and the re-transcribed versions using the measure of similarity
in Equation [4.3]

— The average similarity for the data gathered during each workshop is calculated
as well as the average for the entire corpus based on the relative weightings of
the amount of data captured during each workshop, where the relative weight-
ings are 0.46, 0.32 and 0.22 for workshops 1, 2 and 3 respectively.

— The above procedure is repeated for Corpus-O, Corpus-F, Corpus-W, Corpus-
A-100, Corpus-A-50, Corpus-A-75 and Corpus-A-25.
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Table 4.5: Consistency in the corpus

Corpus Workshop 1 Workshop 2 Workshop 3 Weighted Average
Corpus-O 69.05% 76.27% 81.46% 74.19%
Corpus-F 69.05% 76.27% 81.46% 74.19%
Corpus-W 70.14% 77.33% 83.02% 75.38%
Corpus-A-100 70.18% 77.30% 83.78% 75.56%
Corpus-A-75 70.37% 77.30% 84.04% 75.71%
Corpus-A-50 70.97% 78.44% 84.21% 76.38%
Corpus-A-25 71.66% 79.05% 84.61% 76.98%

e Results The similarity between the original transcriptions and the re-transcriptions
is shown in Table [4.5]

e Discussion

— Table shows that, on average, there was more consistency among tran-
scriptions in the second and third workshops. This is to be expected since the
data capturers who were recruited for the second and third workshops were
the most efficient and accurate data capturers. Another reason for the lower
consistency in the first workshop could be that the data capturers who did the
re-transcription of the data from the first workshop were only a subset of the
data capturers involved in the first workshop. This is different to the case for
the second and third workshops, in which the same group of data capturers
did the re-transcriptions.

To test for differences in consistency between the different corpora, an Analysis
of Variance (ANOVA) test was conducted to test for differences between means
of the unweighted Levenshtein distances between all original transcriptions and
re-transcriptions. The ANOVA test was insignificant at p = 0.1, thereby indi-
cating that there was no statistical difference in the mean consistency between
corpora.

The large inconsistencies within the corpus are likely to have a negative effect
on the robustness of learning models trained using this corpus and the effect
of this is discussed in Section [7.3.5]

4.5.2 Corpus Distribution

It is well known that there is a positive relationship between the amount of training
data used in handwriting recognition and the recognition accuracy that can be achieved.
Corpus distribution, in this context, refers to the frequency with which symbols and words
occur within the corpus. Insight into the corpus distribution is valuable as it can assist
in explaining recognition results. In this section, two experiments are described in which
the distribution of symbol classes and words classes within the corpus are investigated.
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4.5.2.1 Experiment: Symbol Distribution

e Purpose
— To identify the frequency with which the different symbols occur in the corpus.
e Procedure

— The number of occurrences of each symbol class in all transcriptions was
counted.

— The above procedure is repeated for Corpus-O, Corpus-F, Corpus-W, Corpus-
A-100, Corpus-A-50, Corpus-A-75 and Corpus-A-25.

e Results The symbol distribution is shown in Figure [4.12| and the dominant fre-
quency range of 1-10 is shown in greater detail in Figure [£.13]
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Number of Symbol Classes

Symbol Frequency

Figure 4.12: Symbol frequency count in corpus

e Discussion

— As can be seen in Figure 4.12] a large number of symbol classes appear 1-9
times in the corpus. This is further investigated in Figure which shows
that a large number of symbol classes have only a single sample. In fact, 56.27%
of symbol classes only have one sample and 85.30% of symbol classes contain
fewer than 9 samples. Since the evaluation of the recognition models used
in this study is performed using cross validation, this suggests that none of
the symbols with only one sample can be correctly recognised since the single
sample can only be in one of the training or testing sets. This, however, needs
to be considered within the context of the size of the corpus. There is a total of
33480 individual symbols in the corpus and approximately 700 symbol classes
that only have one sample. These 700 symbol classes with one sample only
represent 2.10% of all of the symbols in the corpus and those with fewer than
10 samples represent 3.17% of the corpus.
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Figure 4.13: Symbol frequency count in corpus for frequency range 1-10

Table shows the average number of times that each symbol class occurs in
the text for the various corpora, with an average of 25.87. Table along with
Figures and [£.13], highlights an important characteristic of the Bushman
script and the corpus in general - that a large proportion of symbol classes
occur only once or very infrequently in the text. These symbol classes, however,
only make up a small number of the symbols in the text, which seems to be
dominated by the symbols that occur more frequently.

Table 4.6: Average number of samples for each symbol class
O F WO  A-100 A-75 A-50 A-25
23.36 23.36 26.38 26.48 26.70 27.13 27.69

4.5.2.2 Experiment: Word Distribution

e Purpose
— To identify the frequency count of words in the corpus.
e Procedure

— The number of occurrences of each word class in all transcriptions was counted.

— Punctuation marks (comma, period, exclamation mark, semi-colon) were re-
moved before calculating word frequencies.

— The above procedure is repeated for Corpus-O, Corpus-F, Corpus-W, Corpus-
A-100, Corpus-A-50, Corpus-A-75 and Corpus-A-25.

e Results The word frequency count is shown in Figure and the dominant fre-
quency range of 1-10 is shown in greater detail in Figure [4.15]

60



6000

B Corpus-O
B CorpusF
5000 Corpus-WO
® Corpus-A-100
§ ® Corpus-A-75
7] Corpus-A-50
L‘@ 4000 B Corpus-A-25
o
=
.S 3000
=
kS
T 2000
=
=
Z 1m0
0 -
19 10:19 2029 30:39 40-49 5059 60-69 7079 8089 90100 100+
Word Frequency
Figure 4.14: Word frequency count in corpus
5000
m Corpus-O
4500 ® CorpusF
Corpus-WO
- 4000 B Corpus-A-100
S ® Corpus-A-75
¥ 3900 Corpus-A-50
e ® Corpus-A-25
~ 300 b
8
= 2500
= 2000
T
= 1500
Z'- 1000
500
0 ..l--.——-——- ——————— —— — —
1 2 3 4 5 6 7 8 9

Word Frequency

Figure 4.15: Word frequency count in corpus for frequency range 1-10

e Discussion

— As can be seen in Figure [4.14] a case similar to that for the symbol class
frequency distribution occurs with a large number of words occurring fewer
than 10 times in the corpus. This is further investigated in Figure [£.15] which
shows that a large number of words in this frequency range only contain a single
sample. 83.82% of words only occur once in the text and 97.99% of words occur
fewer than 10 times. It is highly likely that the distribution of words in this
corpus follows Zipf’s Law (Zipf, [1949)), which states that the frequency with
which a word occurs in a corpus of a natural language is inversely proportional
to its frequency rank. For instance, the most frequent word occurs twice as
often as the second most frequent, three times more often than the third most
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frequent, etc.

Recognition takes place in two ways in this study. In the first way, referred to as
word recognition, whole words are recognised as a single pattern. In this sense,
an image containing a single word is provided for training and recognition. The
word itself represents the class and the word is recognised as a whole rather
than have the symbols that it is made up of individually recognised and then
concatenated to form a word. Thus, in the case of word recognition, a word
will not be recognisable when it occurs only once as the single occurrence can
only be in one of the training and testing sets. Thus, when performing whole
word recognition, the corpus is sampled to account for this. The way in which
the corpus is sampled is discussed in Section [6.3.1]

The second way in which words are recognised in this study is when they form
part of text line, which is referred to as text line recognition. In text line
recognition, the symbols that appear in a text line are recognised and thus a
word that occurs only once can still be recognised based on the symbols that
it is made up of. Thus, for text line recognition, any word can be recognised.

The average number of samples per word class for each corpus is shown in
Table and the average number of samples across all of the corpora is 1.87.

Table 4.7: Average number of samples for each word class
O F WO A-100 A-75 A-50 A-25
1.81 1.81 1.87 1.87 1.88 190 1.93

4.6 Discussion

The corpus described in this chapter is used for experimentation in the rest of this study
and, since it was found that there were very few differences between the different versions
of the corpus, Corpus-W is used since it at least accounts for the common sources of
confusion from the corpus creation workshops. The lack of consistency among the different
data capturers is of concern since it has a direct effect on the robustness of the recognition
models. For instance, the 75% consistency suggests that, for any transcription output,
the probability of a false negative or positive is 25%. Furthermore, the fact that there is
a lack of consistency also suggests that recognition models will suffer from high variance
due to having samples of the same symbols being classified as belonging to multiple
classes. Thus, all evaluation results presented in Chapter [7| should be considered within
this context. However, since the focus of this study is on evaluating different techniques
for Bushman handwriting recognition, the corpus still allows for a robust comparison of
the different techniques considered since all evaluation is based on the same data.

62



Chapter 5

Features

Descriptive features from the literature are used in this study in order to investigate their
ability, when coupled with machine learning algorithms, to correctly classify handwritten
Bushman texts. Chapter [2| introduced some of the desired properties of descriptive fea-
tures as described by Nixon and Aguado| (2008), which are repeated here for completeness.

e Two objects should only have the same descriptors if they are the same.

e Descriptors should be congruent such that two similar objects will have similar
descriptors.

e [t is convenient for descriptors to be invariant to scale, rotation and translation.

e Descriptors should be compact so that objects are described in an efficient way.

It is, of course, debatable as to whether it is in fact always desirable for features to be
invariant to scale, rotation and translation. For instance, if a feature had all three invariant
properties it would result in the same descriptors for p and d, thereby invalidating the
first desired property that two objects should only have the same descriptors if they are
the same. Thus, as part of this study, the use of both invariant and non-invariant features
is investigated.

It has been speculated that there are hundreds of different features that can be used
for handwriting recognition (Arical, [1998), making implementing and evaluating every
possible feature set an impossible task. Therefore this study has instead focused on a
small subset of features used in the literature. The features used in this study have been
chosen due to their varying complexity as well as their popularity in literature. The
features describe different properties of the images, such as the distribution of pixels, the
directions of strokes and the statistical properties of the image. Therefore, while not a
complete evaluation of all possible features, this study still provides a valuable comparison
of different types of features.

This chapter discusses the descriptive features used in this study. This discussion begins
with a description of the feature extraction procedure for the different machine learning
algorithms. Then, for each of the descriptive features used in this study, the derivation of
the feature is discussed, followed by an evaluation of its invariant properties and, lastly,
the way in which the feature was extracted is described.
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The invariant properties of each feature described in this chapter is analysed by extracting
features from a shape as well as translated, rotated and scaled versions of it. The images
from which the features are extracted are shown in Figure [5.1] Unlike handwriting,
the images in Figure |5.1] are generic and symmetric; however, they still provide a good
illustration of the invariant properties of the different features discussed in this chapter
and show how they differ.

(a) Original Image (b) Translated Image (c) Rotated Image (d) Scaled Image (1.5x)

Figure 5.1: Images for analysing invariant properties of features

5.1 Feature Extraction Procedure

The features used in this study require that parameters for feature extraction be specified.
The values for these parameters could potentially have an impact on the performance of
the recognisers. Thus, all experiments involving features were designed to investigate the
effect of varying parameter values during feature extraction. In this section, a general
description of the way in which features are extracted for the different machine learning
algorithms used in this study is described. Then, when each of the features is discussed
in the later sections of this chapter, the specific method for extracting each feature is
described.

5.1.1 Support Vector Machine and Artificial Neural Network
Feature Extraction

Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) are used in
this study for Bushman word recognition, which is discussed in Section[6.3] In this study,
Bushman words are recognised as a whole rather than having the individual symbols that
make up a word recognised. Thus, for SVMs and ANNSs, feature extraction is performed
on the word image as a whole, which may or may not be partitioned into cells. When
the word image is partitioned into cells, it is portioned into C' equally sizes cells where
C = 2Y)y € Z and features are extracted from each cell. Formally, given a feature
extraction function ¢ and a word image I that has been partitioned into C' cells, the
feature vector F'is constructed as follows:

where n is the nth cell that the word image [ is partitioned into.

64



Figure is used to demonstrate the feature extraction procedure for SVMs and ANNs.
For the unpartitioned word in Figure [5.2] the feature vector F is given by

F=o¢(1),
whereas for the image that has been partitioned into 4 cells the feature vector F' is given

by
F = ¢(I) + ¢(I2) + ¢(I3) + ¢(14).

Iz e

(a) Whole word image (b) Word image parti-
tioned into 2 cells along
each dimension

Figure 5.2: Feature extraction on partitioned word image and whole word image

5.1.2 Hidden Markov Model Feature Extraction

Hidden Markov Models (HMMs) are used in this research for Bushman word and text line
recognition. Features for HMM-based recognition are extracted using a left-to-right sliding
window that models the time domain. When using HMMs for Bushman word recognition,
the classes that are recognised are whole words whereas, when recognising text lines, the
classes that are recognised are individual symbols that are then concatenated to form
words. When extracting features, the width of the window (or image column) needs to be
specified as well as any overlap between adjacent windows. Similar to the case for SVM
and ANN-based feature extraction, the window can be partitioned into cells and features
are extracted from each cell. However, in the case of HMM-based feature extraction, the
window is only divided into C' cells along the vertical axis where C' = 2Y,y € Z. Formally,
given a feature extraction function ¢, a image I, a sliding window with width W with
overlap O between adjacent windows and windows that have been vertically partitioned
into C' cells, the feature vector F' at time step t is given by:

Fl=o¢(I) + (L) + ... +¢(IL),n=1,2,..C, (5.2)

where I! is the nth cell in the window at time step ¢. The number of time steps T is given
by:

Width of whole image

T:
W -0

Figure demonstrates how features are extracted using a sliding window. For the
unpartitioned highlighted image column at time ¢, the feature vector I is given by:

F' = ¢(I'),

65



Window Column Window Column
Sliding Window Direction Sliding Window Direction
(a) Whole image column (b) Image column partitioned into 2 cells

Figure 5.3: Feature extraction using a sliding window

whereas for the partitioned image column at time ¢ the feature vector F* is given by:
F' = ¢(1}) + o(13).

In most cases, the column width W = 1 and overlap O = 0. However, in some cases,
W >1and O > 0.

The general methods for extracting features for SVMs, ANNs and HMM were discussed
above. However, for each of the features used in this study, the specifics of the feature
extraction procedure depends on the parameters that need to be specified for each fea-
ture. In the next sections, each of the specific features is described. Then, its invariant
properties are analysed followed by a description of the specifics of its extraction.

5.2 Undersampled Bitmaps

5.2.1 Description

Undersampled Bitmaps (UBs) are based on the density of the normalised number of black
pixels within a cell in an image (Oliveira et al., |2006)). An image is divided into a number
of equally sized cells and, for each cell, the number of black pixels is counted and then
normalised over the range [0-1] (Vamvakas et al., 2008)) to create a feature vector F' with
C features, where C' is the number of cells that the image is partitioned into. Cells that
have a high pixel density will have high values and cells that have a low pixel density
will have low values. These features are useful for showing the distribution of pixels in
an image and are also invariant to small differences in pixel distribution (Oliveira et al.)
2006). An example of the various densities for a Bushman word separated into 36 cells is

shown in Figure [5.4]

5.2.2 Invariance

Table shows the feature values for UBs when the images in Figure are partitioned
into 4 cells.

As can be seen from the table, UBs are invariant to scale, but not to translation or rotation.
This is to be expected since the values of the UBs are dependent on the distribution of
pixels in the Cartesian plane.
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O

(a) Bushman word (b) UB densities for word

Figure 5.4: A Bushman word and a visual representation of its UBs

Table 5.1: Feature values for investigating invariant properties of UBs
Original Image Translated Image Rotated Image Scaled Image

UB, =1 UB, =0 UB, = 0.46 UB, =1
UB, = 0.93 UBy =0 UBy =1 UB,y = 0.92
UBs = 0.51 UB; =1 UB; = 1041  UBj = 0.51
UB, = 0.46 UB, = 0.62 UB, = 0.91 UB, = .46

5.2.3 Extraction

For SVMs and ANNs, UBs are extracted by partitioning the word image into C' = 2Y,y €
1,2,3,4 cells and calculating the UB for each cell. For HMMs, the width of the sliding
window is given by W = 1 and the overlap is given by O = 0. UBs are extracted
from each cell in each column in the sliding window by partitioning the column into
C=2Yyel,2 3,4 cells.

5.3 Marti & Bunke Features

5.3.1 Description

Marti and Bunke (2002) proposed nine geometric features that are extracted using a
sliding window, from here on referred to as Marti & Bunke (M&B) features. The first
three of these features characterise the window relative to the global point of view, while
the other six are used to give more details about the writing. The first three features
are the weight of the window (given by the number of foreground pixels), the centre of
gravity of the window and the second order moment of the window. These three features,
Fi(x), F5(x) and F3(x), are given by the following equations:

m

Fi(z) = %Zp(ﬂs, y) (5.3)
Fy(z) = % > yp(z,y) (5.4)
Fy(z) = % > yp(z.y), (5.5)
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where m is the height of the window and p(z,y) is the pixel value at column z and
row y. Features four and five are the lower and upper positions of the contours of the
window. Features six and seven are the gradients of the upper and lower contours of the
window. Feature eight is the number of black to white transitions and feature nine is the
number of black pixels between the lower and upper contours of the window. Features
Fy(x), F5(x), Fs(z), F7(x), Fs(x), Fy(z), are given by the following equations:

Fy(x) = argmin,(p(z,y) = 1) (5.6)
F5(x) = argmax,(p(z,y) = 1) (5.7)
d
Fs(x) = @le(a:) (5.8)
Fo(z) = %Fm) (5.9)
Fs(x) = Number of black/white transitions (5.10)

Fs(x
Zyi(pz(x) p(z,y)
F5(.Z') — F4(x) ’

where p(x,y) is the pixel value at column = and row y.

Fy(z) = (5.11)

Figure [5.5[shows an example of some of the M&B features being extracted from an image
column.

= o.’LkQ,h

Figure 5.5: Examples of M&B features for an image column

Marti and Bunke (2002) note the importance of careful preprocessing in order to make
these features robust when it comes to different writing styles.
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5.3.2 Invariance

Table (.2 shows the feature values when M&B features were extracted from the 100th
column of the images in Figure [5.1]

Table 5.2: Feature values for investigating invariant properties of M&B features
Original Image Translated Image Rotated Image Scaled Image
M&BI" =0.22 M&B™ =023 M&B{" =0 M& B = 0.20
M&BI® = 2574 M&BI® = 44.67 M&B® =0 M&BI% = 32.07
M&BI =12.27 M&Bi™ =3528 M&BI™ =0 M&BI™ = 15.25
M&B}% =90 M&B}% = 168 M&BI =250 M&BI® = 130
M&BIY =144 M&BI =224 M&B% =0 M&B% =198

M&BI™ =0 M&BL® = M&BY® =0  M&BI™ =0
M&BI™ = M&BIO = M&BMO =0 M&BI =5
M&BI® =2 M&B® =2 M&BY® =0 M&BL =0
M&BI™ =1 M&BI™ =1 M&BI® =0 M&BI™ = 0.96

As can be seen from the table, M&B features are not invariant in any way.

5.3.3 Extraction

For M&B features, the feature extraction for SVMs and ANNs is the same as that for
HMMs. M&B features are extracted from each column in the image using a sliding window
with width W = 1 and overlap O = 0.

5.4 Geometric Moments

5.4.1 Description

Moments, which are statistical global descriptors of the shape of an image, have been used
as features in a number of handwriting recognition studies. The fact that they provide
a compact global description of an object, have a built-in ability to discern and filter
noise and have invariant properties has made them popular and successful in a number
of applications (Nixon and Aguado, 2008). Moments were first used for image analysis
in the 1960s by [Hu| (1962) and have since been used in a number of applications, such as
facial recognition (Nabatchian et al., 2008) and object recognition in road scenes (Apatean
et al., 2008).

The calculation of geometric moments will be briefly discussed here. For more details, see
Hul (1962).

5.4.1.1 Basic Properties

For a 2-D continuous function, the (p+ ¢)th order moment of a function I(x,y) is defined
as:

mqu/ Py (z,y). (5.12)

[e.e]
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For a discrete 2-D function, Equation [5.12 can be approximated by:

Mpg = 2Py I(x,y) AA, (5.13)
Ty

where A A is the area of a pixel.

The zero-order moment, mgg represents the total mass (intensity) of an image. In the case
of a binary image, it represents the area of the foreground object Flusser et al. (2009) as
is given by:

mop = Y I(z,y)AA, (5.14)

The two first-order moments - mg and mg; - are given by:

mig = Z le(m, Y)AA my = Z Zy[(x,y)AA. (5.15)

T Y T

Using these moments, the centre of mass (centroid) - (z,y) - of the image can then be
calculated as the ratio of the first and zero order components:
mio

(T = y =
Moo Moo

mo1

(5.16)

In order to make the moments invariant to translation, they need to be normalised with
respect to the centre of mass. Given the centre of mass, the centralised moments, fi,q,
which are invariant to translation, are given by:

pg =Y (2 —2)(y — ) (2, y) AA. (5.17)

The second-order moments of an image describe the variance of the image intensity about
the origin, and are analogous to the moments of inertia in mechanics (Flusser et al.,
2009). The second-order central moments, pag and (g2, give the variance about the centre
of mass, and pq; describes the covariance between them.

Figure [5.6| shows the second-order centralised moments of a shape as well as its second-
order centralised moments when translated and when rotated. As a result of the cen-
tralisation, the centralised moments are invariant to translation, but not to rotation and
scale.

5.4.1.2 Invariant Moments

In order for the centralised moments to be rotation and scale invariant, they need to be
normalised. The normalised central moment, 7,,, is defined as:

14
g = —=+ (5.18)
Koo
where n

2
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a) Origina ape ranslate ape c) Rotate ape cale ape (1l.ox
Original Sh b) T lated Sh R d Sh d) Scaled Sh 1.5
L2 = 2.05089 - 107 ta2o = 2.05089 - 107 foo = L.77377 - 106 fao = 1.03826 - 108

o2 = 1.77377 - 10° o2 = 1.77377 - 10° po2 = 2.05089 - 107 Loz = 8.98346 - 106

Figure 5.6: Second order centralised moments of original shape, translated shape, rotated
shape and scaled shape

Hu (1962)) described a set of 7 invariant moments (M7, M, ..., M7), which can be calculated
using Equation as follows:
My =20 + 102
My =(1pp0 — m02)” + 417,
M =(n30 — 3m12)” + (3121 — 103)°
My =30 + m2)? + (21 + no3)*
Ms =(n30 — 3m2) (m30 + m2) (30 + m2)” — 3(721 + mos) I+
(3m12 — M03) (M21 + 103)[3(130 + M12)” — (M21 + 703)”]
Mg = (1120 — 102) (30 — m2)” — (21 — 1m03)° ]+
41 (nso + Mi2) (N21 + Mo3)
Mz =(3n21 = 103) (30 + m2) (30 + m2)” — 3(721 + mos) I+
(n30 — 3m2) (M21 + 703) [3(M30 + m2)” — (M2 + 703)°]- (5.20)

Hu moments M; and M, are second-order moments that describe the variance of the
image. M3, My, M5 and Mg are third-order moments that describe the skew of the image,
and M, allows for distinguishing between mirror images. In this study, Hu moments,
referred to as Geometric Moments (GMs), are added to the feature vector F' and used as
features in this study.

5.4.2 Invariance

Table [5.3| shows the first two GMs when extracted from the images in Figure [5.1]

Table 5.3: Feature values for investigating invariant properties of GMs
Original Image Translated Image Rotated Image Scaled Image
GM; =0.29 GM; =0.29 GM; =0.29 GM; =0.29
G M, = 0.06 G M, = 0.06 GM, = 0.06 GM, = 0.06

As can be seen from the table, GMs are invariant to translation, rotation and scale.
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5.4.3 Extraction

For SVMs and ANNs, GMs are extracted from each cell in the word image by partitioning
the word image into C' = 2¥ )y € 0,1,2,3 cells. For HMMs, the width of the sliding
window is given by W = 1 and the overlap is given by O = 0. GMs are extracted
from each each cell in each column in the sliding window by partitioning the column into
C'=2Yy€0,1,2,3 cells. The following GMs are extracted from each cell [M1], [M1,M2],
[M1,M2,M3]| and [M1,M2,M3,M4].

5.5 Histograms of Oriented Gradients

5.5.1 Description

Histograms of Oriented Gradients (HoGs) were first introduced by Dalal and Triggs| (2005))
as a set, of descriptors for human detection, though they were predated by Gradient, Struc-
tural, Concavity (GSC) features, which contained HoG-like features (Favata and Srikan-
tan, (1996). The basic thought behind HoGs is that local object shape and appearance
in an image can be characterised by the distribution of local gradients. This distribution
of local gradients is found by dividing an image into a series of equally-sized cells and
then, for each cell, compiling a list of the gradients of each pixel in the cell and creating
a histogram of gradients for that cell. The calculation of HoGs essentially involves four
steps: gradient computation; orientation binning; separation into descriptor blocks; and
block normalisation.

5.5.1.1 Gradient Calculation

Dalal and Triggs (2005)) found that the best filter for gradient calculation was a simple
1-D mask along both the z-axis and the y-axis in the form of:

D,=[-101] D,=[-10 17, (5.21)

such that for an Image [
I,=1IxD, I,=1x0D,. (5.22)
The magnitude of the gradient of a pixel at location I(x,y) in image I is then given by:

G| =/ L>+ 1> (5.23)

The orientation of the gradient of a pixel at location (z,y) in image [ is given by:

§ = arctan (]—m) (5.24)
1

Transforming the gradient to degrees involves the following equation which gives values
in the range [—180°; 180°]:

180

?.

These gradients are then used in the orientation binning stage to create the HoGs.

a=0x

(5.25)
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5.5.1.2 Orientation Binning

In the orientation binning stage, each pixel casts a weighted vote for an orientation-based
histogram channel, based on its orientation found in the gradient calculation stage. Dalal
and Triggs (2005) found that 9 evenly spaced bins produced the best results. The orien-
tation bins in the histogram are evenly spaced over the range [0; 180°] for an “unsigned”
gradient or [0;360°] for a “signed” gradient. Given that the gradients are in the range
[—180°; 180°], they need to be translated to the range of the bins. For unsigned gradients:

a, ifa>0
Qunsigned = { a+ 180, ifa < 0’ 5 (526)
and for signed gradients:
a, ifa>0

The weight of a pixel’s vote can be the pixel’s magnitude itself, its square, its square
root or a clipped form of the magnitude, which is based on the presence or absence of an
edge at the pixel (Dalal and Triggs, [2005)). In this study, the magnitude of each pixel is
calculated according to Equation [5.2§|

M@y =/ 12+ 1} (5.28)

The results of the orientation binning stage is a histogram of oriented gradients for each
cell of pixels.

