Middleware for Grid
Computing on Mobile
Phones

Muthoni Masinde and Antoine Bagula
University of Cape Town, South Africa

Victor Ndegwa
University of Nairobi, Kenya

1 Need for Mobile Phone Applications in Africa

The low Internet penetration and lack of electricity in the rural areas
of the developing countries of Africa make the use of computer-
based solutions a big challenge. Yet there is dire need of such
applications in these areas. Luckily, most of these countries have
reported impressive adoption levels of mobile phones [3], a
phenomenon that is now creating a paradigm shift; computing is
slowly moving from the traditional PC to the phone. Coincidentally,
advancements in the smartphone technology have produced such
powerful gadgets that can ably compete with PCs of the 21st
century. Today, for less than US$ 400, one can acquire a
smartphone equipped with; 1000MHz clock speed, 512MiB (ROM
+RAM), access to several types of data networks (CSD, HSCSD,
GPRS, EDGE), and Wireless local-area network (WLAN) among
other features [6]. With this kind of computing power, computer
analysts/programmers can now develop both scientific and
commercial applications to address numerous challenging facing
poor people in the developing countries of Africa.

Computing 153

1.1 Using Mobile Phone as a Computing Device —The
Challenges

A few challenges related to the use of mobile phones as computing
devices need to be addressed before we see a wide deployment of
mobile phone applications. Some of these are:

(I) Mobility — phones are highly mobile and their computation power
may not be available where/when it is needed;

(Il) Heavily reliance on battery power that gets drained fast
especially under heavy computational tasks;

(ll1) Different hardware and software leading to high levels of
heterogeneity among mobile phones;

(IV) Most of the phones found in the developing countries of Africa
are low-end and may not provide the required computing power;
and

(V) Mobile phones are highly personalized; the permission to use
them for computational tasks may not always be granted.

1.2 Grid Computing on Mobile Phones

Grid computing on mobile phones is one way of addressing some
of the above challenges. Computer grids have successfully been
utiized to develop gigantic computer solutions especially for
scientific use ([2] and [5]). This success can be replicated on a
mobile phone environment as long a generic grid middleware
precedes this. Grid computing middleware (hardware and/or
software) is very critical for the operation of the nodes, its main
roles being to support Single System Image (SSI) and to ensure
enhanced system availability. Failure of a node for instance should
not affect the operation of the system in anyway. To achieve this,
the middleware enables the nodes to take advantage of services
available in the grid transparently hence freeing the end user from
having to know where an application will run. It also makes it
possible to view all system resources and activities from any node
as well as supports check pointing [7]. The latter occurs when

154 Computing

process state and intermediate results are saved periodically to
ease process migration when and if needed. MobiGrid [4] is an
implementation of mobile phone grid middleware.

Like any conventional grid middleware, MobiGrid is a middleware
prototype for mobile phones that provides an APl on which
distributed applications can be built. MobiGrid’s uniqueness lies in
the fact that the middleware is for mobile phones environment.
MobiGrid was developed to bridge the technological gap that exists
in the rural areas of the developing countries of Africa where the
adoption of mobile phones technology is higher than that of other
forms of ICTs. By using MobiGrid, computer-based applications
that are currently a reserve for the developed countries and for
resource-endowed cities of Africa can become a reality for all.
Consequently, the much needed custom applications such as e-
heath, e-education, e-farming, e-weather forecast and so on can
then be implemented as mobile phone applications for use in the
remote villages where they are needed the most.

1.3 MobiGrid Version 1 — The Limitations

Originally, MobiGrid was implemented using the Python
programming language for S60 (pyS60) and tested on only two
phone models: the Nokia E63 and Nokia N95. As described in the
following sections, MobiGrid was designed based on a client/
coordinator model where each phone can run either as a local/
client server that manages the resources of the phone and
responds to requests from the coordinator to provide a registered
service to the mobile grid or optionally run a coordinator server that
responds to requests from the client servers and monitors their
health to ensures they are still running. In its earlier
implementation, MobiGrid had several limitations; the two major
ones being:

(I) MobiGrid could only recognize coordinators using the subnet
mask 255.255.255.0. This was due to the lack of support for
broadcast in PyS60, requiring use of a work-around. The
implemented work-around was too slow for use with a wide range

Computing 155

of IP addresses (e.g. addresses using mask 255.255.0.0) taking up
to 5 minutes to find the coordinator. As a result, the middleware
could only be used by up to a maximum of 254 nodes on the same
network;

(I For MobiGrid to function properly, it required that the two main
modules (Local Server and Coordinator Server) be installed on
each of the phones participating in the grid. However, due to
limitations of S60 (at the time of developing the application), a
phone could not run more than one instance of the application. This

made it impossible to come up with a custom application to test
MobiGrid.

