
Scalable Model Viewing
Technical Report No. CS03-22-00

Nicholas Appleby
Department of Computer Science

University of Cape Town
South Africa

nappleby@cs.uct.ac.za

Rory Marcussen
Department of Computer Science

University of Cape Town
South Africa

rmarcuss@cs.uct.ac.za

Patrick Marais
Department of Computer Science

University of Cape Town
South Africa

patrick@cs.uct.ac.za

James Mc Millan
Department of Computer Science

University of Cape Town
South Africa

jmcmilla@cs.uct.ac.za

ABSTRACT
In this paper we describe a novel approach to displaying complex
3D scenes on architecture that does not have support for 3D
graphical display.

Our system makes use of distributed graphics, employing a
standard workstation as a server. This server communicates with a
client via UDP sockets over a LAN link. To minimize network
traffic, a compression engine is employed to compress and
decompress data on either side of the network transfer phase.

By dividing the display into blocks, we effectively reduce the
amount of data needing to be transported from client to server and
provide an interactive user friendly client.

We choose a PDA as a client, but our approach is extensible and
easy to implement on any architecture with at least some 2D
graphics drawing capabilities.

Categories and Subject Descriptors
I.3.2 [Computer Graphics]: Distributed/Network Graphics.

General Terms
Performance, Design, Human Factors.

Keywords
Compression, Usability, Distributed Graphics, OpenGL.

1. INTRODUCTION
The popularity of 3D graphics has grown considerably in recent
years and hardware advances have been frequent. This, however,
means that the lifespan of graphics hardware has been shortened
considerably. We propose a system that allows complex 3D
scenes to be rendered on displays that have only 2D display
capabilities.

Our system addresses this problem by employing distributed
graphics. As such consists of three main components. These are:

- A server, which is a standard workstation with hardware 3D
graphics capabilities.

-A client with only 2D drawing capabilities.

-A compression engine.

We have chosen a PDA as our client as mobility of these devices
has made them increasingly popular in recent times.

Our system distributes the rendering of the scenes to the server,
which sends the data to the client via a UDP socket over a LAN
link. This data is compressed before it is sent to minimize network
usage.

The rendered scene is divided into blocks in so that only blocks
which change from one frame to the next need be transmitted and
thus redrawn.

The client provides a usable interface to the user and sends the
user interactions back to the server, which then updates the scene
and transmits the next frame.

2. BACKGROUND AND MOTIVATION
2.1 Compression
Two primary restrictions are placed on the system: the bandwidth
that is available for the client/server communications is relatively
low, and the client is assumed to have low-end hardware and thus
has limited resources. This could lead to jittery movement or
something that is just not usable. In order to alleviate this
problem, the amount of network traffic had to be minimized.
Compression is used as the primary means of alleviating this
problem.

If a pixel depth of 16bpp is assumed on the PDA, then at the full
screen resolution of the PDA one frame will take up 150k. In
order for the user to effectively interact with the system, the
display must update at least 10 fps (frames per second) [TM].
Updating at this frame-rate results in 2.19MB being transmitted
per second. However, we are not likely to use the full PDA
display for the 3D scene, since some of the display may be used
for displaying user interface components.

Formally, compression reduces the data transmission, processing
and storage requirements of a system by reducing the number of
bits needed for signal representation. There are two ways in which
to accomplish this, lossless and lossy compression.

Lossless compression chooses an alternative representation of the
data which equals the original signal’s information content, so no
information is lost, and redundancies are removed from the data.
Lossy compression, on the other hand, considers the use to which
the data will be put and selectively eliminates unneeded or
unimportant information. Most compression techniques which are
lossless and use statistical data only give a compression ratio from
2:1 to 5:1 on images. A lossy compression scheme such as Jpeg
can, however, give compression ratios of 20:1 with minimal image
quality degradation [4]. Lossy video compression, which can also
exploit temporal coherence, can achieve even higher compression
ratios [4].

Having looked at the most important concepts in compression, the
key compression techniques used for the compression engine will
now be explained.

2.1.1 Lossless entropy encoders

There are many variants of entropy encoders, where the
underlying principle is to exploit the statistics of the data to
perform compression. Huffman coding [7] is an example of a
statistical compression technique, which works by assigning
variable-length codes to symbols based on their frequency. By
assigning shorter codes to more frequently occurring signals, the
average number of bits per symbol is reduced. Substitutional, or
dictionary-based compressors such as Lempel-Ziv [14, 15],
replace an occurrence of a particular sequence of symbols in a
piece of data with a reference to a previous occurrence of that
sequence.