5.5.1.3 Descriptor Blocks

Variations in illumination and foreground-background transitions in local regions of an
image can result in gradients that vary widely over a wide range (Dalal and Triggs, 2005))
and it was found by [Dalal and Triggs| that local contrast normalisation was essential for
good performance. In order to perform this normalisation, it is necessary to group the
cells into descriptor blocks and the final descriptor is then the normalised vector of all the
components of the cells. These blocks often overlap so that each cell contributes several
times to the final descriptor but normalised differently in each case (Dalal and Triggs,
2005)).

5.5.1.4 Block Normalisation

Dalal and Triggs| proposed four methods for block normalisation. Given the unnormalised
vector v, let ||v||x be its k-norm for k = 1,2 and € be some small constant. Then, the
following normalisation schemes can be applied:

(%
VIvll3 + €

L2-Hys L2-norm with clipping

L2-norm f =
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[lolly + €

v
L1- t = [—
St =\ Tl T e

It was shown by Dalal and Triggs that L2-norm, L.2-Hys and L1-sqrt improved recognition
performance equally, L1-norm reduced performance by 5% and no normalisation reduced
performance by 27%. In this study, the L2-norm without overlapping is used to normalise

blocks.

Ll-norm f =

5.5.1.5 HoGs at Multiple Scales

Howe et al.| (2009)) used HoGs at multiple resolutions as features. In this approach, the
different resolutions represent different cell sizes and allow for descriptive features to be
captured at multiple scales. In this study, HoGs have been extracted at three different
resolutions, referred to as R1, R2 and R3. The feature vectors for each resolution are then
appended onto each other in order to form a single feature vector.

5.5.2 Invariance
Table shows values of the HoGs when extracted from the images in Figure [5.1]

Table 5.4: Feature values for investigating invariant properties of HoGs
Original Image Translated Image Rotated Image Scaled Image

HOG1 =16 HOG1 =16 HOG1 = 290 HOG1 =74
HOG2:0 HOG2:0 HOGQZO HOGQZO
HoGs = 98 HoGs = 98 HoGs = 98 HoG5 = 98
HoG4 =0 HoG4 =0 HoG4 =0 HoG4 =0
HoG5 = 580 HoG5 = 580 HoG5 = 32 HoG5 = 972
HOGGZO HOG6:0 HOG6:0 HOG6:O
HOG7 = 98 HOG7 =98 HOG7 =98 HOG7 =98
HoGg =0 HoGg =0 HoGg =0 HoGg =0
HoGg = 16 HoGgy = 16 HoGgy = 290 HoGqy =74

As can be seen from the table, HoGs are invariant to translation, but not to rotation or
scale. The HoGs for the rotated shape suggests some form of correlation with the original
shape since where they differ, they differ by a fixed factor of 18.25.

5.5.3 Extraction

For SVMs and ANNs, the image is partitioned into cells and HoGs are extracted at 3
resolutions Ry, Ry, R3. That is, the size of the cells are Ry X Ry, Ry X Ry and R3 X Rs.
For HMMs, HoGs are extracted from each column in a sliding window with window width
W = 3 and overlap O = 2 at 3 resolutions R;, Ry, Rs3, such that the size of the cells are
Ry x W, Ry x W and R3 x W. For SVMs, ANNs and HMMs unsigned and unnormalised
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HoGs are extracted where Ry, Ry, R3 = [64,32,16], [32,16,8], [16,8,4], [64,32,0], [32,16,0],
[16,8,0], [64,0,0], [32,0,0], [16,0,0].

In investigating the effect of signing and normalising the gradients, the assumption is
made that the best performing unsigned values for R;,Rs; and R3 will remain the best
for signed gradients and when the gradients are normalised. In order to determine the
effect of signing the gradients, signed HoGs without normalisation are extracted for the
best R;, Ry and R3. Then, in order to determine the effect of normalising the HoGs,
normalised HoGs are extracted for the best Ry, Ry and R3 where the block normalisation
size is 2. Whether or not the gradients are signed depends on the findings of the previous
step.

5.6 Gabor Filter-based Features

5.6.1 Description

A Gabor Filter (GF) is a Gaussian function modulated by a complex sinusoid in both the
spatial domain and frequency domain and contains both a real and imaginary part (Chen
et al. |2010). Multi-directional GFs have been used in character recognition to extract
stroke information from characters (Wang et al., 2005)). This is possible due to GF's being
orientation specific (Chen et al. 2010). GF-based features have been shown to work well
for automatic handwriting recognition since they operate directly on greyscale images
rather than requiring the images to be binarised (Chen et al.; 2010)). This is beneficial
since binarisation is usually a difficult task when it comes to historical documents due to
poor quality, document degradation and other factors such as ink-bleed.

In the spatial domain, the GF' is given by:
1

OOy

h(z,y,\,0,0,,0,) = } (5.29)

“2)}eapli

1 R?> R? 2R
erp(~ (1 1 :
z y

where Ry = xcosf + ysinf, Ry = ycosf — xsinf, X is the spatial wavelength, 6 is the
orientation and o, and o, are the variances along the x and y axes respectively.

In the frequency domain, the GF is given by:
2 2 1.2 2 12
H(u,v,\,0,0,,0,) = Kexp{—2n"0;(F; — X) +0,F5 Y, (5.30)
where K is a constant, F; = ucosf 4+ vsinf and F5 = ucosf — vsin 6.

The approach used in this study to create GF-based features is the same as that proposed
by (Chen et al.| (2010) and is described briefly here. For more details, see Chen et al.
(2010).

5.6.1.1 Feature Calculation
Calculate Spatial Frequencies According to Wang et al.| (2005)), the GF outputs the
maximum response when

A = 2w, (5.31)
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where w is the width of a handwritten stroke in an image. The value for w can be
estimated by measuring the stoke widths in an image and then averaging them. The
spatial frequency can then be calculated as:
1
f= COS(X) (5.32)
In this study, A € {2,4}, was empirically found to perform well and is used for experi-
mentation.

Choose Orientations |Wang et al. (2005]) found the orientations for Chinese characters
3

to cluster around the four angles {0, %, g, Iﬂ} The same orientations were used by |Chen

et al.| (2010) for recognising Arabic characters. Due their successful use in previous studies,

the same orientations are used in this study.

Construct and Apply Gabor Filters A total of n x m GFs are constructed and then
applied to the image for the n frequencies and m orientations.

Determine Mean and Count Pixels Above Mean In their approach, Chen et al.
chose to emphasise salient pixels and that is the approach followed here. For the filtered
image, the mean magnitude of the response of the GF is computed and the number of
pixels for which the magnitude exceeds the mean and are considered salient are counted.

Split Image Into Blocks and Compute Features The filtered image is divided into
C cells. For each cell, the number of salient responses is calculated and divided by the
total number of salient responses in the whole image and appended to the feature vector
as a GF-based feature.

As a result of this feature calculation, a feature vector of length n x m x C'is created.

5.6.2 Invariance

Table [5.5] shows the feature values for GF-based features for the images in Figure |5.1]
which were calculated based on the proportion of salient responses for 4 blocks. The values
in Table are the responses for the first (top-left) block for each frequency/orientation
pair.

As can be seen from the table. GF-based features are invariant to scale but not to
translation or rotation.

5.6.3 Extraction

For SVMs and ANNs, GF's are applied to each word image and the relative number of
salient points for each of C' equally sized cells is calculated where C' = 2Y,y € 1,2, 3, 4.
For HMMs, the width of the sliding window is given by W = 4 and the overlap is given by
O = 3. GF's are applied to each image column and the relative number of salient points
for each of C' equally sized cells per column is calculated where C'=2Y,y € 1,2, 3,4.
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Translated Image

Rotated Image

Scaled Image

GF, =0.33 GF, =0 GF; =0.18 GF, =0.33
GFy, =0.32 GF, =0 GF, =0.15 GFy, =0.33
GF; =0.33 GF;=0 GF; =0.16 GF; =0.34
GF, =0.36 GF, =0 GF, =0.16 GFy =0.36
GF5 =0.33 GF; =0 GF5 =0.18 GF5 =0.33
GFs =0.32 GFs =0 GFIs =0.15 GFs =0.33
GF; =0.33 GF; =0 GF; =0.16 GF; =0.34
GFg =0.36 GFy =0 GF3 =0.16 GF3 =0.36

Table 5.5: Feature values for investigating invariant properties of GF-based features
Original Image

5.7 Discrete Cosine Transform Coeflicients

5.7.1 Description

The Discrete Cosine Transform (DCT), related to the Fourier transform, was originally
proposed by |[Ahmed et al.| (1974) and expresses a function or signal in terms of a sum of
different cosine functions at different frequencies (Nguyen and Bui, 2008). The DCT has
been widely used in video and image processing, such as in the JPEG standard where it
is used for compression. Image transforms are largely based on the idea that correlation
exists between neighbouring pixels and that the correlation can be used to predict the
value of a pixel based on its neighbouring pixels (Khayam),2003). In this sense, a transform
maps correlated data to uncorrelated data (Khayam), 2003). In this research, the Fastest
Fourier Transform in the West (FFTW3) (Frigo and Johnson, 2005) implementation of
the DCT is used.

There are eight kinds of DCT, though in practice only four of them are commonly used
(Nguyen and Bui|, 2008). The Type-II DCT is the most common and is the original one
proposed by |[Ahmed et al.| (1974) and is the one used in this research.

5.7.1.1 2-D Discrete Cosine Transform

For use as features for image recognition, the 2-D DCT is defined as |Khayam| (2003):

1N-1
(2 + 1)u (2 + 1)v
G, —_— 5.33
(u,v) = ;%fxycos{ oN cos N ) (5.33)
where u,v =0,1,2,...,N — 1 and a(u) and a(v) are given by Equation [5.34]
\/ i, ifu=20
alu) = N (5.34)
\/ 2 if uz0
N7 1 )
The inverse transform of the 2-D DCT is given by [Khayam| (2003):
~1N-1
(2 + 1)u m(2z + 1)v
Z Z a(u (u,v) cos [T] cos [T : (5.35)

u=0 v=0
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where z,y =0,1,2,.... N — 1.

5.7.1.2 DCT Coefficients as Features

Low frequency regions of the DCT contain most of the energy from the transform and
encode most of the variance of an image (Khayam, 2003). For this reason, the low
frequency coefficients of the DCT transform can be used as features, while the high
frequency components can be discarded through a process called quantization (Khayam),
2003). The 2-D coefficients of the DCT are converted to a 1-D vector using a technique
called zig-zagging (AlKhateeb et al., 2008), the purpose of which is to extract the low
frequency coefficients from the DCT first. An example of an image of a Bushman word and
its DCT transform, which shows most of the variance in the low frequency components,
is shown in Figure and two approaches for zig-zagging are shown in Figure [5.8|

i

T

(s

(a) Bushman word (b) DCT Transform

Figure 5.7: An example of an image and its DCT

(a) (b)

Figure 5.8: Two different zig-zagging approaches for extracting low frequency coefficients
from the DCT

Once the features have been extracted using zig-zagging, a linear feature vector F' can be
created.

5.7.2 Invariance

Table shows the first five DCT coefficients when extracted from the images in Figure
b.I] The coefficients have been normalised by dividing all coefficients by the largest
coefficient produced by the DCT.

As can be seen from the table, DCT coefficients are invariant to scale, but not to transla-
tion or rotation. Correlation also appears to exist between the coefficients of the original
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Table 5.6: Feature values for investigating invariant properties of DCT coefficients
Original Image Translated Image Rotated Image Scaled Image

DCTy =1 DCT, =1 DCTy =1 DCTy =1
DCT, =0.041 DCT; =0.20 DCT, = —-0.09 DCT, =0.04
DCT; = 0.09 DCTs; = —0.77 DCT; =0.04 DCT; = 0.09
DCT,=—-0.92 DCT,=0.21 DCTy, =—-042 DCT,= —0.92

DCT; =0.004 DCT5=-0.150 DCT5=0.004 DCT;=0.004

shape and the rotated shape, i.e. coefficients Cy and C3 are swopped, and coefficient Cf
is the same for both shapes.

5.7.3 Extraction

For SVMs and ANNs, DCT coefficients are extracted by partitioning the word image into
C=2Yy€0,1,2,3 cells and applying the DCT to each cell. For HMMs, the width of
the sliding window is given by W = 1 and the overlap is given by O = 0. DCT coefficients
are extracted from each column in the sliding window by partitioning the column into
C =29y € 0,1,2,3 cells and applying the DCT to each cell. For each cell, S DCT
coefficients are extracted using zig-zagging where S = 1, 10, 20, 30, 40, 50.

5.8 Discussion

The role of features in this study is to act as compact descriptors, which allow for the ma-
chine learning algorithms to distinguish among different words, characters and symbols.
This section has discussed the features used in this study, beginning with a discussion of
their derivation and implementation, then a description of the parameters for feature ex-
traction and a discussion of their invariant properties. The features used in this study were
chosen based on their popularity and successful use in the literature, their varying levels of
invariance, their varying levels of difficulty in terms of derivation and implementation and
their descriptive focus, i.e. distribution of pixels, orientation of lines and pixel gradients.
These features are used for experimentation for Bushman handwriting recognition and,
in the next chapter, the experimental design used in this study is described.
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Chapter 6

Experimental Design

The main purpose of this study was to investigate different techniques for the recognition
of handwritten Bushman texts. These techniques are influenced by a number of factors
including the following:

e The choice of machine learning algorithm and model parameters.

e The choice of descriptive features and feature extraction parameters.

e The recognition unit, i.e. character, word, text line.

e The amount of training data that is available and the use of synthetic training data.
e The number of authors that the recognition engine is trained for.

e The use of additional information such as a dictionary and statistical information
about the language.

In this study, the effects of the above factors are investigated through a series of exper-
iments designed to investigate each factor individually, as well as combinations of the
different factors. There is a potentially infinite number of combinations of techniques for
handwriting recognition and it would be infeasible to consider all of them. Therefore, a
selection of combinations are investigated in order to gain insight into those which produce
the best results. The general goal of this study is to come up with a best approach for
automatic Bushman handwriting recognition with potential application to other histori-
cal texts. Once this best approach has been determined, future research could focus on
fine-tuning the findings in order to improve results and potentially build production-ready
handwriting recognition systems.

Two approaches to Bushman handwriting recognition are investigated in this study. In
the first approach, referred to as word recognition, Bushman words are recognised where
images of Bushman words are used for training and recognition, each word represents a
single class and the word is recognised as a single pattern, rather than recognising the
individual symbols that it is made up of. In the second approach, referred to as text
line recognition, images of Bushman text lines are used for training and recognition, the
Bushman symbols that appear in text lines are recognised individually and a dictionary is
used to form words from the symbols. Figure [6.1| shows examples of the two recognition
units that are are used in this study.
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(a) Bushman word Bushman text line

Figure 6.1: The recognition units used in this study

In this chapter, the experimental design used in this study is described. This description
begins by discussing the common methodology applied to all experiments in this study.
Then, the factors that are investigated in the experiments are discussed, followed by a
description of the experimental design for the recognition of Bushman words using Support
Vector Machines (SVMs), Artificial Neural Networks (ANNs) and Hidden Markov Models
(HMMs) and then the recognition of Bushman text lines using HMMs. This chapter only
gives an overview of the experimental design, while the actual experiments and results
are presented in Chapter

6.1 General Approach

The specific methodologies for the individual experiments in this study vary. However,
there are some aspects of the approach that remain constant across all experiments. In this
section, these aspects that remain constant are discussed, while the specific aspects of the
methodologies for each experiment are discussed in the relevant sections. In this section,
the general experimental methodology is discussed, followed by a discussion of steps taken
to minimise variation in experimental design. Cross validation is then described, followed
by a description of the performance metrics used in this study. Lastly, the creation of
synthetic training data that is used in some experiments in this study is described.

6.1.1 General Experimental Methodology

In general, the following experimental methodology is used for all experiments in this
study.

1. A machine learning algorithm is selected.

2. The machine learning algorithm parameters are set.

3. Descriptive features are selected.

4. The feature extraction parameters are set.

5. Preprocessing takes place and features are extracted.

6. Using 10-fold cross validation, training and recognition takes place.

7. Postprocessing is performed.
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6.1.2 Experiment Variation Reduction

A comparative study, such as this, can easily be influenced by variation in experimental
design. Therefore, the following steps have been taken in an attempt to minimise variation
between experiments and thus reduce bias.

e Each word and text line sample is randomly partitioned for cross validation (see
Section [6.1.3)) and the partitions are kept constant for all experiments in order to
minimise selection bias.

e Features are extracted with the same parameters for the different machine learning
algorithms, unless the parameters need to differ due to the fundamental nature of
the machine learning algorithms.

e The same set of experiments are conducted for each machine learning algorithm at
each segmentation level.

6.1.3 Cross Validation

Cross validation is a method for estimating prediction error when an independent test
sample is used for the estimation (Hastie et al., 2001). A separate validation set can be
used for cross validation. However, this requires that, in addition to the data required for
the training set, enough data is available to form a reliable validation set. An alternative to
having an independent validation set is to perform K-fold cross validation. In K-fold cross
validation, the full data set is randomly split into K independent folds, where a fold is a
partition of the data (Hastie et al.; 2001). K —1 folds are then used for training prediction
models and the remaining fold is used for testing. This process is then repeated, each time
selecting a different fold for testing and training with the remaining K — 1 folds. Figure
shows an example of how data can be separated into 10 folds and how the testing data
can be rotated. The outcome of cross validation is an independent recognition accuracy
for each of the K folds that was used for testing. The overall recognition accuracy can
then be calculated as the average recognition accuracy of the K folds

10-fold cross validation is used in this study as it has been recommended as a good
compromise in terms of bias, variance and over-estimating the true prediction error (Hastie
et al., [2001)). In this study, all text line and word samples are randomly separated into 10
folds. These randomly created folds are then kept constant for all experiments, thereby
allowing for a direct comparison of techniques with fixed data points. All results reported
for the experiments described in this study are based on the averages for the 10 folds.

6.1.4 Performance Metrics
There are two performance metrics used during evaluation in this study. The first of these
metrics is used for word recognition and is a binary function for whether the whole word

was correctly recognised or not and the recognition accuracy is given by:

Number of words correctly recognised

Accuracy = x 100%. (6.1)

Total number of words
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Figure 6.2: Example of k-fold cross validation, k = 10

The metric used for text line recognition is based on how many symbols in the tran-
scription were correctly recognised, where a symbol refers to a single character, charac-
ter/diacritic combination or a space. The metric is a function of the number of substitu-
tions, deletions and insertions required to transform the recognised text into the correct
transcription and is given by:

N-S-D-1
N
where N is the length of the correct transcription, S is the number of substitution errors,
D is the number of deletion errors and [ is the number of insertion errors. A substitution
error occurs when a symbol is misclassified, an insertion error occurs when the recognition
output contains a symbol that does not occur in the original transcription and a deletion
error occurs when a symbol that occurs in the original transcription does not appear in the
recognition output (Vinciarelli et al., |2004). This recognition accuracy is not actually a
percentage as it can be below 0, which could occur, for instance, if there are a large number
of insertion errors. The maximum value for the recognition accuracy is 100 and occurs
when there are no substitution, deletion or insertion errors. This measure of recognition
accuracy is more indicative of the quality of an automatic transcription compared to say,
for instance, a measure of the number of symbols correctly recognised. This is because it
is possible to correctly recognise most symbols, but still have a low quality transcription as
a result of the recogniser outputting a large number of additional symbols, i.e. more than
actually appear in the text, which a simple measure of the number of symbols correctly
recognised does not take into account but that the measure of accuracy used in this study

does.

Accuracy = x 100, (6.2)

6.1.5 Synthetic Data

A well-established rule of thumb in handwriting recognition is that more training data
results in better the recognition accuracy (Varga and Bunke, |2003). For instance,
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et al.| (2002) showed how an increase from 10 training samples per character class to 1000
samples per character class was able to reduce recognition error rates by more than 10%.
However, it is not always the case that there are large amounts of training data available
and many researchers are often limited in this respect. One way to overcome the lack of
real training data is to supplement the real training data with synthetic training data.
Cano et al.| (2002) used some simple image transformations to create synthetic training
data. The transformations (Cano et al.| used included slant and shrink transformation to
account for geometric distortions and erosion and dilation transformation to account for
different writing instruments and acquisition conditions. |Cano et al.| showed that, while
all of the transformations reduced recognition error rates, the slant transformation had
the largest effect. In this study, the effect that synthetic training data has on performance
is investigated. The synthetic data was created by performing a +9° shear operation along
both the horizontal and vertical axes.

A number of experiments make use of these transformations in order to investigate the
effect that supplementing the training set with synthetic data has on performance. Figure
shows an example of an image with its synthetic variants after the transformations
have been applied.

s
o

a) Original Image

& v T

(b) Horizontal Shear +9° (c) Horizontal Shear —9° (d) Vertical Shear +9° ) Vertical Shear —9°

Figure 6.3: Bushman word image and its synthetic variants

While the methodology for each experiment varies depending on the factors being investi-
gated, there are some elements of the approaches that remain constant for all experiments
and which have been discussed in this section.

6.2 Factors Investigated

This is a comparative study where a number of features and other factors that affect
handwriting recognition are compared. The focus is on the use of each of these factors
with different machine learning algorithms. These factors relate to, among others, the use
of different features, the use of synthetic data, the effect of the amount of training data
available and the effect of multiple authors. The actual experiments investigating each of
these factors are presented in the next chapter. The purpose of this section, however, is
to provide motivation for why each of the factors is investigated.
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6.2.1 Different Features

One of the considerations when creating a handwriting recognition system involves the
choice of descriptive features and this study investigates a number of descriptive features
from the literature and that were described in Chapters )] The features that are used
and the parameters used for feature extraction could potentially play a significant role
in the performance of the different recognisers. For this reason, different features are
evaluated when used with the different machine learning algorithms. Most of the features
investigated in this study require that parameters be specified for feature extraction and
the values for these parameters could potentially have an impact on the performance of
the recogniser. Therefore, all feature-based experiments are designed to investigate two
aspects related to the use of different features for Bushman handwriting recognition:

1. The effect of varying parameter values during feature extraction.

2. The performance of the different features when used with each recogniser.

In investigating the former of the above, for each machine learning algorithm, each feature
is evaluated with different parameters for feature extraction and, in investigating the
latter, the best performing parameter values for each feature are compared in order to
gain insight into the best overall performing features. The features investigated in this
study are:

e Undersampled Bitmaps (UBs)

Marti & Bunke (M&B) features

Geometric Moments (GMs)

Histograms of Oriented Gradients (HoGs)

Gabor Filter (GF)-based features

Discrete Cosine Transform (DCT) coefficients

6.2.2 Hybrid Features

Each of the individual features used in this study has descriptive properties. For instance,
the GF-based features describe the orientations of lines and the UBs describe the distri-
bution of pixels in the Cartesian plane. It is possible to combine these different features
to form hybrid features that incorporate the descriptive properties of the individual fea-
tures that they are composed of. It is possible that these hybrid features could improve
the performance of the recognisers as a result of their potentially increased descriptive
capabilities. In investigating the use of hybrid features, the best performing individual
features for each recogniser are combined and the combinations are evaluated.
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6.2.3 Synthetic Training Data

It is well known that the amount of training data available has an effect on the per-
formance of handwriting recognition systems (Rowley et all 2002). However, in many
cases, large amounts of training data are not available due to the cost of its acquisition.
Therefore, some studies have investigated the effect that synthetic training data has on
the performance of handwriting recognition systems (Cano et al., 2002)). Section de-
scribed the creation of synthetic training data and a number of experiments are conducted
where the use of synthetic training data for each recogniser is evaluated.

6.2.4 Number of Samples Available

As already mentioned, the performance of handwriting recognition systems is often largely
dependent on the number of training samples available. Thus, the performance of the
different machine learning algorithms for varying amounts of training data is investigated.

6.2.5 Multiple Authors

It is often desirable for handwriting recognition systems to be writer independent and
robust to the differences in the handwriting of multiple authors. The notebooks in the
Bleek and Lloyd Collection were written by multiple authors and the corpus described
in Section {4| includes the writing of two authors: Lucy Lloyd and Wilhelm Bleek. The
effect of having multiple authors is to increase the variation within classes since different
authors have different handwriting styles. In this study, the way in which the different
machine learning algorithms react to the increase in variation within the training data
due to the introduction of a second author is investigated.

6.2.6 Statistical Language Models

Statistical language models, which were discussed in Section [2.6] contain information
about the distribution of words or characters in a language. Language models can be used
to improve the performance of an automatic recogniser by constraining the recognition
output. A language model is built by gathering information about the distribution of
words and characters in a language from samples of texts in that language. Thus, the
language model actually models the distribution of words and characters in the sample
texts and acts as an approximation of the actual distribution of words and characters in the
natural language. In this study, the effect of a statistical language model is investigated for
a single author. A bigram word language model was created using the SRILM Language
Modelling Toolkit (Stolcke, 2002) from the transcriptions of the text lines written by a
single author and is used in an experiment in order to investigate the effect that it has on
recognition accuracy. It may be possible to build higher order language models; however,
for the purpose of this study, a bigram language model was chosen since it is capable
of demonstrating the effect that a statistical language model can have on recognition
accuracy.

All of the above factors, except for the use of statistical language models, are investigated
in various combinations for the different machine learning algorithms. The use of statis-
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tical language models is investigated for Hidden Markov Model (HMM)-based text line
recognition only.

6.3 Word Recognition

In this study, automatic recognition occurs for individual Bushman words and for Bush-
man text lines. In this section, Bushman word recognition is discussed and Bushman
text line recognition is discussed in the next section. For Bushman word recognition, the
machine learning algorithms are provided with an image of a single Bushman word at a
time for training and a single Bushman word is recognised at a time. Rather than recog-
nising the individual symbols that make up a word, each Bushman word is recognised as
a whole. Thus, each word represents a single pattern that needs to be classified.

A number of machine learning algorithms and descriptive features are used for word
recognition. Each of the machine learning algorithms is tested with each feature in order
to evaluate its performance. The features are extracted from the words with different
parameters in order to gain insight into the effect that feature extraction parameters have
on performance. For each machine learning algorithm, the best performing feature is used
for further investigation into other aspects affecting word recognition, such as the effect of
multiple authors, the use of synthetic data and the number of training samples. Features
for the Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) are
extracted for the whole image using the same parameters while features for the HMMs
are extracted using a sliding window.

Section described how cross validation is used for estimating the recognition ac-
curacy. For word recognition, the data set was randomly separated into 10 folds, which
were then kept constant for all experiments in order to eliminate differences in recognition
accuracy due to sampling.

