
Scalable Model Viewing 
Technical Report No. CS03-22-00  

Nicholas Appleby 
Department of Computer Science 

University of Cape Town 
South Africa 

nappleby@cs.uct.ac.za 

Rory Marcussen 
Department of Computer Science 

University of Cape Town 
South Africa 

rmarcuss@cs.uct.ac.za  

Patrick Marais 
Department of Computer Science 

University of Cape Town 
South Africa 

patrick@cs.uct.ac.za  

James Mc Millan 
Department of Computer Science 

University of Cape Town 
South Africa 

jmcmilla@cs.uct.ac.za    

ABSTRACT 
In this paper we describe a novel approach to displaying complex 
3D scenes on architecture that does not have support for 3D 
graphical display.  

Our system makes use of distributed graphics, employing a 
standard workstation as a server. This server communicates with a 
client via UDP sockets over a LAN link. To minimize network 
traffic, a compression engine is employed to compress and 
decompress data on either side of the network transfer phase. 

By dividing the display into blocks, we effectively reduce the 
amount of data needing to be transported from client to server and 
provide an interactive user friendly client. 

We choose a PDA as a client, but our approach is extensible and 
easy to implement on any architecture with at least some 2D 
graphics drawing capabilities. 

Categories and Subject Descriptors 
I.3.2 [Computer Graphics]: Distributed/Network Graphics. 

General Terms 
Performance, Design, Human Factors. 

Keywords 
Compression, Usability, Distributed Graphics, OpenGL. 

1. INTRODUCTION 
The popularity of 3D graphics has grown considerably in recent 
years and hardware advances have been frequent. This, however, 
means that the lifespan of graphics hardware has been shortened 
considerably. We propose a system that allows complex 3D 
scenes to be rendered on displays that have only 2D display 
capabilities.  

Our system addresses this problem by employing distributed 
graphics. As such consists of three main components. These are: 

- A server, which is a standard workstation with hardware 3D 
graphics capabilities. 

-A client with only 2D drawing capabilities. 

-A compression engine. 

We have chosen a PDA as our client as mobility of these devices 
has made them increasingly popular in recent times. 

Our system distributes the rendering of the scenes to the server, 
which sends the data to the client via a UDP socket over a LAN 
link. This data is compressed before it is sent to minimize network 
usage. 

The rendered scene is divided into blocks in so that only blocks 
which change from one frame to the next need be transmitted and 
thus redrawn. 

The client provides a usable interface to the user and sends the 
user interactions back to the server, which then updates the scene 
and transmits the next frame. 

2. BACKGROUND AND MOTIVATION 
2.1 Compression 
Two primary restrictions are placed on the system: the bandwidth 
that is available for the client/server communications is relatively 
low, and the client is assumed to have low-end hardware and thus 
has limited resources. This could lead to jittery movement or 
something that is just not usable. In order to alleviate this 
problem, the amount of network traffic had to be minimized. 
Compression is used as the primary means of alleviating this 
problem. 

If a pixel depth of 16bpp is assumed on the PDA, then at the full 
screen resolution of the PDA one frame will take up 150k. In 
order for the user to effectively interact with the system, the 
display must update at least 10 fps (frames per second) [TM]. 
Updating at this frame-rate results in 2.19MB being transmitted 
per second. However, we are not likely to use the full PDA 
display for the 3D scene, since some of the display may be used 
for displaying user interface components. 

Formally, compression reduces the data transmission, processing 
and storage requirements of a system by reducing the number of 
bits needed for signal representation. There are two ways in which 
to accomplish this, lossless and lossy compression. 



Lossless compression chooses an alternative representation of the 
data which equals the original signal’s information content, so no 
information is lost, and redundancies are removed from the data. 
Lossy compression, on the other hand, considers the use to which 
the data will be put and selectively eliminates unneeded or 
unimportant information. Most compression techniques which are 
lossless and use statistical data only give a compression ratio from 
2:1 to 5:1 on images. A lossy compression scheme such as Jpeg 
can, however, give compression ratios of 20:1 with minimal image 
quality degradation [4]. Lossy video compression, which can also 
exploit temporal coherence, can achieve even higher compression 
ratios [4]. 