2.1.2 Run-length encoding

There are many variants of run-length encoding, which is lossless,
but the central idea is to identify strings of adjacent sequences of
the same symbol and replace them with a single occurrence along
with a count. Once transformed, an entropy encoder, such as
Huffman, can be used to code both the symbol values and the
counts. This is often done since short lengths are likely to be
much more common than long lengths.

2.1.3 Jpeg Compression
Jpeg compression was developed by developed by the Joint
Photographic Experts Group (JPEG), part of the International
Organization for Standardization (ISO). It is widely accepted as
the standard means of image compression.

An overview of the steps for the algorithm is presented in figure x
below.

Figure 1. Jpeg compression algorithm

The first step in jpeg compression is the transform step, in which
the image is processed in blocks of 8x8 samples. Each block is
transformed into a block of 8x8 spatial frequency coefficients by
means of a Discrete Cosine Transform (DCT). These coefficients
represent weights for each of 64 basis functions (see figure x).
These basis functions are effectively patterns that can appear in
one block of an image, ranging from lower frequencies in the top
left-hand corner to higher frequencies in the lower right-hand
corner.

Figure 2. The DCT coefficients

After the DCT step has been done, there tends to be a
concentration of a few significant coefficients and the other
coefficients are insignificant or close to zero. The motivation for
doing the DCT step is that you can now throw away high-
frequency information without affecting low-frequency
information, since the human visual system is less sensitive to
high-frequency information than it is to low frequency
information.

The next step is quantization, in which unimportant information
(the close to zero coefficients) is discarded. The resulting data is
then further compressed using a number of methods, including
run-length-encoding and Huffman compression.

Jpeg compresses natural scenes very well [4], but line drawings or
images with sharp edges will have noticeable blurring along these
edges. Computer generated images often fall somewhere in-
between natural and line drawings, depending on how realistically
the scene is rendered.

Jpeg compression is useful for this project since it is an extremely
efficient image compression technique. However, there can be a
large overhead associated with jpeg compression, mostly in the
quantization tables which are stored along with the compressed
data.

2.1.4. Differential PCM
With DPCM, each pixel is used as a prediction of the next. When
doing this the only information that needs to be transmitted is the
difference between one pixel and the next. There is no advantage
if the number of bits per pixel in the original sample is the same as
the number of bits per pixel in the differences we transmit. One
possible method for performing DPCM is to assume a maximum
change and use that. If a change is encountered that is greater than
this maximum, then the actual change is kept internally and
modify subsequent differences in order to “catch up” with the
actual pixel values. This would result in lossy compression.

Image Block DCT

Zigzag

RLE Huffman

Quantize

Image Model

Entropy Coder

DPCM is useful in this project because it is extremely efficient
and has minimal overhead associated with it. Extensions to
DPCM exist, such as Adaptive DPCM, but these are not as
efficient and the compression gain is not significant.

2.1.5. Video Compression

A video is essentially a series of successive images, often with
some degree of temporal redundancy.

M-Jpeg compression is a simple video compression technique
which ignores this temporal redundancy. Individual frames are
compressed using Jpeg (intra-frame compression) and no inter-
frame compression is done. Mpeg compression, on the other hand,
uses sophisticated inter-frame compression techniques.

Since we do not have advanced information about future frames,
Mpeg compression is unsuitable for this project. Video
compression is also often very computationally expensive,
especially in the case of Mpeg in which the searches for temporal
coherence are very expensive.

2.2 Distributed Graphics
Distributed graphics refers to the process of rendering large data-
sets or scientific simulations remotely, usually on large clusters of
high-powered machines, but visualising the results on local
displays [2]. Two types of distributed graphics systems exist [10]:

- A single logical graphics system with distributed
components

- Multiple distributed logical graphics systems

Figure 3. Examples of Single (left) and Multiple (right) Logical
Distributed Graphics Systems

Our approach makes use of the first definition, i.e. we propose one
single logical system. Also, our rendering is done on a single
workstation, and not on a cluster of workstations or servers.

2.3 HCI Aspects
HCI is the study of all aspects of interaction between users and
computers. It focuses on what the user aims to achieve (their task)
and how difficult it is to achieve this. The aim, according to HCI
principles is to allow the user to complete their task without
having to focus on the interface. The computer is said to be seen
as a tool, and the user’s mental focus should naturally be on using
the tool, and not on how to use the tool [11].