The metric used to evaluate techniques for word recognition is the word recognition ac-
curacy as defined by Equation [6.1]

This section begins by describing how the corpus described in Chapter |4] was sampled
in order to create sub-corpora for word recognition. This is followed by a description of
the word normalisation process in Section [6.3.2] The experimental design for the use of
SVMs, ANNs and HMMs for Bushman word recognition is then presented.

6.3.1 Corpus Sampling

Chapter [4| described the creation of a corpus of Bushman texts. For the creation of
this corpus, pages of text were segmented into their individual text lines, which were then
segmented into words and the text lines were then manually transcribed. A shortcoming of
this approach is that the transcriptions correspond to the text lines and can not necessarily
be mapped directly to the words. For instance, a transcription of a text line may contain
4 Wordsﬂ while the image of the text line was only segmented into 3 words. This is an
unfortunate shortcoming of having different users do the transcription and segmentation
of a text line and of having text lines transcribed rather than words. For this reason,

'Where words in a text line are defined as white-space-delimited sets of characters.
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only text lines that had the same number of segmented words as the number of words in
a transcription were used for word recognition.

For most of the experiments in this study, recognition models were trained for a single
author and the experiments were conducted to recognise the texts of that author. How-
ever, there are a series of experiments where the handwriting of multiple authors was used
for training and recognition. In this case, the recognition models were trained with the
handwriting of both authors. For the main author, whose handwriting was used for most
of the experiments in this study, a total of 2171 words were found to correspond perfectly
to the text line transcriptions. However, for many of the word classes, there was only a
single sample, making training models to recognise the word infeasible since the words are
recognised as a single object rather than recognising the symbols that they are made up
of. For this reason, only word classes that contained 2 or more samples were sampled for
word recognition, resulting in a total of 369 word classes. For text line recognition, where
individual symbols are recognised, all words were included for recognition. The corpus
of 369 word classes was then manually cleaned, resulting in a final corpus containing 257
word classes and a total of 1704 word samples.

6.3.1.1 Minimum Number of Samples Per Class

Some of the experiments described in this chapter relate to the effect that the number
of samples per class has on the performance of the recognisers. Therefore, in order to
investigate this effect, the corpus containing 257 word classes and 1704 word samples was
sampled to create sub-corpora where each sub-corpus had a minimum of n samples per
word, where n € {2,3,4,5,6,7,8,9,10} and the number of word classes also varied among
the different sub-corpora. Table summarises the properties of these sub-corpora.

Table 6.1: Properties of sub-corpora for minimum number of samples per class for word
recognition
Min. Samples Per Class Number of Classes Number of Samples

2 257 1704
3 158 1506
4 108 1356
5 81 1248
6 69 1188
7 o8 1122
8 52 1080
9 45 1024
10 39 970

6.3.1.2 Fixed Number of Samples and Fixed Classes

The sub-corpora described above all have varying numbers of classes and it is possible that,
when investigating how the different machine learning algorithms react to the amount
of training data, the number of classes could be the cause of variation in recogniser
performance, rather than the number of samples. Thus, another set of sub-corpora was
created where the number of classes and number of samples per class were fixed. In these
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sub-corpora, the number of classes was fixed at 39 and, for each sub-corpus, the number
of samples per word was n, where n € {2,3,4,5,6,7,8,9,10}.

6.3.1.3 Default Word Corpus

A default word corpus is used for most experiments in this study, except for those where
the effect of the amount of training data is investigated or where the use of multiple
authors is investigated. The default sub-corpus used for recognition is the one where
each word class has a minimum of 5 samples. The reason for this is that, in order to get
recognition results that accurately represent the descriptive capabilities of the features, it
is necessary to have enough samples for training and a minimum of 5 sample was chosen
as it was felt that it would be sufficient. The default corpus, which contains a minimum
number of 5 samples per word has a total of 81 different word classes and a total of 1248
samples.

6.3.1.4 Multiple Authors Corpus

A number of experiments described in this section deal with the effect that multiple
authors have on the performance of the recognisers investigated. The default word corpus,
mentioned above, was supplemented with the handwriting of a second author in order to
investigate the effect of multiple authors. In supplementing the default word corpus, a
total of 247 word samples were added to the 81 classes that already existed. In addition
to this, an additional 13 word classes and 109 word samples belonging to these new classes
were added. Table summarises the differences between the single and multiple author
corpora.

Table 6.2: Properties of corpora for single and multiple authors for word recognition
Number of Authors Number of Classes Number of Samples
1 81 1248
2 94 1604

6.3.2 Word Normalisation

Normalisation of words refers to the process of preprocessing each word image before
training and recognition in order to minimise variation within classes. For each word
used for training and recognition, the following normalisation process takes place:

1. A median filter is used to blur the image and then the word boundary is identified
and the original image is cropped at the word boundary. This has the effect of
removing surrounding noise in the image.

2. Any remaining slant in the word is corrected using the technique described in Section

1232

3. The same process as in Step 1 is repeated in order to remove any noise introduced
by the slant correction process.
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4. The image is resized to a fixed block of size 64x64. This is done without distorting
the proportions by scaling the image and then padding white space to the smaller
side. This was necessary as some of the libraries used to implement the machine
learning algorithms required that the feature vectors for different samples were the
same size. During initial experiments it was found that padding the word images
had a negligible effect on the performance of the recognisers.

Examples of normalised words are shown in Figure [6.4]

L \
el - bbb

£ g )

fEE‘:ﬁZ. 2 }"L/éa‘;&/{a“

(a) Original  (b) Normalised (c) Original ~ (d) Normalised (e) Original  (f) Normalised

Figure 6.4: Bushman words and their normalised variants

6.3.3 Support Vector Machines for Word Recognition

SVMs are one of the machine learning algorithms used in this study and are described
in Chapter [2 For word recognition in this study, a SVMs with a Radial Basis Function
(RBF) kernel was used. A SVM with a RBF kernel has two parameters - C' and A - which
need to be determined before training can begin (Hsu et al., [2003). In order to determine
optimal values for these parameters, a grid search is used in which pairs of values for C'
and \ are tested for the training set in order to see which pair produces the best results. In
order to prevent over-fitting, cross validation of the training data is performed in selecting
values for C' and A (Hsu et al. 2003).

In this study the LIBSVM (Chang and Lin, 2001)) implementation of SVMs is used for
scaling the data, performing the grid search, training the models and recognising unseen
data and one-vs-one classification is used (see Section [2.5.3)).

6.3.3.1 Experiment Procedure
For every SVM-based experiment the following steps take place:

1. The full data set is separated into 10 folds of equal size.
2. The data is scaled.

3. Cross validation is used where 9 folds are used for training and 1 fold is used for
testing.

4. The optimal values for C' and A for the training data are found using grid search
and an SVM model is trained.

5. The accuracy is recorded for the testing fold using the SVM model created in the
previous step.
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6. The average accuracy for the 10-folds, as described by Equation [6.1] is reported as
the final accuracy.

6.3.4 Artificial Neural Networks for Word Recognition

ANNs were described in Chapter [2| and are one of the machine learning algorithms used
in this study. In this study a multilayer perceptron is used for word recognition and is
discussed in this section.

6.3.4.1 Multilayer Percepton Implementation

The topology of the multilayer perceptron used in this study has an input layer, a hidden
layer and an output layer, thereby making it a 3-layer ANN. The number of nodes in the
input layer is equal to the number of descriptors in the feature vector and the number of
neurons in the output layer is equal to the number of classes that need to be recognised.
The selection of the number of neurons in the hidden layer is described in the next section.
Figure shows an example of the type of ANN architecture used in this study.

The ANNs used in this study are implemented using the Fast Artificial Neural Network
(FANN) library (Nissen, 2003).

Network Parameters When training ANNs, there are a number of parameters that
need to be specified, including: the number of epochs, the learning rate, the learning
momentum, the activation function, the error function and the training algorithm. The
parameters in this study are fixed as follows:

e Epochs: 1000
e Activation function: sigmoid symmetric (tanh)
e Error function: tanh

e Training algorithm: iRprop (Christian Igel, [2000) - does not require a learning rate
(an improved implementation of the Rprop algorithm (Riedmiller| 1994]))

The only ANN parameter that is varied in this study is the number of neurons in the
hidden layer. The best number of units in the hidden layer depends on several factors
such as the number of units in the input and output layers, the amount of noise that
exists in the the data, the training algorithm used and the activation function (Sarle,
1997)). |Sarle, (1997) notes that there is no way to easily determine the best number of
neurons in a hidden layer, where too few hidden units will result in underfitting and high
generalisation and training errors, whereas too many units, while having a low training
error, will result in overfitting. There are a few “rules of thumb” for choosing the number
of units in the hidden layer, which Sarle| argues are flawed because they ignore some of
the aspects that the number of hidden units depend on and which were mentioned above.
These “rules of thumb” include the following listed by [Sarle| from various sources:

e The number of hidden units should be between the number of units in the input
layer and the output layer.
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Figure 6.5: A multi-layered feed-forward network

e The number of hidden units can be calculated as:

GV )

(size of input layer + size of output layer) x

e The size of the hidden layer should never be more than twice the size of the input

layer.

Given the dependence of the performance of a ANN on the number of hidden units as well
as the varying opinions on how many hidden units there should be, an approach to finding
the best number of hidden units is just to train the ANN with different numbers of hidden
units, estimate the error for each and use the best performing architecture. This is the
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approach used in this study. For each ANN experiment, ANNs are built with N neurons

in the hidden layers, where N = {5, %, So, %, @}, where S; is the size of the

input layer and Sp is the size of the output layer. The experiment is then conducted for
each architecture and the accuracy of the best performing architecture is reported.

Neural Network Ensembles When recognising unseen data, the output at each neu-
ron in the output layer is the strength of the signal in the range [-1;1] due to the sigmoid
symmetric activation function on the output layer. A high positive value implies a strong
correlation with the class represented by that neuron, while a low signal implies little
correlation. However, since the ANNs have been initialised by random weights, these
random values can have an impact on the performance of the ANN, i.e. “good” initial
random weight can result in good performance while “bad” initial weights might lead to
poor performance. An approach to overcoming this random effect is to use an ensemble
of redundant ANNs. In an ensemble of ANNs a finite number of ANNs are trained for
the same task and then their output is combined to create a single output (Chang Shu,
2004). The effect of this is to improve the generalisation of the ensemble as a whole.
There are a number of different methods for creating ensembles, such as having networks
with different architectures, varying the training algorithm and data set, and varying the
initial random weights (Chang Shu, [2004)).

Once the ensemble of networks has been trained, their output is combined to create a single
output. Common techniques for doing this include linear methods, such as averaging or
weighted averaging or stacking, in which an additional model learns how to combine the
networks in the ensemble (Chang Shu, 2004).

For each experiment in this study, an ensemble of 10 ANNs is created. The ANNs in the
ensemble differ by the random initialisation weights and are combined by averaging the
weights at each output neuron for the 10 networks in the ensemble.

6.3.4.2 Experiment Procedure

For every ANN-based experiment for word recognition the following steps take place:

1. The same 10 folds of data as used in the experiments for SVM-based word recogni-
tion are used.

2. Cross validation is used, where 9 folds are used for training and 1 fold is used for
testing.

3. An ensemble of 10 ANNs is trained for each ANN architecture, where each ar-
chitecture is defined by N, the number of neurons in the hidden layer, where

St So Sr+So
N = — -, ——%
{517 92 7507 2 ) 92 }

4. The average output of the ensemble is calculated and used for classification.

5. The word accuracy, as described by Equation [6.1] is recorded and averaged for the
10 folds for the best performing ANN architecture.
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6.3.5 Hidden Markov Models for Word Recognition

HMMs were described in Chapter [2| and are one of the machine learning algorithms used
in this study for word recognition. In this study, HMMs are used for word recognition and
a single HMM is built for each word. This study makes use of the Hidden Markov Model
Toolkit (HTK) (Young et al. [2006) for HMM-based recognition. Even though HTK
was originally designed for speech recognition, it can still be used for general purpose
HMM-based recognition. All HMMs is this study are left-to-right continuous models
and are defined by two main parameters that need to be determined before training and
recognition can begin: the number of states in the model and the number of Gaussians.
Section describes an experiment for determining these parameters for text-line
recognition and, since the words that are recognised in this study are extracted from
the lines recognised in this study, it is assumed that these parameters are also suitable
HMM-based word recognition.

6.3.5.1 Experiment Procedure

For every HMM-based experiment for word recognition, the following steps take place:

1. The same 10 folds of data as used in the experiments for SVM and ANN-based word
recognition are used.

2. Cross validation is used, where 9 folds are used for training and 1 fold is used for
testing.

3. HMMs with 12 emitting states are created for each word in the training set (see

Section [7.2.1.1)).

4. Beginning with 2 Gaussians, training takes place on the training set over four iter-
ations.

5. The number of Gaussians is increased by 2 using the results of the previous training
step as the base for the next until HMMs with 16 Gaussians have been trained.

6. The accuracy is recorded for the testing fold using the HMMs created in the previous
step .

7. The word accuracy, as described by Equation [6.1] is recorded and averaged for the
10 folds.

This section discussed the experimental design for the recognition of Bushman words.
SVMs, ANNs and HMMs are used for Bushman word recognition where the task is to
recognise whole Bushman words as a single pattern rather than recognise the individual
symbols that they are made up of. One of the disadvantages to word recognition is
that text lines need to be segmented into words and, in this study, this was done semi-
automatically. However, this process could significantly increase the difficulty in creating
a recogniser. Thus, in the next section, the avoidance of word segmentation by using
HMDMs for text line recognition is described.
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6.4 Text Line Recognition

The previous section discussed the research design of experiment for Bushman word recog-
nition, where each of the words was recognised as a single pattern. This section describes
the research design for text line recognition where each of the symbols in a text line is
recognised individually and then combined to form words and sentences. The term “text
line recognition” is used since the input to the recogniser is a line of text; however, the
actual atomic units being recognised are the individual symbols.

A feed forward continuous HMM is used for text line recognition with the features de-
scribed in Chapter 5| all of which have been extracted multiple times with different pa-
rameters. The best feature set is selected for further investigation into other factors that
impact on text line recognition, such as the use of synthetic data, the effect of multiple
authors and the amount of training data available.

As was the case with word-based recognition, cross validation as discussed in Section [6.1.3
is used in order to minimise selection bias.

All text lines are normalised to a height of 64 and the recognition accuracy, as described
by Equation is used as a performance metric for text line recognition.

6.4.1 Corpus Sampling

The corpus of text lines from Chapter |4 was sampled to create a set of sub-corpora for
Bushman text line recognition. 3083 of the transcribed text lines from the Bushman cor-
pus were used in this study, 1928 of which were written by Lucy Lloyd and the remaining
1155 written by Wilhelm Bleek. In this study, this corpus of 3083 text lines was sampled
in various ways for the different experiments involving text lines. The ways in which this
corpus was sampled are described below.

6.4.1.1 Default Corpus

The default corpus, which is used in most text line recognition experiments, was based
on the writings of a single author. In this default corpus, the 1928 Lucy Lloyd text line
samples were used for training and recognition. In this corpus, there are a total of 963
symbols, for which models are trained in the experiments. These symbols are used to
form 3925 different words in the text line samples.

6.4.1.2 Amount of Training Data

One of the experiments for text line recognition relates to the amount of training data
that is available for training. In investigating this, the default corpus mentioned above
was randomly sampled such that P percent of the corpus was used for training and testing
where P € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
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6.4.1.3 Minimum Number of Sample Per Class

Sub-corpora were created to investigate the effect that the minimum number of sam-
ples per class has on the performance of the recogniser where only text lines where
all of the symbols in the text line had a minimum of n samples were used, where
n € {2,3,4,5,6,7,8,9,10}. In order to increase accuracy when determining the mini-
mum number of samples per symbol, only text lines where the number of words in the
transcription was equal to the number of words that text line was segmented into were
used. In doing this, the probability of the transcription being accurate was increased since
two data capturers would need to agree on the number of words when segmenting and
transcribing a text line. Table summarises the properties of each of these sub-corpora.

Table 6.3: Properties of sub-corpora for minimum number of samples per class for text
line recognition
Min. Samples Per Class Number of Classes Number of Samples

2 367 1418
3 260 1222
4 208 1100
5 172 981
6 154 910
7 132 801
8 120 736
9 116 714
10 113 692

6.4.1.4 Multiple Authors

One of the experiments in this study describes an investigation into the effect that multiple
authors has on the performance of the text line recogniser. In order to investigate this,
the default corpus described above is supplemented with the writings of a second author.
Table summarises the differences between the single and multiple author corpora.

Table 6.4: Properties of corpora for single and multiple authors for text line recognition
Number of Authors Number of Classes Number of Samples
1 963 1928
2 1231 3083

6.4.2 Hidden Markov Models for Text Line Recognition

HMMs were described in Chapter[2l In this study, HMMs are used for text line recognition
in a similar fashion to that of word recognition. However, a difference exists in the way
that models are built and recognised. For word recognition, models were built for every
word in the text and then individual words were recognised while a network constrained
the recognition output to a single word.
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A slightly different approach is taken for text line recognition where models are built for
each symbol that appears in the text. These models are then concatenated to form words
through the use of a dictionary. Furthermore, instead of only allowing a single model
as output, as was the case with word recognition, the network allows for any number of
words to be output.

Features for HMM-based text line recognition are extracted in the same manner as for
word recognition, i.e. using a sliding window of width W with possible overlap O (see

Section [5.1.2)).

6.4.2.1 Experiment Procedure

For every HMM-based experiment for text line recognition (except the one when the
parameters for the HMMs are determined where Step 3 is omitted), the following steps
take place:

1. The data is randomly separated into 10 folds that are then kept constant for all
experiments.

2. Cross validation is used where 9 folds are used for training and 1 fold is used for
testing.

3. HMMs with 12 emitting states are created for each symbol in the training set.

4. Beginning with 2 Gaussians, training takes place on the training set over four iter-
ations.

5. The number of Gaussians is increased by 2 while building on the previous training
phase until HMMs with 16 Gaussians have been trained.

6. The recognition accuracy, as described by Equation [6.2] is recorded and averaged
for the 10 folds.

6.5 Discussion

There are many choices that can be made when designing a handwriting recognition
system. These choices relate to the choice of machine learning algorithms, descriptive
features, segmentation levels and amount of training data, among others. All of these
factors could potentially have an effect on the performance of a handwriting recognition
system and thus it is beneficial to use an approach that results in the best performance. In
this study, two approaches to Bushman handwriting recognition are investigated. In the
first approach, whole Bushman words are recognised as a single pattern and, in the second
approach, the individual symbols in Bushman text lines are recognised. This chapter has
described the experimental design used in this study, which allows for a direct comparison
of different techniques to be made. In the next chapter, the experiments in which these
different techniques for handwriting recognition were investigated are presented and their
results analysed.
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Chapter 7

Experiments

Chapter [6] described the research design used in this study, including a discussion of how
Support Vector Machines (SVMs), Artificial Neural Networks (ANNs) and Hidden Markov
Models (HMMs) are investigated for word recognition and how HMMs are investigated
for text line recognition. The factors that are investigated as part of this study include:

e The use of different features.

The use of hybrid features.

The use of synthetic data.

The effect of the amount of training data.

The effect of multiple authors.

The use of a statistical language model.

In this chapter, the experiments conducted to investigate each of these factors is pre-
sented and their results discussed. For each factor, the findings are presented within the
context of the machine learning algorithm being investigated. However, a meta-analysis
is provided later in the chapter based on the findings for all of the machine learning algo-
rithms. This chapter begins with a description of experiments for word recognition, then
a description of the experiments for text line recognition and, lastly, an analysis of the
overall findings and implications.

7.1 Word Recognition

Words were one of the units of recognition considered in this study and this section
presents the results of using SVMs, ANNs and HMMs for word recognition.

7.1.1 Support Vector Machines for Word Recognition

In this section, experiments investigating the use of SVMs for Bushman word recognition
for the following are presented:
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The use of different descriptive features in Section [7.1.1.1}

The use of hybrid features in Section [7.1.1.2]

The effect of synthetic training data in Section [7.1.1.3]

The effect of the number of training samples in Section

The effect of multiple authors in Section

The SVM experimental procedure described in Section [6.3.3.1]is used for all SVM-based
word recognition experiments. For all experiments, except the one investigating the effect
of multiple authors, the default corpus containing the handwriting of a single author,
as described in Section [6.3.1], is used. The recognition accuracy reported is based on
Equation [6.1] and is a measure of the proportion of words that were correctly classified.

7.1.1.1 Experiment: Support Vector Machines with Different Features

Purpose To investigate the performance of a SVM-based word recogniser with various
descriptive features.

Procedure

1. Features are extracted for each of the features described in Chapter [5| using varying
parameters.

2. The best performing parameter values for each feature are then used to provide a
comparison of the different features for SVM-based word recognition.

Results

Undersampled Bitmaps

Figure shows the recognition accuracy for SVM-based word recognition using Un-
dersampled Bitmaps (UBs) as features. The recognition accuracy is shown when the
word images are partitioned into different sized cells. As can be seen from Figure [7.1]
decreasing the cell size, and thereby increasing the size of the feature vector, has a positive
effect on the recognition accuracy, which is highest at 50.73% when UBs are extracted
from 8x8 cells. The findings suggest that the descriptive power of UBs increases when the
cell size decreases. However, when the cell size becomes too small, as is the case for the
4x4 cells, UBs appear to lose some of their descriptive power.

Marti & Bunke Features

The average word recognition accuracy when using the Marti & Bunke (M&B) set of
features for SVM-based Bushman word recognition was 47.28%.
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Figure 7.1: Recognition accuracy for SVM-based word recognition using UBs as features
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Figure 7.2: Recognition accuracy for SVM-based word recognition using GMs as features

Geometric Moments

Figure shows the recognition accuracy for SVM-based word recognition using Ge-
ometric Moments (GMs) as features. The first thing to notice from the figure is that the
GMs that are selected for use as features appear to have little impact on the recognition
accuracy achieved. Instead, it appears that the size of the cells that the images are parti-
tioned into has a larger impact. For instance, extracting GMs from whole images or from
images partitioned into 32x32 cells results in poor performance, while decreasing the size
of the cells that the images are partitioned into improves performance. These findings
are in line with the findings when UBs were used as features where decreasing the size of
the cells led to an improvement in performance. The best recognition accuracy of 27.96%
occurs when 8x8 cells are used and when only the first GM (M1) is used as a feature.
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Figure 7.3: Recognition accuracy for SVM-based word recognition using HoGs as features

Histogram of Oriented Gradients

Figure shows the word recognition accuracy for Histograms of Oriented Gradients
(HoGs) extracted with various parameters. The first labels along the z-axis are the res-
olutions at which the features were extracted and, as can be seen from the figure, the
best word recognition accuracy of 58.49% was achieved when resolutions Ry, Ry and Rj
were equal to 32,16 and 8 respectively. However, all resolutions tested appear to have
performed relatively well except when R1, R2 and R3 were equal to 64,0 and 0. In this
case HoGs were extracted from whole images without them being partitioned into cells
and it appears that, at this high resolution, the features lack the descriptive power that
occurs at lower resolutions. The fact that, in most cases, the resolutions at which the
HoGs were extracted has little effect on the accuracy achieved suggests that the same
information is summarised by the HoGs at all resolutions. As can be seen from the figure,
signing and normalising the gradients led to a slight decrease in accuracy.

Gabor Filter-based Features

Figure shows the word recognition accuracy for Gabor Filter (GF)-based features
when the images are partitioned into varying numbers of cells for salient point calcula-
tion. As can be seen from the figure, the best word recognition accuracy of 53.21% occurs
when the images are partitioned into 8x8 cells for calculating the relative number of salient
points. The effect of the number of cells that the images are partitioned into in this ex-
periment is in line with the findings when UBs and GMs were used as features where
decreasing the size of the cells from which features were extracted led to an improvement
in performance up to some point afterwhich performance started to decrease.

Discrete Cosine Transform Coefficients

Figure shows the word recognition accuracy when the Discrete Cosine Transform
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Figure 7.4: Recognition accuracy for SVM-based word recognition using GF-based fea-
tures
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Figure 7.5: Recognition accuracy for SVM-based word recognition using DCT coefficients
as features

(DCT) coefficients are used as features. Two parameters are specified when extracting
DCT features: the size of the cells on which the DCT should be performed and the number
of coefficients to extract as features. As can be seen from Figure having only a few
descriptors, as is the case when only one DCT coefficient is extracted from a whole image
or when the size of the cells that the images are partitioned into are large, results in poor
performance. Beyond that, the performance appears to be relatively uniform regardless
of the number of coefficients extracted for each cell size that the images were partitioned
into for the DCT calculation. The best recognition accuracy of 50.16% was achieved when
the DCT was performed on 8x8 cells and only a single DCT coefficient was extracted per
cell.
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Discussion There are a number of descriptive features that can be used when building
a SVM-based word recogniser and this experiment has investigated the use of 6 different
descriptive features. It has been shown that the choice of descriptive features has a strong
influence on the performance of the SVM-based word recogniser. For instance, the highest
recognition accuracy of 58.49% was achieved when HoGs were used as features and the
lowest recognition accuracy of 27.96% occurred when GMs were used as features. The
other descriptive features all achieved a recognition accuracy in the 50% range. Table
provides an overview of the maximum recognition accuracy for each feature with the best
performing feature extraction parameters.

Table 7.1: Recognition accuracy for SVM-based word recognition for all descriptive fea-
tures with best performing parameter values

Feature Set Recognition Accuracy
Histograms of Oriented Gradients 58.49%
Gabor Filter-based Features 53.21%
Undersampled Bitmaps 50.73%
Discrete Cosine Transform Coeflicients 50.16%
Marti & Bunke Features 47.27%
Geometric Moments 27.96%

All of the features used in this study, except the M&B features, required that parameters
be specified for feature extraction. Thus, this experiment involved investigating various
feature extraction parameters and it was found that the choice of these parameters often
had an effect on the recognition accuracy that could be achieved. For instance, UBs,
GMs, GF-based features and DCT coefficients all required that the size of the cells that
an image is partitioned into for feature calculation be specified. In each of these cases,
size of the cells ranged from a single cell with size 64x64, to the smallest cell size of 4x4.
In all cases it was found that the 8x8 cell sizes resulted in the best performance, while
smaller and larger cell sizes led to a decrease in accuracy. These finding suggest that, to
some extent, smaller cells have higher descriptive power at their smaller local levels than
larger cells. At some point though (in this study when the images were partitioned into
4x4 cells) there was a decrease in performance, suggesting that, at very small local levels,
the descriptive power of the features begins to decrease. There were also some cases where
the parameters for feature extraction appeared to have little effect on the performance of
the recogniser. For instance, for GMs, the actual moments that were extracted as features
did not influence the recognition accuracy. Similarly, for DCT coefficients, the number of
coefficients extracted per cell also appeared to have little effect on recognition accuracy.

