
Translating Handwritten Bushman Texts

Kyle Williams
Department of Computer Science

University of Cape Town
Private Bag X3, Rondebosch, 7701

South Africa
kwilliams@cs.uct.ac.za

Hussein Suleman
Department of Computer Science

University of Cape Town
Private Bag X3, Rondebosch, 7701

South Africa
hussein@cs.uct.ac.za

ABSTRACT
The Bleek and Lloyd Collection is a collection of artefacts
documenting the life and language of the Bushman people of
southern Africa in the 19th century. Included in this collec-
tion is a handwritten dictionary that contains English words
and their corresponding |xam Bushman language transla-
tions. This dictionary allows for the manual translation of
|xam words that appear in the notebooks of the Bleek and
Lloyd collection. This, however, is not practical due to the
size of the dictionary, which contains over 14000 entries. To
solve this problem a content-based image retrieval system
was built that allows for the selection of a |xam word from a
notebook and returns matching words from the dictionary.
The system shows promise with some search keys returning
relevant results.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; H.3.3 [Information Storage
and Retrieval]: Digital Libraries; I.4.6 [Image Process-
ing and Computer Vision]: Segmentation—edge and fea-
ture detection

General Terms
Algorithms, Experimentation, Design, Performance

Keywords
Information retrieval, cbir, cultural heritage preservation,
digital libraries, handwritten manuscripts, image processing

1. INTRODUCTION
The Bleek and Lloyd Collection consists primarily of hand-

written notebooks that contain stories in the |xam and !kun
Bushman languages. In some of these notebooks there are
English translations alongside the Bushman words but in
other cases these translations do not exist or are unclear.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’10, June 21–25, 2010, Gold Coast, Queensland, Australia.
Copyright 2010 ACM 978-1-4503-0085-8/10/06 ...$10.00.

In addition to notebooks, the Bleek and Lloyd collection
also contains a dictionary for the |xam Bushman language
in which each entry contains an English word and its cor-
responding |xam translation. This dictionary can be used
to translate |xam words that appear in the Bleek and Lloyd
notebooks. The problem, however, is that it is not practical
to do this by hand simply due to the size of the dictionary,
which contains over 14000 pages.

A solution to the impracticality of manual translation is
to build a system that can assist in the automatic trans-
lation of words that appear in the notebooks. The script
that the |xam language was recorded with, however, can
not be represented using Unicode, thereby making optical
character recognition unsuitable for this task. However, it is
important that the dictionary can still be used to assist re-
searchers and scholars in understanding and interpreting the
stories in the notebooks in the Bleek and Lloyd Collection.
To overcome this problem a content based image retrieval
(CBIR) system, the Bushman OnLine Dictionary (BOLD)
Translator, was built to allow for the matching and trans-
lation of |xam words that appear in the notebooks. The
CBIR system is separated into two parts: a preprocessor
and a matcher. The preprocessor segments words, extracts
features from them and stores these features in inverted files.
The matcher takes a word image as a search key and iden-
tifies candidate matches based on feature similarity. Candi-
date matches then have more accurate pixel-level matching
performed on them and the results are presented to the user.

This paper begins by introducing the Bleek and Lloyd
collection and discusses related work. The design of the
system is then discussed followed by an evaluation of its
speed and accuracy and, lastly, conclusions are drawn.

2. BLEEK AND LLOYD COLLECTION
The Bushmen people of southern Africa are widely con-

sidered as being some of the oldest human inhabitants of the
Earth. Unfortunately, due to the rapid onset of globalisa-
tion and Western influence, much of their wisdom, ancient
knowledge, art, culture, customs and language have been
lost. Some of it, however, has been preserved through a
handwritten record of the |xam and !kun languages made
by Lucy Lloyd and Wilhelm Bleek during the 1870s. These
stories, along with art and dictionaries were preserved and
have come to be known as the Bleek and Lloyd collection.
The collection consists of 157 notebooks containing 14128
pages, 752 drawings and over 14000 dictionary pages for the
|xam dictionary [15]. There are three types of objects in
the |xam dictionary: envelopes, slips and entries. For each

Figure 1: A notebook page in the Bleek and Lloyd
collection.

English word there is at least one envelope that contains
the English word written on the front. Inside each envelope
there is exactly one slip that contains the English word writ-
ten at the top and one or more inserts that contain the En-
glish words and their corresponding |xam translations. The
BOLD Translator concentrates on the inserts in the dictio-
nary since they can be used for translating |xam words.

The Bleek and Lloyd Collection is jointly owned by the
National Library of South Africa, the Iziko National Mu-
seum of South Africa and the University of Cape Town, and
in 2007 the collection was recognised as a UNESCO Memory
of the World Collection. In 2003, the Lucy Lloyd Archive
and Research Centre at the Michaelis School of Fine Arts
undertook the the task of producing high resolution scans
of all the artefacts that make up the Bleek and Lloyd Col-
lection, for which digital library systems have been and are
currently being built. Figures 1 and 3 show examples of a
notebook page and a dictionary insert respectively.

In 2007, Suleman [15] built a digital library system for the
notebooks and the art in the Bleek and Lloyd collection us-
ing an XML-centric solution. An XML-centric solution was
chosen for this archive because it: required no installation
from the end user; was platform independent; allowed for
easier processing; and had long term preservation benefits.
Suleman showed that an XML-centric approach had many
advantages over traditional database-based archives. How-
ever, scalability issues were identified as a limiting factor.

