
1

Automated Retrieval of Artifacts Created during the
Software Development Life-cycle

Hans-Peter Kr̈uger and Pieter S. Kritzinger
Technical Report CS08-02-00

Data Network Architectures Group,
Computer Science Department University of Cape Town,

Private Bag, Rondebosch 7700, South Africa
Email: {hkruger,psk@cs.uct.ac.za}

Abstract The number of failures of software projects
not meeting the originally intended requirements are many.
While often due to users and developers not sharing the same
vocabulary, it is more often due to changes which are not
reported or recorded somewhere along the development cycle.
Software traceability (ST), is the process of tracking changes in
the document corpus which are created throughout the software
development life-cycle. There are known techniques, such as
using traceability matrices, which attempt to solve the problem.
Such mechanical methods are not only manually intensive, but
they totally ignore the effects of synonymy and polysemy. Latent
semantic analysis (LSA) is intended to avoid these latter effects
and is largely used in the world of Information Retrieval (IR).
In this report we apply LSA for the purpose of maintaining
artifacts generated during the software development life-cycle
and place greater emphasis than hitherto found in the literature,
on term extraction in software code, something we call attribute
weighting. We moreover present a software tool for the automa-
tion of the traceability process, including query refinement and
show that the technique allows one to trace through the artifact
corpus with the confidence that the set of artifacts affected by
a change will be discovered.

Keywords: Requirements Engineering, Software Traceability,
Change Management, Latent Semantic Analysis, Relevance
Feedback, Information Retrieval.

I. I NTRODUCTION

The number of failures of software projects not meeting the
originally intended requirements are many. When not failing,
projects are often well over budget. These failings frequently
arise from changed requirements, where the impact on the soft-
ware already designed and coded, is not properly understood.
The latter, in turn, is usually due to the fact that the inter-
dependencies amongst the software artifacts are not known, or
forgotten. Software Traceability (ST), is the term given to the
process of tracking changes in the document corpus which are
created throughout the software development life-cycle. There
are known techniques, such as using traceability matrices, which
attempt to solve the problem. Such mechanical methods are not
only manually intensive, but they ignore the effects of synonymy
and polysemy.

Latent semantic analysis (LSA) [4] is intended to avoid these
latter effects and is largely used in the world of Information

Retrieval [5]. LSA tries to reveal the latent semantics among
documents that is partially obscured by variability in natural
language word choice, which is often referred to asnoisein the
literature. Then words, terms or keywords in a collection ofm
documents created during the software development life-cycle
are extracted and represented as a very sparse term-document
matrix. The matrix entries,aij represent the frequency with
which each term occurs in a document. That is,

An×m = [aij] i = 1, . . . , n; j = 1, . . . ,m (1)

whereaij is the weight of termi in artifact j.
Clearly the matrix, sayAn×m can be huge and a mathematical

technique, known as singular-value decomposition (SVD) is
used to derive a rank-reduced matrix which, as a side effect,
reduces thenoisein the document corpus. Several techniques [9]
exist to improve LSA and we will discuss these in context in
Section VII.

After discussing some of the earlier work on LSA-related
software traceability, we describe our prototype software devel-
oped to automate the traceability process and discuss in detail
how the various software artifacts are managed. In Section V, we
describe how we build the artifact corpus and then proceed with
a case study where we discuss the various ways of improving
LSA in the context of our own work. To the extent that we
used all artifacts created in the software development life-cycle
in our study, we believe this work is unique.

II. PREVIOUS WORK

One of the first attempts to use LSA for traceability link
discovery is presented by De Luciaet al [3]. An existing artifact
management tool was enhanced to not only allow the discovery
of traceability links between natural language text documents
and source code, but also between requirement and design arti-
facts, namely UML use-cases and interaction diagrams, as well
as test cases. Although some interesting ideas were presented,
such as variable similarity thresholds and artifact categorization,
their case study is not complete. Despite the claim that artifact
management systems can handle natural language text artifacts,
no requirements or architectural specifications were considered
in their case study.