In this chapter, the rich tools provided by the Android Framework|[1]
have been employed to address the above limitations. In particular,
the account manager and the synchronization manager (through a
sync adapter) have been used extensively. Using Android Virtual
Device (AVD) tool, it is now possible to simulate a grid with
hundreds of virtual phones, analyse and visualize performance of
the grid using tools provided by the rich android.graphics class.
Finally, it is now easier to control and manipulate the grid by
remotely (using telnet) executing various commands such as for
checking battery, network and memory status of the phones (virtual
and real) participating in MobiGrid.

2 Analysis, Design and Implementation of
MobiGrid

Both Exploratory and Operational Prototyping were used in
developing MobiGrid. Exploratory prototyping was used to build
and test individual features and once a feature had been fully
tested, it was added to the operational prototype and further
evolved.

2.1 MobiGrid Functional Requirements

MobiGrid should be able to

156 Computing

(I) locate the coordinator and register with it;

(I tell if the coordinator has failed;

(1) call for an election if no coordinator was available;

(IV) participate in an election and take over the role of coordinator if
elected;

(V) register new services provided by applications running on the
phone;

(VI) service request for services that were registered with the
MobiGrid;

(VIl) provide a messaging system for communication; and

(VIII) provide an interface through which applications could use the
grid.

2.2 MobiGrid Design

MobiGrid was designed to provide a middleware service that is
always started and runs in the background to allow distributed
applications to operate. This middleware service abstracts the
developer of the distributed application from having to deal with the
technicality of locating distributed services and managing remote
nodes. The typical operation of MobiGrid is as follows:

2.1.1 Initialization

() The user starts the MobiGrid service on his/her phone by
selecting it from the menu. The assumption here is that MobiGrid is
already installed on his/her phone.

(1) MobiGrid searches for other phones running MobiGrid.

(111) If a phone running MobiGrid and acting as the coordinator is
found, connect to this coordinator as a client.

Computing 157

(IV) If no coordinator is found, call for an election. The winner of the
election becomes the new coordinator. If the caller of the election is
not challenged, the caller is elected unopposed.

(V) Once a coordinator has been found, MobiGrid can connect to
the coordinator and register any services it may have available.
These services are provided by applications that use MobiGrid
running on the phone.

(VI) If an application requires a service from MobiGrid, it passes a
message to MobiGrid, which then provides the service or requests
the service from the coordinator.

| ehone - chentzate LAty | LSRR | BROYRT MDA |

1: retviewe socbing s
-

2 st mooesspoantd)

Figure 1: Initialization Sequence

Each phone runs a client/local server and may optionally run a
coordinator server if it is the coordinator. The client server manages
resources on the client phone and responds to requests from the
coordinator (e.g. to provide a registered service). The coordinator
server responds to requests from the client servers and monitors
their health (i.e. ensures they are still running).

158 Computing

2.2.2 Finding the Coordinator

The coordinator is responsible for the following:
(I) determining which nodes are part of the grid;

(Il) maintaining a dictionary of the services available on the grid
and which nodes are offering them;

(1) checking which nodes are up and which have failed and

(IV) servicing request for services by finding the node offering the
service requested and forwarding the request

The first node to join the grid automatically becomes the
coordinator and other nodes register with it on joining. The steps
involved in finding the coordinator are as follows:

(I) The client broadcasts to a given SERVER_PORT (default is port
2904) asking who the coordinator is

(I) The coordinator responds and registers the client. The client
also registers the IP address of the coordinator

() If no response is received within a designated TIMEOUT
period, the client calls for an election by broadcasting an !Election
message to a designated CONTROL_PORT (default is port 7609).
If a node with better election attributes receives a call for an
election, it responds by calling its own election. If the caller of the
election is not challenged, it automatically becomes the new
coordinator

2.2.3 Registering/Requesting Services

When an application that uses the MobiGrid is started, it
automatically registers services it offers with the coordinator by
sending a !Service command. The coordinator then adds the
service and a description of the service to a dictionary of services
owned by that node. If/when the coordinator fail, all the services will
have to be re-registered with the new coordinator.

Computing 159

A node can also request a service by sending a !'Request
command with the appropriate parameters (depending on the
service). For example, PlotGragh(x,y,z) to request for a service to
plot a graph given the graph coordinates (x,y,z).