3. RELATED WORK

3.1 Cultural Heritage Preservation
Museums and libraries world-wide digitise their valuable

historical documents with the goals of long term preserva-
tion and ease of access. A key requirement for digital collec-
tions is that objects are annotated in order for them to be
accessible and exploitable [2]. Annotation needs to be done
either manually or automatically. The type of annotation
required for the BOLD Translator includes the mapping of
words in the notebooks to their corresponding dictionary
entries. Manual annotation suffers from a key problem in
that it is extremely tedious and expensive. In response to
this, automatic systems have been built for storing, access-
ing and annotating digital collections. These systems for
managing digital collections have been used in a wide vari-

ety of projects for preserving cultural heritage such as the
following:

• Europeana1 is a project, funded by the European Com-
mission, that aims to bring together Europe’s cultural
heritage and contains links to over 6 million digital
objects.

• American Memory2 is a gateway that provides free and
open access to the digitised collections of the Library
of Congress and other institutions.

• Aluka3 is an international effort at building a digital
library made up of scholarly content about and from
Africa.

• The MEMORIAL Project is a project funded by the
European Union to enable the virtual distribution of
paper-based archives that are currently held at muse-
ums and libraries [1].

• The Multilingual Inventory of Cultural Heritage in Eu-
rope (MICHAEL)4 is a project funded by the Euro-
pean Commission to establish a new service for Euro-
pean cultural heritage. The project’s vision is to cre-
ate a service that will allow people to find and explore
digital European cultural heritage on the Internet.

• The Greek Orthodox Archdiocese of America (GOA)
is digitising their large collection of religious and his-
torical artifacts [12].

Having briefly mentioned several cultural heritage preser-
vation attempts, the next section will discuss related work
done within the fields of content based image retrieval, word
segmentation and a technique for handwritten word match-
ing called word spotting.

3.2 Content Based Image Retrieval
Text based image retrieval systems date back to the early

1970s, where a popular method for image retrieval involved
manually annotating images and then conducting searches
based on these annotations [14]. Content Based Image Re-
trieval (CBIR) was proposed in the early 1990s as an alter-
native technique for image retrieval where, instead of basing
retrieval on text-based annotations, the visual properties of
an image, such as colour and shape, are used for retrieval.
In this sense, images are used to search for other images in
CBIR systems.

CBIR came about as a result of two fundamental short-
comings of text-based image retrieval: the amount of effort
required to annotate images in large databases, and the sub-
jectivity of human perception to the meanings of images [14].
There are generally three types of CBIR: primitive queries
(query by example), semantic retrieval and automatic re-
trieval [3], with primitive queries being the most common
and therefore the only type discussed in detail here.

In primitive CBIR, images are analysed based on a num-
ber of primitive features, most notably colour, texture, shape
and colour layout [14]. This analysis usually takes place on
segmented parts of the image, as it has been shown that the

1http://www.eurepeana.er
2http://memory.loc.gov/ammem/index.html
3http://www.aluka.org/
4http://www.michael-culture.org

shape and colour layout analyses depend on good segmen-
tation. Once these features have been extracted from an
image, it is possible to construct a signature (or feature vec-
tor) for the image that then can be compared to signatures
of other images in order to find matches.

retrievr5 and imgSeek6 are two image-based search en-
gines based on the fast multiresolution image querying algo-
rithm developed by Jacobs et al [4]. The fast multiresolution
image querying algorithm, and thus retrievr and imgSeek,
uses a hand drawn sketch or low quality scan of the image to
be retrieved. retrievr makes use of the hand drawn sketch
or low quality scan to search Flickr!7 for similar photos,
whereas imgSeek is a photo collection manager with built in
CBIR. Jacobs et al tested their algorithm by using sketches
and low quality scans of actual images to see if they could
find the correct image in a database of sample images. They
found that their algorithm was extremely fast and effective
and able to pinpoint the correct image to within a 1% subset
of the original sample.

Word spotting is a technique for grouping occurrences of
the same word, where it exists in multiple locations in a
collection of documents. It has been shown that word spot-
ting is well suited to the case of handwritten historical doc-
uments, where optical character recognition (OCR) tech-
niques do not work well [6]. However, word spotting falls
short of meeting the requirements of the BOLD Translator
because word spotting systems generally focus on determin-
ing the similarity of all images in a collection, in order to
build an index [13]. The BOLD Translator, on the other
hand, requires matching of images to be performed on de-
mand.

There have been several attempts at building CBIR sys-
tems for words, such as a system for matching textual queries
to word images by translating the textual queries into word
images using LATEX [11], and, in an approach more similar
to that of the BOLD Translator, a CBIR system was built
for archives of handwritten Ottoman documents [17].

3.3 Word Segmentation
Word segmentation is a prerequisite for any system that

attempts to compare words that appear on a page. There
have been several attempts at performing segmentation of
words that appear on a page. However, Manmatha et al [10]
note that most systems that do this have been developed for
machine-printed text and that there are not many systems
that deal with handwritten text. Furthermore, they note
that, of the few systems developed for handwritten text,
most focus on special kinds of texts, such as cheques or ad-
dresses on letters.