Several case studies can also be found in the literature.
Marcus and Maletic [10] as well as Antoniolet al. [1] use two
identical software projects in their respective case studies. The

2

library of efficient data types and algorithms (LEDA), which
has been developed at the Max Planck Institut für Informatik,
Saarbr̈ucken, Germany, and the Albergate project which was a
final year student project for a hotel management system at the
University of Verona, Italy.

Hayes et al. [6], [7] follow a similar path by conducting
case studies on very technical artifact sets. In these studies the
requirements specification of the NASA Moderate Resolution
Imaging Spectroradiometer (MODIS) was used to trace between
16 high and 50 low-level requirements.

Lormans and van Deursen [8] and De Luciaet al. [3]
conducted their studies on less technical software projects with
a broader set of artifact types.

III. T RACEABILITY PERFORMANCEMETRICS

The two most popular metrics for evaluating IR performance
are Recall and Precision[10]. Let Ci be the set of relevant
artifacts andRi the set of all retrieved artifacts for a user query
i. RecallandPrecisionare then defined as follows:

Recalli =
|Ci ∩Ri|
|Ci|

(2)

Precisioni =
|Ci ∩Ri|
|Ri|

(3)

In order to assess the overall performance on the entire system
the summation over all queries is performed. I.e.,

Recall =
Σi|Ci ∩Ri|

Σi|Ci|
(4)

Precision =
Σi|Ci ∩Ri|

Σi|Ri|
(5)

It is intuitive that, retrieving a lower number of irrelevant
artifacts for each query would result in higher precision, while
a higher number of relevant artifacts would increase the recall.
Both values depend on the threshold or value of the dot-product
(explained in Section VII-C) between the various document
vectors in the reduced space.

A metric that incorporates recall and precision into one single
value is the F-measure, or balanced F-score, which computes the
harmonic mean of precision and recall:

F (α)i = (1 + α) · Precisioni ·Recalli
α · Precisioni + Recalli

(6)

The influence of recall or precision in the single value ofF (α)
clearly depends on the choice ofα. The two commonly used
α values areα = 2 which weights recall twice as much as
precision andα = 0.5 which is the complement. Our results
all report theF (2) value, since we believe that recall is more
important than precision for the software engineer. Failing to
recall artifacts during a query of the software corpus can have
serious implications for costs of introducing a requirement
change while precision is easily decided by the engineer himself.

IV. A UTOMATING THE TRACEABILITY PROCESS

We developed an automation of the LSA corpus building
and query feedback process in order to implement and verify
our proposals. Figure 1 presents a process overview of the
prototype tool. The implementation was done as an Eclipse

Fig. 1. The stages of the process are first to import the software documents
followed by a number of processing stages until the artifact corpus has been
created. The software engineer selects an artifacts for which he wants obtain
all dependent artifacts and he submits a search request to the system.

(http://www.eclipse.org/) plug in, so as to take ad-
vantage of a widely used software development platform.

The way that the prototype manages each of the various
artifact types created during the software development life-cycle
is described in the following sections.

A. Natural language text documents

In principle the prototype accepts any kind of natural lan-
guage text in PDF format. This seemed fair since natural lan-
guage text documentation, such as requirements specifications
or design documentation, is usually available in PDF format
or can easily be exported to such. The engineer can view
PDF documents in the build-in viewer and is able to mark
text passages as necessary. The selected text is subsequently
extracted from the document and added as traceable artifacts to
the corpus, as shown in Figure 2.

We present an text artifact vector as the weighted sum of the
two attribute vectors

−−−→
Name and

−−−−→
Content, see Eq. 7. The

−−−−→
Content

vector contains terms that were extracted from the description
of an text artifact, i.e. from a user requirement.

−−−→
Name contains

the terms extracted from the name of the text artifact. The
variablesw1 andw2 are calledattribute weightsas they weight
the importance of terms extracted from the artifact attributes.

−−→
Text = w1 ·

−−−→
Name+ w2 ·

−−−−→
Content (7)

B. UML diagrams

UML diagrams, or similar graphic descriptions, are widely
used in software development and have to be considered part
of the software development life-cycle document corpus. Our
prototype allows the importation of UML diagrams, such as use
cases, interaction and state diagrams, provided these artifacts are
available in the Metadata Interchange (XMI) format, which they
normally are.

