
Accelerating Genomic Sequence

Alignment using

High Performance

Reconfigurable Computers

by

Peter Leonard McMahon

Submitted to the Department of Computer Science

in fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

University of Cape Town

October 2008

Supervisor: Dr Michelle Kuttel

Advisor: Prof. Yun Song, Computer Science Division, University of California,

Berkeley.

Abstract

Reconfigurable computing technology has progressed to a stage where it is now pos-

sible to achieve orders of magnitude performance and power efficiency gains over

conventional computer architectures for a subset of high performance computing ap-

plications. In this thesis, we investigate the potential of reconfigurable computers

to accelerate genomic sequence alignment specifically for genome sequencing applica-

tions.

We present a highly optimized implementation of a parallel sequence alignment

algorithm for the Berkeley Emulation Engine (BEE2) reconfigurable computer, al-

lowing a single BEE2 to align simultaneously hundreds of sequences. For each recon-

figurable processor (FPGA), we demonstrate a 61X speedup versus a state-of-the-art

implementation on a modern conventional CPU core, and a 56X improvement in

performance-per-Watt. We also show that our implementation is highly scalable and

we provide performance results from a cluster implementation using 32 FPGAs.

We conclude that reconfigurable computers provide an excellent platform on which

to run sequence alignment, and that clusters of reconfigurable computers will be able

to cope far more easily with the vast quantities of data produced by new ultra-high-

throughput sequencers.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 4

1.3 Thesis Outline and Summary . 5

2 Background 7

2.1 Reconfigurable Computing . 8

2.1.1 Advantages of Reconfigurable Computers 9

2.1.2 Measuring the Performance of Reconfigurable Computing Sys-

tems . 11

2.1.3 The Berkeley Emulation Engine 2 11

2.1.4 BORPH: A Reconfigurable Computing Operating System . . . 12

2.2 Accelerating Applications by Exploiting Parallelism 16

2.3 Sequence Alignment . 18

2.3.1 The Needleman-Wunsch Algorithm 20

2.3.2 The Smith-Waterman Algorithm 21

2.3.3 An Optimized Sequence Alignment Algorithm for Genome Re-

sequencing Applications . 23

3 Multiple Sequence Alignment Implementation on a Cluster Recon-

figurable Computer 25

3.1 A Streaming Short-read Alignment Implementation 25

3.1.1 Wavefront Parallelism in Dynamic Programming Sequence Align-

ment . 26

3.1.2 A Cell Update Processing Engine 30

3.1.3 A Stand-alone Single Alignment Implementation 36

3.1.4 DRAM Interface for Reference Streaming 41

i

3.2 A Parallel Multiple Short-read Alignment Implementation 43

3.2.1 Round-robin FIFO Output Stage 43

3.3 Parallelization Across Multiple FPGAs 46

4 Results and Discussion 51

4.1 Single FPGA . 51

4.1.1 Correctness . 51

4.1.2 Short-read Length Resource Scaling 52

4.1.3 Performance . 54

4.2 Cluster . 59

4.3 Conclusion . 60

5 Conclusions and Future Work 62

ii

List of Figures

1.1 A generic reconfigurable computer architecture. 3

2.1 FPGA and CPU Performance Scaling. 10

2.2 Contributions to Overall (Total) Application Time in a Reconfigurable

Computing System. 12

2.3 BEE2 Architecture. 13

2.4 BEE2 Board. 14

2.5 BORPH Architecture. 15

2.6 BORPH Mapping to a BEE2. 16

2.7 Simulink Design Flow for BEE2 and BORPH. 17

2.8 A Model Systolic Array. 18

3.1 “Wavefront Parallelism” in Dynamic Programming Sequence Alignment. 27

3.2 Systolic Array for Streaming Parallel Sequence Alignment. 29

3.3 Data Dependencies in Antidiagonal Cell Update Computations. . . . 32

3.4 A Cell Update Processing Engine (High Level). 33

3.5 Computation Stages in a Processing Engine. 34

3.6 Subsystem to Compute C(k − 1, l − 1) + γ(sk, rl). 35

3.7 Subsystem to Compute Minimum of Three Values. 36

3.8 Low-level Details of a Processing Engine. 37

3.9 A Stand-alone Single Alignment Design. 39

3.10 Score Threshold and FIFO Buffer Output Stage. 40

3.11 DRAM Interface and Serializer. 42

3.12 A Parallel Multiple Alignment Design. 44

3.13 Score Threshold and FIFO Buffer Output Stage. 45

3.14 Round-robin FIFO Reader and Shared FIFO Output Stage. 47

3.15 BEE2 Cluster Architecture. 48

3.16 Cluster Control Software Flow. 50

iii

4.1 Graph Showing Resource Utilization as a function of Short-Read Length

M . 55

4.2 Speed performance (in GCUPS) of Farrar’s code as a function of short-

read length. 58

4.3 BEE2 Cluster. 60

iv

List of Tables

4.1 Dependence of resource utilization on the length M of short-reads. . . 54

4.2 Alignment Performance on a Single FPGA. 57

v

To my teachers.

vi

Acknowledgements

The project described in this thesis has been a delight to work on, and I’m thrilled

to have been involved in it. Foremost thanks goes to my project advisor at Berkeley,

Prof. Yun Song, who was responsible for initiating and managing the bulk of the

work that I present. This thesis happened by accident — it grew out of work I did for

Yun part-time from September 2007 until April 2008. I initially aimed to “help out”

with the development of a prototype design for sequence alignment, but I gradually

became more involved, and my plan of spending a few days on the project turned into

weeks, and then months. I had a great deal of fun learning about sequence alignment,

and bioinformatics in general, from Yun during the course of my stay in Berkeley.

Dr Michelle Kuttel has been an excellent mentor to me for several years, so I was

very pleased when the opportunity arose for me to work with her more formally.

Michelle introduced me to parallel computing when I did a class project with her in

2004, and I’ve repeatedly used the knowledge I gained from that experience over the

remainder of my university education. This thesis draws heavily on insights about

parallel computing that I have learned from Michelle over the past few years. I’d

also like to thank Michelle for being an excellent advocate for me in my dealings with

the university bureaucracy, and for her very thorough reading of earlier drafts of this

thesis.

I owe thanks to Prof. Michael Inggs in the Department of Electrical Engineer-

ing, Dr Alan Langman at the Karoo Array Telescope (KAT) project, and Dr Dan

Werthimer at the Center for Astronomy Signal Processing and Electronics Research

(CASPER) at the University of California, Berkeley for their support of me during

this thesis. As I have mentioned, this thesis happened as an accident — the reason I

was in Berkeley during 2007, and early 2008, was to work on radio astronomy instru-

mentation for KAT in the CASPER group, so without this official objective, I would

never have had the opportunity to do my unofficial work on the sequence alignment

project. I owe Dan special thanks for hosting me in Berkeley for 11 months, and for

introducing me to much of the reconfigurable computing technology that I use in this

thesis.

At Berkeley I worked closely with Henry Chen, Terry Filiba and Vinayak Nag-

vii

pal on this project. Their contributions during our weekly meetings with Yun were

invaluable. Henry deserves special mention for the many hours he spent with me

helping me learn the Simulink toolflow. Kristian Stevens at the University of Cali-

fornia, Davis, was responsible for the conception of the project, and the optimized

alignment algorithm, and I’m glad to have worked with him.

Alex Krasnov, from the Berkeley Wireless Research Center1, provided several use-

ful ideas (including his suggestion of pipelining the design to obtain greater through-

put), but I’m also indebted to him for his very generous help in setting up and teaching

me how to operate his BEE2 cluster. Having worked next to Alex for several months,

I appreciate how much time and effort (from both him and Dan Burke) went into

creating the cluster.

During the course of this project, I solicited and received help from several re-

searchers in the BEE2 community. I’m grateful to Fred Burghardt, Dan Burke, Chen

Chang, Greg Gibeling, Jason Manley, Arash Parsa, Brian Richards and Hayden So

for their assistance and advice.

Prof. Scott Hazelhurst from the University of the Witwatersrand provided several

useful suggestions in his examiner’s report, which I have incorporated into this the-

sis. I thank him for his very comprehensive assessment. Dr Craig Steffen from the

University of Illinois at Urbana-Champaign, and Prof. Cathal Seighe from UCT also

provided helpful comments on my writeup.

During my Masters I’ve had excellent administrative support from Regine Lord at

UCT, Lee-Ann Bredeveldt and Niesa Burgher at KAT, and Stacey-Lee Harrison at

the UCT Postgraduate Funding Office.

I thank my friends and family for their support.

The work in this thesis has been generously supported by the National Research

Foundation in the form of a KAT Masters bursary, an NRF M.Sc. Scarce Skills

Prestigious SET bursary, KAT travel funding, UCT Postgraduate Funding Office

1The BWRC is a research centre within the Department of Electrical Engineering and Computer

Sciences at the University of California, Berkeley.

viii

support, and U.S. National Science Foundation Grant No. 0619596 and Infrastructure

Grant No. 0403427.

Contributions

The work reported in this thesis had several contributors. In this section, I aim to

describe specifically the contributions that I made, and mention who was responsible

for the other work that enabled the developments detailed in this thesis.

Prof. Yun Song and Kristian Stevens were responsible for the project idea and

the development of the optimized alignment algorithm. Henry Chen, Terry Filiba,

Vinayak Nagpal and I met regularly with Prof. Song, and at these meetings Henry,

Terry and Vinayak contributed many helpful ideas about overcoming limitations in

the tools, and increasing the efficiency of the implementation.

I was responsible for the development of the sequence alignment algorithm im-

plementation for the BEE2. I developed a scalable, lightweight streaming architec-

ture, and verified the functionality of a parallel implementation of 10 simultaneous

short-read alignments on a single FPGA. I built the DRAM controller/serializer that

streams reference data through the processors. I developed the infrastructure to run

alignments on several FPGAs simultaneously, and then to operate on several BEE2s

simultaneously.

Henry was responsible for overcoming a limitation2 in Xilinx System Generator to

extend the number of simultaneous alignments to beyond3 10.

Terry wrote the optimized SSE CPU code against which the FPGA results are

measured.

Alex Krasnov and Brian Richards showed us how to find the minimum of three

2The limitation was that Xilinx System Generator had an inefficient means of converting Simulink

blocks to hardware description language, and as a result there was a practical upper limit on how

many blocks in a diagram could be converted. We needed to exceed that limit.
3With a short-read length of 31 base-pairs, we were able to fit 18 alignment processors onto a

single FPGA, thanks to Henry’s work.

ix

values in the most efficient way possible.

x

Chapter 1

Introduction

This thesis investigates the extent to which reconfigurable computing technology can

be employed to address the computing challenges associated with new ultra-high-

throughput genome sequencing technologies. Specifically, we investigate the per-

formance of an optimized parallel sequence alignment algorithm implemented on a

modern reconfigurable computer. In this introduction, we provide a brief background

to and motivation for this investigation, provide details of the objectives, and outline

the content of the thesis.

1.1 Background

One of the central goals of molecular genetics is the determination of the genetic basis

of human disease. Considerable progress has been made in this regard in recent years;

most notably the publication of the human genome in 2001 [1, 2], an effort that took

two decades to complete. However, new genome sequencing technology is becoming

available (for example, from Illumina [3]; see refs. [9, 10] for a technical discussion)

that will dramatically reduce the amount of time it takes to produce sequence data

from a sample of DNA. These advances will allow studies of human variation at the

genetic level [4]. Such studies hold great promise for enabling important discoveries

in determining which nucleotides and genes in the human genome hold information

about human susceptibility to particular diseases.

There are considerable computing challenges [10] associated with the new sequenc-

ing products that arise due to the huge volumes of data that these machines produce.

1

The human genome consists of approximately 3 billion base-pairs1. The most expen-

sive computational task in genome sequencing (using the dominant Whole Genome

Shotgun Sequencing technique [7, 8]) is the alignment of short2 fragments of the

genome being sequenced against a reference genome. There may be hundreds of mil-

lion of such fragments that need to be aligned in order to sequence a single genome.

Current approaches to this problem using conventional computers may take tens to

hundreds of thousands of CPU hours to complete the alignment requirements for the

sequencing of a single human genome [1, 10, 11]. Even large cluster computers with

thousands of CPUs may take several weeks to complete the necessary computations.

Heuristic approaches, such as BLAST [6], reduce the computational burden, but re-

sult in a reduction in accuracy. Details of the dynamic programming-based algorithm

that we used are contained in Section 2.3.3.

We have stated that genome sequencing is both an important application, and

one that requires vast computational resources. The technology we use in this thesis

to tackle this problem is reconfigurable computing [12]. A reconfigurable computer

is a class of computer that includes a special-purpose processor that can perform

specific tasks far more efficiently than a general-purpose processor can, but that is

also reconfigurable. It is easy to see how a special-purpose processor can be designed

to implement a particular algorithm far more efficiently than is possible using a von

Neumann-architecture system. There exists a technology that enables us to build

custom, special-purpose processors that can be reconfigured (i.e. reprogrammed) –

“Field Programmable Gate Arrays” (FPGAs). FPGA processors provide the flexibil-

ity of software and the efficiency of Application Specific Integrated Circuits (ASICs)3.

