
Technical report CS11-04-00 Department of Computer Science, University of Cape Town

MLS reconstruction from noisy point sets

Bruce Merry∗ Christoph Held†

November 2011

Abstract

For digital preservation of cultural heritage sites in Africa, laser range scanning has been used to produce point clouds.
The literature contains extensive work on reconstructing surface models from such point clouds, but often this prior
work does not account for artefacts in the data such as vegetation. We have assessed several variations on a specific
moving-least-squares (MLS) technique to determine the impact on the quality of the reconstructed surfaces. We found
that correct feature size detection and explicit detection of boundaries is important, while a single iteration of almost
orthogonal projection is sufficient to give good results.

1 Introduction

The physical process of scanning an object is only the
first step in producing a model. The data must be
cleaned of artifacts, the individual scans must then be
aligned to a common coordinate system, and a surface
model must be defined in terms of the point samples
[Alexa et al., 2003].

Scanning of architecture and of cultural heritage sites
creates a number of challenges that are not a concern
when doing scanning under more controlled conditions:

• The sites are often fragile, and so markers cannot
be attached to walls.

• There are often unwanted objects on site, such as
trees, grass, cars, people, etc. Vegetation is partic-
ularly problematic since it has detail that is below
the resolution of the scanner, leading to aliasing.

• It is not possible to obtain a completely closed recon-
struction, as would be possible with a movable ob-
ject. Even with complete freedom to place the scan-
ner, the undersides of buildings cannot be scanned,
and flat roofs are also challenging to scan.

• It is not practical to obtain uniform sampling den-
sity across all surfaces, as today’s laser scanning in-
struments perform a 360◦ scan with a uniform angu-
lar density regardless of the distance to the surface
[Rüther et al., 2011].

There are also a few advantages. Unlike machined parts,
there are few sharp edges, which can cause difficulties for
surface reconstruction algorithms. There are also fewer

∗bmerry@cs.uct.ac.za
†christoph.held@uct.ac.za

reflective surfaces, which can lead to artefacts in laser
range scans when the laser beam is reflected.

We have developed a system for reconstructing a sur-
face mesh from a set of registered scans, with features
designed to address these challenges. Section 2 summa-
rizes previous work in the relevant areas. Section 3 de-
scribes our implementation in detail, which is evaluated
in Section 4. Section 5 lists our conclusions and makes
suggestions for future work.

2 Background

2.1 Definitions

We use the term surfel to mean a point together with an
oriented normal. A splat is an extension of a surfel to
include a radius of influence. We use the term sample to
refer to a sample point retrieved from a physical scanning
process, such as laser range scanning. A sample may be
augmented by additional information, either physically
acquired or computed, to make it a surfel or splat.

We distinguish several sources of error in acquired
samples. Sensor noise is error caused by limited pre-
cision in the scanning technology. Environmental noise
consists of physically present but unwanted objects, such
as people or vegetation. Registration error occurs when
overlapping scans are not properly aligned, leading to
separate sheets of samples.

2.2 Surfaces from point clouds

Curless and Levoy [1996] introduced one of the early vol-
umetric methods, which takes advantage of knowledge
of the scanning process to produce more robust results.
The samples in one scan are triangulated, and this tri-
angulation is used to estimate a signed distance function

1

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

to the surface along the line-of-sight of the scanner. This
distance function is discretised to a voxel grid. The dis-
tance functions for each scan are merged with a weighted
averaging scheme, and finally an isosurface is extracted.

An alternative to defining an implicit surface is to de-
termine explicit triangulations for each scan (guided by
the regular sampling grid) and then merge these trian-
gulations together. Turk and Levoy [1994] introduce a
zippering method that first erodes redundant triangles
from the boundaries of overlapping scans, clips bound-
aries against each other, and then fine-tunes the geome-
try in the overlapping region using the original distances.

More recently, there have been a number of approaches
that generalize beyond range scans, requiring only a
collection of points, possibly with oriented normals.
Amenta et al. [2001] describe an algorithm based on an
approximation to the medial axis. Kazhdan et al. [2006]
define an implicit surface function based on the Poisson
equation; this algorithm has been extended to support
parallel execution [Bolitho et al., 2009] and GPU-based
acceleration [Zhou et al., 2011]. A feature of the Pois-
son methods is that they produce water-tight manifolds.
This can be an advantage since it automatically fills in
small gaps without the need for a separate hole-filling
pass, but it is also a limitation as large gaps in scanning
coverage are filled with inaccurate, extrapolated data.

A large class of algorithms are based on moving least-
squares (MLS) methods. As these are the basis for our
own work, they will be covered in more detail in the
following sections.

2.3 Moving least squares surfaces

Levin [2003] and Alexa et al. [2001] defined an implicit
surface based on moving least-squares (MLS) data inter-
polation. The MLS approach is based on local approx-
imations to the surface. From an initial point x, a sur-
face patch is defined that approximates the surface in the
neighborhood of x. A projection operator P maps x onto
this local approximation. The MLS surface is defined as
the set of points x such that P (x) = x. There are many
variations on this basic technique, which mostly differ in
how the local patches are defined.

A common feature of MLS techniques is the use of
a weight function that gives large weight to small dis-
tances and rapidly approaches zero for larger distances.
Some authors use functions with infinite support such
as a Gaussian, while others use functions with a similar
shape but finite support. The function parameters may
also vary per sample. We use wi to denote the function
applicable to sample i; in some cases we also use wi to
mean the value of this function.

Alexa et al. [2001] define the local approximation and
the projection as follows:

1. First, a plane is used to define a local domain. The

plane H passing through a with normal n is chosen
such that x− a is parallel to n and such that∑(

n · (pi − a)
)2
wi(‖pi − a‖)∑

wi(‖pi − a‖)
(1)

is locally minimized, choosing the local minimum for
which x is as close to H as possible. Note that since
the weights depend on a, the projection of x onto
H, rather than x, this is a non-linear optimization
which requires an iterative solver.