Line segmentation is often a prerequisite for word seg-
mentation techniques. There are a number of approaches to
doing line segmentation, with common approaches includ-
ing projection profiles, Hough transforms, smearing meth-
ods, grouping methods, repulsive-attractive methods and
stochastic methods [7]. Louloudis et al [8] propose an al-
gorithm for word segmentation that makes use of the gap
metrics between words. Using this technique, Louloudis
et al were able to achieve a segmentation success rate of
90.82%. Manmatha et al [10] suggest a scale space technique

5http://labs.systemone.at/retrievr
6http://www.imgseek.net/
7http://www.flickr.com

Figure 2: Overview of the BOLD Translator

for word segmentation and, using their technique, were able
to achieve segmentation success rates of 77-96%, with an
average segmentation success rate of 87%.

Significant work has been done in the areas of digital cul-
tural heritage preservation, CBIR systems and word segmen-
tation. These areas of research all play a role in the BOLD
Translator and are loosely combined to create the system.

4. IMPLEMENTATION
The BOLD Translator attempts to overcome the lack of

practicality in doing manual translations between the Bleek
and Lloyd notebooks and dictionaries by allowing end users
to search for the English translation of a |xam word using
only an image of the |xam word as a search key. The BOLD
Translator is designed such that it requires no training of
a dataset and could be adapted to work with other collec-
tions. A brief overview of the system is given here followed
by a more detailed description of the various components
that make up the system. Figure 2 gives an overview of the
system.

• Preprocessor: The following operations are per-
formed on every image that is added to the repository:

– The image is cleaned by smoothing to remove
noise.

– Words in the image are segmented.

– For each segmented word, a set of known features
are extracted and stored in inverted files.

– The colour image, segmented words and inverted
files are stored in the digital repository.

• User Input and Matcher: User input involves
the user selecting a search key that is then matched
against the repository. The matcher compares the
search key features and the search key to the contents
of the repository and returns the closest matches. This
is done as follows:

– The user selects a search key.

– The same set of features as extracted by the pre-
processor is extracted from the search key.

Figure 3: A high resolution TIFF with the AOI high-
lighted

– Inverted files are searched for words that have fea-
tures that correspond to the features of the search
key and each word is given a feature score.

– Words that have feature scores above some thresh-
old t1 have more accurate matching performed on
them.

– Words that have accurate matching scores above
some threshold t2 are returned to the user as re-
sults.

4.1 Preprocessor
Preprocessing in the BOLD Translator involves cleaning

images such that processing can take place on them, seg-
menting words in an image and lastly extracting features
from the segmented words and storing these features in in-
verted files.

4.1.1 Image Cleaning
The high resolution TIFF images that belong to the |xam

dictionary contain large areas of space that are not neces-
sary for translation. These areas include the large whites-
pace surrounding the image, as well as the brown envelope
sheet on which the blue sheet of paper containing the |xam
words appear. In every high resolution TIFF the specific
area of interest (AOI) is the rectangular area of the TIFF
that contains all the handwritten words. Figure 3 shows one
of the original TIFFs with the large whitespace, the brown
envelope and the AOI labeled. The goal of the image clean-
ing step of the preprocessor is to identify the AOI in every
image, crop the image around the AOI and provide as out-
put a thresholded AOI that will be used for segmentation,
feature extraction and matching.

ImageMagick8 is used to crop the AOI in every image as
follows:

1. The image is thresholded in order to convert every-
thing in the image to white except the blue sheet of
paper containing the Bushman words and any writing
that appears anywhere on the page.

2. A median filter is used in order to smooth away any
black marks that might be isolated on the page and
that are most likely noise.

8http://www.imagemagick.org

Figure 4: Final output from image cleanup

Figure 5: Fully boxed word for segmentation

3. The white area surrounding the image is trimmed,
leaving only the area containing the handwriting.

There is a negative effect of performing this preprocessing
on the image in that the smoothing results in a lot of infor-
mation in the image being lost. Therefore, instead of per-
forming the changes on the actual image, the coordinates of
the AOI (as identified by the trim function) are stored. The
actual image is then cropped at these coordinates, resulting
in a full colour image without any information loss. After
the colour image has been cropped, it is then thresholded
and smoothed slightly so as not to lose a lot of information
in the image. Figure 4 shows the final output of the AOI.

4.1.2 Word Segmentation
The role of segmentation is to, as accurately as possible,

identify the Bushman words that appear in each thresholded
AOI provided by the preprocessor. AOIs contain both En-
glish and Bushman words. This creates the problem that,
by segmenting all the words in AOIs, non-Bushman words
will be introduced into the dataset. This could have a neg-
ative effect on the system in that it could increase the size
of the dataset, resulting in performance issues, and, it could
add additional images that could be candidate matches and
thus have a negative effect on accuracy.

The segmenter therefore exploits known information about
the collection - that almost every Bushman word is under-
lined by a solid horizontal line. The segmenter first attempts
to identify every line underlying Bushman words in an im-
age, then attempts to identify the left and right end points
of every word and finally identify the top of every word. Fig-
ure 5 shows the bounding boxes of words identified by the
segmenter.

4.1.3 Feature Extraction
Features play a significant role in the system as they are

used to prune a large dataset such that accurate matching
can be performed on images that have similar features to
the key image. Once the words in an image have been seg-
mented, features are then extracted from them and stored
in inverted files that are used to lookup words that have
similar features when searching takes place.

Figure 6: Features used in the system

The following features are used in the system: intersec-
tions, horizontal lines, long vertical lines and short vertical
lines. With the exception of intersections, all the features
are identified using connected component analysis [5]. Fig-
ure 6 shows the features used in the system.