Having looked at the most important concepts in compression, the 
key compression techniques used for the compression engine will 
now be explained. 

2.1.1 Lossless entropy encoders 

There are many variants of entropy encoders, where the 
underlying principle is to exploit the statistics of the data to 
perform compression. Huffman coding [7] is an example of a 
statistical compression technique, which works by assigning 
variable-length codes to symbols based on their frequency. By 
assigning shorter codes to more frequently occurring signals, the 
average number of bits per symbol is reduced. Substitutional, or 
dictionary-based compressors such as Lempel-Ziv [14, 15], 
replace an occurrence of a particular sequence of symbols in a 
piece of data with a reference to a previous occurrence of that 
sequence. 

2.1.2 Run-length encoding 

There are many variants of run-length encoding, which is lossless, 
but the central idea is to identify strings of adjacent sequences of 
the same symbol and replace them with a single occurrence along 
with a count. Once transformed, an entropy encoder, such as 
Huffman, can be used to code both the symbol values and the 
counts. This is often done since short lengths are likely to be 
much more common than long lengths. 

2.1.3 Jpeg Compression 
Jpeg compression was developed by developed by the Joint 
Photographic Experts Group (JPEG), part of the International 
Organization for Standardization (ISO). It is widely accepted as 
the standard means of image compression. 

An overview of the steps for the algorithm is presented in figure x 
below.  

Figure 1. Jpeg compression algorithm 

The first step in jpeg compression is the transform step, in which 
the image is processed in blocks of 8x8 samples. Each block is 
transformed into a block of 8x8 spatial frequency coefficients by 
means of a Discrete Cosine Transform (DCT). These coefficients 
represent weights for each of 64 basis functions (see figure x). 
These basis functions are effectively patterns that can appear in 
one block of an image, ranging from lower frequencies in the top 
left-hand corner to higher frequencies in the lower right-hand 
corner. 

 

Figure 2. The DCT coefficients 

After the DCT step has been done, there tends to be a 
concentration of a few significant coefficients and the other 
coefficients are insignificant or close to zero. The motivation for 
doing the DCT step is that you can now throw away high-
frequency information without affecting low-frequency 
information, since the human visual system is less sensitive to 
high-frequency information than it is to low frequency 
information. 

The next step is quantization, in which unimportant information 
(the close to zero coefficients) is discarded. The resulting data is 
then further compressed using a number of methods, including 
run-length-encoding and Huffman compression. 

Jpeg compresses natural scenes very well [4], but line drawings or 
images with sharp edges will have noticeable blurring along these 
edges. Computer generated images often fall somewhere in-
between natural and line drawings, depending on how realistically 
the scene is rendered. 

Jpeg compression is useful for this project since it is an extremely 
efficient image compression technique. However, there can be a 
large overhead associated with jpeg compression, mostly in the 
quantization tables which are stored along with the compressed 
data. 

2.1.4. Differential PCM 
With DPCM, each pixel is used as a prediction of the next. When 
doing this the only information that needs to be transmitted is the 
difference between one pixel and the next. There is no advantage 
if the number of bits per pixel in the original sample is the same as 
the number of bits per pixel in the differences we transmit. One 
possible method for performing DPCM is to assume a maximum 
change and use that. If a change is encountered that is greater than 
this maximum, then the actual change is kept internally and 
modify subsequent differences in order to “catch up” with the 
actual pixel values. This would result in lossy compression. 
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DPCM is useful in this project because it is extremely efficient 
and has minimal overhead associated with it. Extensions to 
DPCM exist, such as Adaptive DPCM, but these are not as 
efficient and the compression gain is not significant. 

2.1.5. Video Compression 

A video is essentially a series of successive images, often with 
some degree of temporal redundancy. 

M-Jpeg compression is a simple video compression technique 
which ignores this temporal redundancy. Individual frames are 
compressed using Jpeg (intra-frame compression) and no inter-
frame compression is done. Mpeg compression, on the other hand, 
uses sophisticated inter-frame compression techniques. 