7.1.1.2 Experiment: Support Vector Machine with Hybrid Features

Purpose To investigate the accuracy that can be achieved when a SVM-based recogniser
is used with hybrid features for Bushman word recognition.

Procedure

e HoGs, GF-based features and UBs, which were found to produce the best results
in the previous experiment, are combined to create hybrid features made up of n
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individual features at a time where n € {2,3} resulting in a total of 4 different
hybrid features.

e The features are extracted using the best performing parameters in the previous
experiment.

Results Figure [7.6] shows the recognition accuracy for the various hybrid features used
with the SVM-based recogniser.
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Figure 7.6: Recognition accuracy for SVM-based word recognition using hybrid features

Discussion Figure [7.6] shows that all of the hybrid features used in this experiment
perform approximately the same. The maximum recognition accuracy of 57.77% was
achieved when HoGs were combined with UBs. However, this best performing hybrid
feature performs slightly worse than the HoGs do individually. There is a very slight
improvement in performance when GF-based features are supplemented by UBs; however,
it is unlikely that this is significant. Thus these findings show that the hybrid features
used in this study do not improve the performance of the SVM-based recogniser and could
possibly apply to hybrid features in general.

7.1.1.3 Experiment: Support Vector Machine with Synthetic Training Data

Purpose To investigate the accuracy that can be achieved when a SVM-based recogniser
is trained with supplemental synthetic data for Bushman word recognition.

Procedure

e The transformations described in Section are applied to each training sample
to create 4 synthetic versions of each training sample.

e HoGs are used as features since they had the highest recognition accuracy in previous
experiments.
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Results By including the transformations described in Section |6.1.5] an average word
recognition rate of 62.58% was achieved.

Discussion The 62.58% recognition accuracy achieved with synthetic data is an increase
by 4.09% in the recognition accuracy with the best performing HoGs as features. Given
the simplicity in creating this synthetic training data, it can be concluded that its use
is beneficial. However, it is possible that the improvement gained from using synthetic
training data does not generalise. Thus, this experiment is also repeated for the other
machine learning algorithms and then analysed in greater detail in Section [7.3.3]

7.1.1.4 Experiment: Support Vector Machine and Number of Samples

Purpose To investigate the effect that the number of training samples has on the per-
formance of a SVM-based word recogniser.

Procedure

e The sub-corpora described in Section [6.3.1| are used.

e HoGs are used as features since they had the highest recognition accuracy in previous
experiments.

Results The results of this experiment are shown in Figure [7.7]
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Figure 7.7: Recognition accuracy for SVM-based word recognition for different numbers
of training samples
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Discussion The effect of the number of samples on the performance of the SVM-based
recogniser has been tested in two ways in this experiment. In the first case, represented
by the wvarying classes line in Figure [7.7] the minimum number of samples per class is
represented by the z-axis. As can be seen from the figure, there is a positive linear
relationship between the minimum number of samples per class and recognition accuracy.
This, however, needs to be considered within the context of the number of classes that
need to be recognised. For instance, when there are a minimum of two samples per class,
a total of of 257 classes need to be recognised whereas, when there are a minimum of 10
samples per class, only 39 classes need to be recognised. This occurs due to the higher
minimum number of samples per class excluding classes with fewer samples. Therefore, it
is possible that the difference in recognition accuracy may be attributable to the number
of classes that need to be recognised, rather than the number of available samples. The
fized classes line in Figure addresses this by fixing the number of classes that need to
be recognised to 39 and then fixing the number of samples per class (as opposed to setting
a minimum). The fixed classes results show the same general positive linear relationship
between the number of samples and recognition accuracy as the varying classes results.
Thus, it can be concluded that increasing the number of training samples is beneficial in
improving the performance of the SVM-based word recogniser.

7.1.1.5 Experiment: Support Vector Machine for Multiple Authors

Purpose To investigate the effect that multiple authors have on the performance of a
SVM-based word recogniser.

Procedure

e The corpus described in Section [6.3.1] containing the handwriting of two authors is
used for training and recognition.

e HoGs are used as features since they had the highest recognition accuracy in previous
experiments.

Results The word accuracy when recognising words from multiple authors was 55.38%.

Discussion A SVM that is able to recognise the handwriting of multiple authors is
desirable. The results from this experiment show that recognising the handwriting of
multiple authors led to a decrease in recognition accuracy from 58.49% to 55.38%, a
decrease of 3.09%. This decrease seems relatively small when the benefit is an SVM
recogniser capable of recognising the handwriting of multiple authors.

7.1.2 Artificial Neural Networks for Word Recognition

The previous section presented the results of experiments in which a SVM-based recogniser
was used for Bushman word recognition. In this section, experiments investigating the
use of ANNs for Bushman word recognition for the following are presented:
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The use of different descriptive features in Section [7.1.2.1}

The use of hybrid features in Section [7.1.2.2]

The effect of synthetic training data in Section [7.1.2.3]

The effect of the number of training samples in Section

The effect of multiple authors in Section

In addition, an analysis of ANN architectures is presented in Section

The ANN experimental procedure described in Section is used for all ANN-based
word recognition experiments. For all experiments, except the one investigating the effect
of multiple authors, the default corpus containing the handwriting of a single author,
as described in Section [6.3.1} is used. The recognition accuracy reported is based on
Equation and is a measure of the proportion of words that were correctly classified.

7.1.2.1 Experiment: Artificial Neural Network with Different Features

Purpose To investigate the performance of an ANN-based word recogniser with various
descriptive features.

Procedure

1. Features are extracted for each of the features described in Chapter [5| using varying
parameters.

2. The best performing parameter values for each features are then used to provide a
comparison of the different features for ANN-based word recognition.

Results

Undersampled Bitmaps Figure [7.8] shows the results of recognising Bushman words
using an ANN-based recogniser trained with UBs. As can be seen from the figure, there
is a relationship between the size of the cells that the word images are partitioned into
and recognition accuracy. In this experiment, the recognition accuracy increases as the
size of the cells that the images are partitioned into decreases until it hits its peak when
the images have been partitioned into 8x8 cells and the recognition accuracy is 46.71%.
Beyond this point, recognition accuracy begins to decrease again. The same effect was
observed when UBs were used for SVM-based recognition.

Marti & Bunke Features The average word recognition accuracy when using the
M&B features for ANN-based Bushman word recognition was 40.30%.
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Figure 7.8: Recognition accuracy for ANN-based word recognition using UBs as features
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Figure 7.9: Recognition accuracy for ANN-based word recognition using GMs as features

Geometric Moments Figure shows the word recognition accuracy when GMs are
used as features for the ANN-based recogniser. As can be seen from the figure, when
more than the first GM (M1) is used as a feature, the size of the cells that a word image
is partitioned into appears to have little effect on recognition accuracy. When only the
first GM is used, partitioning a word image into smaller cells results in a higher recogni-
tion accuracy. Overall, however, performance is quite poor with a maximum recognition
accuracy of 23.79% occurring when the images are partitioned into 8x8 cells and only the
first GM (M1) per cell is used as a feature.

Histograms of Oriented Gradients Figure|7.10/shows the recognition accuracy when
HoGs are used as features for ANN-based Bushman word recognition. As can be seen
from the figure, the resolutions at which the features are extracted has an effect on
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Figure 7.10: Recognition accuracy for ANN-based word recognition using HoGs as features

the recognition accuracy. For instance, excluding signed and normalised gradients, the
maximum recognition accuracy of 51.76% is achieved when R1, R2, R3 = {16,0,0} and
the lowest recognition accuracy of 16.01% occurred when R1, R2, R3 = {64,0,0}. The
occurrence of this minimum recognition accuracy corresponds with that for SVM-based
word recognition where extracting features at a single resolution equal to the size of the
word images resulted in the poorest performance. When the R1, R2, R3 = {16,0,0}
and the features features were signed, recognition accuracy increased to 53.76%, and
normalising the signed gradients leads to a slight reduction in recognition accuracy to
53.36%.
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Figure 7.11: Recognition accuracy for ANN-based word recognition using GF-based fea-
tures
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Gabor Filter-based Features Figure [7.11] shows the performance of the ANN-based
recogniser when trained with GF-based features. As was the case with UBs, there appears
to be a relationship between the size of the cells that word images are partitioned into
and the recognition accuracy. In this experiment, the maximum recognition accuracy of
46.64% occurred when the images were partitioned into 8x8 cells.
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Figure 7.12: Recognition accuracy for ANN-based word recognition using DCT coefficients
as features

Discrete Cosine Transform Coefficients Figure[7.12|shows the recognition accuracy
when DCT coefficients are used as features for ANN-based word recognition. When
extracting DCT features, the size of the cells that the DCT is performed on and the
number of DCT coefficients to be used as features need to be specified. In this experiment,
ANNs were not constructed when the DCT needed to be performed on 8x8 cells from
which more than 10 coefficients needed to be extracted as the ANN architectures became
too large. Once again, the size of the cells that the images are partitioned into has a
visible effect on recognition accuracy, with smaller cells resulting in increased recognition
accuracies. However, as the number of coefficients used increases, the recognition accuracy
for the varying cell sizes appears to begin to converge. The highest recognition accuracy
of 48.96% was achieved when the images were partitioned into 8x8 cells and a single DCT
coefficient was extracted from each cell.

Discussion This experiment has investigated the use of 6 different features for ANN-
based Bushman word recognition and it was found that the choice of descriptive features
has an effect on the recognition accuracy. The highest recognition accuracy of 53.76%
was achieved when HoGs were used and the poorest performing features were GMs, which
only achieved a recognition accuracy of 23.79%. The other descriptive features all had
recognition accuracies in the 40-50% range. The recognition accuracies for all of the
descriptive features is summarised in Table [7.2]

In this experiment, various values for the feature extraction parameters were also inves-
tigated. As was the case with SVM-based word recognition, it was found that the values
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Table 7.2: Recognition accuracy for ANN-based word recognition for all descriptive fea-
tures with best performing parameter values

Feature Set Recognition Accuracy
Histograms of Oriented Gradients 53.76%
Discrete Cosine Transform Coeflicients 48.96%
Undersampled Bitmaps 46.71%
Gabor Filter-based Features 46.63%
Marti & Bunke Features 40.30%
Geometric Moments 23.79%

of these feature extraction parameters had an effect on recognition accuracy. The same
trend existed regarding the size of the cells that the word images were partitioned into,
where smaller cells resulted in higher recognition accuracy. Similarly, for the best per-
forming HoGs, when HoGs were extracted from a single resolution equal to the size of the
word image, the HoGs performed poorly; however, when a smaller resolution was used
the highest recognition accuracy was achieved. Thus, it can be concluded that the values
for the feature extraction parameters are important and an attempt should be made to
optimise them when building an ANN-based recogniser.

7.1.2.2 Experiment: Artificial Neural Network with Hybrid Features

Purpose To investigate the accuracy that can be achieved when an ANN-based recog-
niser is used with hybrid features for Bushman word recognition.

Procedure

e HoGs, DCT coefficients and UBs, which were found to produce the best results
in the previous experiment, are combined to create hybrid features made up of n
individual features at a time where n € {2,3} resulting in a total of 4 different
hybrid features.

e The features are extracted using the best performing parameters in the previous
experiment.

Results Figure[7.13|shows the results of the hybrid features that were created by com-
bining the three best performing features from Experiment [7.1.2.1]in various ways.

Discussion Figure shows that most of the hybrid features perform equally well,
except when HoGs are supplemented by UBs, which performs slightly better and reaches
a maximum recognition accuracy of 53.6%. The highest recognition accuracy for the
individual features was 53.76% and occurred when HoGs were used, thus demonstrating
that the hybrid features offered no advantage over the individual features. However, when
the DCT coefficients and UBs were combined with HoGs, there was a slight improvement
in recognition accuracy on that achieved by the DCT coefficients and UBs individually.
These findings suggest that the hybrid features considered offer no visible improvement
on the individual features in terms of the maximum recognition accuracy that can be
achieved by the ANN-based recogniser.
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Figure 7.13: Recognition accuracy for ANN-based word recognition using hybrid features

7.1.2.3 Experiment: Artificial Neural Network with Synthetic Training Data

Purpose To investigate the accuracy that can be achieved when an ANN-based recog-
niser is trained with supplemental synthetic data for Bushman word recognition.

Procedure

e The transformations described in Section [6.1.5] are applied to each training sample
to create 4 synthetic versions of each training sample.

e HoGs are used as features since they had the highest recognition accuracy in previous
experiments.

Results By including the transformations described in Section |6.1.5] an average word
recognition accuracy of 57.61% was achieved.

Discussion The 57.61% recognition accuracy achieved with synthetic data reflects an
increase on the recognition accuracy with the best performing HoGs features by 3.85%.
The synthetic data used in this study was relatively simple to create and was based
on transformations of the training data and this experiment has shown how it can be
beneficial for ANN-based word recognition.

7.1.2.4 Experiment: Artificial Neural Network and Number of Samples

Purpose To investigate the effect that the number of training samples has on the per-
formance of an ANN-based word recogniser.
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Procedure

e The sub-corpora described in Section [6.3.1| are used.

e HoGs are used as features since they had the highest recognition accuracy in previous
experiments.

Results The results of this experiment are shows in Figure |[7.14]

100+
00 ] = Varying Classes
i = Fixed Classes
801
70
> 60
E ]
= 50
31 ]
3] ]
< 407
309
20
10
O ;\ T T T T T T T T T T T T T T T T T T 1
2 3 4 5 6 7 8 9 10
Samples

Figure 7.14: Recognition accuracy for ANN-based word recognition for different numbers
of training samples

Discussion Figure conveys two pieces of information regarding the number of
training samples available. As was the case with SVM-based recognition, the wvarying
classes line represents the case where the number of classes that need to be recognised is
dictated by the minimum number of training samples available for that class and the fixed
classes line represents the case where the number of classes that need to be recognised is
fixed at 39 and the number of samples per class is also fixed (as opposed to a minimum
number of samples per class). As can be seen from Figure , in both cases a positive
linear relationship exists between the number of training samples per class and recognition
accuracy.

7.1.2.5 Experiment: Artificial Neural Network for Multiple Authors

Purpose To investigate the effect that multiple authors have on the performance of an
ANN-based word recogniser.
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Procedure

e The corpus described in Section [6.3.1] containing the handwriting of two authors is
used for training and recognition.

e HoGs are used as features since they had the highest recognition accuracy in previous
experiments.

Results The recognition accuracy when using an ANN for recognising Bushman words
written by multiple authors was 52.98%.

Discussion Using an ANN for recognising handwritten words for multiple authors re-
sulted in a recognition accuracy of 52.98%, down from 53.76% for a single author. This
decrease in accuracy by 0.78% is relatively small for the benefit of having a recogniser
capable of recognising handwritten words from multiple authors.

7.1.2.6 Analysis: Neural Network Architecture

Section discussed the ANN experimental design and included a description of a
generic ANN architecture that contained an input layer, a single hidden layer and an
output layer. The number of nodes in the input and output layers were determined
by the size of the input vector and the number of classes that need to be recognised
respectively. However, there is no easy way to determine the optimal number of neurons
in the hidden layer. For the ANN-based experiment in this study, a number of ANN

architectures were used where the number of neurons, /N, in the hidden layer was based

S So Sr+ S
on the size of the input and output layers where N € {5y, 7[, So, 70, %

St is the size of the input layer and Sp is the size of the output layer.

}, where

The results reported in the experiments in this section are those of the best perform-
ing ANN architectures and Figure shows the distribution of the best performing
architectures for all experimental treatments.

As can be seen from the figure, the best performing architectures, on average, generally
appear to have the number of neurons in the hidden layer determined by a function of
the number of inputs. However, it is hard to recommend one architecture over another
as, in some cases, the other architectures result in the best performance. Thus, these
findings support the argument that it is better to find an optimal architecture through
experimentation.

7.1.3 Hidden Markov Models for Word Recognition

In the two previous sections the results of experiments in which SVMs and ANNs were used
for Bushman word recognition were discussed. In this section, experiments investigating
the use of HMMs for Bushman word recognition for the following are presented:

e The use of different descriptive features in Section [7.1.3.1}
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Figure 7.15: Performance of different ANN architectures

The use of hybrid features in Section [7.1.3.2]

The effect of synthetic training data in Section [7.1.3.3]

The effect of the number of training samples in Section [7.1.3.4

The effect of multiple authors in Section [7.1.3.5

The HMM experimental procedure described in Section is used for all HMM-based
word recognition experiments. For all experiments, except the one investigating the effect
of multiple authors, the default corpus containing the handwriting of a single author,
as described in Section [6.3.1] is used. The recognition accuracy reported is based on
Equation and is a measure of the proportion of words that were correctly classified.

7.1.3.1 Experiment: Hidden Markov Model with Different Features

Purpose To investigate the performance of a HMM-based word recogniser with various
descriptive features.

Procedure

1. Features are extracted for each of the features described in Chapter [5| using varying
parameters.

2. The best performing parameter values for each features are then used to provide a
comparison of the different features for HMM-based word recognition.
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Figure 7.16: Recognition accuracy for HMM-based word recognition using UBs as features

Undersampled Bitmaps Figure[7.16|shows the results of recognising Bushman words
using HMMs trained with UBs. As can be seen from the figure, the size of the cells that the
image columns are partitioned into appears to have little effect on the recognition accuracy
achieved. The best recognition accuracy of 35.02% was achieved when the image columns
were partitioned into 8x1 cells, though this is only very slightly better than the 35.01%
achieved when the image columns were partitioned into 4x1 cells.

Marti & Bunke Features The average word recognition accuracy when using the
M&B features for HMM-based Bushman word recognition was 44.47%.

Geometric Moments Figure shows the word recognition accuracy when GMs
are used as features for the HMM-based recogniser. As can be seen from the figure,
the recogniser appears to perform equally well when the image columns are partitioned
into 32x1, 16x1 and 8x1 cells, regardless of the GMs used as features. When the image
columns are not partitioned into cells, the recogniser performs relatively poorly. The
highest recognition accuracy of 27.16% occurs when the image columns are partitioned
into 8x1 cells and only the first GM (M1) is used.

Histograms of Oriented Gradients HoGs performed extremely poorly for HMM-
based word recognition with a highest recognition accuracy of 1.28% being achieved. In
this experiment, the classification for each word image was the same regardless of how
the HoGs were extracted. Alternate sliding window column widths and overlaps were
investigated in order to determine if they were the cause of the poor performance and it
was found that, for this features, they had a negligible effect on the performance of the
recogniser.
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Figure 7.17: Recognition accuracy for HMM-based word recognition using GMs as features
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Figure 7.18: Recognition accuracy for HMM-based word recognition using GF-based fea-
tures

Gabor Filter-based Features Figure shows the performance of the HMM-based
recogniser when trained with GF-based features. As can be seen from the figure, the
size of the cells that the image columns are partitioned into appears to have little effect
on recognition accuracy, with the highest recognition accuracy of 37.26% being achieved
when the image columns were partitioned into 32x4 cells.

Discrete Cosine Transform Coefficients Figure[7.19shows the recognition accuracy
when the HMM-based recogniser is trained with DCT coefficients. In this experiment,
HMDMs were not trained for all of the values of the feature extraction parameters mentioned
in Section as the models became too large. As can be seen from the figure, whenever
the image columns are partitioned into cells, the highest recognition accuracy is achieved
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Figure 7.19: Recognition accuracy for HMM-based word recognition using DCT coeffi-
cients as features

when only a single DCT coefficient per cell is used as a feature. In fact, it appears that
increasing the number of DCT coefficients results in decreasing recognition accuracy. This
occurs in all cases, except when the image columns are not partitioned into cells. The
highest recognition accuracy of 43.35% occurs when the image columns are partitioned
into 32x1 cells and a single DCT coefficient is extracted from each cell.

Discussion There are a wide variety of features that can be used when creating a
HMM-based word recogniser and it can be expected that the choice of features will have
a significant effect on the performance of the recogniser. This experiment investigated
the use of 6 different descriptive features for HMM-based Bushman word recognition.
Features for the HMM-based word recogniser were extracted using a left-to-right sliding
window modelling the time domain (see Section on HMM feature extraction). It
was shown that the different features result in varying recogniser performance with the
highest recognition accuracy of 44.47% being achieved when the M&B features were used.
The performance of the other features varied, with HoGs being the worst performing by
only achieving a recognition accuracy of 1.28%. Table [7.3| summarises the recognition
accuracy for the different descriptive features.

Table 7.3: Recognition accuracy for HMM-based word recognition for all descriptive fea-
tures with best performing parameter values

Feature Set Recognition Accuracy
Marti & Bunke Features 44.47%
Discrete Cosine Transform Coeflicients 43.35%
Gabor Filter-based Features 37.26%
Undersampled Bitmaps 35.02%
Geometric Moments 27.16%
Histograms of Oriented Gradients 1.28%
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All of the features, except the M&B features, required that parameters for feature ex-
traction be specified. The results of this experiment have shown that, in some cases, the
values of these feature extraction parameters had a visible effect on recognition accuracy.
For instance, for the DCT features, the number of DCT coefficients used as features af-
fected the recognition accuracy where increasing the number of DCT coefficients per cell
decreased recognition accuracy. However, for features where one of the feature extraction
parameters was the size of the cells that the image columns were partitioned into, the size
of the cells had little effect on recognition accuracy. This is in contrast to the findings for
SVM and ANN-based word recognition in Sections [7.1.1.1] and [7.1.2.1] where the size of
the cells that an image was partitioned into had a visible effect on recognition accuracy. A
possible reason for this is that, since the features are extracted using a sliding window, the
smaller Cartesian space reduces the effect that the cell size has on performance compared
to the larger Cartesian space for SVM and ANN-based recognition.

The findings of this experiment suggest that the choice of descriptive features is an im-
portant factor in designing a HMM-based word recogniser for Bushman texts.

7.1.3.2 Experiment: Hidden Markov Model with Hybrid Features

Purpose To investigate the accuracy that can be achieved when a HMM-based recog-
niser is used with hybrid features for Bushman word recognition.

Procedure

e M&B features, GF-based features and DCT coefficients, which were found to pro-
duce the best results in the previous experiment, are combined to create hybrid
features made up of n individual features at a time where n € {2, 3} resulting in a
total of 4 different hybrid features.

e The features are extracted using the best performing parameters in the previous
experiment.

Results Figure shows the results of the hybrid features that were created by com-
bining the three best performing features in various ways.

Discussion Hybrid features could extend the descriptive capabilities of the individual
features and thus could potentially improve the performance of the recogniser. This
is indeed the case when the M&B features are combined with DCT features and the
recognition accuracy increased slightly from 44.47% to 44.79%. However, this increase in
recognition accuracy is extremely small and it could be argued that it has not actually
led to any significant improvement. Furthermore, combining the DCT features with GF-
based features reduced the performance of the HMM-based recogniser to 40.31%. In light
of these findings, it can be concluded that the hybrid features used in this study for
HMM-based Bushman word recognition do not result in any real improvement and, in
fact, in some cases reduce the performance of the recogniser.
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Figure 7.20: Recognition accuracy for HMM-based word recognition using hybrid features

7.1.3.3 Experiment: Hidden Markov Model with Synthetic Training Data

Purpose To investigate the accuracy that can be achieved when a HMM-based recog-
niser is trained with supplemental synthetic data for Bushman word recognition.

Procedure

e The transformations described in Section [6.1.5] are applied to each training sample
to create 4 synthetic versions of each training sample.

e The hybrid feature made up of M&B features and DCT coefficients is used since it
had the highest recognition accuracy in previous experiments.

Results By including the transformations described in Section |6.1.5] an average word
recognition rate of 51.61% was achieved.

Discussion The 51.61% recognition accuracy achieved with synthetic data reflects an
increase in the recognition accuracy by 6.82% compared to the best performing hybrid fea-
tures. This experiment has shown how synthetic training data can be beneficial, especially
since it is relatively easy to create.

7.1.3.4 Experiment: Hidden Markov Model and Number of Samples

Purpose To investigate the effect that the number of training samples has on the per-
formance of a HMM-based word recogniser.
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Procedure

e The sub-corpora described in Section [6.3.1| are used.

e The hybrid feature made up of M&B features and DCT coefficients is used since it
had the highest recognition accuracy in previous experiments.

Results The results of this experiment are shows in Figure [7.1.3.4]
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Figure 7.21: Recognition accuracy for HMM-based word recognition for different numbers
of training samples

Discussion Figure conveys the same information regarding varying classes and
fixed classes as was the case for the SVM and ANN-based experiments investigating the
effect of the number of training samples. Once again, the same positive linear relationship
exists between the number of training samples per class and recognition accuracy.

7.1.3.5 Experiment: Hidden Markov Model for Multiple Authors

Purpose To investigate the effect that multiple authors have on the performance of a
HMM-based word recogniser.

Procedure

e The corpus described in Section [6.3.1] containing the handwriting of two authors is
used for training and recognition.

e The hybrid feature made up of M&B features and DCT coefficients is used since it
had the highest recognition accuracy in previous experiments.
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Results The recognition accuracy when using a HMM to recognise Bushman words
written by multiple authors was 44.13%.

Discussion The 44.13% recognition accuracy when recognising the handwriting of mul-
tiple authors is a decrease by 0.66% on the recognition accuracy achieved when only words
written by a single author were recognised. This slight decrease is arguably insignificant
given the added benefit of recognising the handwriting of multiple authors.

7.2 Text Line Recognition

The previous section presented a set of experiments for Bushman word recognition using
SVMs, ANNs and HMMs. In this section, experiments for Bushman text line recognition
using a HMM are presented.

7.2.1 Hidden Markov Models for Line Recognition

In this section, experiments investigating the use of HMMs for Bushman text line recogni-
tion for the following are presented. This section begins with an experimented conducted
in order to find suitable parameters for the HMMs used in this study. Thereafter, the
following factors are investigated:

e The use of different descriptive features in Section [7.2.1.2]

The use of hybrid features in Section [7.2.1.3]

The effect of synthetic training data in Section [7.2.1.4]

The effect of the number of training samples in Section [7.2.1.5

The effect of multiple authors in Section [7.2.1.6

The effect of a bigram word language model in Section [7.2.1.7]

The HMM experimental procedure described in Section is used for all HMM-
based text line recognition experiments. For all experiments, except the one investigating
the effect of multiple authors, the default corpus containing the handwriting of a single
author, as described in Section [6.4.1] is used. No language model is used except for in the
experiment in which the use of a language model is investigated. The recognition accuracy
reported is based on Equation [6.2] which is not a percentage but rather a measure of the
similarity between the target transcription and the recognition output.

7.2.1.1 Experiment: Parameters for Hidden Markov Models

Purpose To determine a suitable number of states and Gaussians for all HMMs.
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Procedure

e 10 DCT coefficients are extracted from each text line.

e HMMs for each pair of S states and G Gaussians are built and evaluated where
S =4,8,12 and G = 8,16, 24, 32.