An important aspect of HCI is usability. Usability focuses on
delivering a product that is ‘usable’. What this means is that

someone can benefit from the product without first having to
undergo some sort of training.

Another important notion from the field of HCI is that of an
affordance. An affordance is some piece of information that an
object imparts upon a user in a subliminal way. This comes from
compatibility between the user’s perception of the object, and the
objects action [6].

An example of an affordance is a large flat metal panel on a door
situated where one would normally find a handle. This panel gives
the affordance that the door should be pushed to be opened.
Conversely, a large bar handle extruded from the door surface,
and perhaps even rounded, gives the affordance that it should be
gripped and pulled in order to open the door.

With the notion of affordances, comes that of false affordances
[6]. This is when an object has an affordance which leads the user
to incorrectly perceive how it should be manipulated. An example
of a false affordance is a door with a large handle that opens by
being pushed.

Affordances should be used by interface designers wherever
possible to make the design more intuitive and easier to learn.
They can help to reduce what is called cognitive overhead, i.e. the
additional effort required to concentrate on several tasks at one
time [3]. False affordances should be avoided as they contribute to
cognitive overhead, which can build up rapidly resulting in a user
feeling “lost”.

3. METHOD

3.1 Server
The Server is broken down into two distinct parts, the Renderer
and the Front-End Server. These two parts and their basic
interaction are shown in Figure .

Figure 4. Overview of the Server

3.1.1 The Renderer
Figure shows the Overview of the Renderer in greater detail than
previously shown.

Receives
Input from
Client

Sends
compressed
2D Image to
Client

Server

Client

Input

2D image of
Camera

View

Parse File

Camera
View

Scene Model

Renderer

Front-End Server

VRML File

Figure 5. Overview of the Renderer

The initial task of the Renderer is to decide on the 3D
environment that the end-user will navigate through. A virtual
world is created by using VRML files to specify 3D objects and
OpenGL is used to render them to a display. OpenGL renders
these VRML model objects using its internal methods and
functions to shade and add textures to the 3D models. A scene
graph is created when the VRML files are loaded into memory to
improve the rendering engine's efficiency. The Server must be
able to produce these 2D images in real-time, otherwise the
images produced will lag behind even before they have been
transferred across the network. There will obviously be a limit on
the number of polygons in a scene before the engine will start to
fail at producing frames at an interactive rate. This limit will be an
attribute of the machine the Server is run on. However, as long as
the engine can render scenes with about 50 000 polygons in a
scene at interactive rates, the system will be able to deal with
fairly complex environments.

Figure 6. How the Renderer Decomposes the Image

After the 3D environment has been rendered to a 2D buffer, the
buffer is decomposed in “blocks”. These blocks are the basic
element that is passed across the network to the Client. They are
reassembled and displayed on the Client. This is shown in Figure
6.

It is imperative to reduce the amount of information passed
between the Server and the Client, and towards this aim only a
few selected blocks are sent across the network. The blocks from

the current frame are tested against the blocks from the previous
frame. If the blocks are equivalent then there is no need to send
the frame as the Client has already has that block when it renders
the previous frame. If the block from the current frame is different
from the previous frame then it is passed on to the Front-End
server to be sent client. This is illustrated in Figure 77.

Figure 7. Block Equivalency Test

3.1.2 The Front-End Server
Figure 8 details an overview of the Front-End Server in greater
detail than previously shown.

Figure 8. Overview of the Front-End Server

The compressed images are then sent to the Client using the
transfer protocol UDP. UDP was decided on instead of TCP/IP as
it is faster due to the fact there is less overhead the TCP/IP.
However, due to this a protocol was designed to protect the Client
from lost of packets and errors in the image it displays.

The first task of the server is to retrieve the blocks of the latest
frames from the Renderer. The blocks are then passed to the
Compressor.

The compressor first compresses the header. This is created by the
Front-End Server and details specifics on how to recreate the
image from the blocks. The Header is a vital piece of information
and must be passed to the Client, so a protocol is built into the
program to ensure that the Header reaches the Client. Once the

Previous Frame

Current Frame

Equivalent Blocks
compared to see if
Block from current
Frame needs to be
sent to the CLIENT

Blocks are compared
by testing each pixel in
a specific block against
the corresponding pixel
in the same block from
the previous frame.