Since we do not have advanced information about future frames, 
Mpeg compression is unsuitable for this project. Video 
compression is also often very computationally expensive, 
especially in the case of Mpeg in which the searches for temporal 
coherence are very expensive. 

2.2 Distributed Graphics 
Distributed graphics refers to the process of rendering large data-
sets or scientific simulations remotely, usually on large clusters of 
high-powered machines, but visualising the results on local 
displays [2]. Two types of distributed graphics systems exist [10]: 

- A single logical graphics system with distributed 
components 

- Multiple distributed logical graphics systems 

 

Figure 3. Examples of Single (left) and Multiple (right) Logical 
Distributed Graphics Systems 

Our approach makes use of the first definition, i.e. we propose one 
single logical system. Also, our rendering is done on a single 
workstation, and not on a cluster of workstations or servers. 

2.3 HCI Aspects 
HCI is the study of all aspects of interaction between users and 
computers. It focuses on what the user aims to achieve (their task) 
and how difficult it is to achieve this. The aim, according to HCI 
principles is to allow the user to complete their task without 
having to focus on the interface. The computer is said to be seen 
as a tool, and the user’s mental focus should naturally be on using 
the tool, and not on how to use the tool [11]. 

An important aspect of HCI is usability. Usability focuses on 
delivering a product that is ‘usable’. What this means is that 

someone can benefit from the product without first having to 
undergo some sort of training.  

Another important notion from the field of HCI is that of an 
affordance. An affordance is some piece of information that an 
object imparts upon a user in a subliminal way. This comes from 
compatibility between the user’s perception of the object, and the 
objects action [6]. 

An example of an affordance is a large flat metal panel on a door 
situated where one would normally find a handle. This panel gives 
the affordance that the door should be pushed to be opened. 
Conversely, a large bar handle extruded from the door surface, 
and perhaps even rounded, gives the affordance that it should be 
gripped and pulled in order to open the door. 

With the notion of affordances, comes that of false affordances 
[6]. This is when an object has an affordance which leads the user 
to incorrectly perceive how it should be manipulated. An example 
of a false affordance is a door with a large handle that opens by 
being pushed.  

Affordances should be used by interface designers wherever 
possible to make the design more intuitive and easier to learn. 
They can help to reduce what is called cognitive overhead, i.e. the 
additional effort required to concentrate on several tasks at one 
time [3]. False affordances should be avoided as they contribute to 
cognitive overhead, which can build up rapidly resulting in a user 
feeling “lost”. 

3. METHOD 

3.1 Server 
The Server is broken down into two distinct parts, the Renderer 
and the Front-End Server. These two parts and their basic 
interaction are shown in Figure .   

Figure 4. Overview of the Server 

3.1.1 The Renderer 
Figure  shows the Overview of the Renderer in greater detail than 
previously shown. 
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Figure 5. Overview of the Renderer 

The initial task of the Renderer is to decide on the 3D 
environment that the end-user will navigate through. A virtual 
world is created by using VRML files to specify 3D objects and 
OpenGL is used to render them to a display. OpenGL renders 
these VRML model objects using its internal methods and 
functions to shade and add textures to the 3D models. A scene 
graph is created when the VRML files are loaded into memory to 
improve the rendering engine's efficiency. The Server must be 
able to produce these 2D images in real-time, otherwise the 
images produced will lag behind even before they have been 
transferred across the network. There will obviously be a limit on 
the number of polygons in a scene before the engine will start to 
fail at producing frames at an interactive rate. This limit will be an 
attribute of the machine the Server is run on. However, as long as 
the engine can render scenes with about 50 000 polygons in a 
scene at interactive rates, the system will be able to deal with 
fairly complex environments. 

 

Figure 6. How the Renderer Decomposes the Image 

After the 3D environment has been rendered to a 2D buffer, the 
buffer is decomposed in “blocks”. These blocks are the basic 
element that is passed across the network to the Client. They are 
reassembled and displayed on the Client. This is shown in Figure 
6. 

