Efficient Enforcement of Dynamic Cryptographic
Access Control Policies for Outsourced Data

Anne V.D.M. Kayem
Department of Computer Science
University of Cape Town
Private Bag X3
Rondebosch, Cape Town, 7701
Email: akayem@cs.uct.ac.za

Abstract—Outsourcing of their data to third-party service
providers is a cost-effective data management strategy for many
organizations. Outsourcing, however, introduces new challenges
with respect to ensuring the security and the privacy of the
data. In addition to the need for standard access control policies,
organizations must now be concerned with the privacy of their
data and so hiding the data from the service provider is
important. Simply encrypting the data before it is transmitted
to the service provider is inefficient and vulnerable to security
attacks when the access control policies change.

Approaches based on two layers of encryption alleviate the
privacy concern but still require re-encryption of the data when
policies change. This paper presents a novel and efficient solution
that employs two layers of encryption of the data and an
encrypted data object containing the second access key. Changes
to the access control policies are handled by re-encrypting the
object containing the affected key, which is an efficient operation.
The paper presents our key management approach, a security
analysis of our approach, and an evaluation of the performance
of a proof of concept implementation of our approach.

Keywords: Outsourced Data Management, Information Se-
curity and Privacy, Access Control, Information Retrieval

I. INTRODUCTION

Organizations outsource their data to third-party service
providers to reduce their growing data management costs. The
service providers in turn take care of the management aspects,
granting access only to users that are authorized to do so by
the data owner.

However, data outsourcing introduces concerns for confi-
dentiality [1]. This need for confidentiality applies both to
unauthorized users and the service provider (SP) because the
data must be kept secret from its third party host [2]. For
instance, organizations that outsource data concerning their
customers’ personal information need a way to protect the
information even from the SP in order to maintain adequate
levels of trust from their customers. Hence, the data owner
must protect the data that is sent to the SP but also allow
authorized users to retrieve and read the information at a later
time.

A data outsourcing scenario in which the data owner trans-
fers management of a set of data objects to a third-party SP is
considered. In this data outsourcing scenario, the data owner
grants access rights to subsets of the data objects to users

978-1-4577--1483-2/11/$26.00 ©2011 IEEE

Patrick Martin and Selim G. Akl
School of Computing
Queen’s university
Kingston, Ontario, Canada
K7L 3N6
Email: {martin, akl} @cs.queensu.ca

who retrieve data objects from the SP. The asumption is that
any modifications to an object are made by the users and the
entire object is returned to the SP where it replaces the current
copy. The SP enforces security policies to ensure that the data
objects are visible only to the appropriate groups of users.
Membership in these groups is dynamic so users can join and
leave the groups. There are two problems that emerge here,
first, the data owner wishes to keep the data secret from the
SP and second, the SP needs to protect his/her integrity by
guaranteeing that only authorized users get to access the data
that he/she receives from the data owners.

Cryptographic access control (CAC) has been proposed as a
way to solve these two security problems in data outsourcing.
When cryptographic keys are used to secure the data, the data
owner encrypts the data before it is transmitted to the SP. This
key is then made available to all the users requiring access to
the data but not to the SP. On the SP’s side, to facilitate data
management, the data is categorized hierarchically by impos-
ing a second layer of encryption on the data that is guided by
a hierarchical cryptographic key management (CKM) scheme.
The second key is transmitted to the users requiring access
to the data, according to the rules of access defined by the
data owner. Therefore each user holds two keys, one that is
used for authentication and the first step of decryption on the
SP’s end, as well as one that is used to decrypt the data into
a readable format on the user’s end.

The problem with this approach to securing outsourced
data is that replacing keys to prevent security violations when
group membership changes requires that the data owner and/or
the SP re-encrypt the data with the new key to enforce data
security. This procedure is expensive, particularly when large
volumes of data are involved and/or the set of users with
access to the data is dynamic. Therefore, a CAC scheme
that circumvents the cost of re-encrypting the data when key
updates occur is a desirable solution to the problem of securing
outsourced data.

This paper presents a novel and efficient approach to secur-
ing outsourced data that uses three keys. For convenience, the
keys are denoted B,, K, and A, where 0 < x <mn — 1 and
n is the maximum number of security classes in the access
control hierarchy. The first key, B, is used by the data owner

to encrypt the data before it is transmitted to the SP. This
satisfies the requirement that the data remains secret from all
unauthorized users, including the SP. In order to categorize
the data received, the SP creates a second key, K, that the SP
uses to encrypt the data received from the data owners. The
third key, A, is generated by the SP and is used to encrypt the
keys, K. The key A, is then transmitted to the data owner
and/or the users authorized, by the data owner, to access the
data. Therefore each data owner and/or authorized user holds
two keys, A, and B,. One that is used to encrypt the data
before it is transmitted to the SP, B, ; and one that is used to
retrieve the data from the SP’s end, A,.

