Automated Retrieval of Artifacts Created during the
Software Development Life-cycle

Hans-Peter Kiger and Pieter S. Kritzinger
Technical Report CS08-02-00

Data Network Architectures Group,
Computer Science Department University of Cape Town,
Private Bag, Rondebosch 7700, South Africa
Email: {hkruger,psk@cs.uct.ac.za

Abstract The number of failures of software projectRetrieval [5]. LSA tries to reveal the latent semantics among
not meeting the originally intended requirements are mangocuments that is partially obscured by variability in natural
While often due to users and developers not sharing the salaeguage word choice, which is often referred tmassein the
vocabulary, it is more often due to changes which are nbterature. Then words, terms or keywords in a collection of
reported or recorded somewhere along the development cydecuments created during the software development life-cycle
Software traceability (ST), is the process of tracking changesane extracted and represented as a very sparse term-document
the document corpus which are created throughout the softwamatrix. The matrix entriesq,; represent the frequency with
development life-cycle. There are known techniques, suchvasich each term occurs in a document. That is,
using traceability matrices, which attempt to solve the problem.
Such mechanical methods are not only manually intensive, but
they totglly ignor_e the effe_ct_s of synonymy f_;md polysemy. Lat@iMere a;; is the weight of termi in artifact j.
semgntlc analysis (L.SA) is intended to av0|q these I.atter effect@eany the matrix, sayl,,».., can be huge and a mathematical
and is largely used in the world of Information Retrleyal ('R)technique, known as singular-value decomposition (SVD) is
In this report we apply LSA for the purpose of maintainingseq to derive a rank-reduced matrix which, as a side effect,
artifacts generated during the software development life-CyGlgqyces thaoisein the document corpus. Several techniques [9]

and place greater emphasis than hitherto found in the literaturgyist 1o improve LSA and we will discuss these in context in
on term extraction in software code, something we call attribut§ation Vi1

weighting. We moreover present a software tool for the automa-a ey discussing some of the earlier work on LSA-related

tion of the traceability process, including query refinement andygare traceability, we describe our prototype software devel-

show that the technique allows one to trace through the artifaghe 1 automate the traceability process and discuss in detail

corpus W|th_the co_nfldence that the set of artifacts affected H}ﬁw the various software artifacts are managed. In Section V, we

a change will be discovered. _describe how we build the artifact corpus and then proceed with
Keywords: Requirements Englneenng,. Software.Traceabm%l case study where we discuss the various ways of improving

Change Managemgnt, Latgnt Semantic Analysis, Relevanaga in the context of our own work. To the extent that we

Feedback, Information Retrieval. used all artifacts created in the software development life-cycle

in our study, we believe this work is unique.

AnXmZ[aij] i:1,...7n;j:1,...,m (1)

I. INTRODUCTION

The number of failures of software projects not meeting the Il. PREVIOUS WORK

originally intended requirements are many. When not failing, One of the first attempts to use LSA for traceability link
projects are often well over budget. These failings frequentliiscovery is presented by De Lu@aal [3]. An existing artifact
arise from changed requirements, where the impact on the softanagement tool was enhanced to not only allow the discovery
ware already designed and coded, is not properly understoofitraceability links between natural language text documents
The latter, in turn, is usually due to the fact that the inteend source code, but also between requirement and design arti-
dependencies amongst the software artifacts are not knownfamts, namely UML use-cases and interaction diagrams, as well
forgotten. Software Traceability (ST), is the term given to thas test cases. Although some interesting ideas were presented,
process of tracking changes in the document corpus which ateh as variable similarity thresholds and artifact categorization,
created throughout the software development life-cycle. Theateeir case study is not complete. Despite the claim that artifact
are known techniques, such as using traceability matrices, whinohnagement systems can handle natural language text artifacts,
attempt to solve the problem. Such mechanical methods are notrequirements or architectural specifications were considered
only manually intensive, but they ignore the effects of synonynig their case study.
and polysemy. Several case studies can also be found in the literature.
Latent semantic analysis (LSA) [4] is intended to avoid theddarcus and Maletic [10] as well as Antoniet al. [1] use two
latter effects and is largely used in the world of Informatioidentical software projects in their respective case studies. The

library of efficient data types and algorithms (LEDA), whict S T o [Vl

has been developed at the Max Planck Institirt hformatik, i o
. . . - Term expansion represented

Saarbiicken, Germany, and the Albergate project which was - Sopword removal a2 temn.vector and

.) - Stemming incorporated into a matrix
final year student project for a hotel management system at Requirements

University of Verona, lItaly. Engineer @
Hayeset al. [6], [7] follow a similar path by conducting

case studies on very technical artifact sets. In these studies Torm Welghting
requirements specification of the NASA Moderate Resolutic | ‘ten Samante <::I gt cach <|t| Attribute Weighting
regarding its importance

Imaging Spectroradiometer (MODIS) was used to trace betwe
are dependent ?

