
Large Scale Metadata Harvesting Over Low Bandwidth
Connections

Rickert Mulder
Department of Computer Science

University of Cape Town
Cape Town, South Africa

circlingthesun@gmail.com

ABSTRACT
There seems to be a widespread perception that large scale
metadata harvesting requires a large amount of bandwidth.
In this study a simple Python-based metadata harvester was
created and run over a residential broadband connection.
Results show that it is possible to build a metadata collec-
tion in the order of millions of records in just a few days
over such connections.

Categories and Subject Descriptors
H.3.7 [Information Systems]: Digital Libraries—Systems
issues

General Terms
Performance, Measurement

Keywords
OAI-PMH, Low Bandwidth, Harvesting

1. INTRODUCTION
There seems to be widespread perception that large scale
metadata harvesting requires a large amount of bandwidth
and that a fast Internet connection is essential for such an
endeavour [7]. This view is undoubtedly influenced by the
Web crawling paradigm. Web-crawling is a very resource
intensive process that requires that a complete Web page be
downloaded, indexed, then later revisited to check for pos-
sible changes. Large search engines have dedicated server
farms designated solely for Web crawling. Metadata har-
vesting by means of the Open Archives Initiative’s Protocol
for Metadata Harvesting (OAI-PMH) is regarded as a far
more efficient process. Instead of downloading a complete
resource from an archive, only the metadata that describes
a resource is retrieved and indexed. A record will also never
have to be revisited unless its repository indicates that it
has been modified. It is easy to see how metadata harvest-
ing would require significantly less bandwidth compared to

Web crawling. But exactly how much bandwidth is required
to harvest and maintain a metadata database?

The literature does not provide many answers. Lessons
Learned with Arc, an OAI-PMH Service Provider [6] pro-
vides a detailed breakdown of issues experienced while im-
plementing the ARC harvester, but does not make mention
of bandwidth consumption metrics. Given this lack of in-
formation, questions regarding the feasibility of large scale
metadata harvesting over relatively slow connections would
largely dependant on rough estimates. Individuals unfamil-
iar with OAI-PMH are likely to dismiss harvesting millions
of records over a slow connection as an unlikely feat.

2. RESEARCH QUESTION
In this study the aim was to determine whether large scale
metadata harvesting over low bandwidth connections is fea-
sible, and to discover what problems effect harvester effi-
ciency in this context.

For the purpose of this study a Python based OAI-PMH
harvester was created. The design goal of this prototype
was to build a simple and robust OAI-PMH harvester to
collect various performance metrics during a harvest cycle.
The harvester was built from the ground up in order to gain
a better understanding of possible complexities during im-
plementation.

3. BACKGROUND
Before discussing the system design a brief overview of OAI-
PMH is provided.

The OAI-PMH framework was created out of a need for an
interoperable interface to disseminate scholarly research (e-
prints) before publication to peer reviewed journals. It was
designed to be a simple and efficient low barrier protocol.
Although OAI-PMH’s roots lie within e-prints, its applica-
tion is by no means limited to e-prints. OAI-PMH is well
suited to disseminate metadata about virually any digital
object.

The protocol piggybacks on top of HTTP and is thus Client-
Server orientated. Two roles are defined, namely: Data
Providers (also Repositories) and Service Providers (also
Harvesters). Data Providers maintain a collection of digi-
tal resources while Service Providers retrieve metadata de-
scribing these digital resources. To enable this interaction,
a Data provider exposes an HTTP interface to a network.



Service Providers may harvest metadata from multiple Data
Providers and use it to provide services such as search or
browse. Popular OAI-PMH based Service Providers include
OAIster [2] and Worldcat [4].

Service Providers make requests to Data Providers by using
either HTTP GET or POST methods. Data Providers re-
spond with XML encoded data. Data Providers are required
to support six types of requests (also known as verbs). These
verbs are ListRecords, Identify, ListMetadataFormats, Ge-
tRecord, ListIdentifier, and ListSets. To most harvesters the
two most important verbs are ListRecords and Identify.

Identify tells the Data Provider to provide a list of informa-
tion about itself. This information includes its name, granu-
larity, and earliest date stamp. Granularity specifies the for-
mat in which date stamps are encoded. Repositories my use
either YYYY-MM-DD or YY-MM-DDTHH:MM:SSZ gran-
ularities. Granularity is important since a Data Provider
will generally not support dates in a different granularity.
The earliest date stamp specifies the date stamp of the ear-
liest metadata record in a collection. A request with an
earlier date stamp will result in an error.