Key updates are handled by updating the key A, and
re-encrypting only the data object containing the key K,
instead of updating K, and re-encrypting the data that was
encrypted with K, on the SP’s end. Moreover, avoiding data
re-encryptions circumvents the problem of data unavailability
that arises when a data owner attempts to access data while
the SP is re-encrypting it with an updated key K.

The rest of the paper is structured as follows. In Section 2,
background material on the “Database-as-a-service” paradigm
is presented with a focus on the aspect of CAC to outsourced
data. Section 3 presents the proposed CKM approach and
Section 4, presents a security analysis of the proposed CKM
approach. Section 5 presents some performance results and
concluding remarks are offered in Section 6.

II. BACKGROUND

The “database-as-a-service” paradigm emerged with the
purpose of defining methods of outsourcing data resources
to SPs on the Internet. Most solutions focus on methods
of executing queries efficiently and securely on encrypted
outsourced data [3]-[6]. Typically, these methods are centered
around indexing information stored with outsourced data. The
indexes are useful for returning responses to queries without
the need to decrypt the data (or response to the query). Only
the party requiring and authorized to view the response should,
in principle, be able to decrypt the result returned in response
their query. The challenge in developing indexing techniques is
in establishing a reasonable trade-off between query efficiency,
exposure to inference, and linking attacks that depend on the
attacker’s knowledge [7]. Additionally, there is the issue of
a malicious user with access to the SP’s end being able to
piece together information from parts of information gathered
historically and then using this knowledge to transmit false
information [2], [7], [8].

Other proposals avoid this by using cryptography to protect
the data both from malicious users and from the SPs. Research
on using cryptography to protect access to outsourced data
began with the approach that Miklau and Suciu [8] proposed
in 2003. In the Miklau et al. approach, different cryptographic
keys are used to encrypt different portions of an Extensible
Markup Language (XML) tree by introducing special metadata
nodes in the document’s structure. Hence, the data remains
secret to all the participants in the system and only those in
possession of valid keys are able to decrypt the data. Although

this approach secures the outsourced data and provides hier-
archical access control, it does not address the problem of
handling key updates and the need to categorize data at the
SP’s end.

De Capitani Di Vimercati, Foresti, Jajodia, Paraboschi, and
Samariti [2], [7] build on this approach and consider the
problem of authorization policy updates. The De Capitani Di
Vimercati approach operates by using two keys. The first key
is generated by the data owner and used to protect the data
initially by encrypting the data before it is transmitted to the
SP. Depending on the authorization policies the SP creates
a second key that is used to selectively encrypt portions of
the data to reflect policy modifications. The combination of
the two layers provides an efficient and robust solution to
the problem of providing data security in outsourced data
environments. However, policy modifications or updates are
handled by updating the affected cryptographic key and re-
encrypting the data which is expensive encryption wise when
large amounts of data are re-encrypted.

The literature on CAC approaches, to addressing the prob-
lem of secure data access and cost effective key management,
has been investigated in the context of distributed environ-
ments like the Internet [9]-[13]. Examples of applications in
which access can be controlled using these CKM approaches
include, PAY-TYV, sensor networks and social networking en-
vironments [14]-[16]. However, the case of controlling access
to outsourced data differs from these cases in the sense that
the SP needs to categorize all the data he/she receives in
way that prevents malicious access and also minimizes the
cost of authorization policy changes. Moreover, in the case of
cryptographically supported access, when data re-encryptions
involve large amounts of data, there is the risk of jeopardizing
data consistency if data updates fail to be written onto a data
version due to time-consuming re-encryptions.

III. KEY MANAGEMENT

Our proposed CAC scheme is based on the concept of
hierarchical CKM and so we briefly explain how hierarchical
CKM schemes work before delving into our scheme. The
proposed CAC scheme operates in two phases namely, the
setup phase in which the keys are generated in ways that
enforce the security policies and the update phase which
determines how key updates are handled.

A. The Hierarchical Key Management Model

The concept of hierarchical key management builds on
the lattice model of hierarchical access control that inspired
multilevel access control mechanisms like the Bell-Lapadula
approach [17], [18]. In the hierarchical key management model
(HKM), a unique cryptographic key is assigned to each one
of the classes in the hierarchy. A multilevel access control
system, is enforced by allowing users, with keys belonging
to higher level classes, to access information at lower levels
depending on the rules of information flow in the HKM.
Standard methods of granting higher level users access to

lower classes include the independent and dependent key
management models.

