Using TDB in Greenstone to Support
Scalable Digital Libraries

John Thompson', David Bainbridge®, and Hussein Suleman?

fDepartment of Computer Science,
University of Waikato,
Hamilton, New Zealand
jmtl12@students.waikato.ac.nz, davidb@cs.waikato.ac.nz

fDepartment of Computer Science,
University of Cape Town,
Cape Town, South Africa
davidb@cs.waikato.ac.nz

Abstract. This paper reports on performance improvements in the open
source Greenstone digital library software that resulted from a more de-
tailed understanding of the demands made of its database component,
when building large collections. The work was undertaken as part of
a larger drive to support parallel processing during the ingest of Very
Large Digital Library (VLDL) collections using this software. In terms
of a database requirement, Greenstone is set apart from many other digi-
tal library solutions, by default using only a flat-file database component
to operate, as opposed to a full-blown relational database. However, de-
spite the simplicity of this type of database, our review of the literature
revealed that little is known about how this type of database performs
in a digital library context when a high volume of data is processed.
Through the work presented here we make some inroads that address
this imbalance; we also show how utilizing a transaction-based flat-file
database (that supports parallel reader/writer access) dramatically im-
proves performance not only in parallel processing, but in the current
non-parallel process as well.

Keywords: Greenstone, Trivial/Transaction Database (TDB), Parallel
Processing, VLDLs

1 Introduction

The creation and practical use of Very Large Digital Libraries (VLDLs) has
raised many new issues, particularly related to size—aspects such as disk space,
number of documents, and number of unique terms—sustainability, and inter-
operability (e.g., Mangi et al.[4]). But technology has also advanced and, with
multi-processor /hyper-threading now the norm in consumer computers, explic-
itly developing techniques for digital library software that exploits parallel pro-
cessing capabilities looks promising as a solution to some of these scale concerns.



For example, Stanfill [5] has proposed a number of ways to leverage the power
of parallel processing that is applicable to the information retrieval component
of a digital library system, and that can be applied to indices in the order of
terabytes.

It is perhaps unsurprising then that the initial ingest of collections of this size
is also time-consuming. In our experience real-world VLDLs may take in excess of
several days of processing to create. The HathiTrust Digital Library, for example,
found that a carefully optimized import of their seven million documents took
ten days.! In previous published test results [1], we showed that importing time
in the Greenstone Digital Library software is roughly linear with the number of
documents.

This paper looks at the efforts of refactoring Greenstone’s ingest process to
utilize parallel processing as a solution to the issue of growing processing times
and, as part of this work, the replacement of Greenstone’s default database
(GDBM?) with one that supports parallel access (TDB?). The structure of the
paper is as follows. We start by detailing the initial work on parallel processing in
Greenstone and explain how this led to utilizing TDB as a replacement database.
We then present testing results that show the advantages of using TDB for large
scale collection building, not only when applied to parallel processing, but in
serial ingests too. We conclude with a discussion of the implications of these
findings and future work.

2 Method

As mentioned above, exploration in the underlying database utilized in Green-
stone was initiated as part of a larger theme of work to augment the software
with parallel processing capability. While Greenstone already had several fea-
tures that could be quickly leveraged to segment the import process into batches
(each of which could be processed independently), it needed some refactoring and
additional support to create and manage multiple processes. This support was
provided by the Open MPI library [2], a mature open-source Message Passing
Interface (MPI) project built with a focus on high performance and supporting
a wide variety of operating systems and hardware configurations (for instance
multi-core and clustered).

While the majority of the Greenstone importing process was found to work
well when applied to multiple processes, the interaction between Greenstone and
the default database backend (GDBM) it uses to store processing information
did not, as the database system only allows a single process to write to it.
This limitation had not seemed an issue with normal serial processing, but now
required the addition of locking around database writes in order to prevent

! http://www.hathitrust.org/blogs/large-scale-search/forty-days—-and-forty
-nights-re-indexing-7-million-books-part-1

2 http://www.gnu.org/software/gdbm/

3 Short for Trivial Database, developed by the Samba project. For more details see
http://tdb.samba.org/



errors in the database and abnormal program terminations. This locking was
implemented by way of calls to flock()—which in early tests did not seem to
add much overhead to the interactions with GDBM.

Initial test results, however, did not exhibit the performance gains expected,
with parallel processing on eight CPUs barely halving the ingest time. We pro-
filed* the importing code and tracked the issue down to output IO and in par-
ticular the opening and closing of connections to the GDBM database (often
occuring several times per document). In order to minimize the amount of time
any particular writer has an exclusive lock over the database, the connection to
the GDBM was only opened momentarily for each write and then immediately
closed. Structuring the GDBM connections this way was also necessary as, even
in serial Greenstone, there may be several different, independent, parts of the
import process that read and/or write to the database during ingest. This finding
also highlights the impact that delineated critical sections® of code (effectively
requiring serial execution) can have on a parallel process.