2. Define a local coordinate system in H by an affine
function h : H → R2, with h(a) = (0, 0).

3. Let p′i be the projection of pi onto H, and let di =
n · (pi − p′i) be the signed distance of pi to H.

4. Use weighted least squares to optimize a bivariate
polynomial defining a height-field over H. Specifi-
cally, let g : R2 → R be the bivariate polynomial of
some fixed degree that minimizes∑

(g(h(p′i))− di)2wi(‖pi − a‖). (2)

The local surface approximation f : R2 → R3 is
then given by

f(u) = h−1(u) + g(u)n. (3)

5. The projection of x is defined as P (x) = f(h(a)).

Alexa et al. [2003] originally claimed that this is a true
projection procedure i.e., P (x) = P (P (x)), but Amenta
and Kil [2004b] show that this does not hold. Alexa et al.
[2004] describe several iterative procedures for projecting
points onto the MLS surface.

Amenta and Kil [2004b] give a different definition of
a point set surface in terms of extremal surfaces. The
surface is defined in terms of a normal field n : R3 → P2

and an energy function e : R3 × P2 → R (P2 being the
space of unoriented directions). The extremal surface is
defined as

S = {x|x ∈ arglocalmin
y∈`x,n(x)

e(y, n(x))}, (4)

where `x,n is the line parallel to the direction n passing
through x. They show that if e is defined as in Equa-
tion (1) and

n(x) = argmin
n

e(x,n) (5)

then this is equivalent to the previous definition but
without the polynomial fitting step.

This approach is more generic, since the normal field n
may be computed in other ways, such as by interpolating
normals associated with the samples. The same authors

2

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

also give an alternative to Equation (5) which makes
projection more robust [Amenta and Kil, 2004a].

In addition to giving each sample a different radius of
influence, its weight function can also be scaled based
on its quality. Cuccuru et al. [2009] define the quality
to be proportional to the sampling density (higher being
better). Fiorin et al. [2008] use a combination of the dis-
tance from surface boundaries and the sampling density
to define a quality metric.

MLS surfaces have also been extended using robust
statistics to handle sharp edges and outliers [Fleishman
et al., 2005, Öztireli et al., 2009] and to extract isosur-
faces from large data sets [Cuccuru et al., 2009, Fiorin
et al., 2007].

2.4 Algebraic point set surfaces

Guennebaud and Gross [2007] introduce Algebraic Point
Set Surfaces (APSS). As with other MLS methods, the
surface is defined in terms of a projection procedure. The
difference is that the surface is locally approximated by
a sphere rather than a plane or polynomial patch. Given
a point x in space near the surface, the projection P (x)
is computed as follows:

1. The splats in the local neighborhood of x are iden-
tified i.e., those for which x falls within the sphere
of influence of the splat.

2. The splats are weighted based on their distance from
x, using the weight functions wi.

3. A sphere is fitted to the splats, using weighted least-
squares to match the positions and normals. The
sphere is represented in an algebraic (implicit) form,
which simplifies the fitting procedure and robustly
decays to a plane.

4. x is projected onto the sphere.

The MLS surface is defined as the set of points for
which P (x) = x. Note that P is not a true projection: if
x does not lie on the MLS surface, then P (x) will usually
not either.

The sphere is described by a vector u of 5 parameters,
defining the implicit function

Su(x) =
(
xT xTx 1

)
u. (6)

The surface of the sphere is the level set Su(x) = 0. The
gradient of the implicit function is

∇Su(x) =
(
I3 2x

)
u. (7)

For each surfel with position pi and normal ni, we have
two constraints:

Su(pi) = 0 (8)

∇Su(pi) = ni. (9)

The normal constraints are essential, because the posi-
tion constraints are trivially satisfied by u = 0. Guen-
nebaud et al. [2008] solve for the normal constraints first
to determine four of the coefficients, and then use the
position constraints only to determine u4 (which effec-
tively determines the radius of the sphere). They give
the following explicit formulae:

u3 =
(
∑

wi)(
∑

wip
T
i ni)−(

∑
wipi)

T (
∑

wini)

(
∑

wi)(
∑

wipT
i pi)−(

∑
wipi)T (

∑
wipi)

(10)u0u1
u2

 =

∑
wini − 2u3

∑
wipi∑

wi
(11)

u4 =
−
(
u1 u2 u3

)∑
wipi−u3

∑
wip

T
i pi∑

wi
. (12)

2.5 Isosurface extraction

Isosurface extraction is the process of creating an explicit
surface representation (usually a triangular or polygo-
nal mesh) by sampling an implicit surface. Most cur-
rent schemes derive from Marching Cubes [Lorensen and
Cline, 1987]. The Marching Cubes algorithm samples
the implicit function on a cubic lattice, and indepen-
dently triangulates each cube. Each vertex of the cube
is classified as either inside or outside the surface, lead-
ing to 28 = 256 topological cases (although this number
can be greatly reduced by symmetries). The vertices of
the triangulation are determined by interpolation along
the edges of the cube.

One of the major shortcomings of the Marching Cubes
algorithm is that there are two possible ways to connect
vertices on a face if one pair of opposite corners lies in-
side and the other pair lies outside the surface. Without
extra processing, it is possible that this will be done in-
consistently for the two cubes adjoining a face, leading
to topological errors [Nielson and Hamann, 1991].

The Marching Tetrahedra (or Marching Tetrahedrons)
algorithm addresses the ambiguity by using tetrahedral
rather than cubic cells. Several variations of the scheme
exist, depending on how space is divided into tetrahedra.
The original scheme [Payne and Toga, 1990] starts with
the same cubic lattice as Marching Cubes, but subdivides
each cube into five tetrahedra, one larger than the others.
Cubes can also be subdivided into six identical tetrahe-
dra, as shown in Figure 3. Chan and Purisima [1998]
introduce an alternative tessellation based on a body-
centred cubic lattice, which has more regularly-shaped
tetrahedra.