In independent key management schemes, each security
class is assigned a unique key and access to lower classes is
only possible if a user at a higher class holds the required lower
class key [13], [15]. The dependent key management schemes
on the other hand use a series of interrelated keys and access
to a lower class is only possible if a user belongs to the lower
class or holds a key that allows him/her to mathematically
derive the required lower class key [10], [12], [18]. The key
derivation process is performed through the application of a
one-way function, so that a low level key can be derived (when
this is authorized) from a high level key, but the reverse is not
possible.

Our proposed scheme assumes that, depending on the per-
formance or security management benefits sought, either one
of these key management models can be used. The advantage
of using the independent key management approach is that it is
less encryption intensive than the dependent key management
approach, since data is only re-encrypted at the security class
affected by the key update. However, the independent key
management approach requires re-distributing the updated key
to all the classes requiring the new key. On the other hand,
the dependent key management approach avoids distributing
many keys by changing each of the keys in the sub-hierarchy
associated with the affected key. Therefore, in the worst case
the whole hierarchy will need to be updated and the data re-
encrypted which, as mentioned before, is costly. The choice
as to which approach to adopt depends on the context with
which a security administrator is faced. The other assumption
is that since the keys are typically generated by a central
authority, or security administrator, secure key distribution can
be handled by a key exchange protocol like the Diffe-Hellman
key exchange scheme [19].

B. Phase 1: Setting up the System

The data owner begins by categorizing users into exactly
one of several groups (security classes) that are partially
ordered. Additionally, each group U; is associated with a data
object d; and a key B; [18], [9], [10]. To encrypt the data
before it is sent to the SP, the data owner uses the encryption
function

EBm (dx) = Cy

where 0 < x < n — 1 and n is the maximum number of
classes in the hierarchy. For instance in Figure 1, a two class
hierarchy with data objects d;, and d; that are encrypted with
the keys B;, and B; to obtain encrypted data objects ¢;, and
c; is considered.

Moreover, the data owner can facilitate key management
by using a dependent key management scheme to generate
the keys B;. In this case, therefore, each group is assigned
a single key that can be used to either directly decrypt and
access the data, or to derive the required key. For instance, in
the totally ordered hierarchy depicted in Figure 1, B; can be
used to derive the key B; that is associated with the group

G

Fig. 1. An example of a totally ordered hierarchy with four security classes

below Uj. The reverse is not possible because keys associated
to lower level groups cannot be used to derive keys belonging
to higher level groups.

Once the data has been encrypted, the data owner transmits
it to the SP for management. The SP defines a partial order
hierarchy to categorize all the data that it receives. The
partial order hierarchy is enforced by re-encrypting each data
object received with a second key, K; that enables the SP to
authenticate and grant access only to authorized users. The
encryption function that the SP uses is as follows:

EKm (C»L) = 6.L

where 0 < x < n—1 and n is the maximum number of classes
in the hierarchy. For instance in Figure 2, a two class hierarchy
with encrypted data objects c;, and c; that are encrypted with
the keys K; and K to obtain double encrypted data objects
B, and B; is considered. The keys K; can also be defined

Fig. 2. Data Hierarchy on the Service Provider’s End

using a dependent key management scheme, in which case
each class gets assigned only a single key. The reason for this
is mainly to facilitate key management. Finally, to grant users
access to the data on the SP’s end, the SP creates a second
set of keys A; that are used to encrypt the keys K; using the
encryption function

where 0 < x < n—1 and n is the maximum number of classes
in the hierarchy. Thus an encrypted object 7, is obtained
and can only be decrypted with the correct A,. The SP then
transmits the keys A, to the data owner who takes care of
sharing the keys with the users according to the portions of
data that users are authorized to access.

For instance, as shown in Figure 3, the SP uses the keys
A; and A; to encrypt the keys K, and K; to obtain -y;, and

~;. The keys A; and A; are then shared with the data owner
who in turn will take care of distributing the keys to the users
belonging to the groups U;, and U; respectively. So, in this
case, users in group U; get assigned the key A; and users in
group U; get assigned the key A;.

Fig. 3.

Key Protection Procedure

Each user holds two keys, say A;, B; and the user accesses
data, say d;, by submitting their key A; to the SP for
authentication. The SP will use the key A; to decrypt 7; and
obtain K; that will then be used to decrypt [3; to obtain c;
that is then handed to the user. To read c¢;, the user will use
his/her key B; and decrypt c; to obtain a readable form of d;.
So in essence, the only keys a user in U; is ever aware of are
A; and B;.