M{&B features are extracted from each text line.

HMMs for each pair of S states and G Gaussians are built and evaluated where
S =4,8,12 and G = 8, 16,24, 32.

The results of the M&B-based experiments are used to validate the results of the
DCT-based experiments.

Results Figure shows the recognition accuracy for the states and Gaussians tested
using DCT coefficients as features and Figure shows the recognition accuracy using
M&B features.
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Figure 7.22: Recognition Accuracy when using DCT features to find suitable HMM model
parameters

Discussion Figures and show the same trends even though different features
have been used for classification. As can be seen in Figures and [7.23] there is a visible
difference between recognition accuracy, depending on the number of states, where having
more states results in a higher recognition accuracy. Since high recognition accuracy is
desirable, it is used as the main factor in deciding model parameters. A maximum of 12
states was investigated since higher numbers of states led to there not being enough data
in the training samples to fit the model size.

As can be seen from Figures and[7.23], the number of Gaussians has little effect on the

recognition accuracy though it is lowest when 16 Gaussians are used for DCT coefficients
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Figure 7.23: Recognition Accuracy when using M&B features to find suitable HMM model
parameters

and when 8 Gaussians are used for M&B features. Given these findings, for all HMM-
based experiments in this study, the HMM models are defined as having 12 states and 16
Gaussians as these both performed relatively well.

7.2.1.2 Experiment: Hidden Markov Model with Different Features

Purpose To investigate the performance of a HMM-based text line recogniser with
various descriptive features.

Procedure

1. Features are extracted for each of the features described in Chapter [5| using varying
parameters.

2. The best performing parameter values for each feature are then used to provide a
comparison of the different features for HMM-based text line recognition.

Results

Undersampled Bitmaps Figure shows the results of recognising Bushman lines
using an HMM trained with UBs. As can be seen from the figure, the size of the cells
that the image columns are partitioned into has little effect on the performance of the
recogniser, except when the image column is partitioned into 32x1 cells and the recognition
accuracy is 0. The best recognition recognition accuracy of 22.39 occurs when the image
columns are partitioned into 4x1 cells.
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Figure 7.24: Recognition accuracy for HMM-based text line recognition using UBs as
features

Marti & Bunke Features The recognition accuracy when using the M&B features for
HMM-based Bushman text line recognition was 35.7.
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Figure 7.25: Recognition accuracy for HMM-based text line recognition using GMs as
features

Geometric Moments Figure shows the recognition accuracy when GMs are used
as features for the HMM-based recogniser. As can be seen from the figure, the size of the
cells that the image columns are partitioned into has an effect on the recognition accuracy,
though the GMs that are used as features do not seem to affect the performance of the
recogniser. The highest recognition accuracy of 19.31 occurs when the image columns are
partitioned into 8x1 cells and only the first GM (M1) is extracted from each cell.
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Histograms of Oriented Gradients HoGs performed extremely poorly for HMM-
based text line recognition, with a negative recognition accuracy for the cases tested.
This is possible since, as previously mentioned, the recognition accuracy for text lines
is not actually a percentage but is a function of the number of insertion, deletion and
substitution errors. As was the case for Bushman word recognition using a HMM trained
with HoGs, the recogniser produced the same output for each testing sample, regardless
of the data that the sample contained.
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Figure 7.26: Recognition accuracy for HMM-based text line recognition using GF-based
features

Gabor Filter-based Features Figure [7.26| shows the performance of the HMM-based
recogniser when trained with GF-based features. As can be seen from the figure, the size
of the cells that the image columns are partitioned into has an effect on the recognition
accuracy, with the smaller partition resulting in a higher recognition accuracy. The highest
recognition accuracy of 22.76 occurred when the image columns were partitioned into 16x4
cells.

Discrete Cosine Transform Coefficients Figure[7.27]shows the recognition accuracy
when the HMM-based recogniser was trained with DCT coefficients. When extracting
DCT coefficients, the size of the cells that the image columns are partitioned into and the
number of DCT coefficients that are extracted as features need to be specified. As was
the case with HMM-based Bushman word recognition, HMMs were not trained for all
methods of feature extraction as the models became too large. These show up as missing
points on the graph. As can be seen from the figure, the recognition accuracy differs little
for the different feature extraction parameters. However, when the image columns are
not partitioned into cells, there appears to be a slight but steady decline as more DCT
coefficients are used as features. The highest recognition accuracy of 27.67 occurred when
a cell size of 64x1 was used with 10 DCT coefficients.
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Figure 7.27: Recognition accuracy for HMM-based text line recognition using DCT coef-
ficients as features

Discussion When building a HMM-based text line recogniser, the descriptive features
that are used for training and recognition could potentially have an effect on the perfor-
mance of the recogniser. This experiment investigated the use of 6 different features for
Bushman text line recognition and it was found that the choice of descriptive features
affected the recognition accuracy. For instance, when the best performing M&B features
were used, a recognition accuracy of 35.7 was achieved. Conversely, when the worst per-
forming HoGs were used, the recognition accuracy was negative. The other descriptive
features had accuracies in the range of 19-28. Thus, given this large variation in perfor-
mance, it can be concluded that the choice of descriptive features is an important decision
when building a HMM-based text line recogniser. Table |7.4] summarises the performance
of the recogniser for the various features.

Table 7.4: Recognition accuracy for HMM-based text line recognition for all descriptive
features with best performing parameter values

Feature Set Recognition Accuracy
Marti & Bunke Features 35.7
Discrete Cosine Transform Coefficients 27.67

Gabor Filter-based Features 22.76
Undersampled Bitmaps 22.39
Geometric Moments 19.32
Histograms of Oriented Gradients Negative

All features, except the M&B feature, required that parameters for feature extraction
be specified and it was found that, in some cases, the values for the feature extraction
parameters had an effect on the performance of the recogniser. For instance, when GMs
were used, it was found that the choice of GMs (M1, M2, M3, M4) had little effect on the
performance of the recogniser. Conversely, it was found that, for features where one of
the feature extraction parameters was the size of the cells that the image columns were
partitioned into, the size of the cells had an effect on the recognition accuracy.
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7.2.1.3 Experiment: Hidden Markov Model with Hybrid Features

Purpose To investigate the accuracy that can be achieved when a HMM-based recog-
niser is used with hybrid features for Bushman text line recognition.

Procedure

e M&B features, DCT coefficients and UBs, which were found to produce the best
results in the previous experiment, are combined to create hybrid features made up
of n individual features at a time where n € {2, 3} resulting in a total of 4 different
hybrid features.

e The features are extracted using the best performing parameters in the previous
experiment.
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Figure 7.28: Recognition accuracy for HMM-based text line recognition using hybrid
features

Results Figure shows the recognition accuracy of the hybrid features that were
created by combining the three best performing features in various ways.

Discussion As can be seen from the figure, most of the hybrid features perform similarly
with the M&B and DCT combination performing slightly better than the others. When
this hybrid combination is used, the recognition accuracy was 34.36. This is, in fact,
slightly below the performance of the recogniser when only the M&B features were used.
However, the M&B features improved on the performance when the DCT coefficients and
UBs were used independently. Thus, these findings have shown that the best performing
feature improves the performance of weaker features, but that the weaker features do not
improve the performance of the strongest feature.
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7.2.1.4 Experiment: Hidden Markov Model with Synthetic Training Data

Purpose To investigate the accuracy that can be achieved when a HMM-based recog-
niser is trained with supplemental synthetic data for Bushman text line recognition.

Procedure

e The transformations described in Section are applied to each training sample
to create 4 synthetic versions of each training sample.

e M&B features were used since they had the highest recognition accuracy in previous
experiments.

Results By including the transformations described in Section [6.1.5] the text line recog-
nition accuracy was 33.67.

Discussion The inclusion of synthetic training data led to a slight decrease in the recog-
nition accuracy from 35.7 to 33.67. This slight decrease in the recognition accuracy is
somewhat unexpected as it is well known that the performance of a handwriting recog-
nition system often is dependent on the amount of training data available (Cano et al.)
2002) and it was found in the word recognition experiments that the addition of synthetic
training data led to an improvement in results. A possible explanation for this lack of
improvement could be that overfitting occurs during training and the synthetic training
data contributes to this. Another reason could be due to the inconsistencies in the corpus
and the effect that this has on the overall performance of the recogniser. The effect that
the corpus had on the performance of the recognisers is discussed in Section [7.3.5]

7.2.1.5 Experiment: Hidden Markov Model and Number of Samples

Purpose To investigate the effect that the number of training samples has on the per-
formance of a HMM-based text line recogniser.

Procedure

e The sub-corpora described in Section [6.4.1] are used.

e M&B features were used since they had the highest recognition accuracy in previous
experiments.

Results The results of this experiment are shows in Figure [7.29|
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Figure 7.29: Recognition accuracy for HMM-based text line recognition for different num-
bers of training samples

Discussion Figure (a) shows that a very slight linear relationship exists between
the size of the corpus used for training and testing and the recognition accuracy. However,
the gradient of this linear relationships appears to be quite small suggesting that, for this
corpus, the amount of training data does not have a large effect on the performance of the
recogniser. This observation is confirmed when the minimum number of samples per class
is specified and appears to have no effect on the performance of the recogniser. These
observations are somewhat unexpected given the clear relationship that existed between
the amount of training data and recogniser performance for word-based recognition. How-
ever, it is possible that this lack of an increase in performance could be attributed to the
nature of the corpus and the effects that it had on the performance of the recogniser,

which is discussed in Section [7.3.5]
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7.2.1.6 Experiment: Hidden Markov Model for Multiple Authors

Purpose To investigate the effect that multiple authors have on the performance of a
HMM-based text line recogniser.

Procedure

e The corpus described in Section containing the handwriting of two authors
was used for training and recognition.

e M&B features were used since they had the highest recognition accuracy in previous
experiments.

Results When recognising the corpus containing text lines written by multiple authors
the recognition accuracy was 30.04.

Discussion The recognition accuracy when recognising handwritten text lines by a
single author was 35.7. Adding a second author resulted in a decrease by 4.34. This
decrease in performance is, of course, not desirable. However, multiple authors increases
variation within classes and therefore one would expect a decrease in performance to
occur.

7.2.1.7 Experiment: Hidden Markov Model with a Statistical Language Model

Purpose To investigate the effect that a bigram language model has on the performance
of a HMM-based text line recogniser.

Procedure

e A bigram word language model was used during recognition.

e M&B features were used since they had the highest recognition accuracy in previous
experiments.

Results The recognition accuracy when using a bigram language model was 45.10.

Discussion No language model was used in the previous text line recognition experi-
ments and the assumption was made that all words in the Bushman language were evenly
distributed. Without a language model, the highest recognition accuracy achieved was
35.7. The incorporation of a bigram word language model led to a recognition accuracy
of 45.10. This increase in recognition accuracy by 9.4 clearly demonstrates the benefit of
incorporating a language model into a recogniser since it allows for additional statistical
information about a language to be used to guide the recognition process.
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7.3 Analysis

The previous sections presented the results of different experiments that were designed
to investigate different factors that affected the performance of handwriting recognition
systems. However, the results for each of the experiments were presented in isolation.
In this section, the results are analysed within the greater context of all of the machine
learning algorithms investigated in this study. This section begins with an analysis of the
different descriptive features, followed by an analysis of the effect of hybrid features. This
is then followed by an analysis of the effect of the amount of training data and multiple
authors and, lastly, the results presented in this chapter are discussed within the context
of the corpus used in this study.

7.3.1 Features for Handwriting Recognition

In Figure [7.30] the performance of each feature with the different machine learning al-
gorithms is summarised. Table [7.5 shows the rankings of the different feature-machine
learning algorithm pairs for word recognition, while Table shows the ranking of the
different features for text line recognition.
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Figure 7.30: Recognition accuracy of different features for all machine learning algorithms

As can be seen from Figure , the same general performance pattern appears to exist for
the different features coupled with the different machine learning algorithms with a large
deviation occurring for HoGs. Tables|7.5|and|7.6|show the rankings of the different feature-
machine learning algorithms combinations for word recognition and text line recognition
respectively.

As can be seen from Table [7.5] the SVM-based classifiers make up 5 of the 6 best word
classifiers, with the GMs-SVM classifier being the only poorly performing SVM-based
classifier. The best performing word classifier overall was the HoGs-SVM classifier followed
by the HoGs-ANN classifier. The fact that the two highest ranked classifiers both make
use of HoGs suggests that HoGs are good features for handwriting recognition. However,
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Table 7.5: Ranking of different feature-machine learning algorithm pairs for word recog-
nition

Rank Recogniser Accuracy | Rank Recogniser  Accuracy
1 HoGs-SVM  58.49% 10  M&B-HMM  44.47%
HoGs-ANN  53.76% 11 DCT-HMM  43.35%
GF-SVM 53.21% 12 M&B-ANN  40.30%
USB-SVM 50.73% 13 GF-HMM 37.26%
DCT-SVM  50.16% 14  USB-HMM 35.58%
DCT-ANN  48.96% 15 GM-SVM 27.96%
M&B-SVM  47.27% 16  GM-HMM 27.16%
USB-ANN 46.711% 17 GM-ANN 23.79%
GF-ANN 46.63% 18 HoGs-HMM  1.28%

© 00 ~J O UL W N

Table 7.6: Ranking of different features for text line recognition
Rank Recogniser Accuracy

1 M&B 35.7
2 DCT 27.67
3 GF 22.76
4 USB 22.39
5 GM 19.31
6 HoG 0

the use of HoGs also resulted in the poorest performing HMM-based word recogniser.
In the case of HMM-based recognition, HoGs were extracted using a sliding window that
modeled the time domain. A possible reason for the poor HMM performance was thought
to be that the relatively thin width of a sliding window column does not result in HoGs
that are as descriptive as those when larger cells are used, as was the case with SVM
and ANN-based recognition. However, when wider sliding window columns were used, no
improvement in performance occurred. It is possible that the way in which HoGs were
computed for HMM-based recognition since the regions that the sliding window column
was divided into may not have provided enough support for the features to be descriptive.

The M&B features resulted in the highest recognition accuracies for HMM-based recognis-
ers. This occurred even though the M&B features had no invariant properties as described
in Section [5.3] suggesting that descriptive features with invariant properties do not neces-
sarily result in better performance. It was discussed earlier how invariant properties may
not always be desired since, when a feature is invariant to rotation, translation and scale,
the descriptors for p and d will be the same. The M&B features were the best performing
features for both HMM-based word and text line recognition and can be recommended as
a good feature set to use for HMM-based recognition. This is somewhat expected since
this feature set was designed for use with a HMM-based recogniser (Marti, [2000). How-
ever, it performed poorly as a feature for SVM and ANN-based word recognition. This
large variation in performance for different machine learning algorithms suggests that the
choice of features used for handwriting recognition should largely be dependent on the
machine learning algorithm used.

The recognisers that made use of GMs all ranked among the worst performing recognisers
occupying 3 of the last 4 positions for word recognition and the second last position
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for text line recognition. This occurs even though GMs are invariant to rotation, scale
and translation, as discussed in Section [5.4f This supports the notion that, invariant
properties, while arguably desirable, do not necessarily guarantee the best performance.

The other recognisers, which make use of UBs, GF-based features, and DCT coefficients
appear to perform similarly, making up the middle rankings with different machine learn-
ing algorithms. This average performance suggests that these features are not necessarily
an optimal choice as descriptive features for Bushman handwriting recognition.

This analysis of the different descriptive features within the context of all of the machine
learning algorithms has resulted in two main findings. The first of these findings is that
the performance of a feature can be dependent on the machine learning algorithm being
used. For instance, the HoGs and M&B features performed very differently when used
with HMM-based recognisers compared to SVM and ANN-based recognisers. On the
other hand UBs, GMs, GF-based features and DCT coefficients generally had the same
performance for the different recognisers. However, the best performing features were
in fact the ones whose performance varied the most for the different machine learning
algorithms and thus, when choosing a feature for handwriting recognition, the choice
should be made while considering the machine learning algorithm to be used.

The choice of machine learning algorithm depends on a number of factors, such as the
type of data that is to be recognised. For instance, if it is not suitable to segment text
lines into individual words then a HMM or some other machine learning algorithm that
does not required word segmentation may be appropriate. Furthermore, the automatic
segmentation that occurs as part of the recognition process when using a HMM may make
it a better segmenter than other segmentation approaches that occur as a preprocessing
step. Similarly, if units such as characters or whole words are being recognised then
a SVM or ANN may be more appropriate. In this study it was found that, for word
recognition, the best performing machine learning algorithm was a SVM trained using
HoGs, followed closely by an ANN trained using HoGs. For text line recognition, the best
performing features were the M&B features, which was also the best performing feature
for HMM-based word recognition.

The second finding from this analysis of the use of different descriptive features was that
invariant properties, while arguably desirable, do not appear to have a strong positive
effect on the performance of the recognisers considered in this study. In fact, the opposite
appears to be true with GMs, which are invariant to translation, rotation and scale
being the worst overall performing feature. On the other hand, the M&B features, which
are not invariant to rotation, scale or translation were the best performing features for
HMM-based recognition, while HoGs, which are only invariant to translation, were the
best performing features for SVM and ANN-based recognition.

Overall, this analysis has shown that the choice of a descriptive features for handwriting
recognition is largely dependent on the machine learning algorithm being employed and
should be considered within this context. Furthermore, it has shown that some descriptive
features provide consistent and relatively average performances for all machine learning
algorithms. However, since good performance is desirable, it is better to select features
that perform well for the machine learning algorithm being employed, thereby maximising
performance.
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7.3.2 Hybrid Features

The use of hybrid features was investigated with each of the machine learning algorithms
used in this study. Four hybrid features were investigated for each machine learning al-
gorithm. The first of these was created by combining all 3 best performing individual
features, while the other 3 were created by pairing the 3 best performing features. The
performance of these hybrid features was then investigated. Table shows the per-
formance of the best performing individual feature for each machine learning algorithm,
the best performing hybrid feature for each machine learning algorithm, and the relative
change (in percent) between the two.

Table 7.7: Performance of individual features compared to hybrid features for all machine
learning algorithms

MLA Best individual Best Hybrid Change
SVM Words 58.49% 57.77% -1.23%
ANN Words 53.76% 53.60% -0.29%
HMM Words 44.47% 44.79% 0.72%
HMM Lines (Acc.) 35.70 34.36 -3.76%

Table [7.7] shows that, in all cases except HMM-based word recognition, the use of hy-
brid features had a negative effect on the performance of the recogniser. For HMM-based
word recognition the improvement was only very slight at less than 1%. Intuition suggests
that hybrid features should improve the performance of a recogniser rather than decrease
performance since it would be expected that combining multiple features would results
in an increase in descriptive power. However, it instead appears to lead to a decrease in
descriptive power. A possible reason for this could be that the combined features actually
introduce increased variation within classes through multiple descriptors. Another possi-
ble explanation could be that the three best features all summarise the same information
and thus combining them does not actually add any additional descriptive power. An-
other possible reason, still, is that the increase in descriptors from hybrid features results
in more parameters that need to be trained for the machine learning algorithms and thus
the parameters could be over tuned to fit the training data.

While these findings suggest that hybrid features do not offer any improvement on the
best performing individual features, care should be taken not to generalise the findings.
There are several reasons for this. Firstly, in the results presented in previous sections
in this chapter, it was shown that hybrid features did improve the performance of some
of the individual features, though not the best performing individual features, thereby
suggesting that hybrid features can in fact improve the performance of a recogniser,
though that did not occur in this study. Secondly, the hybrid features used in this
study only represent a small subset of the potentially infinite number of hybrid features
that can be created by combining the previously mentioned hundreds of features used
for handwriting recognition. Lastly, equal weightings were used when combining the
features and it is possible that weighting the features differently could have an effect on
recognition accuracy, for instance, by having some features provide the weighted majority
of the information and others only being supplementary. Thus these findings should
be taken in context. In this study, hybrid features, in general, offered no improvement
over the best performing individual features and, in most cases, led to a decrease in
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performance. However, it is possible that under different circumstances they may lead to
an improvement.

7.3.3 Amount of Training Data

A generally accepted rule of thumb for handwriting recognition is that the amount of
training data that is available has an effect on the performance of a handwriting recogni-
tion system (Rowley et al., 2002). In this study, the effect of the amount of training data
was investigated in two ways. The first of these ways was through the use of synthetic
training data in which the training data set was supplemented with synthetic data that
was created using a simple set of transformations, which are discussed in Section [6.1.5
Table shows the performance of the different machine learning algorithms trained
with the best performing features with and without synthetic training data as well as the
relative change in performance (in percent) as a result of the introduction of synthetic
training data.

Table 7.8: Performance with and without synthetic training data for all machine learning
algorithms

MLA Without Synthetic With Synthetic Change
SVM Words 58.49% 62.58% %

ANN Words 53.76% 57.61% 717%
HMM Words 44.79% 51.61% 15.23%
HMM Lines 35.7 33.67 -5.68%

As can be seen from Table [7.8 synthetic training data led to an improvement in per-
formance for all word recognition machine learning algorithms. The improvement was
about 7% for SVM and ANN-based word recognition and 15.23% for HMM-based word
recognition. Table [7.§| shows that the SVM and ANN-based word recognisers are equally
sensitive to the addition of synthetic training data. The HMM-based recogniser, on the
other hand, is about twice as sensitive to the addition of synthetic training data com-
pared to the other recognisers. These findings suggest that the HMM-based recogniser
may have better recognition accuracies when large amounts of training data are available
- an idea that is explored further in this section. Overall, however, the SVM-based word
recogniser is still the best performing recogniser even though its performance increase is
not as great as that of the HMM-based word recogniser. The results are not as positive
for HMM-based line recognition, where there was a decrease in the recognition accuracy.

The synthetic training data used in this study was relatively easy to create and involved
simple shear operations. The generally positive effect that it had on the performance of
the different recognisers was in line with other studies (Cano et all [2002) and suggests
that its use is worthwhile, especially when the amount of training data is limited. The
increased amount of training data that exists when synthetic data is created does lead
to an increase in the amount of time required to train recognition models. However, the
training of models is usually a once-off process and the increase in training time can be
justified by the increase in performance.

The second way in which the effect that the amount of training data had on the per-
formance of the different recognisers was investigated was by varying the amount of real
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training data that was used. The way in which this was done differed slightly for word
recognition and for text line recognition. For word recognition, the effect of a fixed num-
ber of samples per class was investigated and for text line recognition the effect of varying
the size of the corpus by random sampling was investigated. Then, for both cases, the
effect of the minimum number of samples per class was investigated. The way in which
this was done is described in Chapter [6]

Figure shows relative change in performance (in percent) of varying the amount of
real training data for the different machine learning algorithms.
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Figure 7.31: Effect of varying the number of training data on the performance of all
machine learning algorithms

The sub-corpora are much smaller when the number of samples per class is fixed as
opposed to being set at a minimum. For these smaller corpora, the SVM and ANN-based
recognisers are very sensitive to the initial increase in the amount of training data after
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which their sensitivity starts to stabilise as the fixed number of samples per class increases.
The HMM-based word recogniser, on the other hand, shows consistent sensitivity to the
number of samples per class. When a minimum number of samples per class is required,
the word recognisers initially all appear to be equally sensitive to the amount of training
samples; however, beyond some point, the sensitivity begins to vary with the HMM-
based word recogniser once again being the most sensitive to the amount of training data
available.

Figure [7.31] shows that, for text line recognition, the HMM-based recogniser was not very
sensitive to the minimum number of samples per class. That being said, requiring that
there be at least 2 samples per class did lead to a slight improvement over when only a
single sample per class was allowed.

These findings suggest that, when the amount of training data available is limited, using
synthetic training data could be beneficial. Furthermore, the SVM and ANN-based recog-
nisers seem most appropriate for small training sets, though as the amount of training
data increases it may be worthwhile to consider the HMM-based recogniser as it has a
higher rate of improvement as the size of the training set increases. For text line recogni-
tion, the addition of synthetic training data had a negative effect on the performance of
the HMM-based recogniser. A possible reason for this was that the addition of synthetic
training data contributed to overfitting. However, it was shown that there was a very
small positive relationship between the amount of real training data and the performance
of the recogniser, though not as great as that for word recognition.

7.3.4 Multiple Authors

The effect that multiple authors had on the performance of the different recognisers was
investigated through a series of experiments, the results of which were presented in pre-
vious sections in this chapter. Table provides a comparison of the effect of multiple
authors for all of the machine learning algorithms.

Table 7.9: Performance for single and multiple authors for all machine learning algorithms

MLA Single Author Multiple Authors Change
SVM Words 58.49% 55.4% -5.28%
ANN Words 53.76% 52.98% -1.44%
HMM Words 44.79% 44.13% -1.48%
HMM Lines 35.70 30.04 -15.85%

Table[7.9|shows that, for word recognition, the SVM-based recogniser is the most sensitive
to the effect of multiple authors with the addition of a second author leading to a 5.28%
decrease in performance. For the ANN and HMM-based word recognisers the effect of
multiple authors led to a much smaller decrease in performance of approximately 1.5%.
These findings suggest that the ANN and HMM-based recognisers are better at handling
the increased variation, both within and between classes, that is caused by the inclusion
of the handwriting of additional authors. The SVM-based word recogniser is still the
best performing recogniser for 2 authors; however, these findings allow for speculation
that, if more authors were to be added beyond the second, then the performance of the
ANN-based recogniser could surpass that of the SVM-based recogniser.
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Text line recognition was much more sensitive to the effect of multiple authors than word
recognition. One of the reasons for this is that there is a lot more variation between the
text lines and there was less control over the contents of the corpus as is discussed further
in the next section.

In order to handle multiple authors, steps can be taken to attempt to minimise the
variation between their handwriting. Some of these steps, such as the slant correction
described in Section [4.2.3.2] have been applied in this study. However, it is still possible
to apply additional transformations to further reduce variation and thus possibly increase
the performance of a recogniser built to recognise the handwriting of multiple authors.

7.3.5 The Effect of the Corpus

The corpus used in a handwriting recognition study will, naturally, have an effect on the
performance of the recognisers used in the study. Some of the ways in which a corpus can
affect the performance of recognisers have already been discussed, such as the amount of
training data available and the variation between and within classes. This section seeks to
explain the ways in which the corpus used in this study has affected the results achieved.

One of the reasons why the recognition of Bushman texts is difficult relates to the complex
diacritics that appear in the text and which were discussed in detail in Chapter [d. The
Bushman character set in this study is largely made up of Latin characters that have
diacritics appearing above and below them. One would also expect that, in many cases,
the variation between classes was actually quite low and could be attributed, to a large
extent, to the diacritics in the text rather than the base characters. Thus, the recognition
problem became largely about differentiating between diacritics, which, in many cases,
only occupied a small area in the Cartesian space. Thus, the recognition process was
made especially difficult due to the need to differentiate among many similar classes.