FPGAs were invented in 1984 [19], but, until recently, they have not had the required

computational resources to compete with CPUs in the arena of high performance com-

puting — their traditional use is to act as “glue logic” on electronic circuit boards,

to connect I/O and components, rather than performing the bulk of the necessary

computation (which is typically done by microprocessors or specialized digital sig-

1A “base-pair” can be thought of as a character from the alphabet Σ = {A, G, C, T}, and can hence

be stored using log2 |Σ| = log2 4 = 2 bits.
2Short-read lengths from current sequencing technology range between 10 and 100 base-pairs.
3It is not actually accurate to claim that FPGAs give the same efficiency as ASICs, since FP-

GAs contain a large amount of interconnect to allow for reconfigurability that ASICs do not have.

However, FPGAs do provide a comparable level of efficiency versus general-purpose CPUs to that

which ASICs provide.

2

nal processing chips). Proofs-of-concept for FPGA-based reconfigurable computers

existed as early as 1990 [45]. However, although projects such as SPLASH [45] and

SPLASH 2 [46] successfully demonstrated the concept, the FPGA technology was not

yet competitive with CPUs. The first commercially viable reconfigurable computing

companies began circa 1996 [47], and more have appeared as FPGA technology has

steadily improved.

Modern reconfigurable computers typically contain one or more FPGAs and a con-

ventional CPU. The CPU is used to perform control tasks and operations that do

not account for a significant percentage of the overall computation time. The CPU is

typically used to run an operating system and associated services. Figure 1.1 shows

a generic reconfigurable computer architecture. The CPU, FPGA and memory are

all connected to a bus, over which the various devices can communicate. A com-

mon memory is a mechanism for allowing high-bandwidth communication between

the CPU and FPGA. For example, the CPU might pre-process a portion of data

and place it in the common memory. The FPGA can then process that data, and

write the results back to the common memory, from where the CPU can obtain them.

Figure 1.1: From [41]. A generic reconfigurable computer architecture.

The central challenge in porting applications to reconfigurable computers is the de-

velopment of efficient FPGA designs that make the best use of the available resources.

FPGA designs have traditionally been created using hardware description languages

such as VHDL [48] and Verilog [49], which are well-suited to traditional digital design

tasks, but are difficult languages in which to express scientific computing algorithms.

3

However, with the considerable increases in FPGA computational capacity that have

occurred in recent years, and the subsequent commercial interest in reconfigurable

computing, there has been a drive to produce tools for programming FPGAs that are

more usable by developers who do not have experience with digital design.

The reconfigurable computing industry now claims successes in various applica-

tions areas, including financial modelling [31], bioinformatics [32] and oil and gas

exploration (seismic data analysis) [33], amongst others. Of particular relevance to

this thesis is the review by Hasan et al. [58] that summarizes recent achievements in

Smith-Waterman sequence alignment on modern reconfigurable computers.

In this thesis, we build a sequence alignment implementation for the Berkeley Em-

ulation Engine (BEE2) [14] reconfigurable computer using a tool chain that is based

on the MATLAB Simulink graphical programming language [16, 17].

1.2 Objectives

The objective of this work was to investigate the performance benefits that can be

gained in genomic sequence alignment for resequencing applications with reconfig-

urable computing technology. Specifically we aimed to:

1. Implement an optimized parallel sequence alignment algorithm on a BEE2 re-

configurable computer.

2. Extend this single FPGA alignment implementation to an implementation for

a cluster reconfigurable computer.

3. Analyze the performance of the reconfigurable computer implementation over

state-of-the-art software implementations.

The first requirement was to gain familiarity with the BEE2 platform and its asso-

ciated development tools. Next, we aimed to implement a single sequence alignment

custom processing engine. This would then need to be extended to a parallel align-

ment engine capable of aligning multiple sequences simultaneously. Once the single

FPGA parallel alignment implementation was ready, this would be extended to a

4

many-FPGA environment (e.g. a cluster of reconfigurable computers). Finally, we

aimed to make an accurate appraisal of the performance of our implementation versus

the most efficient alignment implementations for multi-core CPUs currently available.

1.3 Thesis Outline and Summary

This thesis is organized as follows:

Chapter 2 provides an introduction to reconfigurable computing, the BEE2 plat-

form, and sequence alignment algorithms. We give an overview of acceleration tech-

niques relevant to sequence alignment. We also present details of an optimized se-

quence alignment algorithm designed specifically for genome re-sequencing, which is

the algorithm we implemented in this thesis.

Chapter 3 presents our implementation of the parallel sequence alignment algo-

rithm on a single FPGA. This implementation is able to simultaneously align tens of

short-reads against a reference genome. We give details of the operation of a single

alignment processing engine, and of the efficient extension to multiple engines. We

discuss our DRAM interfacing mechanism for streaming reference genome data from

onboard memory, and our scheme for communication results to the control CPU4.

We provide performance results, and make comparisons to equivalent software im-

plementations. We also present the extension of our single-FPGA implementation to

multiple FPGAs, and further to multiple BEE2 boards in a cluster.

Chapter 4 presents scaling, performance and power results for both our single

FPGA and multiple FPGA implementations. We show that our architecture is scal-

able over a wide range of short-read lengths. We provide performance results from

both our single FPGA implementation and from two highly optimized software im-

plementations, and show that a single FPGA can achieve a 61X speedup over a single

modern CPU core. We demonstrate that our cluster implementation scales linearly

with the number of FPGAs, and show power consumption results that reveal a 56X

improvement in performance-per-Watt in the FPGA implementation.

4The BEE2 runs Linux on an embedded PowerPC in the “Control FPGA”. This CPU is used for

control – loading programs, changing settings, and monitoring status.

5

Chapter 5 concludes this thesis, and provides some further analysis of the impact

that reconfigurable computers can have on genome sequencing. Projected speedups

for sequence alignment using current and near-future FPGA devices are also given.

The contributions of this thesis can be summarized as follows. To our knowledge,

we have presented the first use of FPGAs for aligning, in parallel, multiple short

sequences against a common long sequence using a dynamic programming-based al-

gorithm. We have also presented the first implementation of and performance results

from a new alignment algorithm that is optimized for short-read alignment in rese-

quencing.

6

Chapter 2

Background

This thesis applies the technology and techniques of reconfigurable computing to the

problem of sequence alignment. This chapter attempts to provide sufficient back-

ground in both areas such that bioinformatics experts can appreciate the reconfig-

urable computing implementation aspects, and those in the hardware acceleration

community can follow the algorithmic aspects. Entire books have been written on

both fields, so we can’t hope give a comprehensive treatment of either in this chapter.

We have provided several standard references that the interested reader can pursue.

A comprehensive review of modern reconfigurable computing technology and tech-

niques is available in [21], including several application case-studies.

In recent years, much attention has been given to acceleration of high performance

computing applications using inherently parallel architectures. The creation of re-

search centres such as Berkeley’s Parallel Computing Laboratory [25] and Stanford’s

Pervasive Parallelism Laboratory [26] indicates that multicore processors will play

a large role in the future. However, there has also been a resurgence of interest in

other parallel computing techniques. Most prominent is the use of Graphics Process-

ing Units (GPUs) to perform general-purpose computations [50]. Modern GPUs are

effectively programmable many-core processors, albeit with many restrictions (par-

ticularly relating to memory hierarchy and arithmetic logic unit functionality) that

are a legacy of their former exclusive use in graphics processing. IBM’s multi-core

Cell processor [51] is another entry into the field that provides yet another alternative

parallel architecture for high performance computing applications.

Modern parallel computing technologies can generally be divided into two cat-

7

egories: replacement processors, and accelerators. Multi-core CPUs from Intel and

AMD, and IBM’s Cell processors, are intended as general-purpose CPUs that can run

as standalone computing engines. Accelerators are designed to complement, rather

than replace, existing CPU architectures. For example, GPUs are typically intended

only to augment the processing capability of x86 or x64 microprocessor-based ma-

chines. In a common usage scenario with a CPU/GPU machine, the CPU stills runs

the operating system and much of the application code, but the GPU is used where

it can significantly outperform the CPU in operations that constitute a major frac-

tion of the running time of a particular program. For example, if some application

makes frequent calls to a Fast Fourier Transform routine, the FFT may be executed

on the GPU, since the GPU can perform the FFT computation faster than the CPU

can. Reconfigurable computers typically fall into the category of accelerator-based

systems: a conventional CPU is paired with one or more FPGAs, which act as accel-

erators.

2.1 Reconfigurable Computing

The concept of a reconfigurable computer was initially proposed by Estrin [22, 23] in

1960. He proposed the development of a machine that contained a regular proces-

sor and an array of reconfigurable special-purpose processors. These special-purpose

processors would provide excellent performance for the tasks they were tailored to

do, but, importantly, could be easily reconfigured to implement different algorithms

depending on the program that the computer was running.

It is easy to see how special-purpose hardware could provide more efficient compu-

tations than general-purpose processors. However, it was not until the invention of

Field Programmable Gate Arrays in the 1980s that a technology existed with which

it was possible to build special-purpose processors in hardware, and to be able to

reconfigure the hardware for different tasks1. The development of the first gener-

1Application-Specific Integrated Circuits (ASICs) have long been used in single-application de-

vices, such as cellular phones, digital cameras and suchlike, where performance and power efficiency

are critical, the tasks it performs are known a priori, and there are sufficient volumes to justify

the development of a custom chip. However, ASICs are not reprogrammable. FPGAs can, in some

sense, be thought of as reprogrammable ASICs, and indeed the computer-aided design tools used

8

ation of reconfigurable computers occurred in the early 1990s, with projects such

as SPLASH [45] and Splash 2 [46]. However, although these projects successfully

demonstrated the concepts of reconfigurable computing, FPGA technology had not

yet progressed to a point where reconfigurable computers were competitive with con-

temporary general-purpose microprocessors, let alone the supercomputers of the day.

2.1.1 Advantages of Reconfigurable Computers

In recent years, reconfigurable computing has acquired renewed popularity. This has

been driven by many factors – the most important of which are the dramatic in-

creases in the capabilities of modern FPGAs, and the fact that the clock frequencies

of general-purpose microprocessors look unlikely to increase much beyond 3GHz. The

latter is a result of the so-called “power wall”, which provides a practical, physical

limit to how much faster we can expect CPUs to run given cooling constraints [20].

This has led to the realization that computing faces a major challenge in moving

wholesale to parallel computing, since almost all performance increases in the fore-

seeable future are likely to come from exploiting parallelism rather than relying on

increased clock frequencies. The “Berkeley View” technical report [24] has been a

popular call-to-arms to try to address these challenges. However, since FPGAs can

be used to exploit parallelism at a much finer-grained level than is possible with multi-

core CPUs, reconfigurable computing has become an ever-more attractive proposition,

or at least one that now warrants serious investigation to determine which problems

can be more effectively solved on such machine architectures.

The computational density of FPGAs has improved over CPUs over the past sev-

eral years, as shown in Figure 2.1. Now that CPU frequency increases can no longer

be counted on, the metric of “performance per MHz” has increased in importance.

FPGAs offer vastly superior theoretical integer arithmetic performance over CPUs.

Of course, just as the “theoretical peak performance” of a CPU is not obtainable

in typical applications, so too is it unusual for an application to be able to harnass

the full computational power of an FPGA. Nevertheless, the orders-of-magnitude

advantage that FPGAs have over CPUs in integer arithmetic density make them

promising candidates for investigation of the performance it is possible to achieve in

by the ASIC and FPGA user communities are often very similar.

9

practice. To illustrate, the Xilinx Virtex 5 SX240T chip contains over 1000 multiply-

and-accumulate units, each clockable at up to 550MHz [27]. This yields a peak

performance of over 580 billion integer operations per second (580 GOPS). In com-

parison, the current fastest Intel CPU, the Intel Core 2 Extreme Quad-Core 3.2GHz

chip, has a theoretical peak performance of 97 GOPS [28].

Figure 2.1: From [14]. FPGA and CPU Performance Scaling. Integer arithmetic on

FPGAs now significantly outperforms CPUs per unit area and frequency.

However, theoretical peak performance is not the only metric of interest to high

performance computer designers. Power performance is also an important considera-

tion – in large HPC systems, power consumption and the associated cooling require-

ments are significant design factors. FPGAs are clocked at far lower frequencies than

CPUs (an FPGA is typically clocked at less than 500MHz, whereas modern CPUs

are clocked at between 2GHz and 3.5GHz). This leads directly to a significant differ-

ence in power consumption, since power consumption is proportional to the operating

frequency [20]. Further, the performance of a system with a particular application

is increasingly limited by the memory bandwidth available to the chip, rather than

the theoretical peak arithmetic performance. This has lead to the so-called “memory

wall” phenomenon [20], whereby performance is limited by the speed at which data

can be inputted to and outputted from the processor. FPGAs have a benefit over

CPUs in this area too, since modern FPGAs contain many I/O pins. The largest

Virtex 5 has over 1700 pins, with 960 dedicated to high-speed serial I/O.