A use case vector, see Eq. 8, is composed of the user-case
name, the name of the associated subject or system and involved

3

Fig. 2. Import of natural language text artifacts: The engineer marks a text
section in a PDF document which will be subsequently imported into LSITrace
as a new traceable artifact.

actors. Additionally, we also incorporate the comments that are
either associated with the subject or the user-case itself. Use
cases can have aninclude and extendsrelationship to other
use cases. In order to preserve these relationships we also
incorporate the names of related use cases into the use case
vector.

−−−−→
Usecase = w1 ·

−−−−−−−→
SubjectName+ w2 ·

−−−−−−−−→
UsecaseName

+

|Actors|∑
i=1

(
w3 ·

−−−−−−→
ActorNamei

)
+

|Comments|∑
i=1

(
w4 ·

−−−−−→
Commenti

)

+

|Associated usecases|∑
i=1

(
w5 ·

−−−−−−−−→
UsecaseNamei

)
(8)

The representation of a UML sequence and state diagrams is
slightly more complex than for a use case. A sequence diagram
vector, see Eq. 9, is composed of the interaction or diagram
name, the names of all classes involved (lifelines), the labels
of all messages exchanged among the classes as well as the
diagram comments.

−−−−−−−−−−−→
SequenceDiagram = w1 ·

−−−−−−−−−→
InteractionName+

|Lifelines|∑
i=1

(
w2 ·

−−−−−−−−→
LifelineName

)

+

|Messages|∑
i=1

(
w4 ·

−−−−−−−−→
MessageNamei

)

+

|Comments|∑
i=1

(
w3 ·

−−−−−→
Commenti

)
(9)

The representation of a UML state diagram is very similar to
the sequence diagram. A state diagram vector, see Eq. 10, is
composed of the state machine name, all diagram comments,
all state names as well as the state actions (entry, exit and do).
The labels of the state transition are also incorporated in the
diagram representation.

−−−−−−−−→
StateDiagram = w1 ·

−−−−−−−−−−−→
StateMachineName+

|Comments|∑
i=1

(
w3 ·

−−−−−→
Commenti

)

+

|States|∑
i=1

w2 ·
−−−−−−→
StateName+ w4 ·

(−−−−−→
StateEntry+

−−−−−→
StateExit

)

+ w5 ·
−−−−→
StateDo+

|Transitions|∑
i=1

w6 ·
−−−−−−−−−−−−→
TransitionLinkNamei (10)

C. Source code

An estimate of the impact a requirement change will have
upon the existing source code is crucial to any decision about
such changes. Clearly without the ability to search through,
or query, the source code, traceability is not much use. Our
prototype allows the engineer to import class artifacts that were
developed in the Microsoft C# programming language. The
reason for his is that we used a software project in our case study
(Section VI) that was developed with this language. Clearly the
language used could have been different without affecting our
discussion of the principles.

In order to represent source code artifacts adequately in vector
space, we propose the model shown in Eqs. 11 - 16. In this
model, the smallest traceable source code artifact is a class. A
class vector is composed of package, class, field and method
declarations, which contain associated comments and identifier
names. We moreover incorporate comments and string literals
terms found in the body of methods.

−−−−−−−−−−−−→
PackageDeclaration = w1 ·

−−−−−→
Comment+

|Subpackages|∑
i=1

(
w2 ·

−−−−−−−−−−−→
SubpackageNamei

)
+ w3 ·

−−−→
Name (11)

−−−−−−−−−−→
ClassDeclaration = w1 ·

−−−−−→
Comment+ w2 ·

−−−→
Name

+

|Super classes|∑
i=1

w3 ·
−−−−−−−−−−→
SuperClassNamei (12)

−−−−−−−−−−→
FieldDeclaration = w1 ·

−−−−−→
Comment+ w2 ·

−−→
Type+ w3 ·

−−−→
Name (13)

−−−−−−−−−−−−→
MethodDeclaration = w1 ·

−−−−−→
Comment+ w2 ·

−−−−−−→
ReturnType+ w3 ·

−−−→
Name

+

|Parameters|∑
i=1

(
w4 ·

−−−−−−−→
ParamTypei + w5 ·

−−−→
Namei

)
(14)