A weakness of the Marching Cubes/Tetrahedra algo-
rithms is that the sampling rate is uniform, rather than
adapted to the detail level of the extracted isosurface.
The body of literate on adaptive methods is too large to
fully describe here, so we will just list some examples.
Treece et al. [1999] adapt the Marching Tetrahra algo-
rithm to cluster vertices that are close together, while

3

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

maintaining the topology. This removes poorly condi-
tioned triangles, but the sampling rate is still essentially
uniform. Kazhdan et al. [2007] start with an octree
rather than a uniform lattice, and triangulate each oc-
tree cell in a way that preserves topology where cells of
different sizes meet.

3 Implementation

3.1 Normal estimation

A rough approximation to the normals at the sample
points is done from the raw scan data. The sampling grid
is triangulated by connecting nearest neighbors, and dis-
continuities are handled by rejecting triangles with edges
longer than a threshold (this is based on the implemen-
tation in Scanalyze Curless and Levoy [1996]). The sam-
ple normals are then estimated as the average of the face
normals of the incident triangles. This seems to produce
acceptable results, and has the advantage that normals
are always correctly oriented towards the scanner. Nev-
ertheless, it may be interesting to compare this to a more
general and robust method such as that of Guennebaud
and Gross [2007].

3.2 Sample spacing estimation

A key input in many surface reconstruction techniques
is an estimate of the sampling density. Each sample
should influence its local neighborhood, but not have un-
expected effects on unrelated parts of the surface.

Some authors have used a single estimate of sample
spacing for an entire model, but this is not suitable for
our range scans. Both the distance and orientation of the
surface relative to the scanner have a large effect on the
sampling density. We compute a local sample spacing for
each scanned sample, using the same formula as Meshlab
[Cignoni et al., 2008]. Let the distance to the Kth-nearest
neighbor be D. The local sample spacing is set to

ri =
2D√
K
. (13)

K should be chosen to be small enough to make the near-
est neighbor search efficient but large enough to smooth
out noise; we have chosen K = 16.

While this provides adequate results in well-sampled
regions, outliers are problematic. Because they are far
away from the rest of the data, ri becomes excessively
large. Since ri determines the region of influence of sam-
ple i, this causes outliers to have much greater influence
than other points, when ideally they should have no in-
fluence at all. Figure 7a shows an example of an artefact
where such a sample has created a second sheet behind a
wall. In Figure 7b we have clamped the sample spacing
to 20mm, which corrects the artefact.

However, this approach has two disadvantages.
Firstly, it requires human intervention to specify the pa-
rameter appropriately, which may require expert knowl-
edge. Secondly, the parameter is global, and there may
not be a single value that is both large enough to avoid
distorting correct results and small enough to eliminate
the artefacts.

We have modelled only isotropic sampling, but when
scanning a plane that is angled relative to the scanner,
the sampling will be anisotropic. Adamson and Alexa
[2006] show how this can be incorporated into a MLS
surface definition. While we have not implemented this
method, it is independent of our other design choices and
so it could easily be added.

3.3 Sphere fitting

We base our surface definition on Algebraic Point Set
Surfaces. Initial experiments with the implementation
in Meshlab [Cignoni et al., 2008] suggested that it gave
reasonable results, and the Meshlab implementation of
Robust Implicit Moving Least Squares [Öztireli et al.,
2009] did not produce noticeably better results, even in
areas with large amounts of environmental noise.

We found the equations in Section 2.4 to be numer-
ically unstable, even with double-precision arithmetic.
The denominator in Equation (10) may be much smaller
than the two terms in the subtraction, yielding an inac-
curate result. This occurs because the coordinates in pi

can be many orders of magnitude larger than the local
sample spacing.

To avoid this problem, we instead describe the sphere
relative to a local coordinate system, which is a transla-
tion of the world coordinate system. If ô is the origin of
this coordinate system (in world coordinates), then we
use an implicit function of the form

Ŝu,ô(x) = Su(x− ô). (14)

Given ô, we can compute u by first translating all the
samples to the local coordinate system and then solving
for Su as before.

This still leaves the choice of ô. The choice has no al-
gebraic effect and only determines the numeric stability.
An attractive choice is to use the weighted mean of the

samples,
∑

wipi∑
wi

. This would cause the right-hand terms

of both the numerator and denominator of Equation (10)
to vanish, entirely eliminating this source of numeric in-
stability. The disadvantage is that the weighted mean
cannot be determined until after all the samples have
been collected, requiring a second pass over the samples
to do the translation. Instead, we take ô to be the posi-
tion of one of the samples. This maintains the desirable
property that all the samples are near to ô, while allow-
ing all the samples to be processed in a single pass.

4

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(1 - x2)4

Figure 1: The weight function φ used to give more influ-
ence to nearby samples

3.4 Weight function

In the sphere-fitting process, each surfel is given a weight.
We initially followed Guennebaud and Gross [2007] in
using the function

wi(x) = φ

(
‖pi − x‖
ri · h

)
(15)

φ(d) =

{
(1− d2)4 if d < 1

0 otherwise,
(16)

where ri is the local sample spacing of sample i and h
is a global tuning factor controlling smoothing. Figure 1
shows φ.