10

Major industry vendors such as Cray, SGI and HP now have products including

FPGA accelerators, and many smaller hardware vendors have now also appeared on

the market, such as SRC, Nallatech, DRC and XtremeData. Reconfigurable comput-

ing is certainly not an established technology and at present it seems unlikely that

it will achieve broad adoption. However, there has been sufficient success in specific

application areas to suggest that FPGAs will have some role to play as accelerators

in high performance computing over the next decade. In the next section, we provide

an overview of some competing approaches that may come to dominate the computer

architecture landscale.

2.1.2 Measuring the Performance of Reconfigurable Com-

puting Systems

We use the approach of Kindratenko et al. [38] to measure the performance of appli-

cations on reconfigurable computing systems. In many applications the “overhead” of

pre- and post-processing data, and transferring data between an FPGA and a CPU,

is not insignificant, and hence needs to be taken into account. When using FPGAs

as accelerators, the total application time depends on several factors besides the time

spent by the FPGA performing its computation. Specifically, there is typically pre-

processing of data in the CPU before it can be sent to the FPGA. There is time to

load the FPGA design, and to then transfer the data to the FPGA. Once the FPGA

has performed its computation, the results need to be transferred back to the CPU,

and there is often a post-processing stage required before the CPU can use the data.

This is illustrated in Figure 2.2.

2.1.3 The Berkeley Emulation Engine 2

The BEE2 project [14] developed a reconfigurable computing board design that con-

tains five FPGAs per board, where each FPGA includes two embedded PowerPC

microprocessors. The BEE2 system has been used by many groups as a testbed for

research on reconfigurable computing and has had significant successes in various

application domains, including radio astronomy signal processing [34], systems bi-

ology [35] and processor emulation [55]. Programmability has long been a concern

for reconfigurable computers and the approach taken with the BEE2 was to allow

11

Figure 2.2: From [38]. Contributions to Total Computation Time in a Reconfigurable

Computing System.

users to program the computer using a MATLAB Simulink-based graphical tool flow

[16, 17, 18]. This works well compared to most other programming proposals, which

typically rely on extensions (such as [13]) to fundamentally sequential languages to

allow the programmer to express parallelism. The graphical tools also ease the learn-

ing curve for developers, over writing applications in hardware description languages

such as VHDL and Verilog.

Figure 2.3 shows the high-level architecture of a BEE2 board. The four user FPGAs

are each connected to the control FPGA using high-speed on-board links. There is

also an on-board interconnect between adjacent user FPGAs. Each FPGA has four

associated DRAM banks, which provides a significant amount of memory bandwidth

to each chip. Also shown are the high-speed 10 gigabit Ethernet (10GbE) connections

that are provided to allow the FPGAs to connect with other 10GbE devices, including

other BEE2 boards. Figure 2.4 shows a photograph of a BEE2 board.

2.1.4 BORPH: A Reconfigurable Computing Operating Sys-

tem

BORPH [17, 18] is a Linux-based operating system designed to provide abstractions

to users that allow reconfigurable computing platforms to be more easily used and

programmed. BORPH’s first target platform was the BEE2, and it has support for

the BEE2’s Simulink toolflow [16, 17, 18].

Figure 2.5 shows the high-level BORPH architecture. From a user’s perspective,

12

Figure 2.3: From [15]. BEE2 Architecture.

the important feature to notice in this diagram is that BORPH uses the concept

of a “hardware process”. A hardware process refers to an FPGA design execut-

ing on an FPGA resource, which BORPH presents using a process abstraction. In

BORPH, hardware processes behave in exactly the same way as software processes

– the process appears in the process list, it is possible to redirect input and output

to and from a process, it is possible to kill a process, and so on. BORPH manages

the tasks associated with loading the FPGA design inside a “hardware executable”

into a BEE2 user FPGA, and transferring data between the processor and the FPGA.

A further useful abstraction that BORPH provides is that of hardware resources in

the FPGA. Specifically, it is possible to specify, at FPGA design time, that some reg-

isters and memories be “shared”. When that FPGA design is loaded with BORPH,

the “shared” FPGA resources are made available to the user as files in the /proc/

filesystem. It is therefore possible to interact with the FPGA design in BORPH

purely by reading from and writing to files.

Figure 2.6 shows how BORPH operates on a BEE2. BORPH’s software primar-

13

Figure 2.4: From [15]. BEE2 Board Photograph. The four user FPGAs and one

control FPGA reside underneath the clearly visible black heatsinks. The DRAM

slots (four per FPGA) and CX4 10GbE connectors (front of board) are also clearly

visible.

14

ily executes on the PowerPC in the control FPGA. However, each user FPGA has a

lightweight communications infrastructure that allows the control FPGA to communi-

cate with it. BORPH uses the Xilinx SelectMAP bus [30] to reconfigure (reprogram)

the user FPGAs as needed. An OPB bus within each FPGA is used to connect the

“shared” resources in a particular design to the user FPGA PowerPC and hence ulti-

mately to BORPH running on the control FPGA. BORPH performs all the necessary

communications completely transparently.

SW

Process

SW

Process

SW

Process

Hardware

(Network, UART, etc)

Platform

HW

Process

Device Driver

H
a

rd
w

a
re

S
o

ft
w

a
re

Hardware System Library

HW

Process

HWR HWR

System Library

BORPH Kernel

Figure 2.5: From [18]. BORPH Architecture.

To provide the support for shared resources in BORPH, it is necessary that the

Simulink toolflow, which produces user FPGA designs, provide some interface with

which BORPH can interact. Therefore, the toolflow has some knowledge of BORPH’s

requirements built in. Figure 2.7 shows a flow diagram of the tasks in the Simulink-

based design environment. The user first describes his algorithm using the Simulink

graphical design tool. Simulink provides a cycle-accurate simulator that lets the user

fully debug his design before continuing. Once the design is ready, the toolflow can

enter the “build” stage, in which it attempts to create an FPGA bitstream that

implements the design described in Simulink. The first stage is the insertion of the

interface logic that BORPH requires to communicate with resources that are marked

in Simulink as being shared. The Xilinx System Generator product is then effectively

used to generate hardware description language from the Simulink design. The Xilinx

Embedded Development Kit is used to add support for the embedded PowerPC, and

to appropriately connect the relevant buses. The Xilinx FPGA backend flow (ISE)

15

SelectMap FIFO

User
FPGA

User
FPGA

User
FPGA

P
LB

−O
P

B
B

rid
ge

SelectMap

Control PPC

mem cntlr

PLBOPB

InternetControl FPGA ethernet

D
D

R
2

M
E

M

On−Chip
BRAM

PPC
P

LB
−O

P
B

B
rid

ge

ioreg

ioregOPB IPIF

OPB IPIF

BRAM
Shared

FIFO
User

Design
Simulink

User

PLB

User FPGA
OPB

OS Kernel Space User Space

Figure 2.6: From [18]. BORPH Mapping to a BEE2.

creates a regular FPGA bitstream. Finally metadata about the design (such as the

shared resources it contains) is added to the bitstream, and the result is a BORPH-

executable file that will run as a hardware process.

2.2 Accelerating Applications by Exploiting Par-

allelism

Just as conventional computers are used in clusters by the high performance comput-

ing community, so too is it possible to build clusters of reconfigurable computers [55].

The same approaches to accelerating embarrasingly parallel programs that are used

on CPU clusters [52] are equally applicable to reconfigurable computer clusters.

In order to outperform conventional CPUs, reconfigurable computers need to have

FPGA designs that are efficient and that exploit parallelism. By “efficient”, we mean

that the number of clock cycles per algorithmic step should be as small as possible.

The clock speed of a modern CPU is typically in the range 2–3GHz. The Virtex

II Pro FPGAs on the BEE2 are clocked at 200MHz. Therefore reconfigurable com-

16

Simulink
Design in

SimulationSTART Simulation OK? Simulink
File

Interface Logic
Insertion

File

Simulink
Augmented

Xilinx System
Generator

Netlist

User

Logic

EDK System
Integration

Netlist

Complete

System

EDK
Template

BOF
Header

FPGA
Backend Flow

FPGA
Config

BOF
Generation

BOF
Executable

END

NO

YES

Figure 2.7: From [18]. Simulink Design Flow for BEE2 and BORPH.

puters have to overcome a 10X performance deficit just to reach parity with CPUs.

Fortunately it is possible to produce FPGA designs that exploit the parallelism in the

dynamic programming approach to sequence alignment, and to perform the requisite

computations efficiently.

There is a considerable body of literature concerning parallel algorithms, and the

mapping of applications to parallel architectures. Grama et al. [52] provide a compre-

hensive overview at an introductory level. In this thesis we are primarily concerned

with two parallel computing concepts: systolic arrays and embarrassingly parallel al-

gorithms.

The term “embarrassingly parallel” refers to computational problems where it is

easy to decompose the computational load into self-contained subproblems that need

little or no communication between them [29]; this is often called “wide” parallelism.

Embarrassingly parallel problems are convenient problems to parallelize and they

have excellent scalability – typically an embarrassingly parallel algorithm’s perfor-

mance will increase linearly with the number of processors used to execute it. This is

in contrast to problems where communication between processors is necessary, which

results in performance scaling being sublinear2. The problem of aligning many short-

2In the worst cases, beyond a certain number of processors performance cannot be improved, or

17

reads against a reference sequence is embarrasingly parallel in the sense that the

alignment of each short-read is an independent computational problem.

Systolic arrays are a type of parallel architecture in which the processing task is

divided amongst several (typically identical) processors in an array; systolic arrays

exploit “deep” parallelism. Systolic arrays are characterized by the feature that the

data flows synchronously across the array. In the one-dimensional case, data may

flow from left-to-right, with each cell receiving input data from its left neighbour and

outputting data to its right neighbour, as is shown in Figure 2.8. The cells operate

independently of each other, with the exception of the data connections with their

neighbours. Systolic arrays provide a convenient method for improving the time com-

plexity of an algorithm at the expense of computational resources (FPGA fabric, in

the case of reconfigurable computers). A big advantage of systolic arrays is that they

are inherently scalable due to their use of only local connections between cells. In

this thesis we use a systolic array design to implement a sequence alignment algorithm.

Figure 2.8: A Model Systolic Array.

2.3 Sequence Alignment

The general sequence alignment problem is a type of string matching and alignment

problem [59]: given two strings, r = r1r2 . . . rN and s = s1s2 . . . sM , we want to find

the minimum number of (weighted) steps required to transform s into r (or, equiva-

lently, r into s). The possible edits to s are: insertion of new characters, deletion of

characters, and substitutions of characters. Typically, we are interested in assessing

the similarity between two sequences; the number of edits is a measure of similarity.

In this thesis, we are concerned with genomic sequences, which are strings over the al-

phabet Σ = {A, G, C, T}, i.e. rx ∈ Σ and sy ∈ Σ where x = 1, . . . , N and y = 1, . . . ,M .

Sequence alignment is also routinely performed on protein sequences, which have a

there are severly diminishing returns as you add processors.

18

different, larger alphabet.

Edits to s may be weighted, so as to prefer one type of edit (e.g. insertions) over

another type (e.g. deletions). When assessing a proposed transformation of s to r,

we assign integer penalties to each edit: α for deletions in s, β for insertions in s,

and γ for modifications of characters in s. α and β are constants, but γ may be a

function of the character substitution (i.e. character mismatch). We can define the

following matrix Γ to specify mismatch penalties:

Γ =

A G C T

A

G

C

T


δAA δAG δAC δAT

δGA δGG δGC δGT

δCA δCG δCC δCT

δTA δTG δTC δTT


The matrix elements δXY are integers, and correspond to the penalties of the char-

acter X transforming into character Y. If the penalty scheme is negative (i.e. α and

β are negative, and the best alignment is that which has the highest score), then

typically δXY < 0 when X 6= Y, and δXY ≥ 0 when X = Y. The latter case represents a

character match, which should be rewarded.

To calculate the mismatch penalty for aligning two positions in the strings s and

r, you can perform a simple lookup in the penalty matrix Γ, using the character in

s to select the row, and the character in r to select the column. Hence, if you wish

to align the ith character in string s against the jth character in string r, you can

compute the penalty γ(si, rj) as γ(si, rj) = (Γ)f(si)f(rj) where f : Σ→ N is defined as

the mapping from characters to (identical) row and column indices in Γ:

f(x) =


0 if x = A

1 if x = G

2 if x = C

3 if x = T

For example, if the character si is G and the character rj is T, then the penalty is

computed as γ(si, rj) = γ(G, T) = (Γ)f(G)f(T) = (Γ)13 = δGT.

There are finitely many transformations of s to r, but an exhausive search of all

19

possible transformations results in an exponential time algorithm. Therefore to align

long sequences, a different approach is needed.

2.3.1 The Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm [36] is an application of dynamic programming3

to the global alignment problem. Global alignment is the problem we have just dis-

cussed: the transformation of a sequence s to a sequence r.