Scene Model

Renderer

System breaks up
the Image into

Blocks

Capture the 2D

Image

System Analyzes

the Blocks

Front-End Server

User Input Is
received

The change in the
image is passed to
the server

SERVER VRML File

Parse File

Renderer Front-End Server

Compresso

Compress
Header

Compress
Block

Get Blocks
from the
Renderer

Send
Header

Send
Block

Receive
Input

Pass Input
to

Renderer

SERVER

to
Client

from
Client

No Blocks
left to
transmit

header has been created and compressed, it is sent to the Client
over the network.

The Front-End Server then sequentially compresses a block from
the current frame and sends it to the Client. This is repeated until
the Front-End Server has sent the all the blocks designated to be
sent. No protocol protects these blocks to ensure that these
packets reach the Client. If these packets are not received, the
Client will still know that it is missing packets from the
information it received in the Header. It will then inform the
Server that it is missing the specific block from the Frame and the
Server will send that block in the next Frame to be sent. The
Front-End Server then retrieves the next sequence of Blocks from
the current Frame on the Renderer and starts the sequence again.

The second task of the Front-End Server is to receive user input
from the Client. This is done in the Front-End Server by an
independent thread as this thread must block while waiting to
receive a packet from the Client. This thread listens on another
port so in fact there are two connections open between the Client
and the Server. The first connection passes all the Frames to the
Client while the second is only open to receive input packets from
the Client as well as designed packets to give the Server vital
feedback. This was done to further separate the two tasks of the
Front-End Server and eliminate the need for a more complex
protocol between the two.

An independent thread is created so the Server can still run while
waiting for the Client’s packets as these packets may arrive at
random. On receiving these packets the Front-End Server removes
the packet header information and passes on the input to the
Renderer. Once the thread has passed this information to the
Renderer, it goes back to listening for the next input packet.

3.2 Compression
The proposed method for performing compression in this report is
a hybrid compression scheme, choosing the best available
compression method based on the current circumstances. Since
the server first determines which portions of the image have
changed, the compression engine receives small blocks of the
image of varying sizes. Depending on the size of the block, the
most suitable compression method is chosen.

Since Jpeg does not perform well with small image sizes, a
lightweight compression algorithm in the form of a variant of
DPCM was developed.

When compressing images with DPCM, each colour component
of the image is compressed separately. This is because there is no
simple means of determining differences in colour which do not
favour one colour component over another.

The implementation of the DPCM compressor has several novel
features to remove artifacts which arise. The first attempt at a
simple DPCM compressor resulted in images with an
unacceptably high error, visible in edges that were blurred for
long distances. This is because of the inherent lossiness of DPCM.
A number of means were used to alleviate this. Firstly, a scale
factor was introduced, which scaled all the differences represented
by DPCM by a constant value, allowing for a more representative
sample of image differences. Secondly, a maximum pixel blur
parameter allows the user of the algorithm to control the
maximum length for which a pixel can blur. This is implemented
by encoding the absolute value of the pixel when it would

otherwise blur for too long. The maximum pixel blur may affect
the compression ratio of the image, whereas the scale factor does
not do so.

An alternative method for eliminating blur was also introduced,
where pixels are scanned in a “zigzag” order (the traditional
method is to scan from left to right, for each scanline of the
image). This exploits the coherence between pixels which are
vertically close together and eliminates blurring at the borders of
the image. This is particularly desirable because when the image
blocks are placed next to one another, lines at the edges of the
blocks show up as unacceptable artifacts.

Various packing structures were devised for when algorithm is in
24, 16 or 12-bit colour mode. For each of the modes, the number
of bits used to represent the differences is half that used to
represent the pixels.

The header data was compressed using a simplified RLE scheme.
Since there are only two possible values, there is no need to
indicate the symbol that is repeated, merely the length for which it
is repeated. A special code is then necessary to encode values
which repeat longer than 255.

3.3 Client
The problem we face in designing the client is to enable, possibly
mobile, end-users to view complex 3D models on hardware
architectures without native support for 3D rendering. Some of the
reasons for doing this are:

- In many places hardware advancements are very slow
due to the costs incurred by upgrading. This is
particularly true in rural areas which have only older
equipment. We aim to facilitate new uses for outdated
computing equipment to these areas, without the need to
frequently perform expensive upgrades.

- Computing today is becoming more and more mobile.
We aim to provide a solution to the rendering of
complex 3D scenes that is moved away from the
traditional large servers, and introduces “portable
rendering”.