16 high and 50 low-level requirements.

Lormans and van Deursen [8] and De Luci al. [3]
conducted their studies on less technical software projects w
a broader set of artifact types.

Relevance Artifact
Feedback selection and
judgement

Artifact Corpus

[Ternra!‘lifacl
Ill. TRACEABILITY PERFORMANCEMETRICS Malii) Potanlialy depandaniEie s >
. . Requirements Engineer
The two most popular metrics for evaluating IR performanc

are Recall and Precisiorf10]. Let C; be the set of relevant

artifacts andR; the set of all retrieved artifacts for a user quergig. 1. The stages of the process are first to import the software documents

i. Recalland Precisionare then defined as follows: followed by a number of processing stages until the artifact corpus has been
created. The software engineer selects an artifacts for which he wants obtain

Recall, — |Ci N R,;| (2) all dependent artifacts and he submits a search request to the system.
Gl
Precision: — |Ci N Ry 3) (http://www.eclipse.org/) plug in, so as to take ad-
! |R;| vantage of a widely used software development platform.
In order to assess the overall performance on the entire systenih® way that the prototype manages each of the various
the summation over all queries is performed. l.e. artifact types created during the software development life-cycle
1G5 A Ryl is described in the following sections.
Recall = W (4)
v A. Natural language text documents
Precision — Li|Ci N Ry (5) In principle the prototype accepts any kind of natural lan-

¥i|Ri guage text in PDF format. This seemed fair since natural lan-
It is intuitive that, retrieving a lower number of irrelevanguage text documentation, such as requirements specifications
artifacts for each query would result in higher precision, whil@" design documentation, is usually available in PDF format
a higher number of relevant artifacts would increase the recdl. can easily be exported to such. The engineer can view
Both values depend on the threshold or value of the dot-prodifd@F documents in the build-in viewer and is able to mark
(explained in Section VII-C) between the various documefftxt passages as necessary. The selected text is subsequently
vectors in the reduced space. extracted from the document and added as traceable artifacts to

A metric that incorporates recall and precision into one singlé€ corpus, as shown in Figure 2.

value is the F-measure, or balanced F-score, which computes thé/e present an text artifact vector as the weighted sum of the
harmonic mean of precision and recall: two attribute vectordName andContent, see Eq. 7. Theontent

vector contains terms that were extracted frcm}he description
(6) of an text artifact, i.e. from a user requiremeName contains
the terms extracted from the name of the text artifact. The
The influence of recall or precision in the single value/tfv) variablesw; andw, are calledattribute weightsas they weight
clearly depends on the choice af The two commonly used the importance of terms extracted from the artifact attributes.
« values area = 2 which weights recall twice as much as _ N N
precision ande = 0.5 which is the complement. Our results Text = w;-Name+ w, - Content (7
all report theF'(2) value, since we believe that recall is more
important than precision for the software engineer. Failing ®. UML diagrams
recall artifacts during a query of the software corpus can haveyy i diagrams, or similar graphic descriptions, are widely
serious implications for costs of introducing a requiremenfseq in software development and have to be considered part
change while precision is easily decided by the engineer himsgf. ihe software development life-cycle document corpus. Our
prototype allows the importation of UML diagrams, such as use
IV. AUTOMATING THE TRACEABILITY PROCESS cases, interaction and state diagrams, provided these artifacts are
We developed an automation of the LSA corpus buildingvailable in the Metadata Interchange (XMI) format, which they
and query feedback process in order to implement and verifgrmally are.
our proposals. Figure 1 presents a process overview of theA use case vector, see Eq. 8, is composed of the user-case
prototype tool. The implementation was done as an Eclippame, the name of the associated subject or system and involved

Precision; - Recall;

Fla); =(1 :
() (1+a) « - Precision; + Recall;

Select artifacts

PDF Viewer:

34 Intemal System Requirements

3.5 Call Establishment

File Import Wizard

Extract text passages from the PDF document and add them as traceable artifacts to the corpus

Atifacts

Name
@ Accept Call
@ Reject Call

@ Terminate SIP connection

Type
SystemRequirement

SystemRequirement

SysternRequirement

CAREVRITRL = Create new artifact from selection |=|[B|%)