It is imperative to reduce the amount of information passed 
between the Server and the Client, and towards this aim only a 
few selected blocks are sent across the network. The blocks from 

the current frame are tested against the blocks from the previous 
frame. If the blocks are equivalent then there is no need to send 
the frame as the Client has already has that block when it renders 
the previous frame. If the block from the current frame is different 
from the previous frame then it is passed on to the Front-End 
server to be sent client. This is illustrated in Figure 77.  

Figure 7. Block Equivalency Test 

3.1.2 The Front-End Server 
Figure 8 details an overview of the Front-End Server in greater 
detail than previously shown.  

Figure 8. Overview of the Front-End Server 

The compressed images are then sent to the Client using the 
transfer protocol UDP. UDP was decided on instead of TCP/IP as 
it is faster due to the fact there is less overhead the TCP/IP. 
However, due to this a protocol was designed to protect the Client 
from lost of packets and errors in the image it displays. 

The first task of the server is to retrieve the blocks of the latest 
frames from the Renderer. The blocks are then passed to the 
Compressor. 

The compressor first compresses the header. This is created by the 
Front-End Server and details specifics on how to recreate the 
image from the blocks. The Header is a vital piece of information 
and must be passed to the Client, so a protocol is built into the 
program to ensure that the Header reaches the Client. Once the 
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header has been created and compressed, it is sent to the Client 
over the network.  

The Front-End Server then sequentially compresses a block from 
the current frame and sends it to the Client. This is repeated until 
the Front-End Server has sent the all the blocks designated to be 
sent. No protocol protects these blocks to ensure that these 
packets reach the Client. If these packets are not received, the 
Client will still know that it is missing packets from the 
information it received in the Header. It will then inform the 
Server that it is missing the specific block from the Frame and the 
Server will send that block in the next Frame to be sent. The 
Front-End Server then retrieves the next sequence of Blocks from 
the current Frame on the Renderer and starts the sequence again. 

The second task of the Front-End Server is to receive user input 
from the Client. This is done in the Front-End Server by an 
independent thread as this thread must block while waiting to 
receive a packet from the Client. This thread listens on another 
port so in fact there are two connections open between the Client 
and the Server. The first connection passes all the Frames to the 
Client while the second is only open to receive input packets from 
the Client as well as designed packets to give the Server vital 
feedback. This was done to further separate the two tasks of the 
Front-End Server and eliminate the need for a more complex 
protocol between the two. 

An independent thread is created so the Server can still run while 
waiting for the Client’s packets as these packets may arrive at 
random. On receiving these packets the Front-End Server removes 
the packet header information and passes on the input to the 
Renderer. Once the thread has passed this information to the 
Renderer, it goes back to listening for the next input packet. 

3.2 Compression 
The proposed method for performing compression in this report is 
a hybrid compression scheme, choosing the best available 
compression method based on the current circumstances. Since 
the server first determines which portions of the image have 
changed, the compression engine receives small blocks of the 
image of varying sizes. Depending on the size of the block, the 
most suitable compression method is chosen.  

Since Jpeg does not perform well with small image sizes, a 
lightweight compression algorithm in the form of a variant of 
DPCM was developed. 

When compressing images with DPCM, each colour component 
of the image is compressed separately. This is because there is no 
simple means of determining differences in colour which do not 
favour one colour component over another. 

The implementation of the DPCM compressor has several novel 
features to remove artifacts which arise. The first attempt at a 
simple DPCM compressor resulted in images with an 
unacceptably high error, visible in edges that were blurred for 
long distances. This is because of the inherent lossiness of DPCM. 
A number of means were used to alleviate this. Firstly, a scale 
factor was introduced, which scaled all the differences represented 
by DPCM by a constant value, allowing for a more representative 
sample of image differences. Secondly, a maximum pixel blur 
parameter allows the user of the algorithm to control the 
maximum length for which a pixel can blur. This is implemented 
by encoding the absolute value of the pixel when it would 

otherwise blur for too long. The maximum pixel blur may affect 
the compression ratio of the image, whereas the scale factor does 
not do so. 