C. Phase 2: Handling Key Updates

For simplicity, assume that key updates are triggered by
changes in user group membership and the objective of key
updates is to prevent a user who has left a group from
subsequently accessing a data object, say d;. In this case, the
data owner will send a message to the SP to alert him/her
of the change. In previous approaches, key updates imply re-
encrypting all the data objects associated with the affected key.
Since the cost of data encryption is directly proportional to the
size of the data object, re-encrypting large files is costly and
time-consuming.

Our approach overcomes this drawback by allowing the SP
to replace the key A; of the affected group and re-encrypt the
key K;. The new A; is then sent to the users remaining in
group U;. Therefore, only the data object containing the key
is re-encrypted and since this is a considerably smaller data
object in comparison to the actual data, the overall cost of
key updates is reduced. Since access to c; requires that a user
presents a correct A; to the SP, once A; is updated, the old B;
would be useless to the user who has left the system, because
he/she will be unable to retrieve c;.

IV. SECURITY ANALYSIS

To evaluate the theoretical security of our key management
approach, three aspects are considered namely, the security of
the keys that the users hold, namely A, and B,, the security
of the data d,, and the security of the key K. Our objective
here is to show that no single user in the system has enough
knowledge of the assigned keys to be able to deduce the true
contents of the data unless they hold the “correct” keys. In fact,
once the data owner encrypts and transfers the data to the SP

for management, he/she can not retrieve the data without the
“correct” keys, A, and B,.

A. Security of B, and d,

As mentioned in Section III-B, the key B, is used to
encrypt the data d, before it is transmitted to the SP and
transmitted to all the users that have been granted access to
the data d,. Since the key B, is kept secret from the SP, the
SP cannot read d,, and therefore the data stays secure. This
satisfies the first concern for security on the user’s end, namely
the wish to keep the data secret from the SP. In selecting
a key generation scheme, security against collusion attack is
provided by selecting a scheme that is provably secure against
collusion [9], [20], [21].

Another aspect worth considering is the case in which a
malicious user, say Alice steals B, during its transmission to
the users in U,. Since Alice does not hold A,, she will be
unable to exploit her knowledge of B, to retrieve c, unless
she presents the “correct” A, to the SP.

B. Security of K,

The key K, is created by the SP and is never shared. All
encryptions and decryptions with the key K, are performed
on the SP’s end. Therefore, K, remains protected.

C. Security of A,

With respect to the security of A, two cases are considered,
in the first case a user who left a group attempts to retrieve and
decrypt ¢, and in the second case, a malicious user intercepts
A, and attempts to retrieve and decrypt c,.

In the first case, to retrieve the current version of the data
d,, the user will begin by submitting his/her key, A,, to the
SP for authentication. The SP uses the supplied A, to decrypt
v, which is not possible because K, has been re-encrypted
with an updated A,. Therefore, even though the key B, was
not updated, the user will be unable to retrieve c, and decrypt
it to read d,.

The second case involves a malicious user attempting to
gain access to d,, by intercepting A,. As shown in Figure 4, the
malicious user, say Alice, intercepts A, during its transmission
to the users in group U,. Alice then presents A, to the SP and
since A, is correct, the SP retrieves K, from the decryption of
~z. The K, obtained is then used to decrypt (3, and retrieve ¢,
that is returned to Alice. However, since ¢, needs to be further
decrypted using B, which Alice does not hold, obtaining c,,
is useless.

Therefore, our approach to key management, gives a strong
guarantee of securing outsourced data. The only case in
which Alice can hope to retrieve d,, is that in which she
steals both A, and B,. However, if A, is updated fairly
frequently the cost of stealing the keys should outweigh its
benefits. Moreover, a secure key exchange protocol based on
an asymmetric cryptography technique [22], could also be used
to circumvent key interception attacks.

User : Group - Uy

1: Request‘to leave Uy 2: Create ﬁew key Ax

Service Provider

3:Decrypt yx to obtain Ky
4: Re-encrypt Ky with new A

5a: Return new A, to users in Uy

82 |

Users remaining ~5b.: Alice
in group Uy mtercelats A«

7: Decrypf Vx to obtain Ky
8: Decrypt Bxto obtainc, ...

o

77777 6: Request to access Cx,
@ present key Ay
L

9: Return c, to Alice

Fig. 4. Malicious Attempt to Retrieve dg

V. PERFORMANCE ANALYSIS

The scalability of the proposed CAC scheme to controlling
access to outsourced data is evaluated with a set of experiments
conducted on an IBM Pentium IV computer with an Intel
3.00Ghz processor and 1GB of RAM.