The intersection feature is determined by projecting hor-
izontal lines through every word at the following locations:
10% from the top, 1

3
from the top, 1

2
of the way through the

image, 1
3

from the bottom and 10% from the bottom. For
each of these horizontal projections the number of intersec-
tions with line strokes are counted and this represents the
intersection feature.

Horizontal lines in words are detected using connected
component analysis. A minimum threshold is set for the
length of horizontal lines in order to prevent horizontally
connected components that are not necessarily horizontal
lines in characters from being detected.

Long vertical lines are detected using connected compo-
nent analysis by rotating the word so as to make vertical
lines horizontal and then using horizontal line detection.
Long vertical lines are defined as lines that are at least as
long as 65% of the height of the word image.

Short vertical lines are detected in the same way as long
vertical lines, except that short vertical lines are defined as
lines that are at least as long as 30% of the height of the
word image but less than 65%.

4.2 Matching
Matching involves taking a word as input (referred to as

the key) and finding images in the dataset that are similar.
Matching works as follows:

1. A key image is selected by the user for matching and
its features are extracted.

2. The user sets feature weights and variation allowance
(discussed in next section).

3. Based on these inputs, the inverted files are searched
for words that have features that correspond to the
features of the search key and each word gets a feature
score based on its similarity to the search key.

4. Words that have feature scores above some threshold
t1 go through a process of more accurate matching and
each of those words gets an accurate matching score.

5. Words that have an accurate matching score above
some threshold t2 are then displayed to the user.

Key selection is performed by the end user and involves
selecting a word from one of the pages of the Bleek and Lloyd
collection using a JavaScript box select tool that makes use
of the Yahoo! User Interface (YUI) Library9.

The user is able to set how important each of the features
are for matching. The motivation behind this is that some
features, such as horizontal lines, might be more unique than
others, such as intersections, and therefore might result in
better matches.

Feature weights are set such that:

4
X

i=1

Wi = 1 (1)

where Wi = the weight given to feature i. Feature sums can
be presented in the form of

Y = W1 + W2 + W3 + W4 (2)

Various combinations of feature weights are investigated fur-
ther in section 5.2.1.

It is difficult to detect and match features perfectly due
to the quality of the original manuscripts and differences
in style and handwriting. For this reason, feature variation
has been introduced into the system in order to overcome
this shortcoming by allowing for variation in feature corre-
spondence. In this sense, instead of features corresponding
perfectly, variation allows for them to differ to some certain
extent. Variation allows for flexibility in pruning the dataset
for accurate matching, however it does have the drawback
that it returns more results, which affects precision and per-
formance.

The feature score of two words is a measure of how similar
they are, based on features alone, and is calculated using
feature weights. To demonstrate this further, consider the
feature sum

Y = 0.1 + 0.3 + 0.3 + 0.3.

For every word in the dataset for which the first feature
corresponds with the first feature in the key, increase that
word’s feature score by 0.1. Similarly, for every word in the
dataset for which the second feature corresponds with the
second feature in the search key, increase that word’s feature
score by 0.3, and so on for all the features. The result of this
is a list of words for which each word has a feature score.
This list of words is then ranked and the feature scores are
normalised over the range [0-1] such that the word that has
the highest feature score has a normalised feature score of
1. Words that have a normalised feature score above some
threshold t1 are passed on to the next step for more accurate
matching to take place on them.

Accurate matching involves determining which images are
most similar to the search key at a pixel level. Accurate
matching scores are normalised over the range [0-1], with the
best match having a score of 1. Matches that have an accu-
rate matching score above some threshold t2 are presented
to the user as results. Three different accurate matching al-
gorithms, which are all variations of one another, have been
implemented.

The difference (DIF) matching algorithm works by first
resizing each word image and the key so that they are the
same size. The word image is then superimposed on top
of the key image and the sum of the absolute values of the

9http://developer.yahoo.com/yui/

differences between their corresponding pixels is calculated.
This is repeated several times by shifting the word image 1,
2, 3, 4 and 5 pixels in every direction. The lowest value of
the sum of the absolute values of all the shifts is returned
as a similarity score, where a perfect match has a similarity
score of 0.

Calculating the XOR of two images was mentioned by
Manmatha et al [9] as a prerequisite to the next matching
algorithm explored: Euclidean distance mapping. Calculat-
ing the XOR of two images can also be used as a matching
algorithm. The algorithm works by first inverting the im-
ages such that the backgrounds become black and the fore-
grounds become white. Thereafter the algorithm works the
same way as the difference algorithm, by resizing the images
and superimposing the word image on the key image as well
as shifting the word image 1, 2, 3, 4, and 5 pixels in every
direction. The XOR of each set of corresponding pixels is
then determined and the number of white pixels are counted
to determine a similarity score, where a perfect match has
a similarity score of 0.

The Euclidean Distance Matching (EDM) algorithm dis-
cussed by Manmatha et al works the same as the XOR
matching algorithm, with the difference being that instead
of counting the number of white pixels, the Euclidean dis-
tance from each white pixel to the closest black pixel is de-
termined. Using this method, a white pixel that exists in
a blob of white pixels will have a larger Euclidean distance
to a black pixel than a white pixel in isolation. A similarity
score is calculated where the similarity score is equal to the
sum of the Euclidean distances from every white pixel to its
closest black pixel. As with the other matching algorithms,
a perfect match has a similarity score of 0.