Figure 9. Overview of the Structure of the Client

PDA Based Client

Visualisation
Interface

UI
Event

Decompression
Engine

Connection
Class

Server

out

in

UI Event

Frame
Data

The scenes must be displayed at a rate of at least 10fps (frames
per second). This is accepted as the lowest interactive refresh rate
which is necessary to create the illusion of real-time motion [1].
Anything lower than this results in the continuity of the scenes
being broken, and the movement feeling “jerky”. User input
should also be interactive. Ideally, there should be no noticeable
latency between user interaction with the system, and the system’s
response, as this increases cognitive processing. Usability studies
have shown that response times under 50ms-100ms do not affect
the user’s perception [13]. This is consistent with the figure for an
interactive frame-rate; 10fps indicates a frame change every
100ms.

We make provision for a network bandwidth of about 19kbps.
Although this is relatively slow, it is what could be from older
network internet connections common in rural areas.

The complexities of the distributed rendering system are
transparent to the user. The user simply starts the client
application and instructs it to connect to the server. From here on
the system behaves as if it were based locally and can be seen as a
single system.

Figure 10. The Scalable Model Viewing System as One Unit

3.3.1 Display
The client display is divided into uniform square blocks. Since
only the blocks which have changed since the last frame are
transmitted from the server, only these blocks need be updated on
the display.

In the case where very little is changing within the scene, having
a smaller block size results in better performance, as less data is
transported over the network. However, when larger changes are
occurring within the scene, larger block sizes are optimal.

The server also sends an array of Boolean values relating to which
blocks have been updated. The client receives this array which
also tells it how many blocks have changed. It then runs through a
loop of receiving a compressed block from the server,
decompressing in and displaying it in the appropriate location.
This is done until all the blocks have been updated.

Figure 11. The Incoming Blocks and the Client View

3.3.2 User interface
The user interface constitutes a major part of the design of the
client. The poor display resolution of PDAs may lead to poorer
performance in information retrieval tasks [9]. Thus it is important
to focus on creating a usable interface. It is most important that
the user feels he or she is interacting with the environment itself,
and not the system. The cognitive overhead introduced by the
system should be kept to an absolute minimum, and a relatively
inexperienced computer user should have no problems navigating
around the environment.

We have tried to make the system as intuitive as possible by using
affordances offered by the client device, such as the directional
pad, which is used to indicate motion in a given direction. These
buttons afford this information both by way of their layout and
their design. They are situated closely together and each is
noticeable as being either to the top, left bottom or right. They are
also marked with arrows pointing in their direction of effect. The
left and right buttons are used to move the viewpoint along the
horizontal axis, or strafe

The system should allow the user 6 degrees of freedom when
viewing models. This means that the user should be able to move
left, right, up and down, forwards and backwards. In addition to
this the user must be able to rotate the model about both the
horizontal and vertical axes.

This poses something of a problem on the PDA itself as it has
only the 4 directional buttons and 4 other function buttons. As a
result, we extend the metaphor of the stylus as a pen, or pointing
device to select items on the screen to convey user input to the
system. The stylus is an absolute, direct and continuous input
locator device [5]. It is well suited to picking out or placing
entities, but not to repetitive tasks such as entering text. Thus, to
simplify user input, buttons are placed on the edges of the screen
in order to allow the user to interact with the model. The stylus is
perfectly suited to touching these buttons in order to relate user
input to the system.

This can create an additional problem, since we must either
display information on the already small and cluttered PDA screen
to somehow inform the users of the functionality of the stylus, or
avoiding this, force the users to figure it out for themselves.

Neither of these is a desirable option. However, semi-transparent
widgets or buttons are used in order to present more information

User

Decompression
Engine

Compression
Engine

Server
Client

Scalable Model Viewing System

User
Input

Frame
Data

on screen [8]. The use of these types of buttons greatly reduces the
obscuring of the actual display data whilst still affording the users
with sufficient information as to how the interface works. The
buttons are small arrows, which affords the user the information
that they will have some bearing on the scene, based on the
direction in which they are pointing.

3.3.3 Communicating with the Server

The client communicates with the server on two separate ports.
One port is used for incoming display data, and the other is used
to send the user interaction events and control information. This
allows for smoother execution, as the data retrieval from the
server is not interrupted by the UI events.