This weight function works well if the local sample
spacing varies smoothly across the surface, but we found
that it causes problems where there is a discontinuity.
This typically occurs at the boundary of a high-detail
scan, where the neighboring region has much lower detail
in the scanning coverage. The samples from the edge of
the low-detail region have a large radius of influence, and
so their influence spills over into the high-detail region
and dominates the effect of the high-detail samples. To
adjust for this, we follow Cuccuru et al. [2009] in using
the inverse of the sampling density as a quality metric,
defining the weight function as

wi(x) =
1

ri
φ

(
‖pi − x‖
ri · h

)
. (17)

This reduces the weight of samples with a large radius
of influence relative to those with a smaller radius of
influence. Because only the relative values of the weights
are important, regions with a homogeneous local sample
spacing will be relatively unaffected by this change.

To avoid undersampled regions, we do not attempt
to compute a fit to fewer than four surfels (following
Guennebaud and Gross [2007]); at least two are required
to properly constrain the sphere-fitting problem.

The weight function is C3 continuous. While that is
good from a theoretical point of view (since it avoids
discontinuities in the surface), the presence of near-zero

Figure 2: The effect of making h too small relative to
the isosurface extraction lattice.

values causes additional numerical instabilities when fit-
ting spheres. If all but one of the surfels has a weight
extremely close to zero, then those surfels have almost
no contribution to the design matrix and so it becomes
ill-conditioned. To avoid this, we have reduced the ra-
dius of influence of each sample by 1% without adjusting
the weight function. This does cause a discontinuity in
the weight function at the boundary, but of such small
magnitude that it does not cause discontinuities in the
extracted isosurface.

A limitation of this family of weight functions is that
a single parameter h controls both the smoothing and
the support of the function. A large value for h will
thus fill holes and widen the domain of the projection
operation, but blur out details; while a small value will
preserve small features but leave more holes in the model.
Figure 2 shows what happens when h is too small: the
domain of the projection operator becomes too thin to
be properly sampled by the lattice used in isosurface ex-
traction, causing regular patterns of holes to appear.

3.5 Isosurface extraction

Although a point set surface can be used directly as a
surface representation format for storage and rendering
[Alexa et al., 2003, Adamson and Alexa, 2003], the im-
plied surface is closely tied to the exact details of the
algorithm that define it. A point set surface is unlikely
to be displayed the same way by any two rendering imple-
mentations, which makes it of limited use as an archival
record. In contrast, triangle mesh representations are an
explicit representation of the geometry, and so are more
suitable for archival and interchange.

To extract a mesh, we first define an implicit function
in a domain near the MLS surface which approximates
the signed distance to the surface (positive on the out-
side, negative on the inside). We then extract the iso-
surface where this implicit function is zero.

We have used the almost orthogonal projection proce-

5

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

Figure 3: Partition of a cube into six tetrahedra

dure of Alexa et al. [2004] to find a nearby point on the
MLS surface: given an initial point x, we set q0 = x and
then iteratively refine the projection as follows:

1. Compute the parameters of the algebraic sphere
Su(qi).

2. Let qi+1 be the projection of x onto this sphere.

This is repeated until the process converges to within
a user-specified tolerance. We then locally approximate
the surface by the tangent plane to the most recently
fitted sphere, and compute the signed distance from x to
the surface as (x− q∞) · n.

In our initial implementation, we used the iterative
projection procedure a fixed number of times. We found
that features such as grass that could not properly be
resolved by the scanner would cause the projection pro-
cedure to become chaotic and fail to converge. In our
current implementation, if projection fails to converge
within a user-specified number of iterations, the starting
point is treated as being outside the domain of the signed
distance function.

We used a Marching Tetrahedra algorithm in which
each cube in a cube lattice is split into six tetrahedra, as
shown in Figure 3. This avoids the topological ambigui-
ties in Marching Cubes. It also uses more interpolations
per cube than Marching Cubes, without requiring ad-
ditional samples of the implicit function. We felt this
to be an advantage, since the implicit function is very
expensive to evaluate.

In a standard isosurface extraction, the implicit func-
tion always returns either a positive or negative distance,
and so the resulting surface is a manifold with no holes.
Since we wanted to produce holes in our model where
there was no scanner coverage, we needed to adapt the
algorithm. We allowed the implicit function to take on
a special “undefined” value, indicating that the sample
fell outside the domain of the function. This integrates
quite naturally with the finite support used for the sam-
ples: when sampling far away from the surface, the sam-
ple point will not be influenced by enough samples to

produce a fitted sphere, and so the function does not
have a defined value anyway. When a vertex of a tetra-
hedron takes on an undefined value, it is skipped and so
produces no triangles.

In fact, most samples in a cubic lattice produce the
undefined value, because the function only has support
near the scanned surface. We found that a significant
amount of time was spent on processing these samples,
since each one required a walk through a spatial data
structure to check for intersections with the spheres of
influence. To reduce this time, we perform a forward pass
over the spheres of influence to produce a list of samples
that are near the surface and hence worth evaluating.

Initially this was stored in a Standard Template Li-
brary set container, but we found that this took an ex-
cessive amount of storage. We changed this to a simple
bitmap of potentially useful cells, into which the bound-
ing cubes of the spheres were rasterised. Although this
bitmap is effective due to the very low cost per sample
(one bit), it will scale poorly: both storage and itera-
tion costs are O(N3) for an N × N × N sampling grid.
Further investigation is required into alternative spatial
data structures such as octrees, k-d trees, lists of ranges
along scan lines, etc.

The implicit function is expensive to compute, and so
it is useful to evaluate it just once per lattice vertex and
re-use the result across multiple incident cells. In the
original work on Marching Cubes, the authors achieve
this by storing the values for two slices at a time, and
exploit the linear iteration order to avoid any unneces-
sary computations. While this would also work for our
implementation, we wished to allow for greater flexibil-
ity. For example, if the cells of interest are held in an
octree, then a depth-first walk of the octree would be a
more natural iteration order. Greater flexibility would
also simplify parallelisation, where the iteration order
would be non-deterministic.