Having given an overview of the system design and im-
plementation, the evaluation of the system will now be dis-
cussed.

5. EVALUATION
The BOLD Translator was evaluated using both modular

testing for each of the components that make up the sys-
tem as well as end-to-end testing for the system as a whole.
Specifically, the system was tested in terms of performance
measures related to speed as well as information retrieval
measures such as precision, recall and the F-score [16]. Pre-
cision is the proportion of relevant documents retrieved in a
query and, in general, is calculated as:

Precision =
No. of relevant documents retrieved

number of documents retrieved
. (3)

Recall is the proportion of relevant documents in a collection
that are actually retrieved in a query and, in general, is
calculated as:

Recall =
No. of relevant documents retrieved

number of relevant documents in the collection
.

(4)
The F-score is the weighted harmonic mean of the precision
and recall and, in general, is calculated as:

F =
2 · precision · recall
precision + recall

. (5)

For all experiments that use search keys, three different
words that are known to exist in the collection and have
varying characteristics and sizes were selected as search keys
(Table 1). Each of these words was selected in 3 different

Table 1: Search keys used in experiments
Key Image Size Translation

Key 1 Small Boer (farmer)

Key 2 Medium Brother

Key 3 Large Bushmen’s gems

ways and each experiment was carried out on these three
selections. The key selections are referred to as 1a, 1b and
1c for selections 1, 2 and 3 of the first key, 2a, 2b and 2c for
the selections of the second key and, similarly, 3a, 3b and
3c for the selections of the third key. The purpose of using
different selections of each key is to determine the extent to
which word selection affects results.

5.1 Word Segmentation
|xam words are the content that is retrieved in the BOLD

Translator and therefore their successful segmentation is im-
portant as it has a significant effect on the overall ability of
the system to retrieve correct matches. An experiment was
conducted to evaluate the accuracy at which segmentation
can be automatically performed on |xam words, as well as
to identify the optimum minimum underlying line length
for segmentation. The length of the underlying line is im-
portant as it needs to be able to distinguish between lines
that underline words, and lines that make up the characters
in the words. A subset of the collection that consisted of
10 images randomly picked for each letter of the alphabet
was used. In cases where there were less than 10 images
for any letter, all of the images for that letter were picked.
The segmentation was performed on the subset of images for
minimum word underlying line lengths of 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90% and 100% of the width of
the image. For each minimum underlying line length, the
precision and recall was recorded for each individual image
and then averaged out for the whole subset.

The concepts of precision and recall were applied as fol-
lows:

Precision =
No. of relevant segmented words retrieved

number of segmented words retrieved
.

(6)

Recall =
No. of relevant segmented words retrieved

number of relevant segmented words
. (7)

For each minimum underlying line length, the weighted har-
monic mean - or F-Score - for the average precision and
recall of the subset was recorded. The results of the experi-
ment are summarised in Figure 7, which shows that there is
a clear tradeoff between precision and recall. Furthermore,
precision increases consistently as the underlying line length
increases. This is due to the algorithm becoming less likely
to pick up lines that do not underline words, such as the line
that crosses a “t.” This is of course beneficial because it re-
sults in less noise being introduced into the dataset through
bad segmentation. However, it has a negative effect on re-
call. As the underlying line length increases, it becomes less
likely for the algorithm to detect lines that underline short
words and this is shown by the decreasing recall as the un-
derlying line length increases.

The F-score is a good measure of the trade-off between

Figure 7: Analysis of different underlying line
lengths for word segmentation

precision and recall and the optimal F-score exists at a min-
imum underlying length of 20% of the width of the image.
At this point, recall is maximised and precision is at about
65%. Using the F-score as a measure of the ability to suc-
cessfully segment the |xam Bushman words in an image, it
is shown that segmentation occurs with around 60% suc-
cess. Good segmentation is important in order to increase
the chances of returning correct matches and thus the 60%
success rate, while satisfactory, could be improved in order
to improve the accuracy of the system as a whole.

5.2 Features
Features are used to prune the dataset to allow for more

accurate matching at a later stage. Feature pruning should
return a subset of the collection that contains word images
that are likely to match the search key provided by the user.
The size of this subset of candidate matches is determined
by the threshold level for matches. The size of this subset
is important since a high number is likely to slow down pro-
cessing and decrease accuracy while a low number is likely
to speed up processing, but also decrease accuracy. A num-
ber of experiments were carried out to determine the ability
of features to prune the dataset, determine the best weights
for the various features and identify performance issues when
using features to prune the dataset.