An alternative method for eliminating blur was also introduced, 
where pixels are scanned in a “zigzag” order (the traditional 
method is to scan from left to right, for each scanline of the 
image). This exploits the coherence between pixels which are 
vertically close together and eliminates blurring at the borders of 
the image. This is particularly desirable because when the image 
blocks are placed next to one another, lines at the edges of the 
blocks show up as unacceptable artifacts. 

Various packing structures were devised for when algorithm is in 
24, 16 or 12-bit colour mode. For each of the modes, the number 
of bits used to represent the differences is half that used to 
represent the pixels. 

The header data was compressed using a simplified RLE scheme. 
Since there are only two possible values, there is no need to 
indicate the symbol that is repeated, merely the length for which it 
is repeated. A special code is then necessary to encode values 
which repeat longer than 255. 

3.3 Client 
The problem we face in designing the client is to enable, possibly 
mobile, end-users to view complex 3D models on hardware 
architectures without native support for 3D rendering. Some of the 
reasons for doing this are: 

- In many places hardware advancements are very slow 
due to the costs incurred by upgrading. This is 
particularly true in rural areas which have only older 
equipment. We aim to facilitate new uses for outdated 
computing equipment to these areas, without the need to 
frequently perform expensive upgrades. 

- Computing today is becoming more and more mobile. 
We aim to provide a solution to the rendering of 
complex 3D scenes that is moved away from the 
traditional large servers, and introduces “portable 
rendering”.     

Figure 9. Overview of the Structure of the Client 
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The scenes must be displayed at a rate of at least 10fps (frames 
per second). This is accepted as the lowest interactive refresh rate 
which is necessary to create the illusion of real-time motion [1]. 
Anything lower than this results in the continuity of the scenes 
being broken, and the movement feeling “jerky”. User input 
should also be interactive. Ideally, there should be no noticeable 
latency between user interaction with the system, and the system’s 
response, as this increases cognitive processing. Usability studies 
have shown that response times under 50ms-100ms do not affect 
the user’s perception [13]. This is consistent with the figure for an 
interactive frame-rate; 10fps indicates a frame change every 
100ms.  

We make provision for a network bandwidth of about 19kbps. 
Although this is relatively slow, it is what could be from older 
network internet connections common in rural areas.  

The complexities of the distributed rendering system are 
transparent to the user. The user simply starts the client 
application and instructs it to connect to the server. From here on 
the system behaves as if it were based locally and can be seen as a 
single system.   

Figure 10. The Scalable Model Viewing System as One Unit 

3.3.1 Display 
The client display is divided into uniform square blocks. Since 
only the blocks which have changed since the last frame are 
transmitted from the server, only these blocks need be updated on 
the display.  

In  the case where very little is changing within the scene, having 
a smaller block size results in better performance, as less data is 
transported over the network. However, when larger changes are 
occurring within the scene, larger block sizes are optimal.  

The server also sends an array of Boolean values relating to which 
blocks have been updated. The client receives this array which 
also tells it how many blocks have changed. It then runs through a 
loop of receiving a compressed block from the server, 
decompressing in and displaying it in the appropriate location. 
This is done until all the blocks have been updated.  

 
Figure 11. The Incoming Blocks and the Client View 

3.3.2 User interface 
The user interface constitutes a major part of the design of the 
client. The poor display resolution of PDAs may lead to poorer 
performance in information retrieval tasks [9]. Thus it is important 
to focus on creating a usable interface. It is most important that 
the user feels he or she is interacting with the environment itself, 
and not the system. The cognitive overhead introduced by the 
system should be kept to an absolute minimum, and a relatively 
inexperienced computer user should have no problems navigating 
around the environment.  