To facilitate this flexibility, we instead used a direct-
mapped cache. The cache size is chosen to be the small-
est power of two that will hold at least one slice of data.
Hash collisions occasionally cause data to be evicted
which is still needed later, but we found that this in-
creased the number of function evaluations by less than
1% in most cases and only 7% in the worst case.

For further mesh processing, it is desirable to have a
connected mesh rather than a “triangle soup” in which
each triangle is independent. When processing all cells
in a linear order it is relatively straightforward to asso-
ciate each generated vertex with a canonical cell and to
generate its index only when processing that cell. When
skipping known-empty cells this becomes more compli-
cated, and parallel processing would make it even more
difficult. To avoid these problems, we process each cell
independently and emit a triangle soup, and use a post-
process to identify and merge shared vertices.

6

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

p′1

p′2

p′3

p′4

p′5

a

Figure 4: Boundary detection heuristic. The samples p1

to p5 form the local neighborhood. Their projections
p′1 to p′5 onto the reference plane are shown, along with
the projection a of the initial point. In this case, a falls
outside the convex hull so it is deemed to lie beyond the
boundary of the surface.

3.6 Boundary handling

While movable objects can be scanned from all direc-
tions, possibly leaving only a few small holes, this is not
possible for a building. At the very least the underside
of a building cannot be scanned, and it is not always
practical to scan the roof. Thus, we expect our models
to have large boundaries.

To a certain extent, these boundaries will arise natu-
rally due to the finite support of the weighting function:
in regions far from any scanned samples, the implicit
function will be undefined. Nevertheless, we found that
the surface tended to be extrapolated beyond the actual
coverage of the data, and in some cases holes are ex-
truded in unnatural ways: see Figure 9. We used a simple
algorithm to detect this situation: after a point has been
almost orthogonally projected onto the MLS surface, we
take the local samples, namely those whose spheres of
influence contain the projected point, and project them
onto a plane. Ideally we would use a tangent plane to
the MLS surface, but finding it is an expensive procedure
[Alexa et al., 2004], so we approximate it by taking the
tangent plane to the algebraic sphere fitted to the local
samples in the final iteration of projection. If the pro-
jected point falls within the convex hull of the projected
samples, it is considered to be internal to the surface;
otherwise it is considered to have been extrapolated. See
Figure 4 for an example of the latter.

This is very similar to the angle criterion used by Ben-
dels et al. [2006] and others, with a critical angle of π.
As the authors have described, the method suffers from
artefacts and in particular is not robust to outliers that
fall outside the real boundary. Their work includes sev-
eral other criteria for boundary detection which are more
robust but tend to produce a less sharp boundary; adapt-
ing these techniques is future work.

The boundary detection defines a two-valued function

over the MLS surface: points inside have the value 1 and
points outside have the value −1. To combine this with
the isosurface extraction, we take the initial triangles
that are produced and clip them as follows:

1. The boundary function is evaluated at the three ver-
tices.

2. The triangle is clipped to the halfspace f(x) > 0
where f is the linear interpolation of the boundary
function between the vertices.

The clipping procedure yields either 0, 1 or 2 triangles.

The binary nature of the function tends to cause some
aliasing. While aliasing can be a major issue in polygo-
nization algorithms, in this case the aliasing is only in
the shape of the hole boundary and does not affect the
positions or normals of the remaining geometry.

To amortise the cost of evaluating the boundary func-
tion, it is computed once for each vertex introduced into
a cell, and then cached so that it is not recomputed for
neighboring cells.

3.7 Isolated components

Amenta and Kil [2004a] show that the MLS projection
procedure is unreliable when started too far from the sur-
face, and may lead to unwanted zeros. Figure 5a shows
an example of this. We follow Meshlab in post-processing
the result to delete any disconnected components whose
size (measured in vertices) falls below a threshold. This
is usually successful, as shown in Figure 5b, but if the
threshold is not correctly chosen it can lead to the ac-
cidental removal of useful data if a scanning campaign
scans disconnected regions. We have also found problems
if the lattice used for isosurface extraction is too coarse,
leading to these unwanted regions remaining connected
to the real surface and thus not being culled.

4 Results

For our testing we used four data sets. The Gereza (Fig-
ures 6, 7) Cave (8 top, 9) and Namora2 (8 bottom) scans
are from African heritage sites, while Bunny (5) is the
well-known Stanford clay bunny.

Except where otherwise noted, distances are reported
in millimetres and times in seconds. In table headings,
Grid refers to the spacing between the lattice points used
by the Marching Tetrahedra algorithm and h is the global
smoothing parameter in Equation (17).

Figure 6 compares our implementation to a number of
existing packages. Geomagic [Edelsbrunner et al., 1998]
is a commercial package based on Delaunay tetrahedral-
ization of the data points. PlyMC [Callieri et al., 2003] is

7

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

(a) Before removal (b) After removal

Figure 5: Removal of isolated components

a free implementation of the volumetric method of Cur-
less and Levoy [1996]. RIMLS is the Meshlab implemen-
tation of Robust Implicit Moving Least Squares [Öztireli
et al., 2009]. OctreeMerge is an out-of-core implemen-
tation of a Moving Least Squares technique based on
the extremal surface definition [Fiorin et al., 2007], and
Poisson is an out-of-core implementation of the Poisson
equation method [Bolitho et al., 2007].

The Poisson method gives noticably different results
to the others, because it produces a water-tight mesh
without holes. While filling small holes is often desirable,
it also fills in very large holes (such as the top of the
wall, which has not been scanned), giving results that
may diverge significantly from the physical object.

4.1 Sample spacing

Table 1 shows the parameters we have used for each data
set. Because the bunny data set contained fairly clean
data, we did not need to clamp sample spacing estimates.
All the other models benefitted from it. Figure 7 shows
an example where limiting the sample spacing is impor-
tant.