5.2.1 Using Features to Prune Results
A subset equal to 20% of the collection, which amounted

to 2921 images, was used to determine the extent to which
features can be used to prune the dataset for matching, as
well as to identify the optimum weights for each of the fea-
tures. Each key image was matched with every word image
and the similarity was measured based on feature correspon-
dence only. Different feature weights were used in order to
determine if a best set of feature weights exists. Feature
weights were calculated according to Equation 1. The fol-
lowing feature weights in the form of

Y = W1 + W2 + W3 + W4

were used for the four features considered:

• Equal Weighting: Y = 0.25 + 0.25 + 0.25 + 0.25

• Reduced intersections: Y = 0.1 + 0.3 + 0.3 + 0.3

Table 2: Recall for different thresholds (%) when
variation is introduced
Key Variation 100 80 60 40 20 0

0 0.00 0.00 0.00 0.50 1.00 1.00
1a 1 0.00 0.50 0.50 1.00 1.00 1.00

2 0.00 0.50 1.00 1.00 1.00 1.00
0 0.00 0.00 0.00 0.00 0.75 1.00

2a 1 0.13 0.13 0.25 0.75 0.88 1.00
2 0.00 0.00 0.63 0.88 1.00 1.00
0 0.00 0.00 0.00 0.00 0.00 0.00

3a 1 0.00 0.00 0.00 0.50 0.50 1.00
2 0.00 0.00 0.00 0.00 1.00 1.00

• Low intersections, high vertical lines: Y = 0.1 + 0.2 +
0.35 + 0.35

• Low intersections, high horizontal lines: Y = 0.1 +
0.4 + 0.25 + 0.25

These feature weights were selected to get a general feeling
for how different feature weights can affect results. The ex-
periment was carried out at threshold values of 100%, 80%,
60%, 40%, 20% and 0% and, for each threshold value, the
precision, recall and F-score were recorded.

The experiment found that features can be used to prune
the dataset but generally rely on a low threshold of 20-40%
in order to have a positive recall. Of the various sets of fea-
ture weights considered, there appeared to be no set that
consistently outperformed the others and this was shown by
a relatively constant recall across the different feature weight
combinations tested. The low threshold required for positive
recall as well as the lack of effect of different feature weights
could be due to the style and handwriting differences be-
tween word images. The algorithm works by extracting fea-
tures from words. However, when two words are the same,
but written in a different way, their features may not corre-
spond. The next experiment set out to test if allowing for
variation in feature correspondence improved the ability of
features to prune the dataset.

5.2.2 Introducing Variation into Feature Correspon-
dence

Feature variation allows for words with features that differ
slightly due to style or handwriting to still have matching
features. Feature variations of 1 and 2 are allowed, meaning
that features differing from the key by |1| and |2| will still
count as matches. In conducting this experiment, the equal
feature weighting Y = 0.25 + 0.25 + 0.25 + 0.25 was used
and the experiment was carried out at thresholds of 100%,
80%, 60%, 40%, 20% and 0%. For each threshold value, the
precision, recall and F-score were recorded. Table 2 shows
the results of the experiment for three different search keys
both with and without variation. The experiment showed
that introducing feature variation had a positive effect on the
required threshold for relevant matches. While allowing for
a variation level of 1 almost always improved on results with
no variation, allowing for a variation level of 2 did not nec-
essarily improve results. By introducing variation into the
system, positive results were returned for threshold levels
of 100%, 80% and 60% whereas, without variation, positive
results were only returned at a threshold level of 40%. The
evidence suggests that introducing variation into the sys-
tem has a positive effect on results by reducing the required

Figure 8: Effect of dataset size on feature perfor-
mance

threshold and thereby reducing the number of words that
have more accurate matching performed on them. However,
introducing variation can potentially have a negative effect
since variation increases the chance of bad matches exceed-
ing the feature similarity threshold.

5.2.3 Evaluating the Speed of Feature Based Match-
ing

Having conducted experiments to determine how well fea-
tures can be used to prune the dataset, both with and with-
out variation, an experiment was conducted to determine
the speed at which feature matching takes place for various
dataset sizes. Subsets of size 20%, 40%, 60%, 80% and 100%
of the total collection were used to determine the effect that
dataset size has on the speed of pruning results using fea-
tures. A single key image was used to prune the results of
each of the subsets and the time taken was recorded. This
was repeated 10 times for each subset and the average time
was calculated. An equal feature weighting with no variation
was used for this experiment and the threshold for returning
results was set at 50% feature similarity. The time reported
is system time. Figure 8 shows the results of measuring the
speed of the system as scale increases and it is clear that the
size of the dataset has an effect on the speed at which feature
pruning can occur. This is due to an increase in size, leading
to more images that need to be compared, leading to larger
inverted files and a larger feature score calculation. This
highlights potential scalability issues as the system might
perform slowly as the size of the dataset increases.

5.3 Accurate Matching
It has been shown that features can be used to quickly

identify a subset of candidate images that are potentially
matches for the search key provided by the user. The next
set of experiments set out to determine how well the algo-
rithms used in the BOLD Translator can be used to perform
accurate matching.

5.3.1 Evaluating the Accuracy of Each Matching Al-
gorithm

An experiment was conducted to determine which match-
ing algorithm provided the most accurate matching. Each
matching algorithm was run on a subset of 100 word images

Table 3: Average F-score at each threshold for each
of the matching algorithms for the 9 images used in
the experiment

% 100 80 60 40 20 0
DIF 0.17 0.24 0.23 0.12 0.07 0.05
XOR 0 0.02 0.09 0.07 0.06 0.06
EDM 0 0.03 0.01 0.08 0.06 0.06

Figure 9: Matching algorithms performance mea-
sures

that had been automatically segmented by the preprocessor.
Included in this subset were word images that matched the
search keys used. The full range of search keys were used
in this experiment and the experiment was carried out for
similarity threshold values of 100%, 80%, 60%, 40%, 20%
and 0%. For each threshold value, the precision, recall and
F-score were recorded. Table 3 shows that average F-score
for each matching algorithm and it is shown that the DIF al-
gorithm generally results in better matches at higher thresh-
olds. High thresholds are ideal since they result in a smaller
number of results being returned to the user. While the DIF
algorithm appears to outperform the XOR and EDM algo-
rithms in terms of accuracy of matching, an important issue
to consider is the time that each of these algorithms takes
to run. This is investigated in the next experiment.