−−−−−−−−→
MethodBody =

|Comments|∑
i=1

(
w1 ·

−−−−−−→
Commenti

)
+

|String literals|∑
i=1

(
w2 ·

−−−−→
Literali

)

+

|Remaining identifiers|∑
i=1

w3 ·
−−−−−→
Identifieri (15)

−−→
Class =

|Package declarations|∑
i=1

(−−−−−−−→
Declarationi

)
+
−−−−−−−−−−→
ClassDeclaration

+

|Method declarations|∑
i=1

+
(−−−−−−−→

Declarationi +
−−−−−−−→
MethodBody

)

+

|Field declarations|∑
i=1

+
−−−−−−−→
Declarationi (16)

4

Fig. 3. Tracing and relevance feedback view is shown on the left hand side.
The upper right hand side shows a graphical representation of the matrix.

In order to recognize and weight the various class attributes, we
implemented a source code parser. Rather than simply extracting
terms by applying regular expressions like Marcus and Malectic
[10], we produced an abstract syntax tree (AST) of every source
code artifact. This allows us to weight attributes according to
the number of times they occur in the hierarchy. Implementing
a fully featured parser for a modern programming language is
cumbersome and complex task so we support only a subset of
the grammar that is required to extract the earlier described
artifact attributes and skipped the rest.

D. Automated recovery of traceability links

The main feature of the prototype is the ability to recover
traceability links for a given artifact automatically. Figure 3
shows the relevant user interface on the left hand side. In
order to start the traceability link recovery process, the engineer
needs to select an artifact type to search from. Furthermore, the
engineer has to specify to what artifact type traceability links
should be found. For example, in the example in Figure 3, the
engineer has decided to trace from an end-user requirement,
calledPlace Call, to all system requirement artifacts. After the
engineer has pressed thePerform tracing button, the search
operation starts and potentially relevant artifacts are ranked in
a list according to their similarity to the search query.

E. Managing traceability links

With the prototype system, the engineer is also able to
establish traceability links manually among artifacts. He can
either modify the trace matrix in a flat table representation or
through connecting artifacts in a graph representation, as shown
in Figure 3.

V. BUILDING THE ARTIFACT CORPUS

In section I we presented a comprehensive model that shows
how to represent software artifacts in the vector space model.
We explained which attributes, i.e. method names or comments,

have to be incorporated in the vectors to reflect the meaning of
the original software artifacts. However, two questions remain
open for discussion. First of all, which terms have to be
extracted from the original artifacts. Do all terms have to be
incorporated in the vector representation of the artifact or is it
sufficient to concentrate on just a few. The other question is
how to weight these terms appropriately so that they reflect the
meaning of the artifact best.

We address the latter question experimentally in our case
study in Section VI in which we study the performance of
several weighting schemes. The following section gives detail
information on how to extract terms from the artifacts.

A. Term extraction

With the artifact attributes to incorporate in the vector
representation of the various software artifacts identified, we
next extract terms from these attributes. The first step of the
extraction process is to separate every term from the initial string
and save it in a hash table. Every hash table entry consists of a
key represented by the term itself and the weight of the term,
initially set to zero and increased by one every time the term is
found thereafter.

By example, the tree in Figure V-A illustrates the term
extraction process for the label of a lifeline message of a
UML sequence diagram consisting of a condition and method
call. In the extraction process we separate the original string
shown at the root into its constituent terms. Compound terms,
such as onReceiveData and SIPMsg, are further divided into
their constituent terms that are, in turn, incorporated in the
hash table. The rationale behind this is that compound terms
often represent identifiers, i.e., classes or names. Assuming that
most software developers follow best programming practises by
giving identifiers meaningful names, constituent terms can be
useful in determining the importance of the artifact itself.

After all attribute terms have been extracted, terms are
stemmed to their morphological root (see Section VII-D). Al-
though LSA itself provides a means to overcomesynonymy, we
found that in our case study, that additional stemming of terms
improves search results, except where source code is involved.