4.2 Projection

Section 3.5 describes how we used a bitmap of poten-
tially useful cells to quickly skip the bulk of cells during
isosurface extraction. Table 2 shows the effectiveness of
this approach. Note that while this did eliminate at least
90% of the cells in most cases, we still found that nearly
half of all signed distance queries were rejected because
there were fewer than four samples in the neighborhood.

In Section 3.5 we described our iterative scheme to de-
termine the distance of an arbitrary point from the MLS
surface. We found that a single iteration is usually suffi-
cient to give accurate results, with differences being vis-
ible mainly where the input samples are sparse or suffer
from environment noise. This confirms previous findings

that increasing the number of iterations makes little vi-
sual difference [Cuccuru et al., 2009]. Figure 8 shows the
impact of using extra iterations. Except where otherwise
noted, all results in this report use only one iteration.

4.3 Boundary handling

Figure 9 shows an example where explicit boundary han-
dling prevents artefacts. Without the explicit boundary
handling, boundaries are extrapolated beyond the sup-
port of the data.

Table 3 shows the number of boundary queries across
all the models. Note that unlike the number of signed
distance queries (Table 2), the number of boundary
queries scales only slowly with the smoothing factor h.
This is because the boundary queries are only performed
on vertices that lie on the MLS surface, rather than for
all lattice points in the domain. Increasing h does cause
boundaries to be extrapolated further in the initial MLS
surface, which explains both the slight increase in the
number of queries and the decrease in pass rate as h
increases.

The bunny model has only a few small holes, so it is
unsurprising that it has the highest pass rate. The other
models all have open borders and hence lower pass rates.

4.4 Numerical stability

Single-precision (32-bit) floating-point values take only
half the space of double-precision values; and depend-
ing on the hardware, single-precision operations can be
significantly faster than double-precision ones. To de-
termine whether our implementation is sufficiently nu-
merically stable to use single precision, we used C++
templates to allow all the computations to be run with
either single- or double-precision, and compared the re-
sults.

8

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

(a) Geomagic (b) PlyMC

(c) OctreeMerge (d) Poisson

(e) RIMLS (f) Our implementation

Figure 6: Gereza model, reconstructed using different software packages

Table 1: Sample spacing estimation parameters. The times reported include all file I/O.

Sample spacing
Dataset Samples Mean Limit Clamped Time Grid
Bunny 362 230 0.44 N/A 0.00% 2.5 0.3
Cave 163 158 18.0 50 1.19% 1.1 10.0
Gereza 1 889 889 5.9 20 0.17% 15.8 10.0
Namora2 1 260 338 16.1 50 0.83% 10.0 20.0

9

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

(a) No sample spacing limit. A few isolated samples with poorly estimated sample spacing cause the inside of a
wall to form a noisy circular inside face.

(b) The sample spacing is limited, preventing the isolated samples from interfering.

Figure 7: Limiting the sample spacing to prevent isolated samples from causing artefacts.

10

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

Table 2: Projection operation

Cells Projections
Dataset h Memory Used Total Succeeded

Bunny
2 13.8 MB 5.3% 7115122 52.4%
4 14.5 MB 10.6% 13831456 62.0%

Cave
2 35.1 MB 3.3% 13337256 48.3%
5 39.8 MB 9.5% 33380653 56.7%

Gereza
2 19.5 MB 2.4% 5030025 43.6%
5 20.8 MB 6.5% 12919956 59.0%

Namora2
4 24.7 MB 6.6% 15012900 53.3%
6 26.1 MB 10.0% 29243329 57.8%

1 iteration 15 iterations

Figure 8: Impact of the number of projection iterations. Using extra iterations marginally reduces some of the artefacts.

(a) (b)

Figure 9: Explicit boundary removal. (a) No explicit boundary detection is done. The boundaries are extrapolated,
causing extra noise (top) and unnatural extrusion of some holes (bottom-left). (b) Boundaries are detected and removed,
correcting artefacts but also preventing some hole-filling.

11

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

Table 3: Boundary detection. The columns show the to-
tal number of boundary detection queries and the frac-
tion of queries for which the query point is inside the
boundary.

Dataset h Queries Inside

Bunny
2 3 197 179 98.6%
4 3 186 845 97.3%

Cave
2 2 481 672 93.1%
5 3 052 561 86.2%

Gereza
2 3 176 214 92.8%
5 4 236 312 81.3%

Namora2
4 5 863 472 81.7%
6 6 033 051 74.9%

Table 4: Distances between meshes produced by single-
and double-precision computations.

Dataset Grid h Hausdorff RMS
Bunny 0.3 4 0.002 0.000
Cave 10.0 5 7.2 0.008
Gereza 10.0 5 6.3 0.006
Namora2 20.0 4 20.6 0.022

Table 4 shows the Hausdorff distance between the
single- and double-precision versions, as well as the larger
of the forward and reverse root-mean-square (RMS) dis-
tances reported by Metro [Cignoni et al., 1998]. As can
be seen from the table, the maximum error introduced
by the use of lower precision is of a similar size to and
usually smaller than the spacing of the lattice used for
Marching Tetrahedra, and the average error is three or-
ders of magnitude smaller. We thus feel confident that
our implementation is numerically stable at single preci-
sion.

4.5 Performance

It should be emphasised that our implementation is a
prototype designed to experiment with various algorith-
mic improvements. It is single-threaded and has not had
any low-level optimizations applied. The performance
figures are reported so that the relative effects of the
various parameters can be assessed, but should not be
taken as an absolute indicator of performance.

By comparing the Cave and Gereza data sets in Ta-
ble 5, it should be clear that running time is relatively
unaffected by the number of input samples. Rather, it is
mostly affected by the number of cells to process and the
smoothing factor h. Apart from increasing the number
of cells to process, increasing h also increases the number
of samples that contribute to each sphere fit.