5.3.2 Evaluating the Speed of Each Matching Algo-
rithm

An experiment was conducted to determine which match-
ing algorithm is the fastest and how speed is affected as
scale increases. The speed of each matching algorithm was
recorded using subsets of 100, 200, 300, 400 and 500 images
and each matching algorithm was run five times and the av-
erage speed was recorded. The time reported is user clock
time. Figure 9 shows that the DIF and XOR matching algo-
rithms are the fastest, while EDM is the slowest. Combining
this result with the result in section 5.3.1 shows that the DIF
algorithm is the best algorithm for matching since it is one
of the fastest algorithms and is also the most accurate.

5.4 End-to-end Testing
Modular testing showed how each of the components that

make up the BOLD Translator contribute to returning rel-
evant results. The purpose of end-to-end testing was to de-

Figure 10: Precision, recall and F-score for end-to-
end testing using optimal values

termine how well the BOLD Translator worked as a com-
plete system. To do this a number of tests were carried
out. Firstly, a test of the optimal values was carried out
in that variable values that had been found to work well
in modular testing were used in testing the end-to-end sys-
tem. Thereafter, experiments were conducted to see how
well the system performed and how accurate it was as scale
increased.

5.4.1 Testing the Optimal Values
An experiment was conducted to determine if the optimal

values for each component of the system, as identified by the
modular experiments, can produce good end-to-end results.
A subset of 20% of the collection, which amounted to 2921
images, was used and equal weights for features were used
since no feature weight combinations were found to be opti-
mal in section 5.2.1. Feature correspondence variation of 1
was used since it was shown in section 5.2.2 that this had a
positive effect on results. The DIF matching algorithm was
used since it was shown in section 5.3.1 and section 5.3.2
that this was the most accurate and best performing match-
ing algorithm. A threshold level of 80% was used for feature
scores since it was shown in section 5.2.2 that positive re-
call occurs when allowed feature correspondence variation is
1 and the threshold is 80%. Similarly, a threshold level of
60% was used for matching as it was shown in section 5.3.1
that the difference algorithm works well at a 60% threshold.
The experiment was run using the full range of search keys
and the precision, recall and F-score were recorded. Figure
10 shows that four of the nine image keys used for search-
ing resulted in positive recall. These four keys result in
better matches because they were tightly constrained when
selected. This highlights the need for good selection of keys
when making use of the system. It was shown that the op-
timal values do return positive results, however, this only
occurred for 4 of the 9 search keys. Having shown that the
system can be accurate when keys are tightly constrained
when selected, the next two experiments set out to evaluate
how accurate the system was and how well it performed as
scale increased.

5.4.2 Increasing Scale and Accuracy
An experiment was conducted to determine the effect that

Table 4: Precision, recall and F-score as scale in-
creases for keys that return positive results

Key Measure 20% 40% 60% 80% 100%
Precision 0.50 0.50 0.11 0.07 0.06

1a Recall 0.50 0.50 0.50 0.50 0.50
F-Score 0.50 0.50 0.18 0.13 0.10
Precision 0.04 0.00 0.00 0.00 0.00

2a Recall 1.00 0.00 0.00 0.00 0.00
F-Score 0.08 0.00 0.00 0.00 0.00
Precision 0.02 0.01 0.01 0.01 0.01

2b Recall 0.13 0.13 0.13 0.13 0.13
F-Score 0.04 0.02 0.02 0.01 0.01
Precision 0.02 0.01 0.01 0.00 0.00

2c Recall 0.13 0.13 0.13 0.00 0.00
F-Score 0.04 0.02 0.02 0.00 0.00

increasing dataset sizes have on accuracy. Keys that were
shown to return results in section 5.4.1 were used to test the
system at increasing scales. Subsets that were made up of
20%, 40%, 60%, 80% and 100% of the full collection were
used and, for each subset, the precision, recall and F-score
was reported.

Table 4 shows that a scale increase has a negative effect
on precision in all cases. For keys 1a and 2b the recall re-
mains constant while precision, and thus the F-score, de-
crease. The evidence suggests that strong matches will re-
main strong as the size of the dataset increases, as is the case
for keys 1a and 2b, and that weak matches will disappear as
the size of the dataset increases, as is the case for keys 2a
and 2c. Key 2a resulted in better results for a subset size
of 20% of the collection than key 2b for the same subset.
However, key 2a failed to return positive results as the scale
increased and thus is considered a weak match, while key
2b continued to return positive results as the scale increased
and thus is considered a strong match.

5.4.3 Increasing Scale and Performance
An experiment was conducted to determine the effect that

increasing dataset sizes have on performance. A single key
was used to test the performance of the system at increasing
scales. Subsets that were made up of 20%, 40%, 60%, 80%
and 100% of the collection were used and optimal values
were used for all variables. For each subset the user time
was recorded 10 times and the average is reported. Figure
11 shows that the system becomes increasingly slower as the
subset size increases. When 100% of the dataset was used,
the system took 16 seconds to return results. This suggests
that there is a need for optimisations throughout the system.