A. Comparison Strategies

The performance of our proposed CAC scheme is compared
to a naive approach and the approach proposed by De Capitani
Di Vimercati et al.

1) Naive Approach: Our naive approach gives basically a
worst case situation in which the data owner encrypts the data
and sends it to the SP. The data is not re-encrypted on the
SP’s end. The key management model is based on a series of
partially ordered interdependent keys and so every time a user
group’s membership changes the data owner reacts by updating
the keys throughout the entire hierarchy, re-encrypting the
data associated with the affected keys and re-transmitting the
data to the SP. This approach is costly encryption wise and
insecure because the key updates, data re-transmissions and
key distributions create more opportunities for security attacks.
This case is a baseline and the CAC scheme used is the one
that Akl and Taylor proposed [18]. The reason for this choice
is that the Akl and Taylor CAC is an example of a scheme
that requires updating keys throughout the entire hierarchy in
reaction to key updates.

2) De Capitani Di Vimercati et al: In this case the ap-
proach proposed by De Capitani Di Vimercati et al. [1] is
implemented using the scheme proposed by Atallah, Frikken
and Blanton [9] to handle key management. Here the data is
encrypted on the data owner’s end and transmitted to the SP
where a second layer of encryption is applied to the data. Key
updates are handled by updating only the key associated with
the data as well as the keys that are used to authenticate higher
level users before granting them access to the data.

3) Proposed Key Management Approach: Our proposed
CAC scheme is implemented as outlined in Section III-B,
and use the Akl and Taylor scheme [18] to handle key
management. This is to show that our design approach to

handling key management in outsourced data scenarios is such
that key updates are handled effectively even in the worst case
scenario.

B. Comparison Metrics

For clarity, some definitions of the performance evaluation
terminology used is presented after which a description of the
experimental platform is given.

o Cost of System Setup: This is the cost of key generation
and data encryption both on the SP’s end and the data
owner’s end. This cost is the total time (in minutes per
hierarchy size) that it takes to set up the system with
respect to the size of the file.

o Cost of Key Updates: This is the cost (time it takes in
minutes per file size) of re-establishing security when a
user group’s membership changes and the system needs
to update the keys to prevent the departed user from
continuing to access the system.

C. Experimental Setup

All three key management approaches were implemented
on a Microsoft Windows XP platform using the Java 2
Standard Development Kit and Eclipse [23]-[26]. While our
proof of concept implementation uses Triple Data Encryption
Standard (Triple DES) keys for the encryption and decryption
procedures, it can easily be replaced by the current Advanced
Encryption Standard (AES) standard [27]. In Triple DES the
key size is 168 bits and the block size 64 bits. However, due to
the meet-in-the-middle attack the effective security Tripe DES
provides is only 112 bits [28], [29]. In the experiments we use
hierarchies with 3-73 security classes (groups). The hierarchies
are formed in a way that allows roughly 2-10 sub-groups to be
directly connected to a group. The hierarchy sizes and shapes
are based on the computational limitations of the machine
that we used for the experiments. It is also worth noting that
different structures of hierarchies might yield slightly different
results depending on the time it takes to select a valid set of
exponents to use in generating the keys.

The cost of system setup is evaluated for the different
hierarchy sizes with a file of size ~ 32MB. We also evaluate

the encryption overhead generated in setting up the system
with respect to the size of a file. In this case we used files of
sizes 1KB,...,l00MB. The experiment on cost of key updates
is first performed with a file of size ~ 32MB and then with
varied files sizes of 1KB,...,I00MB. In the first case using a
standard file size of ~ 32MB allows us compare the cost of
updates with respect to different file sizes. While the second
case allows us focus on the encryption overhead generated, in
handling key updates to reflect authorization policy changes,
with respect to varied file sizes. Henceforth, we use “the
Vimercati approach” to refer to the method that De Capitani
Di Vimercati et al. proposed [1].

D. Results

Our performance analysis is centered on two aspects: cost of
system setup and cost of key updates to reflect authorization
policy changes. In the following sections we present results
to highlight the performance enhancements offered by our
proposed approach in comparison to a naive or baseline case
and the Vimercati approach.

1) Cost of System Setup: The experiments here evaluate the
time it takes each of the three key management approaches that
we described in Section V-A to generate the required keys and
encrypt the data associated with every security class in the
hierarchy, both on the data owner’s and the SP’s ends. The
standard deviation for each point plotted is £0.83 minutes.