The boundary detection significantly increases run-
ning time, in some cases by 50%. With such a large
number of boundary queries this is not surprising, but

it is unfortunate given that the majority of queries are
inside the boundary.

5 Conclusions

While there has been extensive work on point set sur-
faces, few authors have tackled the extremely noisy data
caused by the constraints of African heritage sites. We
have evaluated a number of existing techniques that aim
to improve the quality of MLS surfaces, and found that:

• Sample spacing estimation cannot be done only
based on nearest neighborhood information, but
specifying an upper bound on the estimated sam-
ple spacing greatly improves results.

• Boundaries need to be handled explicitly.

• Using more than one iteration of the almost orthogo-
nal projection operation makes almost no difference
in well-sampled regions, while removing some arte-
facts in problematic regions.

6 Future work

Surface reconstruction is a mature field with a wealth
of techniques, many of which we have not explored. For
example, we have not discussed normal estimation at all,
and it is possible that a refinement of the initial normal
estimates, such as described by Guennebaud and Gross
[2007], may produce better results. There are also more
sophisticated methods for boundary detection and for
handling anisotropic sampling that may be valuable.

Estimation of sampling density is not widely discussed
in the MLS surface literature, and there is clearly room
for improvement, particularly with regard to detecting
outliers. Sample spacing could be estimated earlier in
the pipeline, exploiting knowledge of the properties of
the scanner to give more accurate results. For example,
knowing the angular sampling rate of the scanner, the
distance from the scanner to the point, and the orienta-
tion of the surface relative to the scanner, it would be
possible to directly determine the spatial sampling den-
sity. The angular density could also be estimated given
the position of the scanner.

There is also room for improvement of the weight func-
tion. Ideally we would like to find a two-parameter fam-
ily of functions with one parameter to control smooth-
ness and a separate parameter to control support. That
would allow the degree of hole-filling to be controlled
independently from smoothness.

Our implementation is in-core, but for a solution to
scale to huge amounts of data produced by scanning an
entire site it must be able to handle terabytes of data.

12

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

Table 5: Performance of our reconstruction. Times exclude the time for sample spacing estimation, which are shown in
Table 1.

Dataset Samples h Projections
Boundary

queries
Time

Time (without
boundary handling)

Bunny 362 230
2 7 115 112 3 197 179 27 20
4 13 831 456 3 186 845 67 49

Cave 163 158
2 13 337 256 2 481 673 29 24
5 33 380 653 3 052 561 115 97

Gereza 1 889 889
2 5 030 025 3 176 214 30 21
5 12 919 956 4 236 312 93 62

Namora2 1 260 338
4 15 012 900 5 863 472 85 56
6 29 243 329 6 033 051 188 136

Our findings offer some guidance for the design of out-
of-core algorithms. Each projection step in projecting
onto the MLS surface requires the samples in the lo-
cal neighborhood to be gathered. When multiple itera-
tions are used, the intermediate steps could be located
anywhere in space, making data management difficult;
whereas with only a single projection step, the required
data can be determined a priori. A pre-declared maxi-
mum sample spacing is also useful for out-of-core algo-
rithms, as it defines a maximum neighborhood size that
needs to be resident in memory.

7 Acknowledgements

Funding for this project was received from the Center
for High Performance Computing (CHPC). The bunny
model is from the Stanford 3D Scanning Repository,
while the other models are from the African Cultural
Heritage and Landscape Database.

References

Anders Adamson and Marc Alexa. Ray tracing point set
surfaces. In Proceedings of the Shape Modeling Inter-
national 2003, pages 272–279. IEEE Computer Soci-
ety, 2003. ISBN 0-7695-1909-1.

Anders Adamson and Marc Alexa. Anisotropic point set
surfaces. In Proceedings of the 4th international con-
ference on Computer graphics, virtual reality, visual-
isation and interaction in Africa, AFRIGRAPH ’06,
pages 7–13. ACM, 2006. ISBN 1-59593-288-7.

M. Alexa, S. Rusinkiewicz, Marc Alexa, and Anders
Adamson. On normals and projection operators for
surfaces defined by point sets. In Eurographics Sympo-
sium on Point-Based Graphics, pages 149–155, 2004.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar
Fleishman, David Levin, and Claudio T. Silva. Point

set surfaces. In Proceedings of the conference on Visu-
alization ’01, pages 21–28, 2001. ISBN 0-7803-7200-X.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar
Fleishman, David Levin, and Claudio T. Silva. Com-
puting and rendering point set surfaces. IEEE Trans-
actions on Visualization and Computer Graphics, 9
(1):3–15, January 2003. ISSN 1077-2626.

Nina Amenta and Yong J. Kil. The domain of a point set
surface. In Markus Gross, Hans-Peter Pfister, Marc
Alexa, and Szymon Rusinkiewicz, editors, SPBG’04
Symposium on Point-Based Graphics, pages 139–147.
Eurographics Association, 2004a. ISBN 3-905673-09-6.

Nina Amenta and Yong Joo Kil. Defining point-set sur-
faces. ACM Trans. Graph., 23(3):264–270, August
2004b.

Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri.
The power crust. In Proceedings of the sixth ACM
symposium on Solid modeling and applications, SMA
’01, pages 249–266. ACM, 2001. ISBN 1-58113-366-9.

Gerhard H. Bendels, Ruwen Schnabel, and Reinhard
Klein. Detecting holes in point set surfaces. Journal
of WSCG, 14, Feb 2006. ISSN 1213-6972.

Matthew Bolitho, Michael Kazhdan, Randal Burns, and
Hugues Hoppe. Multilevel streaming for out-of-core
surface reconstruction. In Proceedings of the fifth Eu-
rographics symposium on Geometry processing, pages
69–78. Eurographics Association, 2007. ISBN 978-3-
905673-46-3.