We have tried to make the system as intuitive as possible by using 
affordances offered by the client device, such as the directional 
pad, which is used to indicate motion in a given direction. These 
buttons afford this information both by way of their layout and 
their design. They are situated closely together and each is 
noticeable as being either to the top, left bottom or right. They are 
also marked with arrows pointing in their direction of effect. The 
left and right buttons are used to move the viewpoint along the 
horizontal axis, or strafe  

The system should allow the user 6 degrees of freedom when 
viewing models. This means that the user should be able to move 
left, right, up and down, forwards and backwards. In addition to 
this the user must be able to rotate the model about both the 
horizontal and vertical axes.  

This poses something of a problem on the PDA itself as it has 
only the 4 directional buttons and 4 other function buttons. As a 
result, we extend the metaphor of the stylus as a pen, or pointing 
device to select items on the screen to convey user input to the 
system. The stylus is an absolute, direct and continuous input 
locator device [5]. It is well suited to picking out or placing 
entities, but not to repetitive tasks such as entering text. Thus, to 
simplify user input, buttons are placed on the edges of the screen 
in order to allow the user to interact with the model. The stylus is 
perfectly suited to touching these buttons in order to relate user 
input to the system.  

This can create an additional problem, since we must either 
display information on the already small and cluttered PDA screen 
to somehow inform the users of the functionality of the stylus, or 
avoiding this, force the users to figure it out for themselves.  

Neither of these is a desirable option. However, semi-transparent 
widgets or buttons are used in order to present more information 
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on screen [8]. The use of these types of buttons greatly reduces the 
obscuring of the actual display data whilst still affording the users 
with sufficient information as to how the interface works. The 
buttons are small arrows, which affords the user the information 
that they will have some bearing on the scene, based on the 
direction in which they are pointing. 

3.3.3 Communicating with the Server 

The client communicates with the server on two separate ports. 
One port is used for incoming display data, and the other is used 
to send the user interaction events and control information. This 
allows for smoother execution, as the data retrieval from the 
server is not interrupted by the UI events. 

4. RESULTS 
We present the results obtained from performing various tests on 
the components of our system. 

4.1 Compression 
The DPCM compression method performed consistently better 
than Jpeg for small image sizes (smaller than 1600 pixels2), in 
terms of both speed and artifacts. Both the DPCM compression 
and RLE header compression are very consistent in terms of speed 
and compression ratio, whereas other compression methods 
perform differently depending on the input image. 

Using DPCM combined with the method of dividing the display 
into fixed-size blocks performs better than Jpeg until the portion 
of blocks in the image which change reaches a certain threshold 

4.2 Client 
Both user tests and performance tests were used to evaluate the 
design of the client. 

User testing revealed that the design was simple to use and 
intuitive. Users with little or no prior exposure to computers were 
able to quickly grasp concepts and make progress. 

Performance tests showed that the average frame-rate did not drop 
below interactive levels in a variety of tests, even when displaying 
complex, textured scenes. 

 

Figure 12. A Screenshot of the Client 

4.1 Server 
The aim of the Server was to provide an interactive frame rate in 
real time while minimising the use of the network. The Server 

aims to produce a frame rate of 20 frames per second. This 
specific frame rate is considered a good frame rate for an 
interactive program but the frame rate can drop to a minimum of 
10 frames per second and still remain interactive. Any program’s 
frame rate run on any machine will drop below this lower bound 
given a complex enough scene.  

The Server must have an interactive frame rate for all scenes with 
100 000 polygons. The Server was found to be able to produce a 
frame rate of greater than 15 frames per second for scenes of      
25 000 polygons. The target of producing an interactive frame rate 
for a scene of 100 000 polygons was successful, however, the 
Server only produced a frame rate just greater than 10 frames per 
second for this scene. 

5. CONCLUSION 
The aim of the project was to provide an interactive frame rate on 
a PDA while minimizing the use of the network. This was 
considered a success in that the Server was able to produce very 
good interactive rates for fairly complex scenes and still 
producing a frame rate above the interactive lower bound for the 
more complex scenes. 

The interface of the client was deemed intuitive and easy to use by 
the external test users, and the system proved to be responsive 
enough so as not to introduce cognitive overhead. 

We have successfully met the goals set out at the beginning of the 
year and provided a novel approach to rendering complex 3D 
scenes on architectures without 3D capabilities. 
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