How small the variation among classes actually was became clear after an analysis of the
corpus, as described in Chapter The analysis revealed that the consistency of data
capturers was estimated to be around 75%, as measured by the Levenshtein distance
(Levenshtein, [1966). That is, data capturers only agreed on what symbols represented
75% of the time. This inconsistency between data capturers is testament to the difficulty
of the problem where humans, with all of their cognitive ability, fail to agree on the
classification of about a quarter of the symbols that appear in the text. The holy grail in
handwriting recognition is the design of recognition systems that are able to equal humans
in their ability to recognise and classify symbols. One can then go on to reason that, given
the difficulty that humans had in agreeing on what symbols represented, machine learning
algorithms would also struggle with the same task.

The difficulty that the data capturers had in classifying the symbols that appear in the
Bushman texts also had a direct effect on the performance of the HMM-based text line
recogniser used in this study. The transcriptions created by the data capturers were used
both for the training of recognition models and as the gold standard to which the output
of the recognisers was compared and against which performance was evaluated. Given
that the estimated consistency among data capturers was 75%, it could be reasoned that,
for any transcription output, the probability of a false negative or positive is 25%. For
instance, if the output of the recogniser matched the ground truth perfectly, there would
still be a chance that it would not match the gold standard due to the inconsistencies
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within the gold standard. In this context, the ground truth refers to the absolute true
transcription of the data whereas the gold standard refers to the corpus described in
Chapter [4] The effect of the disagreement between data capturers does not only affect
the recognition step. The training step is also affected and it could be argued that
in approximately 25% of cases, a symbol would have been classified by different data
capturers as belonging to different classes. Thus the effect of the inconsistencies is two-
fold. In the first sense it is likely to have led to poorly trained recognition models where
multiple occurrences of a single symbol were classified as being different and, secondly,
it would have led to false positives and negatives when evaluating the recogniser output.
Thus, when considering the recognition results achieved in this study, the effect of the
corpus should be considered. However, one could argue that, even with a gold standard
that closely resembles the ground truth, it would be unreasonable to expect recognition
accuracies on par with those achieved for other scripts with fewer symbol classes and it
would be more appropriate to compare the performance to other scripts where there are a
large number of classes that need to be recognised. Furthermore, it could be argued that
performance on par with other handwriting recognition studies is not feasible due to the
unique properties and complexities of the Bushman texts.

7.4 Discussion

This section has presented the results of the experiments that were conducted to inves-
tigate the use of different techniques for Bushman handwriting recognition. The exper-
iments showed that, for Bushman word recognition, the highest recognition accuracy of
62.58% occurred when a SVM was trained with real and synthetic training data from
which HoGs had been extracted and that, for Bushman text line recognition, the highest
recognition accuracy of 45.10 was achieved when M&B features were extracted from only
real training data and a bigram word language model was incorporated into the recog-
niser. The experiments also revealed a number of properties about the different machine
learning algorithms, such as how different machine learning algorithms have different lev-
els of sensitivity to the amount of training data and the variation within the training
data.

In this study, Bushman words were recognised as a single pattern rather than being
recognised by the symbols that they were made up of. A possible alternative approach to
word recognition could have been taken where the individual symbols in each word were
recognised and then, in a manner similar to that for text line recognition, a dictionary or
character language model could be used to concatenate the symbols to create Bushman
words. By doing this, the statistical information about the Bushman language, which was
shown to result in an improvement in Bushman text line recognition, could potentially also
be used to improve Bushman word recognition. However, this approach was not used and,
instead, the Bushman word recognition task instead focused on whole Bushman words as
a single pattern, while text line recognition focused on recognising the individual symbols
that appear in the texts.

A number of assumptions were made during the execution of the experiments in this
chapter. For instance, it was assumed that the best features for each machine learning
algorithm remained the best even when different training sets were used, as was the case
for synthetic data, the number of samples and multiple authors. However, it is possible
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that the best features may actually have differed for the different sets of training data.
For SVM and ANN-based recognition, the model parameters were determined from the
training data at the start of each experiment. For the SVM-based recognition this was
done through a grid search and for ANN-based recognition the architecture was based
on the size of the training vector and number of classes that needed to be recognised.
However, for HMM-based recognition, an experiment was conducted in order to determine
the HMM model parameters using two features and the assumption was made that these
parameters were optimal not only for other features but also for both text line and word
recognition. It could be argued that an assumption such as this is somewhat flawed since
one would expect that the HMM parameters would, to some extent, be dependent on
the features and the data being recognised. However, in a study such as this one it is
infeasible to consider all possible combinations of machine learning algorithms and their
parameters and features and their parameters and thus assumptions have to be made.
However, the generally consistent results for most features across all machine learning
algorithms showed that, to a certain extent, these assumptions were reasonable.
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Chapter 8

Conclusion

There are a number of techniques and strategies that can be employed when designing a
handwriting recognition system and the choice as to which techniques and strategies to
use can be decided in a number of ways. For instance, a careful analysis and comparison of
techniques can be conducted in order to identify which of them are the most appropriate
for the recognition task at hand. Alternatively, the decision could be based on the findings
of previous studies with the assumption that the findings are transferable. There are pros
and cons to both of these approaches. In the first case, the best suited approach for the
task at hand can be identified, but it comes at the cost of considering a large number of
techniques. In the second case, not as much exploratory and experimental work needs
to be done. However, this comes at the cost of making an assumption of transferable
findings, which may or may not actually be the case and it is less likely that an optimal
solution will be found.

Chapter [2in this thesis discussed some of these previous techniques that have been used
for automatic handwriting and revealed that there was no easy way of determining which
techniques should be used for a given handwriting recognition study and why it was
difficult to compare the findings of independent studies. Thus, in this study, the first
approach was taken where various techniques were investigated for their use for Bushman
handwriting recognition. These techniques included the use of: Support Vector Machines
(SVMs), Artificial Neural Networks (ANNs) and Hidden Markov Models (HMMSs) as ma-
chine learning algorithms; Undersampled Bitmaps, Geometric Moments, Marti & Bunke
Features, Histograms of Oriented Gradients, Gabor Filter-based Features and Discrete
Cosine Transform coefficients as features; synthetic training data; and statistical lan-
guage models. The ways in which these techniques were used was discussed in Chapters
and [0 while Chapter [7] presented a set of experiments and their findings.

It was found that, of the techniques considered in this study, the best word recognition
accuracy of 62.58% occurred when a SVM was trained with real and synthetic training
data from which Histograms of Oriented Gradients had been extracted. For text line
recognition, the best recognition accuracy of 45.10 was achieved when a HMM was trained
with Marti & Bunke features that were extracted from only real training data and a
bigram word language model was incorporated into the recogniser. Thus, of the techniques
considered, these can be recommended as being the best for automatically transcribing
handwritten Bushman texts. Furthermore, it is likely that these techniques may also
perform well for similar scripts, especially those that contain complex diacritics.

The research questions posed in Chapter [1| dealt with: machine learning algorithms and
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features; training data; and statistical language models. These research questions were
addressed through the experiments in this study and are discussed below.

Machine Learning Algorithms and Features

The research question on machine learning algorithms and features was related to which
were best for the automatic transcription of handwritten Bushman texts. It has already
been mentioned how a SVM trained with Histograms of Oriented Gradients as features
resulted in the highest recognition accuracy for Bushman words and how a HMM trained
with Marti & Bunke features resulted in the highest recognition accuracy for Bushman text
lines. However, in addition to this, there were other observations about machine learning
algorithms and features. For instance, it was observed that there were some features
that, on average, performed equally well for the different machine learning algorithms.
However, there were some features that performed better with a specific machine learning
algorithm suggesting that the choice as to which features should be used in a handwriting
recognition system should be based on the machine learning algorithms that are to be used.
Furthermore, it is possible that the diacritics had a significant effect on the performance of
the different recognisers; investigating this is left for future work and discussed in Section
B.1] Lastly, it was also found that the hybrid features used in this study to did not lead
to an improvement in recogniser performance, though this could possibly be attributed
to the fact that the best features all summarised the same information.

Training Data

The research question on training data related to the effect that training data has on the
performance of a recogniser. It is well-known that the amount of training data used has
an effect on the performance of a recogniser; however, it was shown that some machine
learning algorithms are more sensitive than others to the amount of training data that
is available. It was also shown how synthetic training data, which is easy and simple to
create, is beneficial since it leads to an improvement in the performance of a recogniser.
It was also shown how increased variation in the data, caused by multiple authors, led
to a decrease in recogniser performance. However, as was the case with the amount of
training data, some machine learning algorithms are more sensitive than others to this
increase in variation. Thus, it can be concluded that training data has a large effect on
the performance of a recogniser, but the actual effect that is has is dependent on the
machine learning algorithms themselves.

Statistical Language Models

The research question on statistical language models related to the effect that they have
on the recognition accuracy that can be achieved. It was shown how a bigram language
model led to an improvement in recognition accuracy by just under 10, thus clearly demon-
strating that language models are beneficial and can be used to improve the performance
of a recogniser.

The study revealed some other considerations related to the Bushman texts and automatic
handwriting recognition in general. For instance, in order to create a handwriting system,
a corpus is needed to train the machine learning algorithms and create recognition models.

143



Chapter {4]in this thesis described how a corpus of Bushman texts was created and used in
this study. For a complex script like the Bushman script, it was shown how data capturers
struggled to agree on what the symbols represented. Furthermore, many of the symbols
in the Bushman texts appeared infrequently and it is well known that multiple samples
of a symbol are required to create robust recognition systems.

Thus, while automatic handwriting recognition systems have successfully been used for
well-known and well-understood scripts with relatively small character sets, perhaps they
cannot be applied as successfully to more complex scripts. For instance, large collections of
documents are likely to exist for well-known and well-understood scripts, thereby allowing
for large amounts of training data; whereas more complex scripts are more likely to belong
to smaller collections. Furthermore, data that is relatively uniform is needed in order to
create robust recognition systems. This was not the case for the Bushman texts and
may not be the case for other complex scripts. Thus, for smaller collections, it may be
more appropriate to simply manually transcribe the collections rather than go through
the difficulties of trying to create automatic recognition systems. Given the difficulty that
non-expert data capturers may have in transcribing complex scripts, as was the case with
the Bushman texts as described in Chapter [4] it may be necessary that the transcription
of the texts is performed by experts.

One may argue that, given the complexities of the Bushman script and other scripts, it is
not worth creating automatic handwriting recognition systems since the accuracies that
can be achieved are perhaps too low to be very useful or the complexities in designing the
system and investigating techniques are not worth the effort. While this study has shown
that the recognition of the Bushman texts is difficult, it has also shown how different
techniques can be used in a handwriting recognition system and the effect that they have.
It has shown how some features are better than others for use in handwriting recognition
and how different machine learning algorithms have different levels of sensitivity to data.
Furthermore, it has also shown that there is no single best approach for designing a
handwriting recognition system, but that the design depends on a number of factors.
This information could be used for the design of future recognition systems, be they for
simple handwriting recognition, complex handwriting recognition, or pattern recognition
in general.

Furthermore, in addition to investigating techniques for automatic handwriting recogni-
tion, the problem of digitally encoding and representing the Bushman texts was also solved
as part of this study. The novel technique that was developed allows for the Bushman
text to be fully encoded and can be used for the transcription of the texts. Furthermore,
the technique and the tool that was created may also be applicable to other complex
scripts that cannot be represented in Unicode and thus could have application beyond
the Bushman texts.

Finally, the importance of transcriptions of historical documents should not be under-
estimated. It has already been discussed how transcriptions can be used to improve
digital library systems by allowing for the provision of enhanced services. However, more
importantly, transcriptions of historical documents serve as a means of preserving the
documents’ contents and ensuring that, regardless of what may happen to the physical
artefacts, the knowledge and information that they contain will remain available and
accessible to all. This study has taken us one step closer to achieving that goal.
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8.1 Future Work

There are many possibilities for future work that arise from this study such as an inves-
tigation into the use of additional machine learning algorithms and descriptive features
for Bushman handwriting recognition. However, this study has shown why the automatic
recognition of Bushman texts is difficult and thus future work would do better to focus on
better understanding the texts and developing techniques to deal with their complexities.

For instance, the nature and the meaning of the diacritics that appear in the Bushman
texts were not investigated directly as it fell outside of the scope of this study. However,
the diacritics had a large effect on the performance of the recognisers, from their initial
transcription to their recognition. Thus, in future studies it may be worthwhile to further
investigate the effect that these diacritics have on recognition, for instance, what the effect
is if they are ignored during recognition or removed, recognised separately from the base
characters, and then re-attached as a post-processing step. This was partly investigated in
the second pilot study described in Chapter |3| where the exclusion of diacritics was found
to be infeasible due to their perceived importance in the meaning of the Bushman words.
However, it is possible that the diacritics are perhaps not as important as one may think.
Future work could possibly exploit linguistic information about the Bushman languages
in order to determine the importance of diacritics and how they should be treated during
recognition.

The issue of diacritics is also related to the features used for recognition in this study.
Different features are likely to contain different information content and, as such, some
are better at describing handwritten text than others. However, some features may be
better at describing diacritics that are attached to base characters and that take up a
relatively small part of the Cartesian space. Further exploration may allow for additional
information about features to be discovered. For instance, the effect of the features could
be investigated by determining the recognition accuracy both including and excluding
diacritics. This would give a rough overview of the extent to which the features actually
include the information content of the diacritics. Furthermore, the features could be anal-
ysed in order to determine what their actual information content is and could potentially
reveal correlations that exist between the information content and recognition accuracy.
In doing this, it may be possible to determine what information content it is desirable for
features to have and, using this information, build hybrid features that maximise this de-
sirable information. This could be used to overcome the shortcoming of the best features
all potentially summarising the same information. Of course, these findings would not
be limited to the recognition of handwritten texts, but would also generalise to pattern
recognition in general, where the information content of features plays an important role.

Statistical information about a natural language provides a valuable source of information
about the distribution of words and characters in the language and can be used to improve
the recognition process. In this study, a bigram word language model was used for text
line recognition and it was shown how it led to a large increase in the performance of
the recogniser. However, it is possible to create higher order language models or even
character language models, which would contain additional statistical information to that
provided by a bigram language model. The use of these higher order language models and
statistical information about the Bushman languages, in addition to potentially improving
the performance of automatic recognisers, can also assist in furthering our understanding
of the Bushman languages by means of statistical analysis.
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Lastly, crowd-sourcing, in which a task is outsourced to a distributed and large group
of people has, in many applications, proven to be more accurate than professionals
(Surowiecki, [2005)). Crowd-sourcing could be used as an approach to transcribing the
Bushman texts by adapting x0a’xo64 for use on top of a volunteer computing platform. In
fact, efforts have already begun to do this and, as a result, make the Bushman texts, and
the indigenous knowledge of some of the earliest inhabitant of the Earth, available to the
world.
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Appendix A

'oo, 1 oo

Diacritics Supported by xoa’xoa

Characters
I T T
\textlonglegr{} \tshape{} \tshapebar{}
\stackedu{} \textdoublepipe{} \textdoublebarpipe{}
3 6 Y
\textrevepsilon{} \texttheta{} \textfrtailgamma{}
O ft 7t
\textbullseye{} \textdoublepipebar{} \texthash{}
#.
\texthashy{}
Diacrics Above Characters
L
’ [449] ~
a a
\dbarelipline{a} \kappiebrackets{a} \kappieline{a}
a a a
\kappie{a} \welip{a} \elipbarline{a}
N U _
a a a
\elipuline{a} \elipu{a} \elipbar{a}
a a a
\elipubar{a} \elipdbar{a} \elipline{a}

Al



D

\uelipdbar{a}

N
a
\uuline{a}

L
a
\barelipline{a}

o

a
\barwu{a}

a
\barline{a}

a
\barbar{a}

v

a
\twodotselipu{a}

|
v

a
\twodotsuline{a}

X
\twodotsdbar{a}

5

\twodotsbarline{a}

a
\onedotdbar{a}

+

a
\plusover{a}
éJ
\cover{a}

~

a
\ukappie{a}

-

\uelipline{a}

!
v

a
\uline{a}

a
\barelip{a}

AN

a
\bardbar{a}

a
\barbar{a}

o

a
\circleelip{a}

z
\twodotselip{a}

5
\twodotsu{a}

i
\twodotsubar{a}

a
\twodotsbar{a}

!
2

a
\onedotulineq{a}

k

a
\kover{a}
a
\xover{a}

A

a
\kappie{a}

A2

'

a
\uelip{a}

R

\barelipdbar{a}

g
a
\baruline{a}

va

a
\barubar{a}

a
\barbar{a}

v
o

a
\circleu{a}

Z
\twodotsuelip{a}

-'.
a
\twodotsline{a}

-

a
\twodotsbarelipline{a}

a
\onedotu{a}

a
\seagull{a}

a
\epover{a}
a
udkappie{al|
a
\wover{a}



v

/

a a a
\elip{a} \u{a} \ubar{a}
a a a
\dbar{a} \dialine{a} \diabar{a}
a a a
\r{a} \excl{a} \twodots{a}
a
\onedot{a}
Diacrics Below Characters
A A a
M -7 x
\xcbelow{a} \harpoonb{a} \xbelow{a}
2 2 a
\ybelow{a} \linebelow{a} \cbelow{a}
a a a
\ebelow{a} \tildeliﬂébelow{a} \circleliﬂebelow{a}
8 8 &
\ubelow{a} \dquotebelow{a} \hcirclebelow{a}
a a a
\twobarsbelow{a} \barbelow{a} \circlebelow{a}
a
\twodotsbelow{a}
Diacrics Above and Below Characters
g _
a a a
\harpoonb{a} \barbdotulinet{a} \barbtwodotsbart{a}
v
a, a a
\xbrackbdotulinet{a} \wbut{a} \bartildebbart{a}
+ . 1
a a a
\twobarsbhasht{a} \ubarbdott{a} \ubbarlinet{a}

A3



n

a
\ubut{a}

a

\circbarglinet{a}

/

a
\circbdbart{a}

A

a
\twodotsbut{a}

%
pJ
\hcircbtwodotsut{a}

ugDIZ/

\hcircbbarelipdbart{a}

DO

pJ
\hcircbbarelipt{a}

A

A
p)
\hcircbbardbart{a}

/

A
p)
\hcircbubart{a}

5
p)
\hcircbtwodotsa{a}

I

\barbeligubart{a}

A

a
\barbbardbart{a}

g
a
\barbulinet{a}

\

a
\barbdbart{a}

~

a a

\circblinet{a} \circbut{a}
4 w
a a
\circbhasht{a} \circbwt{a}
a i
\quoteblinet{a} \twodotsbwut{a}
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Appendix B

Results of Experiment Investigating

Hidden Markov Model Parameters

B6

Fold
1 2 3 4 5 6 7 8 9 10 Avg.
Gaussians Discrete Cosine Transform Features
4 States
8 471 -54.3 -419 -47.8 -439 -50.2 -51.0 -47.6 -51.4 -50.3 -48.5
16 -38.9 -45.7 -36.2 -45.2 -384 -44.3 -43.2 -40.5 -43.7 -47.0 -42.3
24 -40.5 -50.8 -36.6 -47.7 -38.2 -42.2 -40.3 -39.0 -42.3 -46.9 -42.5
32 -39.8 -H8.3 -35.6 -47.5 -42.5 -42.9 -40.6 -39.5 -42.3 -47.5 -43.6
8 States
8 186 156 19.1 185 21.7 188 19.1 185 187 159 185
16 21.5 179 223 21.3 23.7 222 219 207 197 194 21.1
24 21.8 19.6 21.6 21.6 24.1 21.0 231 214 208 190 214
32 21.3 186 21.2 21.7 243 21.1 223 205 209 188 21.1
12 States
8 27.1 248 274 252 289 265 275 269 257 241 264
16 29.1 249 30.1 272 298 290 293 286 286 266 28.3
24 28.6 253 30.0 271 304 288 293 287 293 269 284
32 284 244 30.0 271 30.8 288 294 293 293 270 284
Gaussians Marti & Bunke Features
4 States
8 -17.5 -23.3 -15.5 -19.5 -17.2 -188 -17.7 -22.0 -20.3 -16.6 -18.8
16 -15.0 -23.8 -129 -17.8 -14.2 -15.7 -155 -17.7 -17.8 -14.7 -16.5
24 -13.2 -234 -12.1 -179 -13.3 -15.1 -15.0 -189 -17.3 -15.5 -16.2
32 -12.8 -22.0 -11.1 -184 -11.1 -13.5 -15.5 -183 -15.0 -16.1 -154
8 States
8 286 27.8 309 272 302 288 294 278 303 28.0 28.9
16 305 272 306 282 326 29.0 309 302 305 292 299
24 30.1 26.5 315 281 31.7 294 304 303 306 29.1 29.8
32 299 272 31.2 282 315 30.8 30.7 30.1 30.8 294 30.0
12 States
8 36.9 348 36.7 352 384 36.5 36.7 356 352 349 36.1
16 377 364 379 365 394 370 383 363 371 365 373
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Appendix C

Results of Experiments Using
Support Vector Machines for Word

Recognition
Fold
1 2 3 4 ) 6 7 8 9 10  Avg.
Cell Size Undersampled Bitmaps (UBs)
32x32 31.2 16.0 20.0 27.2 240 240 25.6 28.0 232 21.1 24.0
16x16 472 36.0 41.6 472 456 41.6 424 408 464 423 43.1
8x8 084 464 472 504 5H57.6 48.8 49.6 432 504 553 50.7
4x4 56.8 424 424 46.4 52.8 48.8 472 472 448 488 47.8
Marti & Bunke (M&B) Features
51.2 464 424 44.0 528 504 472 472 48.8 423 47.3
Cell Size Geometric Moments (GMs)
Moments = M1
64x64 12.0 56 120 120 56 96 56 11.2 120 98 95
32x32 16.8 128 88 80 64 160 72 128 64 6.5 10.2
16x16 20.0 176 184 304 224 216 19.2 240 208 17.1 21.1
8x8 32.8 24.0 256 344 264 28.0 256 272 312 244 28.0
Moments = M1,M2
64x64 216 80 72 120 88 96 4.0 120 80 89 10.0
32x32 176 104 80 64 32 160 &80 120 64 6.5 95
16x16 19.2 184 208 272 21.6 288 19.2 224 216 179 21.7
8x8 31.2 240 264 240 240 264 21.6 248 28.0 220 252
Moments = M1,M2,M3
64x64 200 72 104 144 80 88 88 64 88 98 103
32x32 200 80 64 56 24 144 48 88 72 81 86
16x16 20.0 19.2 176 25.6 208 288 20.0 176 20.0 154 20.5
8x8 272 224 256 28.0 232 240 224 240 280 195 244
Moments = M1,M2,M3,M4
64x64 240 80 128 152 128 64 7.2 128 120 89 12.0
32x32 184 104 48 40 32 128 56 72 48 73 79
16x16 20.0 208 176 232 216 200 17.6 176 184 13.0 19.0

C8




8x8 28.8 232 240 28.0 21.6 28.0 21.6 232 288 18.7 24.6
Resolutions Histograms of Oriented Gradients (HoGs)
64x32x16 67.2 56.8 57.6 56.8 64.0 60.8 56.8 56.8 552 50.4 58.2
32x16x8 66.4 584 53.6 552 64.8 60.8 55.2 544 60.8 553 585
16x8x4 62.4 52.0 50.4 52.0 544 46.4 544 472 52.0 48.0 51.9
64x32x0 7.6 48.8 44.8 50.4 552 53.6 464 472 504 43.1 49.7
32x16x0 68.0 56.8 55.2 56.8 64.8 59.2 56.0 56.0 56.0 50.4 57.9
16x8x0 65.6 544 528 544 624 60.0 56.8 544 60.0 53.7 574
64x0x0 25.6 20.0 24.8 16.0 216 19.2 24.0 28.0 296 16.3 225
32x0x0 54.4 48.0 432 51.2 528 51.2 44.0 48.0 51.2 43.1 487
16x0x0 65.6 55.2 552 57.6 63.2 56.8 56.0 584 56.8 52.8 57.8
Signed
68.0 52.0 544 552 63.2 56.0 56.8 528 60.0 55.3 574
Normalised
63.2 52.0 56.0 52.0 60.0 59.2 59.2 584 57.6 5HT.7T 575
Cell Size Gabor Filter (GF)-based Features
32x32 50.4 35.2 40.0 35.2 384 45.6 32.0 33.6 39.2 35.0 385
16x16 52.0 36.8 46.4 48.8 50.4 48.0 47.2 472 496 439 470
8x8 61.6 43.2 504 552 57.6 53.6 504 53.6 52.8 53.7 53.2
4x4 59.2 432 464 52.8 56.8 544 52.0 544 536 52.0 525
Cell Size Discrete Cosine Transform (DCT) Coefficients
Coefficients = 1
64x64 96 9.6 120 17.6 120 144 112 144 144 122 127
32x32 72 224 264 256 192 336 88 232 264 187 21.1
16x16 50.4 344 424 448 512 448 424 424 456 48.0 44.6
8x8 52.8 51.2 49.6 48.0 52.0 48.0 50.4 45.6 52.0 52.0 50.2
Coefficients = 10
64x64 36.8 40.8 432 37.6 41.6 44.0 40.0 40.8 448 43.1 41.3
32x32 55.2 48.8 47.2 472 53.6 504 44.0 48.0 472 53.7 495
16x16 59.2 44.0 44.8 456 488 51.2 488 44.8 44.8 472 479
8x8 52.0 40.8 37.6 472 44.0 472 456 43.2 40.0 43.1 44.1
Coefficients = 20
64x64 544 504 464 472 536 504 49.6 46.4 51.2 48.8 498
32x32 60.8 45.6 50.4 48.0 48.0 48.8 48.0 44.0 50.4 51.2 495
16x16 50.4 41.6 39.2 432 488 472 424 44.0 424 374 437
8x8 45.6 36.8 35.2 408 37.6 432 36.0 384 392 374 39.0
Coefficients = 30
64x64 57.6 49.6 44.8 488 504 48.0 488 504 472 52.0 498
32x32 56.0 41.6 40.8 41.6 44.8 46.4 44.0 432 44.0 44.7 447
16x16 48.0 37.6 36.0 41.6 40.0 44.0 44.0 416 384 36.6 40.8
8x8 39.2 36.8 328 40.0 36.8 40.8 328 36.8 40.0 35.8 37.2
Coeflicients = 40
64x64 60.8 432 464 488 504 48.0 40.0 464 464 48.0 4738
32x32 55.2 37.6 384 39.2 448 432 472 424 424 423 433
16x16 41.6 352 32.0 432 416 39.2 384 344 392 341 379
8x8 36.8 384 288 392 344 40.0 328 352 39.2 325 357
Coefficients = 50
64x64 59.2 44.0 464 49.6 52.0 50.4 48.0 432 50.4 51.2 494
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Minimum Samples
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49.0
52.9
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64.6
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95.1
95.2
60.5
08.4
66.1