As shown in Figure 5 the cost of generating keys in our
approach during system setup is highest in comparison to the
naive and Vimercati approaches since our scheme generates
three keys instead of two as the other schemes do. We note,
however, that the cost of key generation in our proposed
scheme is reasonable since it takes less than a minute to
generate keys for a hierarchy of 73 security classes. In fact,
a closer look at Figure 5 and Figure 6 indicate, that data
encryption is the more cost intensive operation and that the
the costs of key generation and data encryption grow linearly
with the hierarchy size.

45

%0 —+— Naive Approach

—x - Vimercati Approach
35

- - - Proposed Approach
30

25

20

Time (Seconds)

0 10 20 30 40 50 60 70 80
Hierarchy Size (Number of Security Classes - 32MB File per Class)

Fig. 5. System Setup: Cost of Key Generation Only per Hierarchy

For smaller sized hierarchies it can be noted that the
setup costs are relatively similar while larger hierarchies (i.e.

73 security classes) create a wider divergence between our
proposed scheme and the other two. This is because the cost
of generating the third key and encrypting the associated key
files has a bigger impact on the overall cost as the size of the
hierarchy grows.

50 7

" - - - Naive Approach
—— Vimercati Approach P
40 —& - Proposed Approach 7
P
> 35 0 p
2 30 g
)

g » =
IS .

20 —

15 s

) /".,{_ .
10 —
//yp;/(/
5 //
0 T T T T T T T
0 10 20 30 40 50 60 70 80
Hierarchy size (Number of Security Classes — 32MB File
per class)
Fig. 6. System Setup: Cost of Key Generation and Data Encryption per
Hierarchy

Our second experiment evaluates the encryption overhead
generated in setting up one security class on the system. As
shown in Figure 7, in this case we consider the effect of
different file sizes on the cost of data encryption using each
of the three approaches.

As expected, we note that with all the three approaches the
overhead generated during encryption is proportional to the
size of the file. The encryption overhead generated using our
proposed scheme is marginally higher than that in the Vimer-
cati and naive approaches. However a closer look indicates that
the difference is roughly 0.1 minutes which is due to having
to encrypt the key file on top of encrypting the data files.

2) Cost of Key Updates: The experiments in this section
evaluate the time it takes our proposed key management
approach to generate a new key in response to a key update
request. In the first experiment, we consider the worst case

35

3 —— Naive Approach

- = - Vimercati Approach

25 —— Proposed Approach

1 /"~
/

1KB 2KB

Time (Minutes)

T T T T T 1
10KB 1MB 5MB 20MB 30MB 40MB 60MB 100MB

File Sizes Per 1 Node in the Hierarchy

Fig. 7. Encryption Overhead: Cost of system setup with respect to file size

in which keys throughout the whole hierarchy need to be

updated. The performance of our approach was compared to
the Vimercati approach and the naive approach. The standard
deviation for each point plotted is +£0.83 minutes in the
Vimercati and naive approaches and +0.5 minutes in our
proposed approach.

As shown in Figure 8 the cost of key updates in the naive
approach remains unchanged from the cost of setting up the
hierarchy and is the most costly of the three approaches. It is
also worth noting at this point that this approach is the most
insecure because the data is exposed briefly each time a key
is updated. Additionally, since the data needs to be constantly
re-transmitted to the SP, frequent key updates open up more
possibilities for malicious interceptions.

45 4

—e— Naive Approach
40 —= - VVimercati Approach
- & - Proposed Approach

35
30

25 /

20 —

Time (Minutes)

T T T T 1
0 10 20 30 40 50 60 70 80
Hierarchy Size (Number of Security Classes
Per Hierarchy — File size per class: 32MB)

Fig. 8. Key Updates: Cost of Replacements and Re-encryptions

The Vimercati approach performs much better than the naive
approach, which is to be expected since the encryption time
is cut roughly by a half. Only the keys on the SP’s end need
to be updated and this cost grows linearly with the hierarchy
size.

Our proposed approach outperforms the previous two be-
cause updates are handled by replacing the key A, and re-
encrypting the key K, associated with each class in the
hierarchy. This key file is smaller than the data files, hence
the gains in performance.

Our second key update experiment looks at the impact of
file sizes on the overhead generated during key updates. In this
case a single security class in the hierarchy that is associated
with a file of size 1KB,...,100MB, is considered. As shown in
Figure 9, the observation is that the performance of the three
approaches is similar for the smaller files, i.e. 1KB,...,IMB.