To quantify the similarity between two sequences, we seek to compute a similarity

score whose value is based on the optimal transformation of s to r. For each required

deletion and insertion of characters in s, we apply a penalty. Furthermore, we apply

a penalty whenever the characters in s and r do not match. We denote the deletion

penalty as an integer α, the insertion penalty as an integer β, and the mismatch

penalty an integer γ(si, rj) whose value is dependant on the specific mismatch that

has occured.

As an example, following that in [60], let us set α = −2, β = −2, and γ(si, rj) as:

γ(si, rj) =

{
−1 if si 6= rj (mismatch)

1 if si = rj (match)

When α = β, we may refer to the insertion and deletion penalties simply as the

gap penalty (which is the penalty for introducing a gap into either sequence, which

can be interpreted as an insertion or deletion in s).

If we wish to align two sequences s = AAGCTCAGC and r = ACGGCTAGC, we can see

that one potential alignment (with scores) is:

s A A G − C T C A G C

r A C G G C T − A G C

score: +1 −1 +1 −2 +1 +1 −2 +1 +1 +1 = 2

3Roughly, dynamic programming is a commonly used technique to solve problems that contain

multiple overlapping subproblems. The solution can be computed in a reduced number of steps by

keeping track of and using the solutions to already-computed subproblems.

20

The Needleman-Wunsch algorithm is used to compute the similarity score of the

optimal alignment (and to output the alignment). The core part of the algorithm is

the calculation of an N + 1-by-M + 1 similarity matrix C, often called the dynamic

programming table. (C)i,j is the optimal similarity score for the alignment of the first

i characters of r against the first j characters of s. First set (C)0,0 (the first cell in

the matrix) to zero. Next initialize (C)0,j = α× j and (C)i,0 = β× i. These represent

the penalties for introducing gaps at the start of either sequence. We can complete

the matrix using the following definition:

(C)i,j = max


(C)i,j−1 + α

(C)i−1,j + β

(C)i−1,j−1 + γ(si, rj)

Again, following the example in [60], if we wish to align the sequences s = AGTC

and r = AGTAC, using the same penalties as in the previous example, the completed

similarity matrix is:

C =

− A G T A C

−
A

G

T

C



0 −2 −4 −6 −8 −10

−2 +1 1 −3 −5 −7

−4 −1 +2 0 −2 −4

−6 −3 0 +3 +1 −1

−8 −5 −2 +1 +2 +2


The similarity score for the alignment of s and r in this case is (D)N,M = (D)5,4 =

+2.

From the similarity matrix it is possible to derive the alignment that resulted in

the optimal score, provided that each element records which neighbour element was

used to compute its value. However, here we are interested purely in the computation

of similarity scores, and not in the reproduction of the alignments that produce them.

2.3.2 The Smith-Waterman Algorithm

The Smith-Waterman algorithm [37] is a modification of the Needleman-Wunsch al-

gorithm that is used to compute local alignments. This is the most popular sequence

21

alignment algorithm, since it allows for the alignment of parts of sequences. In global

alignment, it is usually impossible to identify parts of sequences that are similar,

since alignments that would identify such similarities will typically have been heavily

penalized by misalignments of other parts of the sequences.

For example, if we have s = AAATAGTAGGTTGGAATTCCTATTT and

r = GGGGTTCCCAGTACCTAGG, there are two substrings in each sequence that align per-

fectly (AGTA and CCTA). The Smith-Waterman algorithm can be used to easily reveal

such substring alignments (local alignments), where global alignment algorithms will

not, in general.

The modifications to the Needleman-Wunsch algorithm that result in the Smith-

Waterman algorithm are as follows. First, the initialization of the similarity matrix

C is (C)0,j = 0 and (C)i,0 = 0, i.e. each element in the first row and column is set to

zero. This removes the penalty for placing gaps at the start of a sequence. Second,

the definition of the remaining matrix elements is modified to be:

(C)i,j = max


(C)i,j−1 + α

(C)i−1,j + β

(C)i−1,j−1 + γ(si, rj)

0

Hence no negative values may appear in the Smith-Waterman dynamic program-

ming table. This allows parts of sequences that are similar to accrue positive scores

within the matrix. The matrix will then contain several chains of increasing posi-

tive values in cases where there are subsequences that can be locally aligned. The

final modification in Smith-Waterman results from the aforementioned fact — in

Needleman-Wunsch the optimal similarity score is (D)N,M , but in Smith-Waterman

the optimal similarity score (for the best local alignment) is given by the element

with the highest value (and is not necessarily (D)N,M).

22

2.3.3 An Optimized Sequence Alignment Algorithm for Genome

Resequencing Applications

In this thesis we are concerned with the speedup of sequence alignment for genome

resequencing [61]. Resequencing is the task of sequencing DNA for an individual

when provided with a reference sequence for the species. In resequencing, sequence

alignment of many short-reads against a long reference sequence is the dominant

consumer of computational resources. Current short-read sequencing technology pro-

duces short-reads of length approximately 30 base-pairs [3]. However, it is likely that

new techniques will result in the short-read length doubling in the next few years. We

assume that the reference sequence length, N , falls in the range 108 ≤ N ≤ 3× 109,

and the short-read length M falls in the range 30 ≤M ≤ 100.

In genome resequencing we expect short-reads to represent contiguous regions of

the genome being resequenced, but we do not know a priori from which location in

the genome any given short-read is from. Therefore a suitable sequence alignment al-

gorithm for resequencing is a hybrid of the Needleman-Wunsch and Smith-Waterman

algorithms – we want to align the entire short-read, not parts of it, but we do not

want to penalize gaps at the start or end of the short-read. The Needleman-Wunsch

algorithm with the Smith-Waterman modification to initialize the first row and col-

umn in the similarity matrix to zero is suitable.

Stevens and Song [42] have suggested a sequence alignment algorithm based on

the Needleman-Wunsch and Smith-Waterman algorithms that is sufficiently flexible

for resequencing applications, but is also more efficiently implementable on FPGAs

than the Needleman-Wunsch or Smith-Waterman algorithms. They argue that it is

not necessary to allow for arbitrary integer penalties. They suggest that the penalties

α, β and γ be restricted to positive integers in the range [0, 3]. The restriction to

positive values implies that the matrix definition should select a minimum, rather

than maximum, value:

(C)i,j = min


(C)i,j−l + α

(C)i−1,j + β

(C)i−1,j−1 + γ(si, rj)

23

Furthermore, they suggest that each element in the matrix can be stored using a

6-bit value, provided that saturating logic4 is used.

The final difference between conventional sequence alignment algorithm implemen-

tations and the one presented in this thesis is that we are only required to output the

values from the final row in the matrix. In fact for this application, it is sufficient

to output only the column positions where the value in the final row is below some

threshold T .

In this thesis we implemented Stevens and Song’s optimized alignment algorithm.

4In b-bit saturating logic, any register assignment of a value greater than 2b − 1 results in the

value 2b − 1 being stored. The crucial point is that the register saturates rather than wraps.

24

Chapter 3

Multiple Sequence Alignment

Implementation on a Cluster

Reconfigurable Computer

In this chapter, we present the design and implementation of a custom processor

design on a single FPGA that can simultaneously align tens of short-reads against

a common reference genome. We implemented this design on a single user FPGA

on a BEE2 reconfigurable computer. We then extended it from a single FPGA sys-

tem to a multiple FPGA system that spans eight BEE2 processing boards. In the

multiple FPGA system we replicated the single FPGA design across several FPGAs

and implemented a control infrastructure to manage execution. Since the alignment

algorithm is embarrassingly parallel, the primary concern in extending the system

beyond a single FPGA was ensuring that the overhead from communicating input

data to, and results from, the FPGAs does not significantly affect performance as we

scale to larger numbers of FPGAs.

3.1 A Streaming Short-read Alignment Implemen-

tation

As discussed in Chapter 2, aligning multiple short-reads against a reference genome

is an embarrassingly parallel problem – it is possible for each alignment to be com-

pleted independently of the others. Therefore, the first stage in the development of

25

an FPGA design to simultaneously align multiple short-reads is the development of

a design to align a single short-read. This design can be easily extended to support

simultaneous multiple alignment.

3.1.1 Wavefront Parallelism in Dynamic Programming Se-

quence Alignment

The dynamic programming approach to sequence alignment, as pioneered by Needle-

man and Wunsch [36], and Smith and Waterman [37], allows for the update of many

cells in the dynamic programming table in parallel, provided that appropriate sets

of cells are chosen. This is called “wavefront parallelism” because the sets of inde-

pendent cells appear as “waves”. Consider a dynamic programming table1, where N

columns represent the reference base-pairs, and M rows represent the short-read base-

pairs. Clearly, it is not possible to compute cell updates for entire rows or columns in

parallel, since there are data dependencies between cells in such sets. However, if we

choose our sets of cells to be those that are in anti-diagonals, there are no dependen-

cies between cells in a set. This is illustrated in Figure 3.1, which highlights a single

anti-diagonal set of cells. This technique was introduced by Lipton and Lopresti in

1985 [39] to build a custom processor for fast string comparisons, and is routinely

used in parallelizations of dynamic programming sequence alignment algorithms for

FPGAs (see Hoang’s pioneering paper [40], and refs. [56, 57, 58] for more recent work).

We can see from the staggering in the dynamic programming anti-diagonal scheme

that, if the cell on row i for anti-diagonal t needs the reference base-pair from column

j, then for the next anti-diagonal, t+ 1, the cell on row i+ 1 will need the reference

base-pair from column j. In addition, in order to update the cell at row k and column

l, C(k, l), for anti-diagonal t, we also need the values from cells (k−1, l−1), (k−1, l)

and (k, l − 1). These values were calculated during the updates for anti-diagonals

t− 1 and t− 2.

This observation has a very important consequence: since the cell updates, when

computed in anti-diagonals, only require data from the previous two anti-diagonal

1The table should have dimensions N + 1-by-M + 1, where the first row and column are each

filled with zeros. We use a zero-based indexing notation.

26

Figure 3.1: From [42]. “Wavefront Parallelism” in Dynamic Programming Sequence

Alignment. If cells in the dynamic programming table are updated in anti-diagonals,

each update can be calculated in parallel due to the arrangement of the data depen-

dencies (shown as arrows for two example cells).

computations, it is only necessary to store the states of the cells in three anti-diagonals

at any point in time. Moreover, the data dependencies exhibit a high degree of spatial

and temporal locality (including the dependencies on the reference sequence base-

pairs), which enables the implementation of the computation using a systolic array

that only requires communication between adjacent elements in the array. With the

parallel anti-diagonal approach, only approximately 3 anti-diagonals ×M rows =

3M values need to be simultaneously stored to carry out each short-read alignment.

Since typically M = 30 (and we expect M to have an upper bound of 100), the re-

quired storage will be 90 bytes2 per short-read alignment, which can easily be supplied

using registers (single-clock latency memory). A serial approach, which computes a

single new cell value at each step, would require far less storage, but since low-latency

storage for our application of dynamic programming alignment (where M < 100) is

not a limiting constraint, we don’t need to consider further any potential tradeoffs

between space and time complexity.

The following listing is a (C-like) pseudocode description of the anti-diagonal tech-

nique3, implemented for serial execution. The function compute scores outputs the

dynamic programming table values from the last row4. Three arrays, each of length

2This value is calculated using the assumption that each cell’s value is stored using 8 bits. In

practice we use a 6-bit register, so the memory required is actually ≈ 68 bytes when M = 30.
3The pseudocode listing is based on a C implementation by Yun Song.
4Because the mismatch, deletion and insertion penalties are assumed to be positive, in practice

27

M + 1, are created as storage for the current anti-diagonal (stored in this), the anti-

diagonal from the previous update (stored in last), and the anti-diagonal from one

further previous update (stored in lastlast). The arrays are appropriately initial-

ized, and the remaining pseudocode is the main loop that computes the table values,

one anti-diagonal at a time. The innermost for loop computes the value of each cell

in a single anti-diagonal; this is the loop that can be parallelized because there are

no conflicting data dependencies in this code.

function compute scores(shortread, shortread length, reference, reference length)

// declare arrays

int this[shortread length+1]

int last[shortread length+1]

int lastlast[shortread length+1]

// initialize arrays

this[0] = 0

last[0] = 0

lastlast[0] = 0

for i = 1 to shortread length

this[i] = MAXINTEGER

last[i] = MAXINTEGER

lastlast[i] = MAXINTEGER

// Perform DP table updates

for i = 1 to reference length+shortread length-1

// Move anti-diagonal arrays

lastlast = last

last = this

// Update the current anti-diagonal

for j = 1 to shortread length

// Insertion or deletion

this[j] = min(last[j-1] + INS PENALTY, last[j] + DEL PENALTY)

if (i-j < reference length) and (i >= j) then

we will only be interested in the outputs where the dynamic programming table cell value was under

some threshold, but we ignore this detail for now.