In the final step, we traverse the hash table and remove what
are known asstop words. Stop words are auxiliary words like
conjunctions and prepositions that do not contribute directly to
the semantics. As shown in Figure V-A, the weight of term
on was identified as a stop word and set to0.0 and is thus
no longer part of the vector representation of the attribute. In
order to recognize stop words we used a slightly modified list
of terms created at the University of Tennessee [11]. We mainly
enhanced this list with keywords usually used in programming
languages, such asint , boolean or object .

The profile of our final artifact corpus is given in Table I.

Number of vectors Mean vector length Mean frequency of % of terms in vectors
(Number of terms) terms in vectors with frequency 1

End-user requirements 16 22.5 1.48 77%
System requirements 22 26.5 1.66 71%
Architectural features 27 67 1.7 71%

Use-Cases 44 8.8 1.01 99%
Sequence diagrams 14 65.6 1.7 66%

State diagrams 12 27.5 1.59 70%
Classes 230 85.8 1.49 82%

TABLE I

PROFILE OF THE CORPUS ARTIFACTS USED IN THE CASE STUDY

5

Fig. 4. Example expanded term tree

VI. CASE STUDY

As most authors will know, one of the hard parts about
studying traceability in the software development life-cycle is to
find properly maintained, relevant artifacts for a working soft-
ware system. The need for confidentiality requires professional
software development companies not to make their software
documentation, if there is any, public. On the other hand, open
software systems mostly lack documentation other than the
source code. Hence, like other studies, for instance that by Mar-
cus [10], we had to resort to an internal software project. The
most suitable project was the implementation of a voice over IP
(VoIP) system, based on the Session Initiation Protocol (SIP).
The main object of the project was to use best programming
practises in describing the software in a detailed and complete
fashion using requirements analysis, design, implementation and
testing.

A. Tracing Links manually

One obviously needs to manually identify the best set of
traceability links among the chosen software artifacts in order to
determine how accurate the automatic traceability link recovery
method is. Finding the best such set of traceability links is
clearly subjective, since the decision whether or not software
artifacts are dependent upon one another is to a certain degree a
matter of interpretation. This is particularly true for artifacts like
requirements, that are usually described in natural language text
on an abstract level. On the other hand, deciding whether two
source code artifacts, like classes, are dependent is much easier.
A simple rule could be: “Class A is considered to be dependent
upon class B if class A accesses fields, methods of class B or is
derived from it”. The advantage of the prototype tool described
in Section IV, is that it indeed removes the human interpretation
which is inevitably present in any manual traceability technique.

However, in order to say something about the performance of
our proposal, we needed the manually discovered links, however
biased. We recovered traceability links as best as possible and
put a great deal of effort in validating them. We had to become
acquainted with the project and examined the provided source
code and documentation in detail. We also compiled and ran the
source code to gain a better understanding of the dependencies
between the artifacts. The process of going through each artifact

to trace the links manually is a huge task with potentially
m2 documents to inspect. In the end we manually recovered
traceability links from each user requirement to

– other user and system requirements, including
– UML use cases, collaboration and state diagrams and
– C# Classes

We also asked another experienced software developer to check
the manually found traceability links, discussed changes and
added or removed traceability links where necessary. In the end
we determined 593 links from 16 end-user requirements to the
artifact types mentioned above.

B. Experiments and Results

In all experiments, the original matrixA was transformed
using to the applicable weighting schemes, its SVD computed
and the resultant matrixA′ used for the analyses. The choice
of parameters for any one experiment is huge however: one can
apply stemming or not, the number of combinations of global,
local and query weightings amount to 108 for our choice of
weights in Section VII-A; the matrix reduction can range from
0 to 95% and the choice of threshold value can be anywhere
between 0 and 1. Consequently, only a fraction of all results
can be reported here.

VII. I MPROVING LATENT SEMANTIC ANALYSIS

The open literature contains several references [12], [5] to
various techniques to improve the performance of LSA. We
discuss our interpretation and use of these in the following
sections.