ListRecords is the primary method of retrieving records from
a repository. A ListRecords request may contain various pa-
rameters. A Data Provider receiving such a request is re-
quired to return all metadata records that match supplied
parameters. A ListRecords request must always specify the
metadata format in which records are to be returned in. All
repositories are required to at least support the Unquali-
fied Dublin Core metadata format. Additional supported
formats may be discovered by using the ListMetadataFor-
mats verb. All metadata records in a repository are date
stamped to indicate the time at which they were added to
the repository. When specifying from and until parame-
ters only records that were added during this interval will
be returned. In the absence of from and until parameters,
no lower or upper bounds will be assumed. Data Providers
may also classify records by making them part of a set such
as Mathematics or Biology. A setSpec parameter may be
passed to return only records from a specified set. A reposi-
tory usually only returns a fixed number of metadata records
per request. If all records are not returned, a resumption
token is appended to the end of a response. The harvester
may request the remainder of a result set by reissuing a
ListRecords request, but only passing the resumption token
as parameter. The repository will keep returning resump-
tion tokens until no more records are pending. The absence
of a resumption token indicates that all records have been
sent.

For a more in-depth overview of OAI-PHM, refer to the OAI-
PHM Specification [5].

4. DESIGN AND SPECIFICATION
Scythe is a simple cross platform OAI-PMH harvester coded
for the purpose of this study. Scythe was coded in Python
2.6 and runs on MySQL 5.1 using the InnoDB storage en-
gine.

4.1 Architecture

The basic architecture revolves around two task queues. The
first queue (named job queue) is fed by a populate function.
This function searches the database for stale repositories,
then pushes new harvest jobs to the queue. This job queue
has a number of associated harvest threads are tasked to
process job objects from the queue. A harvest thread uses
parameters from a job object to send a series of requests
to a repository. Responses from repositories will contain
several records. These records are pushed onto a secondary
indexing queue. An indexer thread is tasked to processes all
records from the indexing queue by inserting metadata into
the database.

Other types of objects are also fed into the two queues. For
instance, AddRepo objects that contain new repository in-
formation are pushed onto the job queue from where har-
vester threads pick them off. The harvester thread will ex-
ecute an Identify request and add retrieved info onto the
object and push it onto the indexing queue. The indexer
thread will in turn add the new repository to the database.

As various job objects move through the system, statistics
related to various stages of a task are accumulated. When
these jobs reach the indexer thread, all attached statistics
are also indexed in separate relations.

4.2 Interface
Scythe has a basic command line interface that takes sev-
eral parameters. Command line flags include options for
starting a harvest (-h) and adding new repositories (-a) to
the database. When passing the -a flag, an XML file with
the location of multiple repositories and their harvest con-
straints needs to be supplied as a parameter. Scythe will
attempt to send an Identify request to all repositories in this
file. Database entries will be created for all repositories that
successfully responds to the Identify request. For testing
purposes a second method for repository adding was cre-
ated, which downloads the OAI Registered Data Providers
List [1]. The list contains the base URL of over 1200 repos-
itories. By passing the -f flag along with a number range in
int:int format, the specified range of repositories in the list
will be added to the database.

4.3 Harvesting
When starting a harvest, harvest jobs for all new reposito-
ries are enqueued along with any existing repositories that
are out of date. Scythe has a global harvesting frequency
that can be modified in settings.xml. Once harvest jobs
have been enqueued, multiple threads start processing them
concurrently. A harvest thread will keep fetching new jobs
until the job queue is depleted.

The indexer thread processes each record individually. If
a record has a deleted flag set it indicates that its associ-
ated resource was deleted from the repository. Such records
contain no metadata and will trigger its removal from the
database if it is present. If a record was updated since its last
retrieval, it’s outdated version will be deleted and replaced
with the new version. If a new record has an identical ID and
date stamp to a pre-existing one in the database, it will be
logged and dropped. The result of all insert operations are
logged to the database. After all records in a response object
are processed, accrued connection statistics are logged to the



database. This includes the amount of data transferred and
the time it took to complete a request.

When incrementally harvesting it is important that the from
date stamp overlaps with the start time of the last success-
ful harvest of a given repository. This assures that no new
records that might have been added during the previous har-
vest is omitted. The amount of overlap required is a func-
tion of a repository’s granularity level. Repositories with day
level granularity need to overlap incremental harvests by one
day. For second level granularity, only a second overlap is
required but 5 seconds is used in practice to compensate for
possible timing errors. Overlapping gives rise to possible du-
plicate records being harvested during incremental harvests.
Day level granularities naturally results in more duplicates
than second level granularity.

4.4 Logging
Scythe has two logging systems. The one discussed ear-
lier logs mainly connection-related metrics and inserts them
into the database. A second logging system prints various
debugging messages to a log file. These messages can also
be printed to the console by passing the -d flag.