This confirms our observation that the size of the file is
directly proportional to the encryption overhead generated.
However, as the files get larger the performance of the naive
and Vimercati approaches grow worse while our proposed
approach’s performance stays fairly constant.

While the cost of updates is proportional to the file and
hierarchy size, the differences in cost are more significant
in the Vimercati and naive approaches than in the proposed
approach. This is because the key file size is fairly constant
and so the encryption costs relatively the same.

35+

—e— Naive Approach
3 - M- Vimercati Approach
—A--Proposed Approach
25 —

Time (Minutes)
o n
T

1KB 2KB 10KB 1MB 5MB 20MB 30MB 40MB 60MB 100MB

Files per Node in Hierarchy

Fig. 9. Key Updates: Cost of Replacements and Re-encryptions per file size

VI. CONCLUSIONS

In this paper, a solution is presented to the problem of han-
dling authorization policy modifications when access control is
enforced cryptographically in situations where data is stored
and offered to clients by an external server. The discussion
of the background on this topic showed that most solutions
have tended to focus on indexing techniques that strike a
balance between query efficiency and controlling exposure
to inference attacks. However, a key concern in outsourced
data environments is that of protecting the secrecy of the data
effectively. Data owners want guarantees that their data will
not be read and/or modified by the SPs and SPs need some
way of categorizing the data to facilitate data management
while ensuring that malicious access is prevented.

More recently, De Capitani Di Vimercati et al. [1], [2]
proposed a solution to addressing the concern for data security
on both the data owner’s and SP’s ends. Their approach uses
a two layered encryption model that allows the data owner
to encrypt the data before it is transmitted to the SP where
a second encryption layer is applied to the data. However,
their solution faces the drawback that key updates are handled
by requiring the SP to generate a new key and re-encrypt
the affected data. Moreover, as shown in Figure 9 since re-
encrypting large data objects is time consuming, issues related
to copy consistency are likely to arise if users attempt to write
updates on to the data during the encryption.

This problem was addressed by designing an access con-
trol approach that is supported by three cryptographic keys,
A, B, and K,. The keys, B, and K, are used to protect
the data from both unauthorized users and the SP by allowing
the data owner and SP to apply two layers of encryption.
The last key, A,, is used to encrypt the key, K, that the
SP used to apply the second layer of encryption to the data
and is distributed to the users authorized to access the data.
To access the outsourced data, a user needs to present the
key, A, to the SP for authentication. Once this test is passed
the user is handed a data object that can only be decrypted
into a readable format if the user holds the key with which
it was encrypted. So in essence, each user holds two keys,

one that authenticates them to the SP, A, and another key,
B,, that is used to read the data that they retrieve. When a
situation occurs that requires a change in the authorization
policy, the SP reacts by creating a new key, A, to replace the
old key, re-encrypts the key file containing K, and transmits
the key, A, to the users authorized to access the affected data.
Since the key file is small in comparison to the data file, the
cost of key updates is reduced considerably in comparison to
previous approaches. An added advantage of our approach is
that it removes the requirement of having to re-encrypt the
data each time the authorization policy changes and therefore
circumvents the problem of data consistency.

The results obtained from our performance analysis indicate
that while the cost of setting up the system is marginally higher
than that in the De Capitani Di Vimercati et al. approach,
the gains afforded by our key update approach overcome this
drawback. Our security analysis also shows that our approach
is secure against attacks that might be carried out by malicious
users trying to guess at or deduce the contents of the data.

REFERENCES

[1] S. De Capitani Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samariti. Over-encryption: Management of access control evolution
on outsourced data. In In Proc. VLDB 2007, pages 123-134. Vienna,
Austria, September 23-28 2007.

[2] S. De Capitani Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samariti. A data outsourcing architecture combining cryptography
and access control. In Proc. of the 2007 ACM Workshop on Computer
Communications Security (CSAW), pages 63—69. Fairfax, Virginia, USA,
November 2 2007.

[3] R. Agrawal, J. Kierman, R. Srikant, and Y. Xu. Order preserving
encryption for numeric data. In Proc. of ACM SIGMOD, pages 563-574.
Paris, France, June 2004.

[4] G. Aggrawal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,
R. Motwani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep a
secret: A distributed architecture for secure database services. In Proc.
CIDR 2005, pages 186—199. Asillomar, California, USA, 2005.

[5] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database as a service.
In Proc. of the 18th ICDE Conf., pages 29-38. San Jose, California,
USA, 2002.

[6] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Encrypting sql over
encrypted data in the database-service-provider model. In Proc. of ACM
SIGMOD, pages 216-227. Madison, Wisconsin, USA, June 2002.