The coordinator process receives and processes request from the
local server running on the individual handset. It sends its response
to the local server, which then forward the response to the
application that made the request

S e reqgnd el
T ————
N b T STV
el W B TGl A Ko I'rl:--\.lﬂ-nl |m_'-r::"|--_1' RS e
' =4 Gervice not regndered [= Node regitered
wervicn Pegailration |uneegistensd nodaliregten nods

Figure 2: Add a Service - State Diagram

.... SrTOr mateide { Senvte net Found |
i S R ;

FEC LT DELT IEJI.'.'J{'-!F LR) agrih PO e e

k S_m-?'-th-u-l;;'- 2

T Searching for Service |
i -

i) ril i sl i
- a

L T

Figure 3: Request Service - State Diagram

160 Computing

poil et

1 R — .
lI—mL T R r-‘g|dﬂ _."!I—J
check f wrver i lunnmg__.--"' :
, | o) PR
| Lost Election | teslet m Sy garnve Ragistered |
dic lane soff wirerregester ulfu-m ~.l
:'—'m Eull "ugg_:m i
challenged g. ™
not chalierged | iy, P
' o | Server Found
. I __.I—'
l Waing tor Chalenge to ehection JL'. Call eection _-_fl Ko Server Found j |
i — o PO !-l'""'l" resgonded
L2 (Eltiog o eyt

broadcast siqnal bo locate sener

[Server unkenown A

Figure 4: Elections - State Diagram

Begin

Get Current
Resource Levals

|

Send Currant
Resources level to
Coordinator

Figure 5: Responding to Polls

Computing 161

2.2.4 MobiGrid Coordination

The coordinator recognizes the following commands:
(I) 'Register —register a new client by calling registerClient

(1) 'Poll —client checking if server is still alive. It responds by
calling notifyStillAlive

(11 'PollResponse —receive a response from a client node
indicating that the client is still up and running. Update status of
client by calling updateClientState

(IV) 'Request —process a service request from the client by calling
offerService

(V) !Service —register a new service from a client by calling
addService

(VI) 'Quit —shut down the coordinator by calling shutdown

2.2.5 Local Server Operation

Local server is a client of the coordinator but it is itself a server that
is charge of any custom applications that may be installed on the
handset

The local server recognizes the following commands:

(I) 'Election —respond to an election by calling
acknowledgeElections

(II) 'Winner —declare self as winner of an election by calling
signalRegisterServer

(1I1) 'Poll —respond to a poll from the server to indicate that the
client is still alive by calling respondToPoll

162 Computing

(IV) Alive —a reply from the server indicating that the server is up
and running. Processes using updateServerStatus

(V)!Service —register a service with the coordinator by calling
registerService

(VI) 'Serve —offer a service on request from the coordinator by
calling doServe

(VIl) IConfirm —a confirmation from the coordinator that the
service offered by the client has been registered successfully.
Processed by calling serviceConfirmed

(VIIl) 'Request —request a service from the coordinator by calling
requestService

(IX) 'Found —a notification from the server that a requested
service was found. Processed by calling notifyClient

(X) 'Quit —shut down the local server by calling shutdown

Computing 163

f

.)

;

®_
-

Yo
*
it

©
ci
A

Figure 6: MobiGrid Coordination

164 Computing

e e
. -

w.'-.l -ml u-.l
“;;|,;‘m,‘?fff| ‘“".-"?.‘”fh';"" -
I | | | J | | | |
(»)
il
(8
L)
o)
o~ : .y
-

Figure 7: Local Server Operations

2.2.6 Keeping Track of Nodes

Like in any other grid, the coordinator has to keep track of which
nodes are still up and which have failed. The nodes also need to
continually check if the server is up and running. This is achieved
by the nodes and the coordinator polling each other at regular

Computing 165

intervals and checking and keeping count of the number of times a

node/coordinator has failed to respond.

b e ey e _'——T— —

1: retrieve_settingsl] -
J harl .bl:l:ﬁs.pnntll

| 3: callEiectionMoSarveritimed | nt)

e

ok Ikﬂwmtmlldﬁd s dchonany|

D5 ek eSetWin nerl)

R

| & sgnalfeghteredSener| data : dictionany

E,__‘
! a_me_ |
i
b

i RB: regiderClent|data ; dictionarny|

e L

Figure 8: Keeping Track of Nodes

166 Computing

Figure 9: Checking state of the coordinator

Computing 167

2.3 MobiGrid Version 2 Implementation

MobiGrid Version 2 is being implemented using Android SDK 2.2
with the latest (0.97 at the time of implementing MobiGrid) version
of Android Virtual Device (AVD) plug-in for Eclipse 3.6. The
development (main) machine being used is MacBook Pro running
Mac OS X 10.5.8 (9L31a). At the time of writing this, MobiGrid had
not been tested on actual phones but was extensively tested on
several AVDs.

To depict the design presented under MobiGrid Design as well as
maintaining the structure of MobiGrid Version 1, two main modules
have been implemented:

() Coordinator Module to run on the phone acting as the
coordinator for the grid

(I Local Server Module to run on all the other handsets and act
as the server to manage the handsets’ resources (hardware and
software) needed/participating in the grid

The design also requires that all the handsets be installed with both
modules in order to:

() empower all the phones with the ability of playing coordinator
role when/if elected

(Il) provide a means for servicing request to run applications
running on the handset (and are part of the grid)

(I1) provide statistics of resource (battery and memory in this case)
utilization on the handset

Note: The Coordinator Module remains ‘dormant’ in all the
handsets except in the one playing the coordinator role.