4. RESULTS
We present the results obtained from performing various tests on
the components of our system.

4.1 Compression
The DPCM compression method performed consistently better
than Jpeg for small image sizes (smaller than 1600 pixels2), in
terms of both speed and artifacts. Both the DPCM compression
and RLE header compression are very consistent in terms of speed
and compression ratio, whereas other compression methods
perform differently depending on the input image.

Using DPCM combined with the method of dividing the display
into fixed-size blocks performs better than Jpeg until the portion
of blocks in the image which change reaches a certain threshold

4.2 Client
Both user tests and performance tests were used to evaluate the
design of the client.

User testing revealed that the design was simple to use and
intuitive. Users with little or no prior exposure to computers were
able to quickly grasp concepts and make progress.

Performance tests showed that the average frame-rate did not drop
below interactive levels in a variety of tests, even when displaying
complex, textured scenes.

Figure 12. A Screenshot of the Client

4.1 Server
The aim of the Server was to provide an interactive frame rate in
real time while minimising the use of the network. The Server

aims to produce a frame rate of 20 frames per second. This
specific frame rate is considered a good frame rate for an
interactive program but the frame rate can drop to a minimum of
10 frames per second and still remain interactive. Any program’s
frame rate run on any machine will drop below this lower bound
given a complex enough scene.

The Server must have an interactive frame rate for all scenes with
100 000 polygons. The Server was found to be able to produce a
frame rate of greater than 15 frames per second for scenes of
25 000 polygons. The target of producing an interactive frame rate
for a scene of 100 000 polygons was successful, however, the
Server only produced a frame rate just greater than 10 frames per
second for this scene.

5. CONCLUSION
The aim of the project was to provide an interactive frame rate on
a PDA while minimizing the use of the network. This was
considered a success in that the Server was able to produce very
good interactive rates for fairly complex scenes and still
producing a frame rate above the interactive lower bound for the
more complex scenes.

The interface of the client was deemed intuitive and easy to use by
the external test users, and the system proved to be responsive
enough so as not to introduce cognitive overhead.

We have successfully met the goals set out at the beginning of the
year and provided a novel approach to rendering complex 3D
scenes on architectures without 3D capabilities.

6. REFERENCES
[1] S. T. Bryson and S. Johan, “Time Management,

Simultaneity and Time-Critical Computation in Interactive
Unsteady Visualization Environments”, In IEEE
Visualization '96, IEEE, October, 1996.

[2] I. Buck, G. Humphreys and P. Hanrahan, “Tracking
Graphics State for Networked Rendering”, In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, Interlaken, Switzerland, 2000.

[3] E. J. Conklin, “Hypertext: An Introduction and Survey.”
IEEE Computer 20 (September 1987), 17-41.

[4] A. Drozdek. Elements of Data Compression. Brooks/Cole,
2002.

[5] J. Foley, A. van Dam, S. Feiner and R. Philips,
“Introduction to Computer Graphics”, Addison-Wesley,
1990.

[6] W. Gaver, “Technology Affordances”, In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, New Orleans, USA, 1991.

[7] D.A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the Institute
of Radio Engineers. Vol. 40, September 1952, pp. 1098-
1101.

[8] T. Kamba , S. A. Elson , T. Harpold , T. Stamper and P.
Sukaviriya, “Using Small Screen Space More Efficiently”,
In Proceedings SIGCHI'96, Vancouver, Canada, ACM
Press, April, 1996.

[9] L. Kärkkäinen and J. Laarni “Designing for Small Display
Screens”, In Proceedings of the Second Nordic
Conference on Human-Computer Interaction, Aarhus,
Denmark, 2002.

[10] B. MacIntyre and S. Feiner, “A Distributed 3D Graphics
Library”, In Proceedings of the Conference on Computer
Graphics and Interactive Techniques, July, 1998.

[11] C. Marlin, L. Brown, Ed Jones. “Human-Computer
Interface Design Guidelines”, Ablex, 1989.

[12] J. Nielsen, “Heuristic evaluation” In J. Nielsen and R.
Mack, Usability Inspection Methods., John Wiley & Sons,
New York, NY, 1994.

[13] B. Shneiderman, “Designing the User Interface: Strategies
for Effective Human-Computer Interaction”, Addison-
Wesley, Reading, MA, 1998.

[14] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information
Theory. Vol. IT-23, No. 3, May 1977, pp. 337–343.

[15] J. Ziv and A. Lempel. Compression of individual
sequences via variable rate coding. IEEE Transactions on
Information Theory. Vol. IT-24, No. 5, September 1978,
pp. 530–535.