A. Term Weighting

We applied the most common term weights found in the
literature [9], [4], [14] to our corpus of software artifacts and
queries. A configuration of term weights that consists of a local
and global weight, is denoted in our case study (see Figure 5)
asSn defined as follows:

Sn =(LCorpus, GCorpus, LQuery, GQuery) where

LCorpus ∈ {Log,MaxTf, Tf}∧
GCorpus ∈ {Entrophy, Idf,None}∧
LQuery ∈ {AugTf, Log,MaxTf, Tf}∧
GQuery ∈ {Entrophy, Idf, None} (17)

In order to describe the various weighting schemes found in the
literature, we first definetfij , the frequency of the termi, in the
artifactj; afi the artifact frequency or the number of artifacts of
the totalN in which termi occurs and finally,afi the absolute
frequency with which termi occurs in the entire corpus.

A normalized term-frequencytf i,j of term i in documentj
is given by

tf i,j =
tfi,j

maxl{tfl,j}
(18)

where clearly the maximum term-frequency is computed over all
terms in document j. In the event that there are large differences
in the term frequencies,log(tf ij + 1) takes the log of the raw
term frequency, thus dampening effects of large differences in
frequencies.

6

In order to improve the performance of LSA, a termi can
be given aglobal weightgi to stress its information content
across the document corpus, and alocal weight lij to stress the
content of the termi in documentj.

Global weightings are meant to diminish the influence of
words that occur frequently or in many of the documents. The
weight wij for a termi in documentj is defined to be

wij = lij × gi (19)

As opposed to local weighting schemes, global weighting
schemes take the distribution of terms in the whole document
corpus into account in order to weight terms within a document
appropriately. The inverse document frequency orIdf-factor is
a well known global weighting scheme [5] which is based on
the premise that terms which occur in many documents are
not very useful in distinguishing a relevant document from
non-relevant ones. Terms that occur in many documents are,
therefore, assigned a smaller weight. The Idf-factor of termi is
given by

idfi = log (
N

afi
) + 1 (20)

The best known weighting scheme for natural language text
documents is described by Saltonet al [13] and balances local-
and global-weights. It is known as the term frequency-inverse,
document-frequency (Tf-Idf) scheme, defined as follows:

tfidfi,j = tf i,j · idfi

=
fi,j

maxl{fl,j}
· log (

N

afi
) (21)

Another global weighting scheme, or entropy scheme, first
proposed by Dumais [5], normalizes the term frequencytfi,j

by dividing by afi as follows

tf ′i,j =
tfi,j

afi

tfii = 1− 1
logN

N∑
j=1

tfi,j × log tf ′i,j (22)

The term 1
logN

∑N
j=1 fti,j × log tf ′i,j is called theentropy.

B. Query Weightings

Apart from weighting of terms in the document collection,
we also need to consider an appropriate weighting scheme of
the terms in the user query. Every term in the query vector~q =
(q1, . . . , qk) for k the threshold value discussed in Sectio VII-C,
is weighted bywi where

wi =
(

0.5 + 0.5× fi

maxi{fi}

)
× log (

N

ni
) (23)

where fi is the frequency of termi in ~q and max fi the
highest frequency of a term in the query vector. Apart from the
term frequency, this weighting scheme also involves a global
weighting which, as already seen in Eq. 19, considers the
entropy of termi in the global context.

In order to find the best weighting schemeSn (Eq. 17), we
refer to Figure 5, a plot of the resultant F(2) value while tracing
from User Requirements to classes for a threshold value of

0.1, matrixA′ reductions, and all corpus and query weighting
combinations.

Although not very clear from that figure, the corpus weighting
Tf-Idf and Tf-Entrophy for the query weighting gave the best
result for tracing to Classes.

In another experiment, we selected the weighting which gave
us the best F(2) value at a 97.5% matrix reduction and a
threshold value of 0.1. The results are shown in Figure 6 and
at 97.5% matrix reduction, the F(2) value lies between 0.5 and
0.75 which is very good.

C. Effect of Threshold Value

In the vector space model, a software artifact is represented
as ann-dimensional vector, wheren is the number of unique
terms, or words, that appear across the database orcorpusof
artifacts. The threshold is defined as the dot product between
the vectors in the n-dimensional space.

As cos(π
2) = 0, the dot product−→a ·

−→
b of two perpendicular

vectors−→a and
−→
b is always zero. Thus, given that thew two

vectors have lengtha and b, respectively, the angle between
them is given by:

θ = arccos

(−→a ·
−→
b

ab

)
.