28

if (shortread[j-1] != reference[i-j]) then // mismatch

this[j] = min(this[j], lastlast[j-1] + MISMATCH PENALTY)

else // match

this[j] = min(this[j], lastlast[j-1])

print i-shortread length+1 // output position in reference

print this[shortread length] // output last row value

A systolic array can be used to compute the cells of the dynamic programming

table in parallel using the wavefront technique. A high-level diagram of such an array

is shown in Figure 3.2. Each anti-diagonal has M cells, and each cell can be updated

in parallel, so the systolic array consists of M “Processing Engines” (PEs) that each

compute a new value for the cell in the row that they are responsible for. PE1 com-

putes the values for row 1, PE2 computes the values for row 2, and so on.

Figure 3.2: Systolic Array for Streaming Parallel Sequence Alignment. Each “Pro-

cessing Engine” computes a single cell update. The reference sequence is streamed

through the Processing Engines. Each PE passes local cell information to the fol-

lowing PE. The output from the final PE is the value for the cell in row M in the

dynamic programming table, where the column is that which corresponds to the

reference sequence base-pair that has most recently reached the final PE.

The output of the systolic array implementation is very similar to that of the pseu-

docode implementation: the final PE’s output is the cell value for the last row in the

dynamic programming table. In the pseudocode there is an explicit output of the

column (reference base-pair). In the systolic array implementation, it is necessary to

keep track of how many clock cycles have elapsed since the start. From this number

it is possible to deduce which column the current output is for.

29

Another subtlety in the systolic array implementation is that the PEs are assumed

to continuously compute new values based on their inputs, so there is no explicit start

and end to the “program” as there is in a traditional programming implementation.

To define a start, we need to reset the registers in the PEs (this corresponds to the

initialization steps in the pseudocode). It is then necessary to calculate how many

clock cycles a particular alignment is expected to take (and this is deterministic, since

the systolic array is not time-slice scheduled – it is always running, and runtime is

directly proportional to the length of the reference, N), and to disable output after

this many clock cycles have elapsed since beginning an alignment computation.

3.1.2 A Cell Update Processing Engine

In order to update a cell C(k, l), the following information is necessary:

1. The values C(k − 1, l − 1), C(k − 1, l) and C(k, l − 1).

2. The reference base-pair value for column l, rl.

3. The short-read base-pair value for row k, sk.

As we have discussed above, these data dependencies are local and allow the pos-

sibility of developing an efficient systolic array implementation of the algorithm,

whereby values are “streamed” through an array of processing engines. Each pro-

cessing engine is responsible for updating a single cell, and collectively the array of

processing engines updates all the cells in a single anti-diagonal. Each processing

engine, over the course of the algorithm’s execution, computes the cell updates for a

particular row.

For a single update, processing engine k has to compute a value for cell (k, l), for

the column l corresponding to antidiagonal t. The processing engine has as inputs

for this computation the reference base-pair rl, the short-read base-pair sk, and cell

values (k − 1, l − 1), (k − 1, l) and (k, l − 1). The value of C(k, l), the cell (k, l), is

computed as:

C(k, l) = min


C(k, l − 1) + α

C(k − 1, l) + β

C(k − 1, l − 1) + γ(sk, rl)

30

α is the penalty applied for a deletion in the short-read sequence (a character in-

sertion in the reference sequence), β is the penalty applied for an insertion in the

short-read sequence, and γ(sk, rl) is the penalty applied for a base-pair mismatch

(i.e. substitution) between the reference sequence and short-read sequence. In gen-

eral γ(a, b) is defined piecewise for all combinations of a, b ∈ {A,C,G, T}. In our

implementation,

γ(sk, rl) =

{
0 if sk = rl

δ otherwise

Therefore no penalty is applied if the base-pairs are the same, and a standard

penalty of δ is applied if they are not.

The penalties are constrained to be integers in the range 0 to 3, and can therefore

be represented using 2 bits.

The steps involved in computing a cell update are:

1. Compute γ(sk, rl).

2. Compute C(k − 1, l − 1) + γ(sk, rl).

3. Compute C(k, l − l) + α

4. Compute C(k − 1, l) + β

5. Compute minimum.

Steps 1, 3 and 4 can be performed in parallel. However, step 2 requires the result

from step 1. Step 5 can only be performed once the result of step 2 is known. These

dependencies hint that it isn’t possible to create a high-performance design where

the cell update is computed in a single clock cycle. Instead, we need to perform the

computation in stages.

If we provide each processing engine with registers to store the values of the cells in

the previous column, and one column before that (corresponding respectively to the

last and lastlast variables in the pseudocode), and we require that each processing

engine pass this data along to the next processing engine, then every PE will have

31

access to the data it needs. Figure 3.3 shows how processing engine k (corresponding

to row k) requires, for its part in the computation of antidiagonal t, values computed

in antidiagonals t− 1 and t− 2 by processing engine k − 1, in addition to the value

it computed for antidiagonal t− 1.

Figure 3.3: Data Dependencies in Antidiagonal Cell Update Computations. Process-

ing Engine k requires the last (l) and lastlast (l−1) values from Processing Engine

k − 1, and the last value from itself, in order to compute the update for cell (k, l),

which is part of antidiagonal t.

Figure 3.4 shows a high-level view of a single processing engine, emphasizing its

state variables and inputs/outputs. Specifically each PE must store its current (to be

computed) value (this), the previous value it computed (last), and the value before

that (lastlast). At every new update, PE k receives the last and lastlast values

from the previous processing engine, PE k − 1, and passes its own state variables on

to PE k+ 1. In addition, PE k passes the reference sequence base-pair it last worked

with on to PE k + 1, and receives its next reference base-pair to work with from PE

k − 1.

In the dynamic programming table for sequence alignment, we assign a short-read

base-pair to each row. Each PE then has a user input that defines the short-read

base-pair with which it computes mismatches with the reference base-pairs that are

streamed through it. This short-read base-pair input remains constant throughout

the execution of an alignment.

32

The PE has an “enable” input that needs to be connected to a clock source that

has a frequency four times smaller than that of the FPGA. This is used for synchro-

nization: only after four FPGA clock cycles have occurred should a PE write values

to its registers.

Finally, each PE has a “reset” input. This allows the register values to be reset.

Recall from the previous section that the systolic array continually computes values.

Therefore, we need a means to initialize the values in each processing engine when

we wish to start the computation of an alignment; providing an individual5 reset to

each PE allows us to do this.

Figure 3.4: A High-Level View of a Cell Update Processing Engine. A single PE

performs a single cell update for a particular row i in an anti-diagonal. Its streaming

inputs are: the next reference base-pair (corresponding to column l), and the cell

values for its diagonal (k − 1, l − 1) and upper (k − 1, l) dependencies (which both

come from the row above it, hence the values can be streamed from the previous PE).

Figure 3.5 shows a partitioning of tasks in a processing engine. The tasks are

divided into three stages, based on the data dependencies between them.

5We will discuss shortly why it is necessary to have an individual reset for each processing engine,

rather than some global reset – although from the perspective of the PE itself, there is no difference

between the two.

33

Figure 3.5: Computation Stages in a Processing Engine. All the inputs are external,

except for C(k, l − 1), which is obtained from the register last (not shown) in this

processing engine.

Since the FPGA resources used by the processing engine design is ultimately the

the primary limiting factor of the performance of our implementation, we desired to

make the PE as efficient as possible. This implies the need to optimize the compu-

tations performed in a single PE. Through trial-and-error6 we managed to determine

that the computation of C(k−1, l−1)+γ(sk, rl) can be done in one clock cycle with-

out reducing the clock frequency at which we could run the design7. The calculations

of C(k, l − l) + α and C(k − 1, l) + β also require only one clock cycle. We used an

optimized method of computing the minimum of three integers8, which is composed

of two instances of a “minimum of two integers” design. This enabled us to perform

the computation of the minimum in two clock cycles. A fourth clock cycle was used

for a “write back” stage to write the result to a register.

6To readers not familiar with the state of FPGA design tools, this might sound terribly unscientific

and reflect badly on our methods, but unfortunately many questions about timing and resource usage

can only be answered in this way.
7Without the use of an external clock source, the BEE2 can run at a clock frequency of either

100MHz or 200MHz – we aimed to make our designs meet timing for 200MHz.
8This subsystem design was kindly supplied to us by Alex Krasnov and Brian Richards.

34

Figure 3.6 shows the subsystem that computes the value C(k− 1, l− 1) + γ(sk, rl).

The comparator returns 0 if sk = rl, and 1 otherwise. In parallel with the comparator

is an adder that computes the sum C(k− 1, l− 1) + δ. Both this value and the unpe-

nalized score C(k−1, l−1) are supplied as inputs to a multiplexer. If the comparator

output is 0, then the multiplexer output is the value C(k− 1, l− 1), and otherwise it

is C(k − 1, l − 1) + δ. This implements the required computation in one clock cycle.

Figure 3.6: Subsystem to Compute C(k − 1, l − 1) + γ(sk, rl) in one clock cycle.

Figure 3.7 shows the design of the subsystem to compute the minimum of the three

values C(k, l− l) + α, C(k− 1, l) + β, and C(k− 1, l− 1) + γ(sk, rl). The implemen-

tation uses two instances of a design to compute the minimum of two values. Each

of these instances takes one clock cycle to complete, so the whole computation takes

two clock cycles. The first instance calculates the minimum of C(k, l − l) + α and

C(k−1, l)+β. This intermediate result is then compared in the second half of the de-

sign against C(k−1, l−1)+γ(sk, rl), and hence the output is the minimum we desire.

Figure 3.8 shows the low-level detail of a full Processing Engine. The subsystems

that we have introduced in figures 3.6 and 3.7 are marked as Subsystem A and Sub-

systems D and E respectively. Subsystems B and C compute the “left” and “up”

dependent scores, C(k, l − l) + α and C(k − 1, l) + β respectively.

Once the system has computed the value for cell (k, l), it is stored in the register

last at the start of the next computation. Similarly, at the start of the next com-

putation the value in register lastlast is set to the current value in register last.

35

Figure 3.7: Subsystem to Compute Minimum of Three Values in two clock cycles.

The inputs C(k, l− l) +α, C(k− 1, l) +β, and C(k− 1, l− 1) + γ(sk, rl) are supplied,

and thus the output C(k, l) is computed.

This behaviour is regulated by an “Enable” input. The enable input is a signal that

is set high (i.e. “true”) for one clock cycle every four clock cycles.

The “Reset” should only be set high for one clock cycle for the duration of a whole

alignment. A reset forces the register last to be set to value 0. When the processing

engines are connected together, a single reset pulse is sent at the start of the com-

putation, and it is propagated through all the processing engines, with a delay of 4

clock cycles between each PE. This is necessary to properly initialize the registers in

each PE at the appropriate time, while the pipeline is being filled.

3.1.3 A Stand-alone Single Alignment Implementation

The FPGA design for a single alignment implementation in a single FPGA is shown

in Figure 3.9. We need to support reference lengths of more than 100 million base-

pairs. Since the representation of each base-pair requires at least 2 bits, a 100 million

long reference sequence requires at least 23.84MB of storage. Clearly this is not

achievable in block RAM on the FPGA, so the BEE2’s onboard DRAM needs to be

used. Hence the figure shows that the systolic array receives the stream of reference

sequence base-pairs from DRAM. A DRAM interface block is necessary to convert

the DRAM output into a stream of 2-bit values. It is important that this stream be

36

Figure 3.8: Low-level Details of a Processing Engine. The subsystems for computing

scores and minima are marked A through E. The feedback of the results to registers,

including reset and clocking (enable) logic is also shown.

37

continuous (since the systolic array does not allow for gaps in its inputs) and easily

controllable (so that the sequence can be quickly rerun for the execution of a new

short-read alignment). We devoted considerable effort to building and testing this

subsystem, which we detail in the next subsection.

The systolic array’s output is provided to a subsystem that determines if the score

should be reported. We only wish to report the location in the reference of alignments

where the score for the alignment is below a user-specified threshold. If a score is

selected by the thresholding subsystem, the current location in the reference sequence

is written to a FIFO buffer that is accessible from the PowerPC. A program (written

in C) running on BORPH is used to read out the buffer once the alignment computa-

tion is complete. (We only expect between 5 and 10 scores to be below the threshold

for an alignment against a 100 million base-pair reference sequence, so a FIFO buffer

depth of 512 is sufficient for all practical purposes.)

Figure 3.10 shows the threshold logic at the end of the systolic array, and the

shared FIFO buffer that it feeds into. The thresholding comparator returns true if

the computed score is below, or equal to, a user-specified threshold. Conceptually

all that is necessary is for this output to be connected to the “write enable” input of

the FIFO buffer. However, there are a couple of subtleties that need to be taken into

account.

Firstly, for the first 4 ·M clock cycles9 of the operation of the systolic array, the

output score will be invalid, since the pipeline is still being filled. After 4 ·M clock

cycles have elapsed, the pipeline is full, and each emerging score from that point on

is valid. In Figure 3.10, the second comparator is used to ensure that the first M

scores are ignored. (The method we use to avoid missing a genuine match in the

first M base-pairs is to pad the reference sequence with M dummy base-pairs at the

beginning of the sequence.)