After reviewing other database alternatives, the decision was made to replace
the GDBM database with one that better supported parallel processes. Trivial
Database (TDB) was developed for use in the Samba project® as a means to
share data between multiple processes. TDB was specifically designed to allow
multiple writers at once. It does so by dividing the content of the database
into a number of ‘buckets’ and then performing two different flavors of locking
(readonly and write locks) as well as deferred updates to ensure consistency
within a transaction.” Crucially, as TDB supports multiple writers across one
or more threads, we were able to open a single connection (per thread) to the
database right at the start of collection ingest and then have it persist through
to ingest completion.

At this stage we were able to rerun our parallel tests with TDB as the
database, and we were pleased to see a significant increase in performance (See
Figure 1 for an overview). The parallel tests also showed an even more signifi-
cant increase in the performance of the serial Greenstone ingest (denoted on the
figure as having zero threads). Following up on this unexpected result we ran
another series of tests to measure the performance of TDB compared with all of
the other database types currently supported by Greenstone—namely: GDBM,
SQLite and the new GDBM with locking. We analyse these results, and the
original parallel tests in more detail in the next section.

Most of the tests presented here were carried out on an Intel Core i7 with
eight cores (hyper-threaded from four physical cores), 4GB of RAM and a single
2TB harddrive (7200RPM, 138Mb/s transfer rate). When testing parallel pro-
cessing performance we used a collection of 10,000 documents ingested over a
variety of Greenstone configurations, number of worker threads and batch sizes,
while the later serial tests instead used a number of collections ranging from

4 http://code.google.com/p/perl-devel-nytprof/

® http://en.wikipedia.org/wiki/Critical_section

S http://www.samba.org/

" http://en.wikipedia.org/wiki/Database_transaction



8
0 —=— GDBM
-+- TDB
o
S |
S
a o
°
c
I}
o
@
)
©
£
= o
8
sl
)K\
* T T T
o -
T T T T T T T
0 2 4 6 8 10 12

threads

Fig. 1. Comparison of import times between GDBM with TDB over varying numbers
of process threads.

100 to 50,000 documents in size. In all cases the plain text documents contained
computer generated lorem ipsum text.® The results for each test captured the
real, user and system time of importing, averaged over multiple executions. The
output materials from the tests were compared where possible and, aside from
acceptable differences in timestamps, they were consistent.

3 Results

We start by showing an example result from the testing carried out to determine
the potential benefits of parallel processing in Greenstone. Figure 1 illustrates the
importing time (real time in seconds) of 10,000 documents, comparing GDBM
with simple file locking versus TDB and while increasing the number of process-
ing threads. When the number of threads is zero then ingest was undertaken
in a serial manner. The graph shows that the GDBM process benefits from in-
creasing the number of threads until around 8-9 threads. On the surface this
agrees with current literature suggesting the optimal thread count for compute-
bound load occurs at P or P 4+ 1, where P is the number of processors on the
computer [3]. But parallel processing had, at best, only halved processing time,
where the predicted speed increases on compute-bound loads should be closer to
linear (accepting some cost of parallel processing overhead) with the number of

8 http://www.lipsum.com/



]
8 |~ TDB R
-A- GDBM a
+ SQLite
8 |- cbBML
o -
Nl -
@
2
\(,-,, o™
Q /.’
£ s
E o
£ 8
o N
Q.
E
]
S| //%
/’K/
-
o - m—__e___e/o

0 10000 20000 30000 40000 50000

No. of Documents

Fig. 2. Ingest times (real time) of various databases as number of documents increase.

threads (up to the optimal thread count). This implied that the ingest process
was not compute-bound, and subsequent profiling proved this, showing IO was
the limiting factor.

In exploring ways to minimize the bottleneck occurring around 10, TDB
was tested as an alternative database back-end. As can be seen from the graph
the improvement was immediate. The worst performance of TDB where threads
equals one—which means you get all the overhead of parallel processing but
none of the benefits—was still twice as fast as the best performance of GDBM
with locking. However, what surprised us was the gain in performance in the
serial case, where TDB performance was almost x10 better than the standard
Greenstone import process. The graph shows that little benefit was actually
gained by applying more threads to a TDB import, with parallel processing only
shaving a few percent off the processing time. This warranted further study.

Figure 2 shows a comparison of serial ingest times (real time in seconds)
of several of the back-end databases available to Greenstone against the new
TDB database. GDBM and SQLite are standard in Greenstone, while GDBML
represents the version of GDBM with simple file locking, developed for parallel
processing. All three show similar performance and exhibit linear growth. While
TDB also shows linear growth, its performance as the number of documents
increases is a magnitude better than the alternatives (approaching 1/30th of the
processing time of plain GDBM).

Typically the times for multiple runs of any particular test using GDBM,
SQLite and GDBML databases were all within a few seconds of each other.



400 500 600
1 1 1

300
1

Import Time (seconds)

200
|

-8
— =
T T T T T I
100 500 1000 5000 10000 50000

100
|

No. of Documents

Fig. 3. Detail of the Ingest times (real time) of TDB as number of documents increase.