43.3
20.3
52.9
64.8
28.8
67.3
61.5

45.0
44 .4
61.0
60.8
o7.1
49.6
97.8
70.9 67.0 T1.8
59.2 735 66.3

44 .4
56.3
95.1
54.4
52.9
99.3
63.3
64.1
72.4

48.0
51.7
60.3
60.8
65.5
67.3
54.1
25.3
69.4

43.0
42.9
57.6
55.3
99.0
56.2
63.6
63.9
60.2

44.4
49.3
25.8
58.5
60.4
61.2
62.0
64.5
66.7

Fixed Samples

= O 00 3 O Ok Wi

0.0
0.0
25.0
45.0
29.2
53.6
50.0
55.6
95.0

0.0
0.0
12.5
35.0
41.7
50.0
43.8
444
45.0

0.0
0.0
25.0
35.0
20.8
39.3
53.1
58.3
42.5

0.0
0.0
50.0
50.0
37.5
46.4
43.8
36.1
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0.0 83 83
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58.3 37.5 583
60.7 57.1 464
53.1 53.1 375
50.0 52.8 47.2
50.0 425 70.0

0.0
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35.0
37.5
35.7
43.8
63.9
55.0

0.0
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50.0
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43.8
52.8
95.0

0.0
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47.6
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0.0
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37.8
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47.6
50.9
52.3
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56.5 53.4 61.5 56.5 534

59.0

48.4
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Appendix D

Results of Experiments Using
Artificial Neural Networks for Word

Recognition
Fold
1 2 3 4 ) 6 7 8 9 10 Avg.
Cell Size Undersampled Bitmaps (UBs)
Architecture: Inputs
32x32 272 16.0 20.8 21.6 16.8 264 224 224 192 146 20.7
16x16 504 352 344 40.8 40.8 384 36.8 352 408 374 39.0
8x8 55.2 40.0 464 46.4 49.6 50.4 472 424 456 439 46.7
4x4 26.0 344 384 41.6 488 44.0 456 416 44.8 439 439
Architecture: Inputs/2
32x32 20.0 128 16.0 224 152 256 144 200 192 89 175
16x16 424 288 28.0 40.0 41.6 36.0 304 31.2 384 358 353
8x8 54.4 41.6 43.2 47.2 480 48.8 44.0 40.8 488 455 46.2
4x4 6.8 36.8 37.6 448 440 448 464 440 40.8 42.3 438
Architecture: Outputs
32x32 264 19.2 136 21.6 21.6 184 21.6 24.0 19.2 21.1 20.7
16x16 46.4 304 43.2 40.0 41.6 44.0 424 40.0 424 455 41.6
8x8 52.0 384 448 47.2 51.2 43.2 480 44.0 44.8 44.7 458
4x4 49.6 384 37.6 408 440 440 39.2 440 424 39.0 41.9
Architecture: Outputs/2
32x32 272 184 16.0 21.6 23.2 20.8 264 240 224 195 22.0
16x16 45.6 344 44.0 46.4 472 424 43.2 432 472 439 438
8x8 61.6 384 424 51.2 496 47.2 456 40.8 44.8 439 46.6
4x4 51.2 39.2 384 40.8 41.6 424 44.0 384 40.0 44.7 42.1
Architecture: (Input+Outputs)/2
32x32 304 20.0 13.6 23.2 25.6 20.0 24.8 25.6 20.8 21.1 225
16x16 46.4 32.0 40.0 44.0 448 424 424 40.8 43.2 439 420
8x8 50.4 39.2 432 48.0 51.2 456 464 44.0 488 47.2 464
4x4 50.4 35.2 36.0 39.2 464 44.0 44.0 44.0 44.0 44.7 428
Marti & Bunke (M&B) Features
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Architecture: Inputs

43.2 352 36.8 40.8 44.8 424 384 448 36.8 374 40.1
Architecture: Inputs/2
44.0 408 344 41.6 48.0 40.0 352 424 39.2 374 40.3
Architecture: Outputs
43.2 32.8 40.0 41.6 424 432 384 39.2 416 382 40.1
Architecture: Outputs/2
41.6 328 32.8 448 400 39.2 40.0 384 376 325 38.0
Architecture: (Inputs+Outputs)/2
43.2 36.8 344 40.0 472 36.0 36.8 40.0 424 374 394
Cell Size Geometric Moments (GMs)
Moments = M1
Architecture: Inputs
64x64 112 56 88 128 64 136 56 128 136 89 99
32x32 120 64 88 88 88 144 120 200 136 98 115
16x16 184 112 176 184 19.2 208 16.0 21.6 176 14.6 17.5
8x8 31.2 184 216 256 224 29.6 216 24.0 240 19.5 238
Architecture: Inputs/2
32x32 120 56 88 88 88 152 11.2 168 11.2 9.8 108
16x16 184 104 184 20.0 200 19.2 16.8 20.0 152 14.6 17.3
8x8 272 144 200 256 21.6 28.8 224 20.8 21.6 187 22.1
Architecture: Outputs
64x64 11.2 72 11.2 152 7.2 104 40 136 11.2 89 10.0
32x32 120 7.2 168 13.6 12.0 184 152 240 13.6 13.0 14.6
16x16 20.0 104 16.0 20.0 19.2 21.6 16.8 272 16.8 14.6 18.3
8x8 28.0 176 20.8 27.2 21.6 28.0 21.6 24.0 232 20.3 232
Architecture: Outputs/2
64x64 11.2 6.4 11.2 152 56 104 4.0 136 11.2 89 938
32x32 128 64 152 120 11.2 184 144 240 176 13.8 14.6
16x16 20.0 11.2 16.0 20.0 19.2 24.0 17.6 272 176 154 18.8
8x8 296 144 21.6 248 232 288 21.6 248 264 203 236
Architecture: (Inputs+Outputs)/2
64x64 11.2 6.4 11.2 152 56 104 4.0 136 11.2 89 98
32x32 128 64 160 144 11.2 16.8 152 24.0 128 114 14.1
16x16 21.6 104 16.0 20.0 19.2 232 16.0 25.6 184 13.8 184
8x8 28.8 16.8 21.6 24.8 24.0 29.6 21.6 24.0 240 195 235
Moments = M1,M2
Architecture: Inputs
64x64 16.0 72 112 152 88 136 7.2 176 120 106 11.9
32x32 120 48 88 96 96 128 11.2 16.0 104 9.8 10.5
16x16 88 56 64 88 120 120 88 144 88 73 93
8x8 104 88 56 96 96 120 96 120 128 89 99
Architecture: Inputs/2
64x64 144 64 88 80 80 144 128 168 11.2 89 11.0
32x32 120 56 88 88 &8 120 11.2 16.8 11.2 9.8 10.5
16x16 8.8 40 72 72 128 128 88 144 88 8.1 9.3
8x8 104 64 64 96 &80 120 104 120 11.2 106 9.7
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Architecture: Outputs

64x64 144 72 80 56 &80 16 40 56 128 24 7.0
32x32 120 48 80 88 96 120 104 152 104 9.8 10.1
16x16 96 56 64 80 120 120 96 136 80 81 93
8x8 120 72 64 112 88 104 88 136 11.2 98 99
Architecture: Outputs/2
64x64 152 72 88 48 72 16 32 88 11.2 24 7.0
32x32 120 48 80 88 88 128 11.2 16.0 104 98 10.3
16x16 96 56 64 88 120 128 96 136 88 81 95
8x8 104 40 56 104 88 11.2 88 120 96 81 89
Architecture: (Inputs+Outputs)/2
64x64 16.0 64 88 48 72 16 40 48 128 24 6.9
32x32 120 48 &80 88 96 128 11.2 160 11.2 9.8 104
16x16 88 48 72 88 128 136 96 136 80 73 95
8x8 104 88 64 96 80 96 96 136 104 98 96
Moments = M1,M2,M3
Architecture: Inputs
64x64 80 80 96 104 104 104 40 120 120 122 9.7
32x32 120 64 72 88 88 144 120 144 104 10.6 10.5
16x16 8.8 48 72 104 88 11.2 88 120 88 73 88
8x8 104 48 72 72 88 11.2 88 120 96 6.5 87
Architecture: Inputs/2
64x64 112 80 72 80 104 152 64 120 120 10.6 10.1
32x32 120 80 96 88 88 144 112 152 96 9.8 10.7
16x16 8.8 48 72 104 96 112 88 136 88 73 9.1
8x8 104 48 72 80 88 11.2 88 120 96 6.5 87
Architecture: Outputs
64x64 80 80 96 120 11.2 120 56 120 120 10.6 10.1
32x32 112 48 72 88 88 144 120 128 96 10.6 10.0
16x16 88 48 64 80 96 136 88 136 88 73 9.0
8x8 112 48 72 80 88 11.2 88 120 96 6.5 8.8
Architecture: Outputs/2
64x64 80 88 96 120 11.2 120 56 104 120 89 99
32x32 120 48 72 88 88 144 112 128 104 114 10.2
16x16 88 48 72 88 80 112 96 136 88 73 88
8x8 112 48 80 80 88 11.2 88 128 96 6.5 9.0
Architecture: (Inputs+Outputs)/2
64x64 80 80 96 120 11.2 104 56 11.2 120 89 9.7
32x32 128 48 72 88 88 144 120 128 9.6 10.6 10.2
16x16 8.8 48 72 96 88 11.2 88 128 88 73 88
8x8 104 48 72 80 88 104 88 120 96 6.5 87
Moments = M1,M2,M3,M4
Architecture: Inputs
64x64 80 88 96 104 104 11.2 5.6 104 12.0 10.6 9.7
32x32 120 48 72 80 88 144 104 128 96 114 99
16x16 96 48 72 96 88 128 88 120 88 73 9.0
8x8 104 48 80 80 88 112 88 128 96 65 89

Architecture: Inputs/2
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64x64 96 9.6 9.6 11.2 11.2 120 5.6 128 12.0 114 105
32x32 120 72 72 80 88 144 104 144 104 106 10.3
16x16 88 48 80 96 72 112 88 136 88 7.3 88
8x8 112 48 72 80 80 104 88 136 96 6.5 88
Architecture: Outputs
64x64 88 72 96 72 96 104 48 128 112 9.8 9.1
32x32 120 48 72 88 88 136 104 13.6 104 9.8 99
16x16 96 48 64 80 88 136 88 128 96 73 9.0
8x8 104 48 72 80 88 11.2 80 128 96 6.5 87
Architecture: Outputs/2
64x64 88 64 96 88 96 96 56 112 11.2 98 9.1
32x32 120 48 72 88 88 144 104 128 104 114 10.1
16x16 80 48 80 88 11.2 120 88 112 88 73 89
8x8 120 48 80 72 88 11.2 88 128 96 65 9.0
Architecture: (Inputs+Outputs)/2
64x64 88 72 96 104 96 72 56 104 11.2 98 9.0
32x32 120 56 7.2 88 88 144 104 128 88 106 99
16x16 96 48 80 104 88 136 88 136 88 73 94
8x8 104 48 72 80 88 104 88 120 96 6.5 87
Resolutions Histograms of Oriented Gradients (HoGs)
Architecture: Inputs
64x32x16 48.0 40.0 264 472 408 36.0 32.0 448 352 154 36.6
32x16x8 45.6 304 16.8 424 376 36.0 36.8 33.6 32.8 17.1 329
64x32x0 448 352 264 424 344 312 352 40.0 416 10.6 34.2
32x16x0 59.2 40.0 32.0 46.4 448 48.8 47.2 36.0 43.2 29.3 427
16x8x0 55.2 40.8 44.8 49.6 464 48.0 464 41.6 472 46.3 46.6
64x0x0 20.0 18.4 12.0 28.0 20.0 144 120 256 216 5.7 178
32x0x0 50.4 40.0 24.0 424 408 456 37.6 384 392 17.1 375
16x0x0 57.6 45.6 52.8 51.2 552 49.6 53.6 472 48.0 51.2 51.2
Architecture: Inputs/2
64x32x16 472 384 264 440 352 39.2 33.6 408 40.0 81 35.3
32x16x8 48.0 31.2 208 448 37.6 384 376 376 31.2 187 34.6
64x32x0 424 312 248 408 320 296 304 376 36.8 6.5 31.2
32x16x0 56.0 40.8 32.8 48.0 43.2 48.0 424 40.0 44.8 27.6 424
16x8x0 56.8 384 472 472 544 472 448 456 472 472 47.6
64x0x0 200 144 144 184 16.0 20.8 11.2 208 21.6 114 16.9
32x0x0 48.0 28.8 19.2 416 40.8 41.6 36.0 352 344 19.5 345
16x0x0 61.6 47.2 52.8 51.2 544 52.8 528 456 488 504 51.8
Architecture: Outputs
64x32x16 49.6 344 248 464 328 37.6 36.8 384 392 13.8 354
32x16x8 52.0 32.0 232 456 36.0 384 37.6 36.0 36.0 20.3 35.7
64x32x0 424 376 264 456 352 344 376 400 40.8 10.6 35.1
32x16x0 62.4 352 32.0 44.8 432 464 44.0 39.2 424 30.9 42.0
16x8x0 55.2 41.6 432 440 456 48.0 448 448 432 439 454
64x0x0 16.8 200 64 256 19.2 104 120 232 264 3.3 16.3
32x0x0 50.4 36.0 24.0 44.0 432 432 424 392 384 20.3 381
16x0x0 58.4 472 49.6 49.6 53.6 53.6 52.0 488 472 504 51.0
Architecture: Outputs/2
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64x32x16 48.0 344 256 44.0 39.2 32.8 33.6 432 36.8 13.0 35.1
32x16x8 448 29.6 224 464 36.8 384 40.0 36.8 304 228 348
64x32x0 45.6 36.0 288 45.6 36.8 32.8 352 41.6 39.2 6.5 348
32x16x0 04.4 344 296 488 424 472 456 39.2 40.0 27.6 40.9
16x8x0 48.8 36.8 424 44.0 44.0 44.0 41.6 36.8 43.2 40.7 422
64x0x0 17.6 20.8 11.2 288 200 11.2 128 264 272 4.1 180
32x0x0 472 39.2 248 472 39.2 424 384 36.0 41.6 179 374
16x0x0 59.2 456 51.2 48.8 52.0 52.8 52.0 49.6 48.8 47.2 50.7
Architecture: (Inputs+Outputs)/2
64x32x16 52.8 384 29.6 46.4 384 376 296 376 344 122 35.7
32x16x8 44.8 32.0 24.0 424 384 39.2 384 344 344 252 353
64x32x0 45.6 384 21.6 440 344 336 328 392 384 114 339
32x16x0 584 44.0 304 464 456 49.6 48.0 39.2 448 276 434
16x8x0 03.6 40.8 40.8 464 44.0 48.0 472 416 448 415 449
64x0x0 16.8 21.6 104 272 192 88 120 248 256 49 17.1
32x0x0 46.4 36.8 28.8 40.8 424 40.8 40.0 384 40.0 122 36.7
16x0x0 084 46.4 49.6 53.6 53.6 53.6 49.6 48.0 472 49.6 51.0
Signed
Architecture: Inputs
64.8 49.6 53.6 544 576 5H1.2 528 53.6 52.0 48.0 53.8
Architecture: Inputs/2
64.0 47.2 52.0 55.2 552 504 52.0 52.0 488 46.3 52.3
Architecture: Outputs
63.2 48.0 52.8 52.8 57.6 5H3.6 504 53.6 52.0 47.2 531
Architecture: Outputs/2
63.2 504 49.6 544 56.0 52.8 504 52.8 488 504 52.9
Architecture: (Inputs+Outputs)/2
66.4 48.8 52.8 52.0 544 488 49.6 488 53.8 480 52.3
Normalised
Architecture: Inputs
60.0 47.2 464 48.0 552 52.8 53.6 51.2 51.2 472 51.3
Architecture: Inputs/2
61.6 44.8 504 49.6 59.2 52.0 53.6 53.6 472 51.2 52.3
Architecture: Outputs
58.4 472 51.2 48.8 584 544 504 52.0 496 480 51.8
Architecture: Outputs/2
09.2 472 472 52.0 520 52.8 49.6 520 51.2 488 51.2
Architecture: (Inputs+Outputs)/2
60.0 49.6 52.0 49.6 576 544 53.6 552 5H2.8 48.8 534
Cell Size Gabor Filter (GF)-based Features
Architecture: Inputs
32x32 32.8 304 12.8 424 36.0 44.0 264 288 432 195 31.6
16x16 376 344 376 344 240 48.0 40.8 49.6 440 455 39.6
8x8 55.2 424 440 448 48.0 464 424 456 51.2 46.3 46.6
Architecture: Inputs/2
32x32 31.2 232 16.8 40.0 33.6 424 304 28.0 40.0 19.5 30.5
16x16 43.2 344 384 376 32.0 456 39.2 44.8 40.8 48.0 404
8x8 52.0 44.0 424 40.0 47.2 48.0 44.8 424 488 488 458
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Architecture: Outputs
32x32 24.8 28.0 88 344 336 448 248 248 424 146 28.1
16x16 40.8 352 40.8 39.2 28.0 48.8 36.0 424 44.8 472 40.3
8x8 02.8 408 416 41.6 448 48.0 424 424 496 455 45.0
Architecture: Outputs
32x32 304 264 12.8 39.2 33.6 432 240 248 448 195 29.9
16x16 44.0 320 36.0 37.6 328 44.8 40.8 424 448 382 39.3
8x8 55.2 39.2 384 41.6 456 44.8 44.0 424 51.2 480 45.0
Architecture: (Inputs+Outputs)/2
32x32 21.6 264 11.2 424 352 432 224 28.0 432 154 289
16x16 40.0 36.0 39.2 328 264 464 384 44.0 456 44.7 394
8x8 54.4 41.6 384 44.0 456 48.0 424 448 52.8 488 46.1
Cell Size Discrete Cosine Transform (DCT) Coefficients
Coeflicients = 1
Architecture: Inputs
64x64 112 56 128 136 88 128 104 144 144 98 114
32x32 248 16.8 16.0 24.0 176 224 16.8 20.8 16.0 11.4 18.7
16x16 48.0 352 328 40.0 40.0 40.0 39.2 33.6 40.0 38.2 38.7
8x8 044 464 424 448 504 512 472 41.6 472 488 474
Architecture: Inputs/2
32x32 152 88 144 144 152 160 19.2 104 168 7.3 138
16x16 40.0 25.6 28.0 32.0 28.0 32.8 27.2 312 304 293 304
8x8 56.0 48.8 424 48.8 504 47.2 480 46.4 488 52.8 49.0
Architecture: Outputs
64x64 96 96 144 152 152 144 96 128 13.6 114 126
32x32 31.2 184 21.6 16.0 24.8 28.8 232 144 256 187 22.3
16x16 48.8 36.0 424 41.6 48.0 40.8 424 432 46.4 40.7 43.0
8x8 55.2 464 44.0 47.2 52.0 49.6 49.6 43.2 496 480 485
Architecture: Outputs/2
64x64 104 96 144 168 120 144 96 128 152 81 123
32x32 29.6 19.2 20.8 16.8 24.8 28.0 232 13.6 20.8 187 21.5
16x16 504 33.6 41.6 43.2 456 41.6 40.8 424 480 39.8 42.7
8x8 544 448 40.8 48.8 544 488 496 44.0 464 504 48.2
Architecture: (Inputs+Outputs)/2
64x64 96 88 152 152 128 152 96 128 144 98 123
32x32 296 184 21.6 152 224 288 216 13.6 19.2 17.1 20.7
16x16 52.0 36.8 40.8 424 46.4 41.6 40.0 39.2 464 40.7 42.6
8x8 06.8 48.8 48.0 43.2 488 48.0 424 40.0 48.0 488 47.3
Coeflicients = 10
Architecture: Inputs
64x64 10.4 20.0 19.2 352 288 304 24.0 248 232 138 23.0
32x32 52.0 33.6 33.6 40.0 40.8 44.8 304 184 40.0 358 36.9
16x16 57.6 44.0 456 46.4 56.0 48.8 44.8 43.2 504 51.2 488
8x8 55.2 464 48.0 472 504 504 464 448 48.0 504 48.7
Architecture: Inputs/2
64x64 12.8 16.0 20.0 25.6 256 21.6 19.2 23.2 248 10.6 199
32x32 472 33.6 384 40.0 376 456 344 20.8 44.0 333 37.5
16x16 55.2 40.0 44.0 47.2 544 52.0 448 456 48.8 52.0 484
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8x8 58.4 43.2 44.0 48.0 49.6 52.0 48.8 424 464 46.3 47.9
Architecture: Outputs
64x64 128 8.0 3.2 184 184 256 40 32 152 49 114
32x32 02.0 352 304 384 392 472 272 208 344 309 356
16x16 544 456 44.0 45.6 552 5H53.6 432 41.6 51.2 480 48.2
8x8 56.0 43.2 45.6 48.0 54.4 51.2 50.4 40.0 472 488 485
Architecture: Outputs/2
64x64 96 72 56 160 240 360 40 56 192 73 135
32x32 52.0 33.6 33.6 40.0 40.8 44.8 304 184 40.0 35.8 36.9
16x16 044 448 424 472 51.2 50.4 432 40.0 48.0 488 47.0
8x8 56.8 448 448 48.8 52.8 50.4 44.8 41.6 48.0 472 48.0
Architecture: (Inputs+Outputs)/2
64x64 88 80 32 176 224 31.2 32 56 168 4.1 12.1
32x32 02.8 344 216 40.8 432 432 29.6 176 40.0 374 36.1
16x16 04.4 432 432 472 552 49.6 448 432 48.0 51.2 48.0
8x8 07.6 424 424 456 52.8 48.0 49.6 40.8 472 51.2 47.8
Coeflicients = 20
Architecture: Inputs
64x64 224 28.0 21.6 424 40.0 43.2 304 240 384 252 316
32x32 472 36.0 32.0 39.2 40.0 464 36.8 144 39.2 431 374
16x16 56.0 40.8 424 456 53.6 46.4 424 456 488 472 46.9
Architecture: Inputs/2
64x64 240 19.2 240 36.0 272 288 20.8 272 272 21.1 256
32x32 48.8 376 31.2 448 39.2 44.0 352 29.6 424 43.1 39.6
16x16 55.2 424 456 45.6 504 49.6 472 464 51.2 46.3 48.0
Architecture: Outputs
64x64 144 13.6 128 41.6 39.2 40.0 104 128 376 16.3 23.9
32x32 48.8 376 45.6 40.0 40.8 48.8 37.6 28.8 39.2 39.0 40.6
16x16 53.6 43.2 472 46.4 52.0 49.6 40.8 424 528 504 47.8
Architecture: Outputs/2
64x64 14.4 304 24.0 39.2 40.0 424 272 224 36.0 244 30.0
32x32 48.8 376 31.2 448 39.2 440 352 29.6 424 43.1 39.6
16x16 25.2 408 44.0 44.0 51.2 432 424 424 488 46.3 45.8
Architecture: (Inputs+Outputs)/2
64x64 20.8 25.6 17.6 40.8 40.0 44.8 232 128 376 23.6 28.7
32x32 472 36.0 32.0 39.2 40.0 464 36.8 144 39.2 431 374
16x16 55.2 41.6 456 424 488 48.8 456 46.4 504 51.2 47.6
Coefficients = 30
Architecture: Inputs
64x64 20.8 36.0 20.8 44.0 44.8 40.8 344 28.0 384 285 33.6
32x32 48.8 32.0 41.6 384 39.2 480 37.6 152 41.6 415 384
16x16 5.2 440 416 464 48.0 488 45.6 472 456 480 47.0
Architecture: Inputs/2
64x64 20.8 25.6 25.6 40.0 36.8 352 24.0 248 320 276 29.2
32x32 51.2 376 36.8 36.0 43.2 472 352 224 432 374 39.0
16x16 56.0 384 448 44.0 53.6 48.0 464 448 49.6 49.6 47.5
Architecture: Outputs
64x64 16.8 26.4 16.8 40.0 424 424 31.2 240 304 244 295
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32x32 496 352 416 376 41.6 464 344 248 44.0 41.5 39.7
16x16 55.2 44.0 43.2 456 472 48.0 464 40.8 53.6 47.2 47.1
Architecture: Outputs/2
64x64 19.2 28.0 144 432 440 424 232 312 384 21.1 305
32x32 496 352 36.0 376 41.6 47.2 39.2 248 424 39.8 39.3
16x16 56.8 40.8 44.8 43.2 48.0 46.4 424 440 464 44.7 458
Architecture: (Inputs+Outputs)/2
64x64 184 31.2 20.0 416 39.2 464 31.2 224 384 252 314
32x32 3.6 328 352 40.8 384 472 344 152 432 374 378
16x16 53.6 40.0 40.0 44.8 50.4 50.4 43.2 40.0 48.0 51.2 46.2
Coefficients = 40
Architecture: Inputs
64x64 248 29.6 28.0 464 41.6 41.6 32.0 272 440 31.7 34.7
32x32 50.4 31.2 352 352 39.2 45.6 32.0 25.6 424 382 37.5
16x16 53.6 39.2 41.6 424 504 48.8 44.8 440 496 496 46.4
Architecture: Inputs/2
64x64 24.0 27.2 304 39.2 40.8 44.8 32.0 272 352 252 326
32x32 501.2 36.8 39.2 36.8 40.0 472 36.8 24.0 41.6 39.8 39.3
16x16 53.6 40.0 39.2 424 44.8 46.4 448 432 464 46.3 44.7
Architecture: Outputs
64x64 20.0 28.8 21.6 46.4 432 424 33.6 272 408 244 328
32x32 48.8 352 344 36.0 46.4 472 39.2 176 40.0 39.0 384
16x16 53.6 384 416 432 496 464 40.8 40.0 46.4 472 447
Architecture: Outputs/2
64x64 248 29.6 28.0 46.4 41.6 41.6 32.0 272 44.0 31.7 34.7
32x32 472 36.8 344 40.0 424 456 344 24.0 40.0 374 38.2
16x16 52.8 39.2 432 41.6 456 424 424 40.8 472 39.8 43.5
Architecture: (Inputs+Outputs)/2
64x64 23.2 24.0 272 41.6 44.8 424 31.2 248 36.0 29.3 324
32x32 416 344 336 39.2 424 464 33.6 184 40.0 39.0 36.9
16x16 51.2 424 384 43.2 472 51.2 432 40.8 520 455 455
Coefficients = 50
Architecture: Inputs
64x64 272 33.6 24.8 432 472 440 344 36.8 384 26.0 356
32x32 48.0 33.6 328 384 424 472 304 16.8 43.2 33.3 36.6
16x16 51.2 39.2 36.8 43.2 504 48.0 39.2 39.2 472 47.2 44.2
Architecture: Inputs/2
64x64 25.6 352 264 44.0 40.0 44.8 352 31.2 36.8 285 34.8
32x32 52.0 35.2 40.8 39.2 472 44.0 36.0 272 440 39.8 40.5
16x16 55.2 39.2 37.6 44.0 48.8 49.6 39.2 432 448 472 44.9
Architecture: Outputs
64x64 21.6 28.0 28.0 41.6 464 44.8 384 288 432 26.8 34.8
32x32 48.0 352 304 39.2 416 456 29.6 29.6 43.2 39.8 38.2
16x16 53.6 39.2 39.2 424 49.6 49.6 43.2 44.0 464 44.7 452
Architecture: Outputs/2
64x64 224 36.0 28.0 48.0 424 44.0 304 352 448 31.7 36.3
32x32 488 36.8 32.0 37.6 424 472 400 216 432 350 38.5
16x16 52.8 41.6 37.6 40.0 46.4 48.8 39.2 424 456 382 43.3
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Architecture: (Inputs+Outputs)/2