For more than two dimensions, this formula can be used to
define the concept of angle and it is the cosine value of this angle
which defines the threshold. The larger the bundle of vectors
covered by a particular angle from the query vector, the higher
the probability that the artifacts recovered will contain similar
terms or the higher the recall. On the other hand the smaller
the angle the higher the precision, since spurious vectors or
noise will not be included. The results of tracing from End-user
requirements to remaining artifacts, averaged over all matrix
reductions, for various threshold values with corpus weighting
Tf-Idf and Tf-Entrophy for the query weighting, is shown in
Figure 7. At low threshold values, that is, wider angles, the
mean F(2) value is, as expected, better because of a higher recall
value.

D. Effect of stemming

Stemming [5], or conflation, attempts to reduce all morpho-
logical variants of word to its stem or root form. Thus the terms
of a query or document are represented by stems rather than by
the original words such as the word ”call” rather than “calls” or
“calling”. We applied stemming by employing a lookup table
which contains relations between root forms and inflected forms.
To stem a word, the table is queried to find a matching inflection.
If a matching inflection is found, the associated root form is
returned.

Natural language text artifacts, such as requirements or
architectural specification, are a major part of the software
development life-cycle corpus. Stemming has a huge influence
as we can see in Figure 8, particularly at higher threshold values.
Not surprisingly, stemming has no effect in the case of Classes.

7

Fig. 5. Tracing from User Requirements to Classes for a threshold of 0.1, various matrixA′ reductions and all corpus and query weighting combinations

Fig. 6. Tracing from User Requirements to Classes for a threshold of 0.1, various matrix reductions and the best corpus and query weighting in each particular
case at a 97.5% matrix reduction

Fig. 7. Tracing from End-user requirements to remaining artifacts, averaged over all matrix reductions, for various threshold values with corpus weighting Tf-Idf
and Tf-Entrophy for the query weighting

E. Relevance Feedback (RF)

In our prototype and as advocated by others such as Dumais,
et al. [5], Salton [14] and Lee [2], the software engineer can
either accept the artifacts which are returned by the system, or

he can attempt to improve the results based on his own expert
knowledge through the process of relevance feedback.

For this, he judges some of the suggested artifacts as relevant
or irrelevant by selecting them from the candidate list and
pressing theAdd as relevantor Add as irrelevantbutton. The

8

Fig. 8. Tracing from End-user requirements to some other artifacts for various threshold values with and without stemming with corpus weighting Tf-Idf and
Tf-Entrophy for the query weighting.

artifacts will be removed from the candidate list and added
to the user artifact list above. The system is subsequently
advised to incorporate these artifacts into a potentially improved
search query. At the same time, the engineer is allowed to
modify a number of retrieval parameters, such as cut-off thresh-
olds, dimensionality reduction through LSI, query- and corpus
weightings and stemming for the next iteration if the artifact is
considered relevant.

In Dumais, et al. [5], Salton [14] and Lee [2], usage of
relevance feedback was found to greatly improve overall search
performance in text documents. They discovered that queries
composed from the highest ranked relevant document, returned
by the initial query, gave an average overall improvement of
33% and queries composed of the three highest ranked relevant
documents gave an average overall improvement of 67%. Their
studies also found that the user typically views only a small
number of the documents returned by the initial search in order
to locate a few relevant documents. On the average, the most
relevant document was the top ranked document and the three
most relevant documents were within the top seven ranked
documents. In their definition,qi represents thei-th query, the
document vectors are designated−→a·j , j = 1, . . . ,m as before.
The constantsα, β, γ ≤ 1 are multipliers such that

qi+1 = α qi + β
∑

relevant

a·j
|a·j |

− γ
∑

non-relevant

a·j
|a·j |

(24)

In contrast to the work of the authors mentioned above, the
software development life-cycle document corpus does not
contain only text documents. Nevertheless we found that, as
shown in Table II, withα = 1, β = γ = 0.5 [12], feedback can
improve certain query searches by as much as 20 percent.

While not a spectacular improvement, as one would expect
with such an inhomogeneous corpus of artifacts, the improve-
ment is nevertheless significant.