Secondly, since we only receive a new score from the systolic array every 4 clock

cycles, we should only write to the FIFO when a new score becomes available. The

counter with the positive edge detection in figure 3.10 is used to implement this. The

9Each cell update requires 4 clock cycles to be computed, and we need to wait for all M processing

engines to have been initialized.

38

Figure 3.9: A Stand-alone Single Alignment Design. The systolic array is shown

being supplied with a stream of reference sequence base-pairs from DRAM. The short-

read base-pairs are supplied by shared registers, which are accessible in the BEE2’s

PowerPC. The reference sequence position of scores that are below a user-specified

threshold are stored in a FIFO that is also visible to the PowerPC.

39

counter is incremented only every 4 clock cycles. On the clock cycle that it increases,

the positive edge detection will output true.

If these conditions are satisfied, then the “write enable” input to the shared FIFO

buffer is brought high for one clock cycle. The data input is connected to a counter,

whose value can be used to deduce the position in the reference sequence. This counter

is reset when the computation of a new alignment is begun. The same reset signal

is used to reset the shared FIFO buffer. The systolic array is always computing, so

the definition of the start of an alignment is when the reset signal is asserted. This

same reset signal is also used to restart the readout of the reference sequence from

the DRAM.

Figure 3.10: Score Threshold and FIFO Buffer Output Stage. The score output from

the final processing engine in the systolic array is passed to a thresholding output

stage that conditionally writes the corresponding reference base-pair index to a FIFO

buffer if the score is below a user-specified value.

40

3.1.4 DRAM Interface for Reference Streaming

To support long reference sequences, we need to allow the reference sequence to be

stored in DRAM. A DRAM controller typically has a wide data bus, but the systolic

array requires a stream of 2-bit reference base-pair values. Thus DRAM support ne-

cessitates the development of not only an interface to DRAM, but also of a serializer

(or “parallel-to-serial converter”). This was shown in Figure 3.9.

Specifically, we desire to provide the systolic array with a 2-bit value every four

clock cycles. Therefore we need only obtain one 64-bit word from the DRAM every

128 clock cycles. It is, however, important that the stream of reference base-pairs to

the systolic array never be interrupted – for this reason, we carefully designed the

DRAM interface and serializer to use a double-buffering scheme that ensures a steady

stream of data.

Figure 3.11 shows the DRAM interface and serializer design that we implemented.

We allow for the storage of up to 227 64-bit words, where each word contains 32 2-bit

reference characters. Hence, reference sequence lengths of 227 × 32 = 232 base-pairs

are possible. The BEE2 Simulink toolflow-based DRAM controller was used as the

DRAM abstraction. The core functionality of our interface is the logic to request

words from the DRAM at appropriate intervals.

Once a word is read from DRAM, it is immediately written to the first port of

a dual-ported BRAM10. A clock divider is used to produce a pulse every four clock

cycles, which in turn clocks a counter that cycles through the 64 possible addresses

on the second BRAM port. The next 64-bit word from the DRAM is requested and

written to the dual-ported BRAM as soon as possible. Since the read-latency of the

DRAM is guaranteed to be less than 128 clock cycles, the double-buffer will always

be able to supply the systolic array with an uninterrupted data stream.

10The BRAM has a total size of 128 bits. The first port uses a 64-bit data line, with two valid

addresses, and the second port uses a 2-bit data line, with 64 valid addresses.

41

Figure 3.11: DRAM Interface and Serializer. The DRAM controller reads 64-bit

words which are written to a double-buffer implemented in a dual-ported BRAM.

The BRAM is used as the serializer by defining its second port to have a data width

of 2 bits. This design allows the systolic array to be provided with an uninterrupted

stream of reference characters. 42

3.2 A Parallel Multiple Short-read Alignment Im-

plementation

A single systolic array computes a single alignment of a short-read against a reference

sequence. However, it is possible to fit several independent systolic arrays onto an

FPGA, and by doing so it is possible to align several short-reads in parallel. The

extension of the design from a single alignment processor to one that can perform P

alignments in parallel is shown in Figure 3.12. The systolic array is simply replicated

as many times as we can fit it onto a single FPGA. The DRAM interface and serializer

feeds all the systolic arrays in parallel.

The key difference between the multiple alignment design and the single alignment

design is the output stage. Whereas the single alignment design (c.f. Figure 3.9) uses

a shared FIFO buffer to store the alignment results, in this multiple alignment design

we do not simply replicate P shared FIFOs and associate each FIFO with a systolic

array. We avoid this technique primarily because shared FIFOs use up significantly

more FPGA resources than do ordinary FIFO buffers11. Instead, each systolic array

writes its results to a regular FIFO buffer. A “round-robin” reader cycles through

these FIFOs and writes their contents to a single shared FIFO buffer. This shared

buffer is the one with which the user interacts.

3.2.1 Round-robin FIFO Output Stage

Figure 3.13 shows the details of the thresholding and non-shared FIFO buffer stage

that is connected to the output of each systolic array. The output stage is very

similar to that for a single alignment design (c.f. Figure 3.10). The primary differ-

ences are that the shared FIFO buffer has been replaced with a regular FIFO buffer,

and there now exists some logic to perform reads from the FIFO. (In the single

alignment version, the FIFO is only read through the PowerPC, and not within the

design.) Specifically, there are two inputs for supporting reads, index and select. If

index = select, then a value from the FIFO will be read (if the FIFO is not empty).

The index input value is concatenated with the FIFO data output and empty signal.

11Shared FIFO buffers need to be attached to a bus through which the PowerPC, and hence

BORPH, can communicate with them. It is this bus connection that is resource-intensive.

43

Figure 3.12: A Parallel Multiple Alignment Design. P copies of the systolic array

design presented in Figure 3.9 can be placed in a single FPGA, to allow the parallel

computation of P different short-read alignments.

44

This concatenated value is the output of the stage.

Figure 3.13: Score Threshold and FIFO Buffer Output Stage.

Figure 3.14 shows the round-robin reader. This subsystem is designed to contin-

uously cycle through the FIFOs at the end of each systolic array, read their values

if they are not empty, and write those values to a single shared FIFO. A counter is

used to generate a repeating sequence 0, 1, . . . , P − 1, 0, 1, This counter value is

used to “select” a particular FIFO, and perform a read from it. To allow this, each

alignment’s output stage is assigned an index value, where the first systolic array has

index 0, the second index 1, through to the P th, which is assigned index P − 1. The

counter value is used to select a particular input on multiplexer, so the multiplexer’s

output cycles through the outputs of systolic array buffer stages.

When a FIFO is read, it outputs an empty signal that is true if the FIFO buffer

was empty. This signal is included in the output of each systolic array’s buffer stage.

The round-robin reader therefore needs to unpack the data to check this empty value.

Data is only written to the shared FIFO if empty is false. Both the alignment index

45

and the data are written to the shared FIFO – this is necessary for the user to deter-

mine which alignment the result is from.

The use of a round-robin readout limits the rate at which data can safely be pro-

duced. If each systolic array produces output at a rate greater than 1/P matches

per clock cycle, the FIFO buffers will overflow, and results will be lost. However,

such high output data rates are not expected – the thresholds are chosen such that

each short-read alignment produces of order 10 match results in a 3 billion base-pair

reference. Furthermore, bursty output can be handled without loss since the FIFOs

are deeper than the size of the largest expected result set.

3.3 Parallelization Across Multiple FPGAs

Since multiple sequence alignment for resequencing is an embarrasingly parallel prob-

lem, the extension of a single-FPGA implementation to a many-FPGA system is

conceptually simple. If we have Q short-reads that we need to align, and N FPGAs

at our disposal, we simply assign Q/N short-reads to each FPGA. The computation

time for alignment is constant in the case where the short-read length M and the

reference sequence length are constant, hence this simple work allocation scheme is

adequate.

The practical details of extending the system beyond a single FPGA primarily con-

cern the development of control software to manage the computation on a cluster of

BEE2 boards. Each BEE2 board contains four user FPGAs, and one control FPGA

that runs BORPH. Each of the four user FPGAs is run entirely independently of the

others. There is only a small difference in the cluster control software required to

manage FPGAs on different boards versus FPGAs on the same BEE2.

Figure 3.15 shows the architecture of our BEE2 cluster. Each BEE2 operates in-

dependently, but is connected over 100MbE to a switch, to which a control terminal

is attached. Inside each BEE2 the control FPGA’s DRAM contains a copy of the ref-

erence sequence. This sequence is distributed to the DRAM directly attached to each

user FPGA. The control FPGA communicates with each user FPGA over high-speed

serial links – these communications include the setting up of short-read sequences,

46

Figure 3.14: Round-robin FIFO Reader and Shared FIFO Output Stage.

47

Berkeley Emulation Engine (BEE2)

Control FPGA

BORPH
LINUX

User FPGA 1
PPC

DRAM
Ref

Genome

User FPGA 2
PPC

PPCDRAM
BORPH

DRAM
Ref

Genome

User FPGA 3
PPC

DRAM
Ref

Genome

User FPGA 4
PPC

DRAM
Ref

GenomeEthernet
PHY

BEE2

BEE2

BEE2

Cluster
Switch

Control Terminal

TCP/IP

Figure 3.15: BEE2 Cluster Architecture. Figure courtesy Vinayak Nagpal.

and the reading out of alignment results. Both the short-read inputs and the outputs

for all four FPGAs are channeled through the control FPGA, which in turn commu-

nicates with the control terminal over the 100MbE control network.

Figure 3.16 shows the flow of the control software for the cluster. The control

terminal (which acts as the “head node” in cluster computing parlance) is primar-

ily responsible for dividing the Q short-reads into N distinct sets, where each set is

intended for processing on a single FPGA. The head node distributes the reference

sequence to each BEE2 control processor, which in turn loads the reference into the

DRAM of each user FPGA on that BEE2.

Each FPGA can process P short-read alignments in parallel. Each FPGA is al-

located Q/N short-reads. Therefore each FPGA must process Q/N
P

= Q
N×P

separate

batches of short-reads (with each batch containing P short-reads). The control pro-

cessor on the BEE2 divides each FPGA’s allocation into Q
N×P

batches. For each batch,

the control processor loads the queries into the FPGA’s shared registers, starts the

computation, waits for the computation to complete, and reads the results from the

48

shared FIFO. The results are then saved to disk on the head node.

Having presented the design and implementation of a parallel sequence alignment

cluster, in the next chapter we provide results that demonstrate its performance ad-

vantage over conventional software implementations.

49

Figure 3.16: Cluster Control Software Flow.

50

Chapter 4

Results and Discussion

In this chapter we report our results from testing both our single FPGA and 32-FPGA

sequence alignment implementations.

4.1 Single FPGA

In this section we present two sets of results. The first relates to the number of se-

quences it is possible to align in parallel (i.e. the value P) for particular short-read

sequence lengths. Clearly as the short-read length increases, it will only be possible

to simultaneously align fewer sequences, since each cell update processing engine uses

a set amount of FPGA resources. The second set of results we present are the actual

performance results obtained during the benchmarking of our system. It is possible

to calculate a theoretical maximum performance for the system based on the FPGA

clock speed and the number of processing engines placed on a single FPGA, but this

neglects the start-up cost of setting the reference sequence and short-read inputs,

and of reading the output when the computation is finished. We benchmarked the

performance of the FPGA, including all overhead, and compared our results to the

performance on a state-of-the-art optimized CPU software implementation.

4.1.1 Correctness

Our first test of the FPGA system was designed to determine the correctness of the

system. Specifically we loaded a 100 million base-pair Drosophila melanogaster refer-

ence sequence into DRAM, and performed alignments against 100 different short-read

51

sequences each of length 31 from [5]. We compared the results to that of a conven-

tional CPU implementation (written in C) and found that our FPGA results exactly

matched those from the CPU.

4.1.2 Short-read Length Resource Scaling

As we have mentioned in Chapter 2, current short-read sequencing technology pro-

duces short-reads of length approximately 30 base-pairs and this value is likely to

double in the next few years [9]. In this chapter we benchmark the performance of

our system for M = 31, and we also demonstrate that our design will scale well with

longer short-reads. The latter result is now described in detail.

Table 4.1 shows how the number of systolic arrays that can be packed into a single

FPGA design scales with the length of the short-reads M . Since each systolic array

contains M processing engines, the total number of PEs is M × P . The greater the

number of PEs packed, the better the performance is, since each PE computes a cell

update every four clock cycles. Hence a larger number of PEs packed results in a

larger number of cell updates that are done in parallel.

One reasonable line of questioning about the scalability of our design and archi-

tecture concerns the limits – the cases where M � 31 and M � 75. These are not

of great practical interest, since short-reads produced by current sequence technology

have length approximately 30, and future advances are not expected to soon extend

these lengths much beyond 75. Nevertheless, it is instructive to consider these ques-

tions. Our results show that it is possible to use our design for computations where

the short-read length M = 75, and suffer no degradation in performance versus the

cases where 31 < M < 75. In fact, the number of processing engines packed when

M = 75 is greater than for M = 31.