The database contains various stored procedures which al-
low the compilation of harvest reports containing various
metrics. Scythe includes a bash script that generates CSV
reports on a range of sessions passed as arguments. Reports
include the following metrics: session duration, number of
repositories harvested, number of records returned, number
of requests made, records harvested per second, total data
transfer, data transfer rate, a break down of the record in-
sert result, and error frequencies. Typically at the start of
a harvest session, all harvesting threads run concurrently.
Multiple concurrent harvests make sure the connection is
optimally utilised. Should a single connection slow down
other connections will generally take up this unused capac-
ity. However, as the harvest draws to an end, not all threads
are used. This leads to the connection being under-utilised
as the session nears its end. Therefore a peak transfer rate
(which we arbitrarily defined as the first 5 minutes) is re-
ported along with the mean transfer rate (which takes into
account the whole session duration). It should be noted that
data transfer reported is only downstream and excludes any
protocol overhead.

5. PROCEDURE
Sample repositories for this study were selected from the
OAI Registered Data Providers List [1] that contained 1206
base URLs at the time. Only 865 repositories could be
successfully identified and were subsequently added to the
database. Scythe was set to harvest daily from 6pm via a
cron job. An initial harvest was set to only retrieve new
records added over the previous 6 days. Scythe success-
fully executed daily for 9 consecutive days. The maximum
number of concurrent harvester threads was set to 20. Non-
responsive connections were set to time-out after 10 seconds
and could retry a maximum of 3 times. Temporary HTTP
redirects were cached and set to expire after 5 minutes. The
harvest was run over a 4096 kbps ADSL connection.

6. RESULTS
6.1 Connection Metrics
The theoretical maximum transfer rate for the connection
used in this study was 512 Kb/s, without taking protocol
overhead into account. A quick benchmark showed that
a typical HTTP download from a local server averaged at
speed of 420 Kb/s.

6.1.1 Initial harvest
Results reported in Table 1 show that the initial harvest’s
peak transfer rate was 366.71 Kb/s. This is slightly lower
than the benchmark. This figure, however, represents a se-
ries of short concurrent downloads from multiple reposito-
ries scattered across the globe. Lower transfer rates could
be explained by a number of factors including TCP slow
start, HTTP header overhead and slow international up-
links. During this peak transfer rate interval, records were
arriving at a rate of 182.25 records/s. The mean data trans-
fer rate over the full duration was 135.25 Kb/s and the mean
record retrieval rate was 71.6 records per second. This could
be explained by network under-utilisation near the end of a
harvest due to lack of concurrency.

6.1.2 Incremental Harvests
Results from eight incremental harvest sessions subsequent
to the initial import are aggregated in Table 1. Both peak
and mean transfer rates of incremental harvests were lower
than that of the initial harvest at 239.76 Kb/s and 85.92
Kb/s respectively. Peak and mean record retrieval rates
dropped to 138.74 records/s and 51.72 records/s. This drop
in efficiency could be the result of an increase in empty result
sets as indicated in Table 3.

6.2 Record Indexing
Table 2 shows that, on initial import, 99.03% of records har-
vested were inserted successfully. Successful inserts dropped
significantly to 26.42% on subsequent incremental harvests.
Table 2 shows that 14.88% of records harvested were du-
plicates and, strangely, 58.68% were updates. An investi-
gation of the application code base revealed problem in the
section that distinguishes between updates and duplicates.
One can assume that the majority of updates shown were
actually duplicates. Overlapping harvests is the source of
these duplicates. Most duplicates would be from reposito-
ries with day level granularity. It would clearly be more effi-
cient to harvest these repositories less often. Invalid records
were reported at 0.28% and 0.02% for initial and incremen-
tal harvests respectively. Invalid records are typically due
to invalid dates being reported and corrupt XML.

6.3 Harvesting Errors
Table 3 shows the frequency of various harvest results. Most
results in the table, apart from Success and No Records
Match, are in fact errors that lead to the termination of a
harvest. No Records Match indicates that a request returned
no records. The fact that No Records Match occurs more
frequently during incremental harvests come as no surprise.
No Records Match is not classified as an error, therefore it
follows that 92.6% of incremental harvests and 94.28% of
initial harvests completed successfully. It appears that the
most frequently occurring errors are connection time-outs
and XML parsing errors.



Table 1: Connection Metrics
Metric Initial Harvest (n=1) Incremental Harvest (n=8)
Number of Records Retrieved 191 778 95 094
Number of Requests 2353 909
Data Transferred (MB) 362.40 157.96
Duration (min) 44:37 30:39
Mean Number of Records per Request 81.5 104.61
Mean Record Retrieval Rate (Records/s) 71.6 51.72
Peak Record Retrieval Rate (Records/s) 182.25 138.74
Mean Transfer Rate (Kb/s) 135.25 85.92
Peak Transfer Rate (Kb/s) 366.71 239.76

Table 2: Indexing Results
Total Records Inserted % Duplicates % Updated % Deleted % Ignored % Invalid %

Initial 191 754 99.03 0.68 0 0 0 0.28
Incremental 760 568 26.42 14.88 58.68 0 0 0.02