64x64 21.6 344 29.6 424 456 448 384 25.6 37.6 26.0 34.6
32x32 49.6 344 376 384 376 464 33.6 184 432 39.8 379
16x16 50.4 37.6 40.0 45.6 47.2 472 440 41.6 46.4 46.3 44.6
Features Hybrid Features
Architecture: Inputs
HoGs,DCT,UBs | 55.2 46.4 47.2 48.0 52.0 51.2 464 40.8 49.6 52.8 49.0
HoGs,DCT 56.8 47.2 456 46.4 52.0 51.2 480 424 488 49.6 488
HoGs,UBs 63.2 49.6 52.8 552 584 51.2 496 52.0 544 49.6 53.6
DCT,UBs 55.2 472 416 464 488 488 41.6 41.6 51.2 47.2 47.0
Architecture: Inputs/2
HoGs,DCT,UBs | 54.4 46.4 40.8 48.0 52.8 48.0 46.4 44.8 52.0 488 482
HoGs,DCT 57.6 50.4 424 49.6 57.6 49.6 464 448 464 46.3 49.1
HoGs,UBs 61.6 47.2 51.2 55.0 544 504 496 488 56.0 51.2 52.5
DCT,UBs 58.4 48.0 43.2 472 552 49.6 464 43.2 472 51.2 49.0
Architecture: Outputs
HoGs,DCT,UBs | 53.6 45.6 39.2 48.8 52.0 52.0 51.2 41.6 51.2 49.6 485
HoGs,DCT 56.8 46.4 44.0 472 53.6 48.8 480 41.6 52.0 47.2 48.6
HoGs,UBs 63.2 47.2 496 544 60.0 49.6 544 52.8 52.8 48.0 53.2
DCT,UBs 56.0 50.4 41.6 48.8 52.8 48.8 488 40.8 47.2 48.0 48.3
Architecture: Outputs
HoGs,DCT,UBs | 55.2 424 40.8 48.8 504 49.6 504 424 51.2 46.3 47.8
HoGs,DCT 59.2 456 41.6 46.4 53.6 46.4 448 43.2 48.0 50.4 47.9
HoGs,UBs 58.4 50.4 488 53.6 56.8 52.8 51.2 50.4 52.8 49.6 52.5
DCT,UBs 52.8 47.2 456 488 51.2 51.2 464 44.0 472 48.0 48.2
Architecture: (Inputs+Outputs)/2
HoGs,DCT,UBs | 55.2 49.6 45.6 488 51.2 48.0 49.6 44.8 49.6 47.2 49.0
HoGs,DCT 55.2 44.0 472 48.0 53.6 472 440 40.0 46.4 50.4 47.6
HoGs,UBs 61.6 48.0 52.0 528 56.8 544 528 53.6 56.0 46.3 534
DCT,UBs 55.2 47.2 448 47.2 52.8 51.2 496 44.8 488 48.8 49.0
Synthetic Data
Architecture: Inputs
66.4 56.0 52.0 57.6 64.0 56.8 52.0 59.2 56.8 55.3 5H7.6
Architecture: Inputs/2
63.2 50.4 53.6 56.8 624 51.2 54.4 552 56.8 53.7 558
Architecture: Outputs
68.0 53.6 56.8 56.8 60.0 56.0 52.8 56.0 56.0 56.1 57.2
Architecture: Outputs/2
62.4 51.2 52.0 552 592 51.2 51.2 5H1.2 56.8 5H3.7 bH44
Architecture: (Inputs+Outputs)/2
67.2 544 512 60.0 61.6 52.0 53.6 53.6 584 52.8 56.5
Samples Number of Samples
Minimum Samples
Architecture: Inputs
2 33.9 39.2 474 351 439 36.3 404 374 38.6 388 39.1
3 43.7 45.0 49.7 424 51.0 36.4 46.4 51.0 483 422 456
4 52.2 522 50.7 49.3 47.1 51.5 50.0 49.3 51.5 49.2 50.3
5 57.6 45.6 52.8 51.2 552 49.6 53.6 47.2 480 51.2 51.2
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28.0
26.6
27.8
62.1
66.3

35.1
39.7
51.5
61.6
25.95
26.6
26.9
64.1
67.3

34.5
45.7
21.5
08.4
28.0
23.1
26.0
61.2
64.3

38.0
42.4
20.7
59.2
98.0
50.4
26.0
28.3
65.3

32.2
41.7
51.5
58.4
26.3
58.4
29.6
66.0
66.3

995.5
64.6
53.2
54.4
64.3

38.0
43.0
50.7
47.2
60.5
63.7
57.8
56.3
65.3

40.4
45.0
50.0
47.2
56.3
62.8
53.2
54.4
62.2

41.5
45.0
50.0
45.6
56.3
62.8
53.2
51.5
61.2

39.8
43.7
49.3
46.4
58.0
61.9
52.3
56.3
66.3

63.9
61.9
63.3
61.2
58.2

46.8
47.0
01.5
592.8
63.0
64.6
66.1
58.3
61.2

44.4
47.0
50.7
49.6
63.0
61.1
62.4
67.0
63.3

444
45.7
20.7
01.2
64.7
29.3
61.5
67.0
61.2

60.5 53.8
51.3 61.1
62.4 61.5
59.2 64.1
65.3 60.2

Architecture:

35.1 439
43.7 51.7
47.8 45.6
51.2 544
60.5 54.6
55.8 64.6
63.3 64.2
59.2  68.0
68.4 56.1

54.6
52.2
56.0
63.1
65.3

37.4
41.1
01.5
02.8
96.3
49.6
56.0
59.2
63.3

Architecture

35.7 45.6
45.0 46.4
44.1 485
49.6 53.6
58.0 52.1
54.9 63.7
61.5 624
60.2 70.9
64.3 62.2

38.0
37.1
54.4
53.6
52.9
54.0
54.1
62.1
60.2

23.8
53.1
60.6
66.0
61.2

45.0
47.7
49.3
592.8
26.3
51.3
26.9
68.0
60.2

52.1
56.6
60.6
62.1
67.3

Inputs/2

40.4
50.3
49.3
45.6
52.9
53.1
63.3
64.1
67.3

: Outputs

45.6
45.7
52.2
52.0
o7.1
04.9
28.7
66.0
64.3

40.9
53.6
51.5
48.8
52.1
57.5
60.6
63.1
65.3

Architecture: Outputs/2

35.7 39.2
39.7 51.7
48.5 47.1
48.8 52.0
61.3 52.9
53.1 61.9
60.6 59.6
61.2 67.0
61.2 56.1

Architecture:

46.8
49.0
20.7
49.6
61.3
61.9
61.5
65.0
61.2

31.6 43.3
424 50.3
48.5 45.6
53.6 53.6
58.8 56.3
54.0 66.4
65.1 59.6
63.1 68.9
64.3 57.1

38.6
39.1
50.0
52.8
53.8
52.2
51.4
59.2
59.2

41.5
45.7
20.7
52.0
95.5
51.3
27.8
65.0
57.1

39.8
51.0
54.4
49.6
52.9
54.9
60.6
59.2
65.3

02.1
27.5
53.2
57.3
61.2

40.4
49.0
23.7
48.8
52.9
60.2
28.7
50.5
59.2

40.9
49.0
55.9
47.2
23.8
99.3
26.9
52.4
99.2

36.8
47.0
52.2
48.8
04.6
23.1
96.0
95.3
29.2

(Inputs+Outputs) /2

37.4
37.7
95.9
53.6
53.8
54.0
96.9
59.2
59.2

40.9
45.0
51.5
49.6
04.6
51.3
29.6
68.0
61.2

39.2
51.0
52.2
48.0
01.3
52.2
60.6
63.1
65.3

38.0
46.4
50.0
47.2
26.3
61.9
26.9
95.3
29.2

56.4
54.3
61.6
55.7
61.4

38.2
42.2
49.2
50.4
57.3
55.2
64.6
S7.7
58.0

39.4
40.1
50.8
50.4
53.0
04.3
66.7
59.8
60.2

41.8
43.5
49.2
47.2
53.0
52.4
62.6
50.5
59.1

38.2
40.1
A7.7
49.6
04.7
56.2
61.6
27.7
64.8

56.1
26.9
29.0
60.5
63.1

40.0
45.5
50.0
51.8
57.0
27.5
60.8
60.5
62.6

40.5
45.5
51.0
51.0
25.6
57.6
59.2
61.7
62.6

39.7
45.1
50.4
50.7
96.3
95.1
27.9
29.4
60.5

38.7
44.7
20.3
51.0
26.1
57.8
29.4
62.3
62.5

Fixed Samples

0.0

12.5

12.5

Architecture: Inputs

12,5 0.0
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16.7
25.0
30.0
37.5
42.9
53.1
47.2
47.5

12.5
16.7
37.5
25.0
33.3
42.9
46.9
592.8
50.0

12.5
16.7
37.5
35.0
29.2
42.9
40.6
20.0
47.5

12.5
16.7
31.3
40.0
29.2
46.4
40.6
592.8
47.5

12.5
16.7
31.3
25.0
37.5
35.7
37.5
47.2
52.5

41.7
18.8
20.0
50.0
60.7
37.5
38.9
30.0

0.0
33.3
18.8
25.0
54.2
50.0
31.3
41.7
40.0

25.0
33.3
31.3
30.0
45.8
46.4
53.1
36.1
35.0

12.5
33.3
25.0
25.0
45.8
60.7
31.3
33.3
37.5

12.5
41.7
18.8
20.0
54.2
42.9
40.6
444
42.5

33.3 417 250 16.7 83 83 25.0
6.3 375 438 188 37.5 25.0 43.8
40.0 35.0 30.0 20.0 20.0 30.0 20.0
25.0 41.7 50.0 41.7 375 458 37.5
28.6 46.4 357 464 393 464 464
46.9 40.6 594 56.3 28.1 5H3.1 46.9
63.9 36.1 36.1 50.0 38.9 583 55.6
40.0 55.0 45.0 30.0 62.5 45.0 52.5
Architecture: Inputs/2
12.5 125 125 25.0 125 0.0 12.5
33.3 417 83 167 83 83 25.0
12.5 25.0 43.8 25.0 25.0 31.3 37.5
30.0 45.0 30.0 20.0 25.0 40.0 30.0
33.3 375 41.7 333 33.3 41.7 375
39.3 393 53.6 429 393 357 53.6
40.6 46.9 594 56.3 25.0 43.8 438
58.3 30.6 36.1 50.0 41.7 66.7 47.2
475 475 50.0 35.0 62.5 45.0 5H7.5
Architecture: Outputs
12,5 12,5 0.0 250 375 0.0 25.0
50.0 50.0 16.7 33.3 83 333 50.0
125 43.8 31.3 25.0 25.0 25.0 37.5
30.0 40.0 40.0 15.0 30.0 35.0 15.0
417 375 458 458 41.7 458 33.3
39.3 393 393 53.6 393 393 429
53.1 469 594 53.1 31.3 5H3.1 5H3.1
61.1 30.6 38.9 472 444 583 444
425 50.0 35.0 30.0 62.5 47.5 57.5
Architecture: Outputs/2
0.0 125 12,5 125 125 0.0 125
417 41.7 25.0 16.7 &3 16.7 33.3
125 375 375 6.3 43.8 125 375
35.0 35.0 20.0 15.0 30.0 30.0 25.0
29.2 29.2 41.7 33.3 41.7 33.3 33.3
39.3 321 357 39.3 46.4 35.7 39.3
40.6 43.8 65.6 50.0 31.3 56.3 50.0
05.6 389 333 52.8 444 528 50.0
45.0 525 45.0 32,5 60.0 55.0 55.0
Architecture: (Inputs+Outputs)/2
125 12,5 125 250 125 0.0 125
25.0 25.0 25.0 16.7 0.0 &3 41.7
18.8 375 37.5 18.8 18.8 188 438
35.0 45.0 45.0 35.0 25.0 45.0 30.0
33.3 333 458 29.2 50.0 458 33.3
39.3 35.7 50.0 429 39.3 35.7 57.1
43.8 43.8 56.3 469 219 53.1 438
08.3 30.6 33.3 50.0 41.7 52.8 47.2
42,5 55.0 42,5 425 60.0 47.5 50.0

22.2
41.7
40.0
50.0
47.6
50.0
40.7
43.3

16.7
44.4
41.7
46.7
38.9
52.4
45.8
44.4
23.3

16.7
22.2
50.0
33.3
50.0
57.1
45.8
40.7
50.0

16.7
33.3
25.0
26.7
44.4
o7.1
33.3
37.0
46.7

16.7
33.3
41.7
33.3
38.9
52.4
58.3
48.1
40.0

23.9
29.8
28.5
41.7
44.0
47.2
46.6
45.1

11.7
23.6
29.8
31.7
38.5
44.9
44.0
46.9
48.8

16.7
31.4
31.9
30.3
41.7
43.9
49.0
45.2
45.8

10.4
26.7
26.9
28.2
36.1
43.2
44.3
45.1
47.7

12.9
23.3
28.5
33.8
40.1
43.1
44.6
45.4
47.5
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Multiple Authors

48.4

49.1

47.2

20.9

46.6

59.0

57.8

59.6

59.0

60.9

Architecture: Inputs

51.6 51.6 49.7 559 52.8 50.9 51.6
Architecture: Inputs/2

20.9 522 54.0 57.1 528 49.1 50.3
Architecture: Outputs

51.6 51.6 522 56.5 50.3 49.7 52.2
Architecture: Outputs/2

49.7 49.1 52.8 54.0 54.7 49.1 50.3

Architecture: (Inputs+Outputs)/2

49.7 522 559 54.0 54.0 51.6 54.0

51.6

51.6

49.7

49.7

51.0

52.3

52.5

52.0

51.9

23.0
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Appendix E

Results of Experiments Using
Hidden Markov Models for Word

Recognition
Fold
1 2 3 4 ) 6 7 8 9 10  Avg.
Cell Size Undersampled Bitmaps (UBs)
32x1 43.2 272 240 36.0 28.0 304 288 240 33.6 285 304
16x16 40.0 272 304 344 36.0 352 28.0 320 28.8 29.3 32.1
8x1 44.8 296 264 376 320 37.6 304 39.2 36.0 36.6 35.0
4x1 44.0 272 29.6 384 328 33.6 272 336 344 293 33.0
Marti & Bunke (M&B) Features
60.0 39.2 33.6 488 456 45.6 40.0 40.8 48.8 42.3 445
Cell Size Geometric Moments (GMs)
Moments = M1
64x1 00 00 00 00 00 00 00 00 00 0.0 0.0
32x1 31.2 176 20.8 264 28.0 224 208 248 232 228 238
16x16 33.6 200 20.8 33.6 232 28.0 27.2 19.2 264 285 26.0
8x1 36.0 184 184 33.6 256 33.6 224 256 304 276 27.2
Moments = M1,M2
64x1 3.2 48 48 64 48 48 56 40 56 24 46
32x1 27.2 208 232 20.0 232 208 20.0 21.6 240 23.6 224
16x16 272 232 20.8 28.8 25.6 28.0 232 200 240 268 24.8
8x1 28.0 20.0 19.2 31.2 248 248 21.6 24.0 28.0 26.0 24.8
Moments = M1,M2,M3
64x1 24 40 40 48 56 H6 48 24 16 24 38
32x1 24.0 224 232 20.8 264 216 19.2 16.8 248 23.6 223
16x16 272 224 208 24.0 208 272 232 200 184 21.1 225
8x1 272 19.2 192 28.0 24.0 28.0 232 208 29.6 21.1 24.0
Moments = M1,M2,M3,M4
64x1 40 40 32 56 64 56 16 24 40 24 39
32x1 224 208 224 224 232 224 19.2 184 20.8 19.5 21.2
16x16 21.6 20.0 20.8 28.0 216 224 21.6 184 216 26.0 222
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8x1 25.6 19.2 19.2 256 19.2 288 23.2 20.0 28.0 23.6 232

Cell Size Gabor Filter (GF)-based Features

64x4 44.8 30.4 432 36.8 384 41.6 29.6 31.2 40.0 36.6 37.3

32x4 40.0 32.0 344 40.8 37.6 40.0 31.2 33.6 36.8 40.7 36.7

16x4 472 304 304 39.2 40.8 37.6 344 36.0 36.8 35.0 36.8

8x4 45.6 29.6 304 36.8 37.6 344 32.0 31.2 352 39.0 352

Cell Size Discrete Cosine Transform (DCT) Coefficients
Coefficients = 1

64x1 16 08 32 16 16 16 32 16 24 4.1 2.2

32x1 53.6 34.4 456 44.8 504 39.2 424 39.2 40.8 43.1 433

16x16 44.8 31.2 400 40.8 45.6 36.8 40.8 39.2 36.0 39.8 39.5

8x1 45.6 344 36.8 384 40.0 41.6 352 408 376 382 389
Coefficients = 10

64x1 48.8 33.6 296 456 41.6 37.6 304 39.2 352 43.1 385

32x1 47.2 280 288 384 352 36.0 27.2 39.2 344 31.7 34.6

16x16 40.8 28.8 264 36.8 33.6 32.8 256 296 304 29.3 314
Coeflicients = 20

64x1 44.0 272 288 39.2 296 40.0 28.0 344 33.6 32.5 33.7

32x1 41.6 232 264 344 28.0 36.0 256 33.6 33.6 252 308
Coefficients = 30

64x1 376 25.6 248 384 288 344 256 288 320 333 309

32x1 376 232 248 328 28.0 328 24.0 33.6 32.0 26.8 29.6
Coefficients = 40

64x1 344 248 224 320 29.6 33.6 232 280 32.0 26.8 28.7
Coefficients = 50

64x1 32.8 20.8 232 328 232 272 232 288 28.8 228 264

Features Hybrid Features

M&B,GE,DCT | 47.2 336 36.0 44.8 46.4 41.6 36.0 384 40.0 38.2 40.2

M&B,GF 45.6 33.6 33.6 43.2 41.6 39.2 384 432 424 423 40.3

M&B,DCT 584 37.6 344 48.8 480 48.0 43.2 44.8 43.2 41.5 448

GF,DCT 45.6 344 33.6 344 40.0 39.2 36.0 40.0 36.8 43.9 384
Synthetic Data

584 48.8 44.0 46.4 584 52.8 53.6 504 472 56.1 51.6

Samples Number of Samples
Minimum Samples

2 28.7 333 339 29.8 31.6 339 36.8 339 322 32.1 326

3 37.1 351 364 371 325 30.5 39.7 39.1 43.1 34.7 36.5

4 39.0 41.2 419 404 375 449 419 493 39.0 424 41.7

5 584 376 344 488 48.0 48.0 43.2 448 432 41.5 448

6 48.7 47.1 454 4377 51.3 4877 41.2 454 49.6 47.0 46.8

7 49.6 53.1 52.2 451 584 504 51.3 53.1 47.8 38.1 49.9

8 45.9 56.9 56.0 48.6 57.8 43.1 53.2 495 551 55.6 52.2

9 58.3 50.5 53.4 59.2 64.1 49.5 61.2 524 456 48.5 54.3

10 56.1 59.2 57.1 57.1 55.1 57.1 56.1 60.2 54.1 54.6 56.7

Fixed Samples
2 00 00 00 125 00 00 00 125 0.0 00 25
3 83 83 83 83 83 83 83 83 83 11.1 86

E24




= © 00 ~J O O =~

18.8
35.0
29.2
46.4
21.9
61.1
37.5

12.5
5.0
20.8
35.7
40.6
22.2
37.5

18.8
15.0
16.7
14.3
40.6
47.2
37.5

25.0
10.0
20.8
28.6
25.0
38.9
37.5

12.5
15.0
20.8
28.6
43.8
36.1
40.0

12.5
5.0
37.5
25.0
40.6
27.8
37.5

18.8
20.0
29.2
25.0
18.8
25.0
592.5

12.5
25.0
25.0
32.1
34.4
444
30.0

12.5
35.0
29.2
39.3
43.8
44.4
47.5

25.0
20.0
27.8
28.6
33.3
22.2
46.7

16.9
18.5
25.7
30.4
34.3
36.9
40.4

Multiple Authors

46.6

44.7

37.9

46.6 46.6 45.3 43.5 41.0

48.5

40.7

44.1
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Appendix F

Results of Experiments Using
Hidden Markov Models for Text
Line Recognition

Fold
1 2 3 4 5 6 7 8 9 10 Avg.
Cell Size Undersampled Bitmaps (UBs)
32x1 3.6 -53 22 1.8 -41 -30 -52 39 2.6 -49 -0.5
16x16 20.1 187 186 183 214 195 212 197 204 206 199
8x1 21.8 19.8 240 221 234 223 232 212 232 216 222
4x1 217 228 229 211 238 20.7 234 222 234 219 224
Marti & Bunke (M&B) Features
35.7 341 359 356 358 366 364 358 358 354 357
Cell Size Geometric Moments (GMs)
Moments = M1
64x1 0o 00 00 00 00 00 00 00 00 00 0.0
32x1 -25.0 -27.2 -21.1 -26.8 -23.5 -264 -214 -21.8 -24.0 -294 -24.7
16x16 105 90 134 89 158 99 118 11.2 109 10.5 11.2
8x1 203 172 200 179 193 186 19.0 175 19.0 19.3 188
Moments = M1,M2
32x1 -185 -23.9 -15.5 -254 -184 -23.1 -17.5 -19.3 -18.6 -26.9 -20.7
16x16 1.1 99 114 99 131 103 102 11.3 103 9.5 10.7
8x1 172 152 179 157 19.7 175 173 182 181 170 174
Moments = M1,M2,M3
64x1 -54.6 -55.8 -49.2 -56.0 -48.2 -52.0 -52.5 -52.2 -50.8 -53.4 -52.5
32x1 -159 -21.2 -17.2 -243 -187 -181 -16.6 -17.6 -19.5 -19.9 -18.9
16x16 106 100 135 89 139 75 114 125 116 103 11.0
8x1 181 156 185 159 188 164 18.0 175 180 17.1 174
Moments = M1,M2,M3,M4
64x1 -53.0 -524 -49.2 -55.0 -46.5 -51.5 -52.1 -534 -489 -53.2 -51.5
32x1 -15.5 -229 -175 -22.0 -189 -22.3 -16.6 -229 -21.0 -242 -204
16x16 9.1 70 113 82 135 88 108 11.2 122 9.6 102
8x1 180 150 169 183 184 166 176 16.5 174 157 17.0
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Cell Size Gabor Filter (GF)-based Features

32x4 11.7 124 122 11.1 141 124 131 122 152 15.0 129

16x4 22.0 21.3 234 23.0 238 226 236 224 230 228 228

Cell Size Discrete Cosine Transform (DCT) Coefficients
Coefficients = 1

32x1 11.7 9.1 11.0 7.9 11.0 106 12.1 9.5 10.1 119 10.5

16x16 21.3 194 218 194 234 204 21.1 21.0 203 203 20.8

8x1 27.0 249 264 235 272 248 278 249 244 265 257
Coefficients = 10

64x1 28.1 25,6 28,6 262 295 294 28.0 265 282 26.7 27.7

32x1 24.6 258 281 249 272 26.0 251 252 263 253 258
Coefficients = 20

64x1 253 238 271 226 26.0 27.0 257 220 253 234 2438
Coefficients = 30

64x1 22.6 198 248 247 26.1 248 227 219 234 219 233
Coefficients = 40

64x1 189 222 204 228 226 267 23.6 23.6 227 226

Features Hybrid Features

M&B,DCT, | 31.7 29.2 324 30.6 336 328 321 31.7 307 296 314

UBs

M&B,DCT | 35.2 333 342 329 357 359 343 346 340 335 344

M&B,UBs | 335 31.3 349 333 352 343 336 324 319 315 332

DCT,UBs 30.1 282 308 30.2 312 313 30.8 29.1 303 294 30.1
Synthetic Data

33.4 320 330 31.3 356 348 357 334 352 324 337
Number of Samples

Samples Minimum Samples

2 384 369 353 386 389 351 359 367 364 383 37.1

3 38.4 36.8 369 369 392 353 362 355 367 363 368

4 39.9 371 381 38.0 393 375 357 36.7 369 359 375

5 38.6 399 388 357 389 350 374 341 376 347 37.1

6 39.1 383 359 36.0 395 359 355 350 358 36.2 36.7

7 374 385 360 36.6 384 364 368 353 342 359 36.6

8 422 383 357 36.8 405 336 36.6 36.0 312 37.7 36.9

9 39.8 394 36.1 36.3 412 362 37.0 375 342 36.0 374

10 36.8 40.0 372 355 416 339 356 356 365 364 369

Size Size of Sub-Corpus

10% 34.3 288 283 29.7 309 293 331 249 351 279 30.2

20% 31.5 297 330 31.0 369 321 304 314 328 294 318

30% 35.2 272 328 346 324 333 337 31.1 340 326 32.7

40% 33.6 343 335 330 306 353 313 284 362 349 33.1

50% 33.6 329 353 355 36.1 340 346 31.3 349 328 34.1

60% 34.3 344 353 331 384 366 365 344 340 345 35.1

70% 34.8 342 354 349 373 329 338 344 367 341 348

80% 34.3 353 364 328 364 348 363 354 370 353 354

90% 35.6 35.0 372 346 359 362 356 349 358 359 357

100% 35.7 341 359 356 358 366 364 358 358 354 357
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Multiple Authors

24.8

29.9

23.3

27.8

29.9 340 318

35.1

324

31.3

30.0
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