For the case M � 75, the overhead per systolic array will be decreased. By “over-

head”, we mean the necessary parts of the design that are not directly performing

dynamic programming table cell updates (processing engines). The most significant

overhead per systolic array is the threshold and FIFO buffer output stage. With

overhead excluded, we expect that a particular FPGA will be able to fit a constant

52

number of processing engines. Therefore, if we increase the short-read length M ,

we will have to reduce the number of systolic arrays packed, P . This results in less

overhead per processing engine, and thus in a more efficient design.

The most efficient use of the FPGA is therefore the case where P = 1 and M is

set to the largest value that yields a design that will fit in the FPGA. Since M is not

a flexible parameter, this fact is of no immediate practical use to us. However, Table

4.1 indicates that the maximum number of processing engines that can be fitted on

a Xilinx Virtex 2 Pro VP70 FPGA is at least 630 (when P = 1). There is overhead

associated with each systolic array, so the highest achieve PE count when P > 1 is a

lower bound. Therefore our design is conservatively limited1 to cases where M < 630.

There is a potential disadvantage to designs for the large-M cases: since P has to

be a whole number, there are many values of M where the product M × P is up to

one half as small as it could be were fractional values of P allowed. For the sake of

argument, assume that when M = 650, we can fit one systolic array onto the FPGA

(i.e. P = 1), and that this is optimal (M cannot be increased). If we wish to make a

design to perform alignment of short-reads where M = 330, we will still only be able

to fit one systolic array, and not two. Therefore a large amount of FPGA resources

would be left unused. (Of course it is possible to alleviate this problem by making

systolic arrays with different lengths, but this is not desirable to the user, who has

constant-length short-reads.)

Fortunately, this issue of granularity is not particularly severe when 31 ≤M ≤ 75,

since 8 ≤ P ≤ 18. In fact, the case M = 31 suffers from this inefficiency (M×P = 558

in this case, whereas typically M×P ≈ 600). However, when P > 10, rounding down

to the nearest integer in the worst case results in an efficiency loss of less than 10%.

Table 4.1 clearly shows that for the cases relevant to our application (31 ≤M ≤ 75),

this potential loss of efficiency in larger-M cases is not significant.

For the case M � 31, the analysis is simpler: the overhead from the DRAM

interface and FIFO output stage becomes increasingly large in comparison to the re-

1This empirical limit applies to the Virtex 2 Pro VP70 FPGA. Of course the limit will be increased

for FPGAs that contain more slices, such as the Virtex 5 LX330T FPGA that has approximately

4X more resources.

53

Table 4.1: Dependence of resource utilization on the length M of short-reads. For a

given M , we tried to pack as many short-reads of length M as possible on a single

FPGA. Table courtesy Henry Chen.

Short-read length M Number P of systolic arrays packed Total PEs (M × P)

15 34 510

31 18 558

45 14 630

60 10 600

70 9 630

75 8 600

sources used by the processing engines, and hence the efficiency of the FPGA design

dramatically decreases. Fortunately this is not a concern for our application, where

M has in practice a lower bound of approximately 30.

Figure 4.1 most clearly shows our claim that our design scales as the short-read

length increases from 31 to 75. In ideal scaling (where we do not consider the afore-

mentioned effects of granularity and overhead), we expect the total number of PEs

to remain constant. The graph shows this to be approximately the case in practice,

hence the performance of our system will not degrade as the short-read length is

increased.

4.1.3 Performance

Performance of sequence alignment implementations is often conveniently measured

in “cell updates per second” (CUPS) – a single cell update is a single application of

the dynamic programming table cell update rule. This measure is useful for compar-

ing implementations, since it is not dependent on the lengths of the two sequences

being aligned. Modern computing systems can perform millions or billions of cell up-

dates per second, so the units MCUPS and GCUPS are also frequently used. These

respectively represent 106 CUPS and 109 CUPS.

To measure the performance of our implementation, we used a 100 million base-

54

0

100

200

300

400

500

600

700

15 31 45 60 70 75

To
ta

l P
Es

 P
ac

ke
d

 (
M

x
P

)

Length of Short-Reads (M)

Dependence of Resource Utilization on Length
of Short-Reads

Figure 4.1: Graph Showing Resource Utilization as a function of Short-Read Length

M .

55

pair Drosophila melanogaster sequence as the reference sequence and aligned varying

numbers of length M = 31 short-reads against this reference.

Table 4.2 reports the performance of our implementation on a single FPGA. We

report the “total time” in addition to the “compute time”. The latter excludes once-

off startup costs. Loading the reference genome took about 53.4 seconds, and other

startup operations took 6.6 seconds. The reported GCUPS figures are based on the

compute time (which includes the time to load the queries, perform the alignment

and read out and store the results).

The loading of the reference genome is particularly slow due to a bottleneck in the

interface between the PowerPC (on which BORPH runs) and the DRAM controller

implemented in the FPGA fabric. A 100 million base-pair sequence has size 23.84MB

(assuming 2-bit encoding). The maximum supported DRAM usage is 1GB, which

allows reference lengths of greater than 4.2 billion base-pairs to be used. In prac-

tice, the alignment computations are expected to require several days of computation

time, so even the time taken to load a 4 billion base-pair reference sequence would be

insignificant compared to the total running time.

The time spent by the FPGA computing each alignment is deterministic, and

is dependent on the FPGA clock speed fc, the short-read length M and the num-

ber of systolic arrays P . Specifically, the theoretical peak performance in CUPS is
fc

4
×M × P , where fc is in units of Hz2. For a 200MHz clock speed, with M = 31

and P = 18, the theoretical peak performance is 27.9 GCUPS. This is unachievable

in practice, since it neglects the time required to load the short-reads into the FPGA,

and the time taken reading out the results. Table 4.2 shows that we were nevertheless

able to achieve performance very close to this theoretical peak, and that hence the

overhead in our system is not significant in practice.

2The division of the clock frequency by four is required because each cell update requires four

clock cycles to complete.

56

Table 4.2: Performance of our implementation on a single FPGA on the BEE2 system.

Loading the reference genome took about 53.4 seconds, and other startup operations

took 6.6s. The total time shown below includes these startup times. The reported

GCUPS performance excludes startup time, which is insignificant compared to run-

time for jobs with many queries. The reported times are averages from 5 runs.

#Short-Reads Aligned Total Time (s) Compute Time (s) GCUPS

900 163.5 100.5 27.0

1800 271.3 201.0 26.4

3600 471.2 402.0 27.1

7200 885.1 804.0 27.1

14400 1701.6 1608.0 27.2

28800 3342.4 3216.0 27.2

57600 6623.5 6432.0 27.2

Performance Comparison with a State-of-the-Art Software Implementa-

tion

There has been considerable effort in the software community to develop fast im-

plementations of dynamic programming-based sequence alignment alogorithms. The

current leading technique by Farrar [54] uses SSE2 instructions in Intel microproces-

sors to parallelize the computation of Smith-Waterman alignment. Terry Filiba [42]

applied Farrar’s technique to the optimized alignment algorithm used in this thesis,

thereby producing a state-of-the-art software implementation that is directly compa-

rable to our FPGA implementation.

Figure 4.2 shows the performance of Farrar’s code when it is used to compute

alignments of many length 31 short-read sequences against a 100 million base-pair

reference sequence. A dual-processor quad-core 2GHz Intel Xeon workstation was

used as the benchmarking platform3. Only a single CPU core was used in our bench-

mark4. The performance of Farrar’s code degrades significantly as the short-read

3Our test machine used two Intel Xeon E5405 processors. These processors each have four cores,

and a shared 12MB L2 cache. Their nominal power consumption is 80W (each). All software

implementations were compiled using gcc with the -O2 optimization switch.
4Due to the embarrasingly parallel nature of the problem, it is reasonable to assume a linear

57

Short-Read Length (base-pair)

Sp
ee

d
P
er

fo
rm

an
ce

(G
C

U
P

S)

500450400350300250200150100500

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 4.2: Speed performance (in GCUPS) of Farrar’s code as a function of short-

read length. Figure courtesy Terry Filiba and Yun Song.

length decreases: for short-reads with length in the range 25 < M < 100, the perfor-

mance is approximately 200 MCUPS (per CPU core).

A non-optimized CPU implementation of our algorithm, benchmarked using the

same data, was able to compute 98 MCUPS. Filiba’s SSE2-based code improved this

to 447 MCUPS. The short-read length was set to M = 31 for all our performance

benchmarks (on FPGAs and on CPUs), since this is the value for which the SSE2

parallelization has maximum efficiency. Therefore we provided the software imple-

mentation with the best possible conditions.

The single FPGA speed-up over a single CPU core is 61X. Therefore 61 CPU

cores give the same performance as a single FPGA. An alternative implication is that

a resequencing task requiring 6,100 hours for alignment would be reduced to only

100 hours if a single FPGA were used instead of a CPU. This represents a dramatic

speed-up that is surely of interest to resequencing researchers.

We estimated the power consumption of the Xeon workstation to be 200W5.

speedup with the number of cores. This enables a system-level comparison with our FPGA imple-

mentation, and in particular allows us to estimate the number of CPUs that would be required to

achieve equivalent performance to a single FPGA.
5This figure considers the power consumption of the entire machine, including both CPUs (nom-

inally 80W each).

58

The power-performance of this workstation running one query per core is 0.01788

GCUPS/Watt6. We provide a power performance comparison with the FPGA sys-

tem in the following section.

4.2 Cluster

To test the performance of the cluster implementation, we ran an alignment of 460800

short-reads (each with length 31 base-pairs) against the same 100 million base-pair

Drosophila melanogaster reference sequence as was used in the single FPGA bench-

marks.

The fixed startup cost for the cluster implementation is larger than that for the

single FPGA implementation – it is approximately 240 seconds. This increase is

primarily due to the fact that each BEE2 needs to sequentially load the reference

sequence four times. There is also a small contribution to the overhead from network

communications tasks that do not occur in the single FPGA implementation.

We performed the tests on a cluster7 of eight BEE2 boards, each containing four

user FPGAs. We successfully aligned 460800 short-reads in an average of 1667 sec-

onds (excluding startup time). We ran the alignment test 5 times, aligning all 460800

short-reads in each case, and the runtimes (excluding startup time) all fell within 2

seconds of 1667 seconds. This implies a performance for the cluster of 857 GCUPS,

which is a performance of 26.8 GCUPS per FPGA. Hence, we deduce that the system

scales well to 32 FPGAs, since the performance of a single FPGA is 27.2 GCUPS.

This is expected, since the algorithm is embarrasingly parallel.

During the execution of the BEE2 tests, we monitored the power consumption of

the cluster, including the control computer used for scheduling computations, storing

data (input and output), and loading sequences onto the reconfigurable computers.

We found that the power consumption of the cluster varied between 750W and 850W.

The power-performance of the reconfigurable computer cluster system is therefore at

6We calculated this value by assuming a linear speedup with the number of cores. Eight cores

can compute 8 × 0.447 = 3.576 GCUPS, and the overall power consumed for the 8-core system is

200W, hence the power-performance measure of system is 3.576/200 = 0.01788 GCUPS/W.
7We used the BEE2 cluster built for the RAMP Blue project [55].

59

least 1.01 GCUPS/Watt8.

Figure 4.3: BEE2 Cluster. Photo courtesy Alex Krasnov.

The state-of-the-art software implementation running on a modern Intel Xeon-

based system is capable of computing 0.01788 GCUPS/Watt. Based on the power

performance results from the BEE2 cluster experiment, we determine that the FPGA

implementation provides a 54X improvement in power-performance over its conven-

tional software counterpart.

4.3 Conclusion

Using our custom alignment processor design, we achieved a 61X speedup for a single

BEE2 FPGA versus a single modern CPU core. We tested our design on a 32-

FPGA cluster and provided performance results showing linear scaling performance

as the number of FPGAs is increased. Using our cluster implementation we were

also able to demonstrate a 54X improvement in performance-per-Watt for our FPGA

8We used the upper bound of 850W in our calculation; 857/850 = 1.01 GCUPS/W.

60

implementation versus the best CPU implementation.

61

Chapter 5

Conclusions and Future Work

In this thesis, we have presented a custom FPGA design that accelerates a dynamic

programming sequence alignment algorithm for genome resequencing applications by

61X versus a modern single CPU core. We have showed that the design scales linearly

with a cluster reconfigurable computer system with 32 FPGAs. Further, we see no

barriers to scaling the system to hundreds of FPGAs, since the alignment problem

we solve is embarrasingly parallel and our system architecture has demonstrated no

bottlenecks to prevent such scaling.

The promising results presented in this thesis suggest that there is much profitable

work that remains in investigating the performance of short-read alignments on FP-

GAs, and in the development of production systems for use by biologists.