168 Computing

3 MobiGrid Version 2

Though the implementation of MobiGrid is still on going, the
following are the new features that Android has added to MobiGrid
Version 1:

3.1 Broadcast Communication

Android directly supports broadcast communication through
android.content.BroadcastReceive class. This is a base class for
code that will receive intents sent by sendBroadcast(). This
drastically reduced the communication overhead that was
experienced during the communication from the Coordinator
instance to the Local Server instances.

3.2 Multiple and Graphical Testing

By initializing multiple AVDs, it is now possible to effectively test the
various aspects of MobiGrid. This is contrary to the MobiGrid
Version 2 that was command based (see screenshot below) and

only run on two physical Nokia phone models. Acquiring tens of
phones for the tests was an uphill task.

poins == =S S piioeton Bt

Computing 169

3.3 Testing MobiGrid Version 2 — Screen Shots

_# Edipe B AN SRR) 3 e Sa L3S hM O

gnnon Awa - iaban o Sy Mt w0 8 etk ek
Al

N A e A R £

Ilncuplnu-'l'i =0 =g Hhuuui

o bl Bndrnid Vicead Dovan A capaa il dendeed Wil Dirsicr
WA Ao e Dt oaal Pt 12 boad. Ot T’ 10 el Do v

Figure 10: Creating Multiple AVDs

_# Edpae T e — A o DT S Kes S LI AM G

gnnn ey latand - S b el 6 L) it b £

e BB 90 WG B - £ Bl |
""‘“I"""""'Ti __-? Y Cowate sew Al Virtasl Devis VDL -a H""“"‘i -ﬂ_:,._,..._ L
) Ealv | —— ——— i &4 b= AL Tl | hrbeeall | -
[l| =i e rnamots o mstresinns| 4 I e :. T 123 -
| e Fargwi | Al 83 - AP L (1] Ll
v - i o ooy [Beriri 120]
0 ek -~
| !:u!-c Er] !
3 TaTE 1 =
- -
ansdng Pack sgs | T
e iy bepgy P ———T
- [
- ===l bl -
j = T |
]
I
b
Rafsian
= b .
o]
W R dsare! Bt M LI 18 e Ty B P
il

Figure 11: AVDs with Different Features

170 Computing

B emuluior Windes - A0 g B W naged St 604 P

(ol s Wl o]

‘ol B eI]

o Dl /2

o o- ey o

ml —
n#

ke R la R de Rl B

N M S L e T

. et IV [Y] v O Y

T I R N (R R S

S
w ol

P S R N PR P

H"FHHHFFHN

Figure 12: Running Multiple AVDs

3.4 Other Features

In the current implementation, the following features of Android are
being utilized to further improve MobiGrid.

3.4.1 Location Services

This is to enable both the Coordinator and Local Server get the
actual location of services/servers. android.location class is being
used to achieve this

3.4.2 Improved Security

In MobiGrid Version 1, no efforts were made to impalement
security. This is now being incorparated into MobiGrid Version 3 by
use of the android.net.wifi subclasses such as
WifiConfiguration.AuthAlgorithm and WifiConfiguration.Protocol

Computing 171

3.4.3 Centralized Management

Unlike in MobiGrid Version 1, management of all the nodes in the
grid is now possible from a central point through telnet. Through
this, nodes can be shutdown and battery/memory/network status
checked

References

[11ANDROID. 2010. Android Developers Reference. 2010.
[2] EU-FP6 2010. EUChinaGrid.

[3] ITU. 2010. Global Telecom Indicators for the World
Telecommunication Service Sector. ITU Global Telecom Indicators for the
World Telecommunication Service Sector 2010, 3-3. http://www.itu.int/
dms_publ/itu-t/oth/23/T23010000040001 PDFE.pdf.

[4] MASINDE, M., ANTOINE, B. AND VICTOR, M. 2010. MobiGrid:A
Middleware for Integrating Mobile Phone and Grid Computing. In The 6th
International Conference on Network and Service Management (CNSM
2010), Niagara Falls, Canada, October 25 - 29, IEEE
COMMUNICATIONS SOCIETY, Ed. IEEE Communications Society, IEEE
Communications Society.

[5] PANDE LAB STANFORD UNIVERSITY. 2010. Folding@home - a
distributed computing project 2010,.

[6] PDADB.NET. 2010. Lenovo LePhone. 2010.

[71 RAJKUMAR, B. 1999. High Performance Cluster Computing:
Architectures and Systems. Prentice Hall, PTR.

172 Computing

