Azhar Desai
University of Cape Town
Rondebosch
Cape Town, South Africa

SimplyCT Online Search

desai.azhar@gmail.com

ABSTRACT

Based on the SimplyCT framework, an online search is de-
veloped to test whether being online improves the effective-
ness of the search. The search is built using the Xapian
toolkit. It could not be shown that the effectiveness im-
proves, however the users tested found the search satisfac-
tory.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries— Collection

General Terms
Experimentation

Keywords
SimplyCT, online, search, Xapian

1. INTRODUCTION

Large archives stored in the SimplyCT framework need a
convenient way to be searched. With archives that rarely
change we can pre-generate indices for fast searching. These
indices would rarely need to be updated. This research
project investigates the effectiveness of an online search based
on the SimplyCT framework.

2.
2.1 The Research Method

A simple online search was developed based on the Sim-
plyCT framework. The search uses Xapian to generate in-
dices and perform queries. The hypothesis is to test whether
an online search improves the effectiveness of the search.
The effectiveness of the search was evaluated in the follow-
ing three categories:

e Speed of search (as compared to offline)

e Ease of use (for the searcher)

e Advantage of feedback service

The feedback service was not implemented. However, the
supporting code was left in place for any future implemen-
tation of it. A comparison of this online search with Marc
Bowes’s CALJAX offline search was planned. There was not
enough time for this comparison.

2.2 A Description of the System
2.2.1 SimplyCT framework

The SimplyCT framework consists of the archive data, ser-
vices and indices for it grouped together in a hierarchical
directory. The archive files are described in accompanying
XML metadata files. The services follow a server-instance
model, with the shared code in the archive-root/1ib direc-
tory. The following is the directory tree for the test search
archive:

ArchiveRoot
|-- archive
| ‘—- test
| ‘-- archive folders not displayed
|-- indices
| ‘—— test
| ‘-- search
| |-- all
| |-- description
| | -- word1
| ‘—- word2
|-- 1ib
| | -- preprocessor
| | -- search
| | -- shared
| ‘—— wuw
| I-- js
| ‘-- stylesheets
‘—— services

| -- search

| ‘-- test

== wWw

‘-— test
|-- js

4

-- stylesheets

The folders in the indices sections of the test search corre-
spond to the tags in the metadata file.

2.2.2 How the Search Works

The user accesses the Web page from services www/test/
index.html. The JavaScript, CSS and XSL stylesheets are
in the corresponding folders. When the user searches the
archive, a XMLHTTPRequest submits a GET request from
the Python CGI script located at services/search/test/
search.py.

The CGI scripts in the subdirectories of services/search
are instances of the search service applied to a particular
archive and in this case, the test archive. These scripts cre-
ate unique external references for the searches on a partic-
ular archive. It uses the shared code in the lib/search
directory to perform the search query.

The code in 1lib/search makes use of shared code in 1ib/
shared. The shared directory includes code to work out
and create the various paths of the archive and to interface
with Xapian. Xapian handles the creation and searching of
the indices. The JavaScript on the client side receives the
XML formatted results, transforms it into XHTML and then
inserts it into the page.

2.2.3 Description of software used
The website is hosted on a computer using:

e Ubuntu 9.10 using the 2.6.31-17-generic Linux kernel
e Apache 2.2.12
e Python 2.6.4

e Xapian in the Ubuntu package: libxapianl5 1.0.15-
2ubuntu?2

e Xapian python bindings in the Ubuntu package: python-
xapian 1.0.14-1build1

2.2.4 Limitations
The code presently has a few limitations.

Unicode Handling The Python code was intended to be
very Unicode aware since collections such as the Bleek
and Lloyd collection includes a wide variety of charac-
ters.

Unicode characters inside the metadata files are han-
dled well. The preprocessor script expects Unicode
characters and normalises them to be handled by the
Xapian database.

Unicode handling does not work with non-ASCII char-
acters as filenames and directory names.

Relative Imports The preprocessor currently needs to be
run while the current directory is set to the directory
containing it.

2.3 Testing Procedures

An archive was generated with random data to test the
search. The test archive used consisted of 720 files and a
further 720 metadata files in as many directories.

The speed of the search was tested in three ways: the first
is by measuring the time it takes for the system to perform
a search independent of displaying the information and net-
work delays. This was done by accessing the cgi script di-
rectly and timing the response. On the server the following
bash command was executed:

$ time GET -d http://localhost/services/search
/test/search.py?searchtext=searchstuff

The second way is to time the search from another computer
on the local area network. The same command as above was
used, replacing localhost with the domain of name of the
server.

The third test is to see if users are satisfied with the response
speed. This will be measured by their approval indicated on
the user evaluation forms. The search queries used were:

1. (a blank query)
hello

one mango will make no difference

L

get lots of results master lope the potholes surround
your neighbourhood and kill daisies for fun

The ease of use for the user will measured with the evalua-
tion forms. This asks them how easy it is to locate a specific
item in the search, how they found responses on the site and
about their general impressions.

2.4 Findings and Discussion
2.4.1 Speed of Search

Table 1 suggests a slight increase in search time for longer
queries. However, there was a large variation in timings
for each measurement so that trend may not continue. As
indicated earlier, these results cannot be compared to the
CALJAX offline search, so it is not known if this is faster.

2.4.2 User Responses

Generally the users tested found the search to be fast and
easy to use. The average rating of the speed of the search
was 8.4 and for ease of use 9.5 out of 10.

They made several suggestions including to:

e show less results for long searches
e make layout more customisable
e show the search terms when displaying no results found

e fix the display of result sets, when the number of re-
sults are greater than 25

Table 1: Average real times of the performing queries from different computers (in seconds)

Search Query 1

Search Query 2

Search Query 3

Search Query 4

localhost 0.191 0.202 0.202 0.210
Local Area Network 0.248 0.249 0.252 0.265
Number of Results 0 2 31 49

e break up the display of large result sets into several
smaller ones.

Apart from the limitations, it seems the online search works
reasonably well. The users find it fast enough. Though not
explicitly shown it seems reasonable to suggest the speed
varies less across different browsers and operating systems as
seen in the offline search of Marc Bowes’s (CALJAX 2009).
The users find the layout of the searching interface usable.

3. CONCLUSIONS

The online search was found to be effective by users. How-
ever it could not be shown whether there was an improve-
ment of effectiveness. It is speculated that some consis-
tency to the speed across the different operating systems
and browsers is attained, though this was not tested.