The most important near-term goal is the porting of our prototype design to Xil-

inx’s Virtex 5 family of FPGAs. The BEE2 platform that we used is based on Xilinx’s

Virtex 2 Pro family, which is now over four years old. The Virtex 5 range makes im-

provements in four critical areas: they have more resources (FPGA slices), allowing

for larger designs; they can be clocked at nearly double the frequency of Virtex 2

Pro chips; they use less power, and they are cheaper (per slice). The Virtex 2 Pro

XC2VP701 FPGA used in the BEE2 has 4.4X fewer logic resources than the largest

Virtex 5 chip, the XC5VLX330T. Therefore this Virtex 5 FPGA could support a

design with more2 than 4.4X the number of parallel short-read alignment systolic

1The full name of the part is: XC2VP70-7FF1704C.
2Since the design has some fixed overhead, primarily the DRAM interface, the increase in com-

puting capability would be greater than the increase in capacity.

62

arrays. A Virtex 5 design would conservatively be able to run at a clock frequency

of 350MHz, in contrast to the 200MHz possible with the Virtex 2 Pro. A 400MHz

design may be possible3. Therefore a further improvement of at least 1.75X will be

possible with a port to the Virtex 5. A total improvement in performance of 7.7X

should therefore be relatively easily obtainable. This would push the advantage of

the FPGA implementation over the CPU implementation to beyond 400X.

Each cell update processing engine in the systolic array design currently takes 4

clock cycles per computation. (Figure 3.8 shows the detailed design of a single cell

update processing engine.) Therefore, the speed at which the systolic array operates

is four times slower than the clock frequency of the FPGA. However, within the pro-

cessing engine there are four separate stages, each of which only requires one cycle

to execute. On any given clock cycle, one of the stages is performing useful work

and three of the stages are lying idle — or more precisely, they are computing with

garbage input, and their output is ignored. It is possible to modify this design to

take advantage of the fact that on every clock cycle every stage is performing a com-

putation. Specifically we4 propose the pipelining of the internals of the cell update

processing engines. This can be done relatively easily by assigning not one, but four

short-read base-pairs to each cell update engine. A multiplexer should be placed at

the front of the engine, and be used to cycle through the four short-read base-pairs.

In this way it will be possible for each systolic array to execute four short-read align-

ments in the same time it takes for the current design to execute just one. This is a

direct result of the effective clock rate of the systolic array increasing by a factor of

four.

The FPGA design is very sensitive to changes in the bitwidths of variables. If it

is possible to modify the algorithm to use fewer bits per cell score (or per penalty

constant), dramatic improvements in performance can result, since the amount of

resources that the systolic array requires is directly related to the bitwidth of the

data pipeline it contains. It would be useful to conduct a study to determine how else

the dynamic programming algorithm can be modified to reduce the bitwidth require-

3The theoretical maximum clock frequency is 550MHz; determining what frequency it is possible

to achieve in practice requires trial-and-error with the design and the build tools.
4The idea presented in this section arose from discussions with Alex Krasnov, in which he posed

the question, “But why can’t you just pipeline it?”.

63

ments, but still yield biologically relevant results, and then implement the optimal

algorithm.

We have demonstrated that sequence alignment for resequencing maps very well

to FPGA architectures. While our work is not yet appropriate for production use,

we expect that with the further work we suggest, a very compelling system can be

developed for broad use by the genomics community.

64

Bibliography

[1] J. Venter, et al. The Sequence of the Human Genome. Science, 291, 5507,

1304–1351 (2001).

[2] International Human Genome Sequencing Consortium. Initial sequencing and

analysis of the human genome. Nature, 409, 860–921 (2001).

[3] Illumina Genome Analyzer Pipeline. URL: http://www.illumina.org.

[4] 1000 Genomes: A Deep Catalog of Human Genetic Variation. URL:

http://www.1000genomes.org.

[5] Drosophila Population Genomics Project. URL: http://www.DPGP.org.

[6] S. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman. Basic Local Alignment

Search Tool. J. Mol. Biol., 215, 3, 403–410 (1990).

[7] S. Batzoglou, D. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger,

J. Mesirov and E. Lander. ARACHNE: a whole-genome shotgun assembler.

Genome Res., 12(1), 177–189 (2002).

[8] J. Mullikin and Z. Ning. The Phusion Assembler. Genome Res., 13(1), 81–90

(2003).

[9] A. Sundquist, M. Ronaghi, H. Tang, P. Pevzner and S. Batzoglou. Whole-genome

sequencing and assembly with high-throughput short-read technologies. PLOS

One, 2(5), e484 (2007).

[10] M. Pop and S. Salzberg. Bioinformatics challenges of new sequencing technology.

Trends in Genetics, 24, 3, 142–149 (2008).

[11] F. De Bona, S. Ossowski, K. Schneeberger and G. Rtsch. Optimal spliced align-

ments of short sequence reads. Bioinformatics, 24(16), 174–180 (2008).

65

[12] K. Compton and S. Hauck. Reconfigurable Computing: A Survey of Systems

and Software. ACM Comput. Surv., 34, 2, 171–210 (2002).

[13] M. Gokhale and B. Schott. Data-parallel C on a reconfigurable logic array. J.

Supercomput., 9, 3, 291–313 (1995).

[14] C. Chang, J. Wawrzynek and R. Brodersen. BEE2: A high-end reconfigurable

computing system. IEEE Design and Test of Comput., 22, 2, 114–125 (2005).

[15] P.-Y. Droz. Physical Design and Implementation of BEE2: A High End Re-

configurable Computer. M.S. Thesis, Department of Electrical Engineering and

Computer Sciences, University of California, Berkeley (2005).

[16] C. Chang. Design and Applications of a Reconfigurable Computing System for

High Performance Digital Signal Processing. Ph.D. Thesis, Department of Elec-

trical Engineering and Computer Sciences, University of California, Berkeley

(2005).

[17] H. So. BORPH: An Operating System for FPGA-Based Reconfigurable Comput-

ers. Ph.D. Thesis, Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley (2007).

[18] H. So and R. Brodersen. A Unified Hardware/Software Runtime Environment

for FPGA-Based Reconfigurable Computers using BORPH. ACM Transactions

on Embedded Computing Systems, 7, 2 (2008).

[19] Xilinx History. URL: http://www.xilinx.com/company/history.htm

[20] J. Hennessy and D. Patterson. Computer Architecture, Fourth Edition: A Quan-

titative Approach. Morgan Kaufmann, San Francisco, CA. (2006).

[21] S. Hauck and A. DeHon. The Theory and Practice of FPGA-Based Computation.

Morgan Kaufmann, Burlington, MA. (2007).

[22] G. Estrin. Organization of Computer Systems–The Fixed Plus Variable Structure

Computer. In Proc. Western Joint Computer Conf., 1960, pp. 33 – 40, New York,

NY.

[23] G. Estrin, B. Bussel, T. Turn and J. Bibb. Parallel processing in a reconstructable

computing system. IEEE Trans. Elect. Comput., 1963, pp. 747 – 755.

66

[24] K. Asanovic, et al. The Landscape of Parallel Computing Research: A View

from Berkeley. UC Berkeley Technical Report, 2006, UCB/EECS-2006-183.

[25] K. Asanovic, et al. The Parallel Computing Laboratory at U.C. Berkeley: A

Research Agenda Based on the Berkeley View. UC Berkeley Technical Report,

2008, UCB/EECS-2008-23.

[26] Stanford Pervasive Parallelism Laboratory. URL: http://ppl.stanford.edu.

[27] Xilinx Virtex 5 Product Table. URL: http://www.xilinx.com/products/

silicon solutions/fpgas/virtex/virtex5/v5product table.pdf.

[28] Intel Microprocessor Export Compliance Metrics. URL:

http://www.intel.com/support/processors/sb/CS-023143.htm.

[29] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for

Parallel Software Engineering. Addison-Wesley Longman, Boston, MA. (1995).

[30] Xilinx Virtex 5 User Guide. UG190, Xilinx. (2008).

[31] G. Zhang, et al. Reconigurable Acceleration for Monte Carlo based Financial

Simulation. In Proc. Intl Conf. on Field Prog. Tech., 215–222. (2005).

[32] R. Karanam, A. Ravindran, A. Mukherjee, C. Gibas and A. Wilkinson. Using

FPGA-Based Hybrid Computers for Bioinformatics Applications. Xilinx Xcell

Journal, 58, 80-83 (2006).

[33] C. He, M. Lu and C. Sun. Accelerating seismic migration using FPGA-based

coprocessor platform. In Proc. 12th IEEE Symp. on Field-Prog. Cust. Comput.

Machines, 207–216 (2004).

[34] A. Parsons, D. Backer, C. Chang, et al. PetaOp/Second FPGA Signal Processing

for SETI and Radio Astronomy. Proc. 10th Asilomar Conference on Signals,

Systems and Computers, Pacific Grove, CA, November 2006.

[35] N. Asadi, T. Meng and W. Wong. Reconfigurable computing for learning

Bayesian networks. In Proc. 16th Intl. Symp. on Field Prog. Gate Arrays, 203–

211 (2008).

67

[36] S. Needleman and C. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48, 3, 443–453 (1970).

[37] T. Smith and M. Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, 147, 195–197 (1981).

[38] V. Kindratenko, D. Pointer, D. Raila and C. Steffen. Comparing CPU and FPGA

Application Performance. ISL White Paper, National Center for Supercomputing

Applications (2006).

[39] R. Lipton and D. Lopresti. A systolic array for rapid string comparison. In Proc.

Chapel Hill Conference on Very Large Scale Integration, 363-376 (1985).

[40] D. Hoang. A systolic array for the sequence alignment problem. Technical Report,

Department of Computer Science, Brown University, (1992).

[41] P. McMahon. High Performance Reconfigurable Computing for Science and En-

gineering Applications. Undergraduate Thesis, Department of Electrical Engi-

neering, University of Cape Town (2006).

[42] P. McMahon, K. Stevens, H. Chen, T. Filiba, V. Nagpal and Y. Song. Paral-

lel alignment of multiple short-read sequences against a reference genome on a

reconfigurable computer cluster. Submitted. (2008).

[43] G. Estrin, B. Bussel, T. Turn and J. Bibb. Parallel processing in a reconstructable

computer system. IEEE Trans. Elect. Comput., 747–755 (1963).

[44] C. Chang, K. Kuusilinna, B. Richards and R. Brodersen. Implementation of

BEE: a real-time large-scale hardware emulation engine. In Proc. Eleventh ACM

Intl. Symp. on FPGAs, 91–99 (2003).

[45] M. Gokhale, et al. SPLASH: A Reconfigurable Linear Logic Array. In Proc. Intl.

Conf. Parall. Proces., 526–532 (1990).

[46] J. Arnold, D. Buell and E. Davis. Splash 2. In Proc. Fourth Annual ACM Symp.

on Parall. Algor. Arch., 316–322 (1992).

[47] SRC Computers. URL: http://www.srccomp.com.

[48] VHDL Language Reference Manual. IEEE Standard 1076-2002.

68

[49] Verilog Hardware Description Language. IEEE Standard 1364-2001.

[50] D. Luebke, et al. GPGPU: general-purpose computation on graphics hardware.

In Proc. 2006 ACM/IEEE Conf. on Supercomputing, 208 (2006).

[51] J. Kahle, et al. Introduction to the Cell Multiprocessor. IBM J. Res. Dev., 49

4, 589–604 (2005).

[52] A. Grama, G. Karypis, V. Kumar and A. Gupta. Introduction to Parallel Com-

puting. Pearson Education, Essex, England. (2003).

[53] N. Petkov. Systolic Parallel Processing. North-Holland, Amsterdam, The Nether-

lands. (1993).

[54] M. Farrar. Striped Smith-Waterman speeds database searches six times over

other SIMD implementations. Bioinformatics, 23, 156–161 (2007).

[55] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling and P.-Y. Droz. RAMP

Blue: A Message-Passing Manycore System In FPGAs. In Proc. Intl Conf. Field

Programmable Logic and Applications, 54 – 61 (2007).

[56] Y. Yamaguchi, T. Maruyama and A. Konagaya. High speed homology search

with FPGAs. In Proc. Pacific Symposium on Biocomputing, 271–282 (2002).

[57] P. Zhang, G. Tan and G. Gao. Implementation of the Smith-Waterman Algo-

rithm on A Reconfigurable Supercomputing Platform. In Proc. First Intl Work-

shop on High-Performance Reconfigurable Computing Technology and Applica-

tions, 39–48 (2007).

[58] L. Hasan, Z. Al-Ars and S. Vassiliadis. Hardware Acceleration of Sequence Align-

ment Algorithms — An Overview. In Proc. Design and Technology of Integrated

Systems in Nanoscale Era, 92–97 (2007).

[59] L. Pachter and B. Sturmfels. (Eds.) Algebraic Statistics for Computational Bi-

ology. Cambridge University Press, Cambridge, England. (2005).

[60] R. Batista, A. Boukerche and A. de Melo. A Parallel Strategy for Biological

Sequence Alignment in Restricted Memory Space. J. Parallel and Distributed

Computing, 68, 548–561 (2007).

69

[61] J. Shendure, R. Mitra, C. Varma and G. Church. Advanced Sequencing Tech-

niques: Methods and Goals. Nat. Rev. Genet., 5(5), 335–344 (2004).

70