VIII. C ONCLUSION

Improving the quality of professionally developed software
systems has been an objective of research for software engineers
and computer scientists since the early years of computing.

Artifact Type
Iteration System Architectural Use-Cases Sequence State Classes

requirements features diagrams diagrams Classes
1 9 12 2 4 0 7
2 11 15 3 4 3 9
3 11 17 4 1 4 11
4 11 19 5 -1 9 12
5 10 20 6 -4 11 13

TABLE II

AVERAGE PERCENTAGE INCREASE INF(2) AT EVERY QUERY REFINEMENT

ITERATION OVER ALL THRESHOLD LEVELS AND 95% MATRIX REDUCTION

WITH CORPUS WEIGHTINGTF-IDF AND TF-ENTROPHY FOR THE QUERY

WEIGHTING.

Despite the progression through structured programming, object
oriented programming, model driven architectures, UML and
similar CASE tools, and so, on the progress, in comparison to
progress in say, telecommunications, has been meagre, to say
the least. The authors believe that a large factor contributing
to this limited success in software engineering, as compared to
other engineering disciplines, is the important human element
involved. Human subjectivity and egoism play a role in writing
computer code and always will.

In this paper we present a technique to reduce the impact
of human subjectivity and the limited human capability to
recognise synonyms and polysemy, introduced by the various
developers in the document corpus of the development life-
cycle. While other researchers have done similar work, we
believe that the work reported here is more comprehensive in
terms of the types of artifacts used, as well as the exposition of
LSA improvement techniques. Our results show that software
traceability, based on LSA, is viable in that, depending on the
type of artifact, the reduction of the word-document matrix, the
weightings used and the threshold value, an accuracy of 75%
can be achieved in a metric which favours recall over precision.

IX. A CKNOWLEDGEMENT

We would like to thank Paolo Pileggi for his careful proof-
reading of the original draft.

9

REFERENCES

[1] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia,
and Ettore Merlo. Recovering traceability links between code and
documentation.IEEE Transactions on Software Engineering, 28(10):970–
983, 2002.

[2] H. Chuang D. Lee and K. Seamons. Effectiveness of document ranking and
relevance feedback techniques.IEEE Software, 14(2):67–75, March/April
1997.

[3] A. de Lucia et al. Enhancing an artefact management system with
traceability recovery features. InICSM ’04: Proceedings of the 20th IEEE
International Conference on Software Maintenanc, pages 306–315, 2004.

[4] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. L, and
Richard Harshman. Indexing by latent semantic analysis.Journal of the
American Society for Information Science, 41:391–407, 1990.

[5] S. T. Dumais. Improving the retrieval of information from external sources.
Behavior Research Methods, Instruments, and Computers, 23(2):229–236,
1991.

[6] Jane Huffman Hayes, Alex Dekhtyar, and James Osborne. Improving
requirements tracing via information retrieval. InRE, pages 138–, 2003.

[7] Jane Huffman Hayes, Inies C. M. Raphael, Elizabeth Ashlee Holbrook,
and David M. Pruett. A case history of international space station
requirement faul. InICECCS, pages 17–26, 2006.

[8] Marco Lormans and Arie van Deursen. Can LSI help Reconstructing
Requirements Traceability in Design and Test? InCSMR, pages 47–56,
2006.

[9] Carol Lundquist, David A. Grossman, and Ophir Frieder. Improving
relevance feedback in the vector space model. pages 16–23. CIKM, 1997.

[10] A. Marcus and J.I. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. InProc. of 25th
International Conf. on Software Engineering, pages 125–135, Portland,
Oregon, 2003.

[11] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and
Santosh Vempala. Latent semantic indexing: a probabilistic analysis.
In PODS ’98: Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 159–168,
New York, NY, USA, 1998. ACM.

[12] G. Salton and C. Buckley. Improving retrieval performance by relevance
feedback. Technical Report 87-881, Department of Computer Science,
Cornell University, November 1987.

[13] G. Salton and C. Buckley. Parallel text search methods.Communications
of the ACM, 31(2):202–215, February 1988.

[14] G. Salton and C. Buckley. Term weighing approaches in automatic
text retrieval. Journal of the American Society for Information Science,
41(4):288–297, 1990.