Table 3: Harvest Results
Incremental (n=6048) Initial (n=856)

Result Occurrences Freq % Occurrences Freq %
No Records Match 3490 57.71 346 40.42
Success 2110 34.89 461 53.86
Connection Timed Out 196 3.24 26 3.04
XML Parsing Error 75 1.24 6 0.7
HTTP 500 Internal Server Error 51 0.84 5 0.58
Bad Argument 45 0.74 5 0.58
Name or Service not Known 19 0.31 0 0
HTTP 503 Service unavailable 13 0.21 1 0.12
HTTP 400 Bad request 13 0.21 1 0.12
Bad Resumption Token 12 0.2 3 0.35
No Route to Host 11 0.18 0 0
Connection Refused 10 0.17 0 0
Connection Reset by Peer 0 0 1 0.12
HTTP 404 Not Found 2 0.03 0 0
HTTP 502 Bad Gateway 1 0.02 0 0
HTTP 504 Gateway timeout Error 0 0 1 0.12



7. EVALUATION
During the initial import, a total of 191 778 records were
harvested from 856 repositories in 44.63 minutes, of which
99.03% were successfully inserted into the database. This
represents an effective mean rate of 71.6 records/s. Should
one succeed in keeping the connection fully utilised, an ef-
fective peak rate of 182.25 records/s should be attainable. If
Scythe were to harvest unhampered at this rate for 24 hours
during an initial import, one should theoretically be able to
retrieve approximately 15.7 million records. For comparison,
the OAIster database contains just over 23 million records
[3]. However, should one only succeed in maintaining an ef-
fective rate of 71.6 records/s, one could harvest 6.2 million
records in a day. Harvesting a metadata collection rivalling
that of OAIster should not take more than a few days over
an average ADSL connection.

Maintaining such a collection should prove to be a bit more
complex. The strategy of incrementally harvesting reposito-
ries on a daily basis proved to be rather inefficient. Results
show that only 26.42% of harvested records were successfully
indexed. This, and a peak retrieval rate of 138.74 records/s,
translates roughly into an effective peak retrieval rate of
36.66 records/s. This is 80% less efficient than the initial
harvest peak retrieval rate.

Based on the initial import of 6 days’ new records it was
estimated that the sample repositories add new records at a
rate of 31 963 records per day. An average record in the sam-
ple repositories is approximately 2 KB in size. A days worth
of records will thus be about a 63.92 MB download. Given
a 73.56% duplicate overhead, one would have to download
241.75 MB daily to maintain the collection at our current
harvest frequency. After an initial harvest it should thus be
possible to maintain our current collection via a 56k dial-up
modem.

Managing unnecessary duplication is still a big efficiency
issue during incremental harvests, especially with reposito-
ries with day level granularity. One solution to this problem
would be to simply harvest repositories less frequently. How-
ever, some services depend on frequent harvests and up to
date data. There is thus a trade-off between an up to date
metadata collection and harvest efficiency. Another strat-
egy would be to avoid repositories which use day level gran-
ularities and only harvest from Data Providers that support
second level granularity. This strategy minimises duplicates
but has the downside of excluding some repositories. A du-
plication management strategy would largely depend on the
service one wishes to provide.

8. FUTURE WORK
Scythe is very basic harvester and lacks some functionality
that could simplify future research. Future projects could
implement a number of useful features. Possible features in-
clude: a Web interface, advanced logging daemon, retention
of original XML metadata, support for additional metadata
formats, XML Schema validation, decouple Scythe into in-
dependent reusable components, etc.

9. CONCLUSION
Our research shows that large scale metadata harvesting
over low bandwidth Internet connections is very feasible.

A run-of-the-mill broadband connection can be used to cre-
ate a large metadata collection with millions of records in a
matter of days.OAI-PMH does, however, seem to be less ef-
ficient when maintaining collections because of overlapping
harvests. There seems to be a trade off between harvester
efficiency and the freshness of a collection.

10. ACKNOWLEDGMENTS
Special thanks to Hussein Suleman for supervising this project.

11. REFERENCES
[1] Oai registered data providers list.

http://www.openarchives.org/Register/BrowseSites.

[2] Oaister. http://www.oclc.org/oaister.

[3] The oaister database at a glance.
http://www.oclc.org/oaister/about/default.htm.

[4] Worldcat. http://oaister.worldcat.org.

[5] The open archives initiative protocol for metadata
harvesting.
http://www.openarchives.org/OAI/openarchivesprotocol.html,
Dec 2008.

[6] X. Liu, K. Maly, M. L. Nelson, and M. Zubair. Lessons
learned with arc, an oai-pmh service provider. Library
Trends, 53(4):590–603, 2005.

[7] H. Suleman. Personal Communication, Feb 2010.