TDB, however, exhibited a highly varying range of process times—with some
runs taking 5—6 times longer than others. This detail was smoothed away in
Figure 2 but Figure 3 shows a more detailed breakdown of the TDB runs. The
magnitude and frequency of these abnormally long test runs appear proportional
to the number of documents processed, as shown by the escalating outliers in
the box and whisker chart.

To shed further light on the greater variation in TDB processing time we
compared the real vs. system times of fifteen of the test runs for each number
of documents. These results are shown in Figure 4, with the total height of
each stacked bar representing real time and the lighter shaded component at the
bottom representing system time. The majority of abnormal runs showed the
extra time occurring in system time—indicative of blocking on locks or other
system level factors. When the ingest process was broken down, step-by-step,
and tested it was found that certain IO intensive operating commands, such as
rm (used to remove a previously imported collection), were just as likely to have
abnormal running times.

Subsequent testing on several computer exhibiting a range of operating sys-
tems and file systems (shown in Table 1), seems to point to an intermittent
system level disk journaling/caching activity that is exacerbated by use of the
EXTS3 file system, rather than being caused by Greenstone, TDB or the combi-
nation thereof.



B other time B other time
O real time O real time
o
S
™
© o
3 4
—~ o~ ~N
[%2) n
° =
< <
3 8 o
8 & &1
[} i
E T E
= E 2
£ © 7
S s -
Q Q.
E E
o
S
o _|
wn
o - o -
500 documents 50,000 documents

Fig. 4. Breakdown of real time vs system time for two TDB test collections.

Table 1. Real time (in seconds) statistics of 100 test runs ingesting then deleting 5,000
documents using TDB and comparing several operating and file systems

(ON) FS GS Ingest rm command

min max avg| min max avg
CentOS EXT3| 9.050 15.140 9.447| 0.200 25.840 3.789
Ubuntu EXT3| 8.170 11.440 8.717| 0.140 18.860 2.622
CentOS EXT4| 9.070 9.790 9.305| 0.200 0.730 0.226
Ubuntu EXT4| 8540 9.190 8.701| 0.160 0.610 0.213

4 Conclusions and Future Work

The results clearly show significant benefits in using TDB versus GDBM when
ingesting, with import times being an order of magnitude faster than traditional
importing. That is not to say that GDBM, in itself, offers lower performance—
indeed we are currently investigating how to restructure the Greenstone/ GDBM
connection to ensure that database connections need not be short-lived (and thus
could persist for the import process) to see if we might reach similar performance
with GDBM. It simply highlights that using a database that allows multiple
readers/writers better suits the current architecture and algorithms employed
by Greenstone. TDB also provides a strong platform for continuing development
of parallel processing; an evolution that has as a requirement the ability to access
the database used by Greenstone from multiple, parallel, processes.



The results also demonstrate that there is still some benefit in parallelis-
ing the import process in Greenstone and that the development of parallelisa-
tion support leads to optimizations that benefit the general architecture as well.
Given the increasing proliferation of high-core CPUs (with 12-cores available at
the time of writing), multi-processor-capable systems and commodity publicly-
available high performance computing in the form of pay-per-use virtual utility
computing, it is essential that software like Greenstone and its peer systems plan
for parallelisation as their architectures evolve.

While attempting to address an issue identified during parallel processing de-
velopment on the import phase of Greenstone, we have serendipitously discovered
that changing to a database that supports multiple readers and writers can also
provide significant benefits for non-parallel Greenstone ingests. By utilizing one
such database, TDB, we were able to record processing times a magnitude times
faster than traditional Greenstone imports. TDB also offers the opportunity for
parallel processing during the import process. Improvements such as these are
needed to mitigate the problem of import times linear to numbers of documents,
and ensure that the Greenstone Digital Library software is capable of creating
very large scale digital libraries in reasonable time.

References

1. Bainbridge, D., Witten, I.LH., Boddie, S., Thompson, J.: Stress-testing general
purpose digital library software. In: Proceedings of the 13th European confer-
ence on Research and advanced technology for digital libraries. pp. 203-214.
ECDL’09, Springer-Verlag, Berlin, Heidelberg (2009), http://portal.acm.org/
citation.cfm?id=1812799.1812828

2. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting. pp. 97-104. Budapest, Hungary (September 2004)

3. Goetz, B.: Java theory and practice: Thread pools and work queues. Tech.
Rep. j-jtp0730, IBM, New York, United States (2002), http://www.ibm.com/
developerworks/library/j-jtp0730/index.html

4. Manghi, P., Pagano, P., loannidis, Y.: Second Workshop on Very Large Digital Li-
braries: in conjunction with the European Conference on Digital Libraries. SIGMOD
Rec. 38, 46-48 (June 2010), http://doi.acm.org/10.1145/1815948.1815959

5. Stanfill, C.: Partitioned posting files: a parallel inverted file structure for information
retrieval. In: Proceedings of the 13th annual international ACM SIGIR conference on
Research and development in information retrieval. pp. 413-428. SIGIR ’90, ACM,
New York, NY, USA (1990), http://doi.acm.org/10.1145/96749.98247