Matthew Bolitho, Michael Kazhdan, Randal Burns, and
Hugues Hoppe. Parallel Poisson surface reconstruc-
tion. In International Symposium on Visual Comput-
ing, 2009.

M. Callieri, P. Cignoni, F. Ganovelli, C. Montani,
P. Pingi, and R. Scopigno. VCLab’s tools for 3D
range data processing. In D. Arnold, A. Chalmers,

13

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

and F. Niccolucci, editors, 4th International Sympo-
sium on Virtual Reality, Archaeology and Intelligent
Cultural Heritage (VAST), 2003.

S.L. Chan and E.O. Purisima. A new tetrahedral tesse-
lation scheme for isosurface generation. Computers &
Graphics, 22(1):83–90, 1998. ISSN 0097-8493.

P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Mea-
suring error on simplified surfaces. Computer Graphics
Forum, 17(2):167–174, 1998. ISSN 1467-8659.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini,
Matteo Dellepiane, Fabio Ganovelli, and Guido
Ranzuglia. MeshLab: an open-source mesh processing
tool. In Sixth Eurographics Italian Chapter Confer-
ence, pages 129–136, 2008.

Gianmauro Cuccuru, Enrico Gobbetti, Fabio Mar-
ton, Renato Pajarola, and Ruggero Pintus. Fast
low-memory streaming MLS reconstruction of point-
sampled surfaces. In Proceedings of Graphics Interface
2009, pages 15–22. Canadian Information Processing
Society, 2009. ISBN 978-1-56881-470-4.

Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Pro-
ceedings of the 23rd annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’96,
pages 303–312. ACM, 1996. ISBN 0-89791-746-4.

Herbert Edelsbrunner, Michael A. Facello, Ping Fu,
Jiang Qian, and Dmitry V. Nekhayev. Wrapping 3D
scanning data. In Richard N. Ellson and Joseph H.
Nurre, editors, Three-Dimensional Image Capture and
Applications, volume 3313 of SPIE Proceedings, pages
148–158. SPIE, 1998. ISBN 0-8194-2753-5.

Valentino Fiorin, Paolo Cignoni, and Roberto Scopigno.
Out-of-core MLS reconstruction. In Proceedings of
the Ninth IASTED International Conference on Com-
puter Graphics and Imaging, CGIM ’07, pages 27–34,
2007. ISBN 978-0-88986-645-4.

Valentino Fiorin, Paolo Cignoni, and Roberto Scopigno.
Practical and robust MLS-based integration of
scanned data. In Sixth Eurographics Italian Chapter
Conference, pages 57–64, 2008.

Shachar Fleishman, Daniel Cohen-Or, and Cláudio T.
Silva. Robust moving least-squares fitting with sharp
features. ACM Trans. Graph., 24(3):544–552, July
2005.

Gaël Guennebaud and Markus Gross. Algebraic point
set surfaces. ACM Trans. Graph., 26(3), July 2007.
ISSN 0730-0301.

Gaël Guennebaud, Marcel Germann, and Markus Gross.
Dynamic sampling and rendering of algebraic point set
surfaces. Computer Graphics Forum, 27(2):653–662,
2008. ISSN 1467-8659.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the
fourth Eurographics Symposium on Geometry Process-
ing, SGP ’06, pages 61–70. Eurographics Association,
2006. ISBN 3-905673-36-3.

Michael Kazhdan, Allison Klein, Ketan Dalal, and
Hugues Hoppe. Unconstrained isosurface extraction
on arbitrary octrees. In Proceedings of the fifth Eu-
rographics symposium on Geometry processing, pages
125–133. Eurographics Association, 2007. ISBN 978-
3-905673-46-3.

David Levin. Mesh-independent surface interpolation.
In Brunnett, Hamann, and Mueller, editors, Geomet-
ric Modeling for Scientific Visualization, pages 37–49.
Springer-Verlag, 2003.

William E. Lorensen and Harvey E. Cline. Marching
cubes: A high resolution 3D surface construction al-
gorithm. In Proceedings of the 14th annual confer-
ence on Computer graphics and interactive techniques,
SIGGRAPH ’87, pages 163–169. ACM, 1987. ISBN 0-
89791-227-6.

Gregory M. Nielson and Bernd Hamann. The asymptotic
decider: resolving the ambiguity in marching cubes. In
Proceedings of the 2nd conference on Visualization ’91,
VIS ’91, pages 83–91. IEEE Computer Society Press,
1991. ISBN 0-8186-2245-8.

A. Cengiz Öztireli, Gaël Guennebaud, and Markus
Gross. Feature preserving point set surfaces based on
non-linear kernel regression. Computer Graphics Fo-
rum, 28(2):493–501, 2009. ISSN 1467-8659.

B.A. Payne and A.W. Toga. Surface mapping brain func-
tion on 3d models. IEEE Computer Graphics and Ap-
plications, 10(5):33–41, Sep 1990. ISSN 0272-1716.

Heinz Rüther, Christoph Held, Roshan Bhurtha, Ralph
Schröder, and Stephen Wessels. Challenges in heritage
documentation with terrestrial laser scanning. In Pro-
ceedings of the 1st AfricaGEO Conference, 2011.

G.M. Treece, R.W. Prager, and A.H. Gee. Regularised
marching tetrahedra: improved iso-surface extraction.
Computers & Graphics, 23(4):583–598, 1999. ISSN
0097-8493.

Greg Turk and Marc Levoy. Zippered polygon meshes
from range images. In Proceedings of the 21st annual
conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’94, pages 311–318. ACM, 1994.
ISBN 0-89791-667-0.

14

Technical report CS11-04-00 Department of Computer Science, University of Cape Town

Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo.
Data-parallel octrees for surface reconstruction. IEEE
Transactions on Visualization and Computer Graph-
ics, 17:669–681, 2011. ISSN 1077-2626.

15