[7]1 A. Ceselli, E. Damiani, and S. De Capitani Di Vimercati. Modeling and
assessing inference exposure in encrypted databases. ACM Trans. on
Information and System Security, 8(1):119-152, February 2005.

[8] G. Miklau and D. Suciu. Controlling access to published data using
cryptography. In Proc. of the 29th VLDB Conf., pages 898-909. Berlin,
Germany, September 2003.

[9] M. J. Atallah, K. B. Frikken, and M. Blanton. Dynamic and efficient

key management for access hierarchies. In Proc. ACM Conference on

Computer and Communications Security, pages 190-202. Alexandria,

Virginia, USA, November 7-11 2005.

M. J. Atallah, M. Blanton, and K.B. Frikken. Key management for non-

tree access hierarchies. In Proc. of ACM Symposium on Access Control

Models and Technologies, pages 11-18. Lake Tahoe, California, USA,

June 7-9 2006.

Jason Crampton. Cryptographically-enforced hierarchical access control

with multiple keys. In Proc. of the 12th Nordic Workshop on Secure IT

Systems (NordSec 2007), pages 49-60, 2007.

A.V.D.M. Kayem, S.G. Akl, and P. Martin. On replacing cryptographic

keys in hierarchical key management systems. Journal of Computer

Security, 16(3):289-309, 2008.

R.H. Hassen, A. Bouabaallah, H. Bettahar, and Y. Challal. Key man-

agement for content access control in a hierarchy. Computer Networks,

1(51):3197-3219, 2007.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]
[24]
[25]
[26]

(271

(28]

[29]

J.C. Birget, X. Zou, G. Noubir, and B. Ramamurthy. Hierarchy-based
access control in distributed environments. In Proc. of the IEEE
International Conference on Communications, Vol. 1, pages 229-233.
Helsinki, Finland, June 11-14 2001.

W. Yu, Y. Sun, and R. Liu. Optimizing the rekeying cost for contributory
group key agreement schemes. /[EEE Transactions on Dependable and
Secure Computing, 4(3):228-242, July-Sept.

S. Zhu, S. Setia, and S. Jajodia. Performance optimizations for group
key management schemes. In Proc. of 237% International Conference
on Distributed Computing Systems (ICDCS ’03, pages 163-171. Fairfax,
Virginia, USA, May 19-22 2003.

D. E. Bell and L. J. Lapadula. Secure computer systems: Mathematical
foundations. MITRE Report, MTR2547, March 1973.

Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem
of access control in a hierarchy. ACM Transactions on Computer
Systems, 1(3):239-248, August 1983.

Wikipedia Diffe-Hellman. Diffe-hellman key
http://en.wikipedia.org/wiki/Diffie-Hellman, March 2009.

A.V.D.M. Kayem, S.G. Akl, and P. Martin. Heuristics for improving
cryptographic key assignment in a hierarchy. In Proc. of the 21st
International Conference on Advanced Information Networking and
Applications Workshops (AINAW’07), pages 531-536. Niagara Falls,
Canada, May 21-23 2007.

S. J. Mackinnon, P. D.Taylor, H. Meijer, and S. G. Akl. An optimal
algorithm for assigning cryptographic keys to control access in a hier-
archy. [EEE Transactions on Computers, c-34(9):797-802, September
1985.

Martin E. Hellman. An overview of public key cryptography. [EEE
Communications Magazine, 50th Anniversary Commemoration Issue,
40(5):42-49, May 2002.

Java. Java development kit (software). http://en.wikipedia.org/wiki/Java-
Development-Kit, 2010.

exchange.

Java. Java (software). http://www.java.com/en/download/index.jsp,
2011.
Eclipse. Eclipse (software). http://en.wikipedia.org/wiki/Eclipse-

(software), 2010.

Eclipse. Eclipse (software). http://www.eclipse.org/downloads/packages/,
2010.

J. Daemen and V. Rijmen. The block cipher rijndael. J.-J. Quisquater
and B. Schneier (Eds.): CARDIS 2000, LNCS 1820, pages 277-284,
2000.

Wikipedia Triple DES. Triple des. http://en.wikipedia.org/wiki/Triple-
DES, March 2011.

Gaél Rouvroy, Francois-Xavier Standaert, Jean-Jacques Quisquater, and
Jean-Didier Legat. Design strategies and modified descriptions to
optimize cipher fpga implementations: fast and compact results for
des and triple-des. In Proceedings of the 2003 ACM/SIGDA 1I1th
International Symposium on Field Programmable Gate Arrays, FPGA
’03, pages 247-247, New York, NY, USA, 2003. ACM.