6. CONCLUSIONS
This paper described a content based image retrieval sys-

tem for a collection of handwritten documents that cannot
be represented using Unicode. The system was built with
the goal of being able to find specific images of words within
a large collection. The system includes a preprocessor that
automatically segments words and extracts features from
them, and a matcher, that identifies a subset of candidate
matches based on feature similarity and then performs more
accurate matching on this subset and returns the highest
scoring results to the user.

Automatic segmentation of |xam Bushman words was per-

Figure 11: Performance as scale increases

formed with around 60% accuracy and it was shown that
features can be used to prune the dataset for more accurate
matching to take place, especially when variation is intro-
duced. The DIF algorithm was shown to outperform the
other algorithms implemented in the system in terms of ac-
curacy as well as speed. End-to-end testing showed that
when a good search key is selected, then relevant matches
can be found. It was shown that the system performs well
with matches taking approximately 1 second on a collection
size of around 3000 images and 16 seconds on a collection
size exceeding 14000 images. The evidence suggests that it
is possible to do image-based translation of this nature.

Future work involves improvements at all levels of the sys-
tem in order to increase the chances of correct translation.
The system could further be extended by incorporating the
use of predictive language modelling.

It is believed that a system of this nature has great poten-
tial in assisting researchers and scholars worldwide in their
understanding of the |xam Bushman language as well as
other dictionaries that are part of the Bleek and Lloyd Col-
lection. Furthermore, it is believed that this system could
be adapted to manuscripts of other languages which can not
be represented using Unicode and provide a means of simple
and efficient matching and translation of words.

7. REFERENCES
[1] A. Antonacopoulos and D. Karatzas. Document image

analysis for world war ii personal records. In DIAL
’04: Proceedings of the First International Workshop
on Document Image Analysis for Libraries (DIAL’04),
page 336, Washington, DC, USA, 2004. IEEE
Computer Society.

[2] R. Doumat, E. Egyed-Zsigmond, J.-M. Pinon, and
E. Csiszar. Online ancient documents: Armarius. In
DocEng ’08: Proceeding of the eighth ACM symposium
on Document engineering, pages 127–130, New York,
NY, USA, 2008. ACM.

[3] J. Eakins and M. Graham. Content-based image
retrieval. Technical report, Newcastle upon Tyne,
United Kingdom: University of Northumbria at
Newcastle, Institute for Image Data Research, 1999.

JISC Technology Applications Programme Report 39,
http://www.jisc.ac.uk/uploaded documents/jtap-
039.doc.

[4] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast
multiresolution image querying. In SIGGRAPH ’95:
Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages
277–286, New York, NY, USA, 1995. ACM.

[5] T. Y. Kong and A. Rosenfeld, editors. Topological
Algorithms for Digital Image Processing. Elsevier
Science Inc., New York, NY, USA, 1996.

[6] Y. Leydier, F. Lebourgeois, and H. Emptoz. Text
search for medieval manuscript images. Pattern
Recogn., 40(12):3552–3567, 2007.

[7] L. Likforman-Sulem, A. Zahour, and B. Taconet. Text
line segmentation of historical documents: a survey.
Int. J. Doc. Anal. Recognit., 9(2):123–138, 2007.

[8] G. Louloudis, B. Gatos, I. Pratikakis, and C. Halatsis.
Text line and word segmentation of handwritten
documents. Pattern Recogn., 42(12):3169–3183, 2009.

[9] R. Manmatha and W. B. Croft. Word spotting:
indexing handwritten manuscripts. In Intelligent
multimedia information retrieval, pages 43–64,
Cambridge, MA, USA, 1997. MIT Press.

[10] R. Manmatha and N. Srimal. Scale space technique
for word segmentation in handwritten documents. In
SCALE-SPACE ’99: Proceedings of the Second
International Conference on Scale-Space Theories in
Computer Vision, pages 22–33, London, UK, 1999.
Springer-Verlag.

[11] S. Marinai, E. Marino, and G. Soda. Indexing and
retrieval of words in old documents. In ICDAR ’03:
Proceedings of the Seventh International Conference
on Document Analysis and Recognition, page 223,
Washington, DC, USA, 2003. IEEE Computer Society.

[12] T. Nicolakis, C. E. Pizano, B. Prumo, and M. Webb.
Protecting digital archives at the greek orthodox
archdiocese of america. In DRM ’03: Proceedings of
the 3rd ACM workshop on Digital rights management,
pages 13–26, New York, NY, USA, 2003. ACM.

[13] T. M. Rath and R. Manmatha. Word spotting for
historical documents. International Journal on
Document Analysis and Recognition, 9(2-4):139–152,
APR 2007.

[14] Y. Rui, T. S. Huang, and S.-F. Chang. Image
retrieval: Current techniques, promising directions,
and open issues. Journal of Visual Communication
and Image Representation, 10(1):39–62, 1999.

[15] H. Suleman. Digital libraries without databases: The
bleek and lloyd collection. In Proceedings of Research
and Advanced Technology for Digital Libraries, 11th
European Conference, pages 392–403. Springer-Verlag,
March 2007.

[16] C. J. van Rijsbergen. Information Retrieval 2nd
Edition. Butterworth-Heinemann, London, 1979.

[17] I. Z. Yalniz, I. S. Altingovde, U. Güdükbay, and
O. Ulusoy. Ottoman archives explorer: A retrieval
system for digital ottoman archives. J. Comput. Cult.
Herit., 2(3):1–20, 2009.