@ Delete voice
@ Play, stop an

Name: [Establish call

@ Update conta| YP&: |Select or create new type E]

o Redirect servg Content:

2 5IP Massages| [The establishment of c

alls inside the system would be

done primarly using two network protocols:

o SIP Registrar | |sip and RTP (refer to Section 2.9 for background
4 SIP Proxy Ser| research). SIP would be used for initiating & session

between parties, while

RTP would come into play once a

a SipStatelessP| ceqsion has been established and would be
) responsible for carryingthe voice data across the
nnection

SIP requires theee main components o provide the necessary functionality: User A]

[a

(T

D]

I
[0 | of 205 Create artifact from selection

o User Agent Li

A Register Local

& Call Participa

o User Agent Client

A User Agent Server

ArchitecturalFeature
ArchitecturalFeature |[<

[<mack |

[CEnsh | cancel |

Fig. 2. Import of natural language text artifacts: The engineer marks a texi

|Comments

v r— YT e
StateDiagram = w; - StateMachineName- > (w3 . Commem)
=1

State:
+ Z wo - StateNamet- wy - (StateEntry+ StateEx@
=1
| Transitiong

+ ws - StateDo+ Z we - TransitionLinkName (10)
i=1

C. Source code

An estimate of the impact a requirement change will have
upon the existing source code is crucial to any decision about
such changes. Clearly without the ability to search through,
or query, the source code, traceability is not much use. Our
prototype allows the engineer to import class artifacts that were
d§veloped in the Microsoft C# programming language. The

section in a PDF document which will be subsequently imported into LSITraé8@son for his is that we used a software project in our case study

as a new traceable artifact.

(Section VI) that was developed with this language. Clearly the
language used could have been different without affecting our
discussion of the principles.

actors. Additionally, we also incorporate the comments that areln order to represent source code artifacts adequately in vector
either associated with the subject or the user-case itself. Jg@ce, we propose the model shown in Egs. 11 - 16. In this
cases can have aimclude and extendsrelationship to other model, the smallest traceable source code artifact is a class. A
use cases. In order to preserve these relationships we &ss vector is composed of package, class, field and method
incorporate the names of related use cases into the use cgglarations, which contain associated comments and identifier

vector. names. We moreover incorporate comments and string literals
terms found in the body of methods.
Usecase = w; - SubjectNamer ws - UsecaseName |Subpackages
|Actors |Comments PackageDeclaration = w; - Comment+ Z (w2 . SubpackageNartgé
_ — i=1
+ ws - ActorName | + w4 - Comment
; (?) ZZ::I (:) + ws - Name (11)
|Associated usecases
_—
+ (w;, . UsecaseNamé 8)
i=1 ClassDeclaration = w; - Comment+ wo - Name
|Super classgs
The representation of a UML sequence and state diagrams is + Zl ws - SuperClassName (12)
slightly more complex than for a use case. A sequence diagram
vector, see Eq. 9, is composed of the interaction or diagram — — .
. e - FieldDeclaration = w; - Comment} ws - Type+ ws - Name (13)
name, the names of all classes involved (lifelines), the labels
of all messages exchanged among the classes as well as the
.
dlagram comments. MethodDeclaration = w; - Commentt ws - ReturnType+ w3 - Name
|Parameters
+ > <w4 - ParamType + ws - Namq) (14)
|Lifelines| =1
SequenceDiagram = w; - InteractionNamet- Z (wg . LifelineName)
i=1 |Commentg |String literalg
[Messages MethodBody = Z (w1 ~Commen{) + Z (wz . Literali)
+ wy - MessageNam% i=1 i=1
i=1 |Remaining identifierls
|Comments + > ws - Identifier; (15)
+ (ws - Commen{) 9) i=1

i=

The representation of a UML state diagram is very similar to Class

1

|Package declaratiops
(Declaratior;) + ClassDeclaration

the sequence diagram. A sta_te diagram vecj[or, see Eq. 10, is IMetho d":eldaraﬁo s

composed of the state machine name, all diagram comments, n > + ((Declaration + MethodBodh)

all state names as well as the state actions (entry, exit and do). i=1

The labels of the state transition are also incorporated in the |Field declarations _

diagram representation. + 2 “+Declaration (16)

=1

=
Fle Edt Nevigate Search Project Bun Mindow Help
r & B 0O- Q& w e e

® £30, TraceMatrix Browser TraceMatrix Editor

act: [Place call ()
ttype: [Systermmequrement [7]

ifacts

Relevant Type Name

Java - Eclipse 5DK: ZEX

= O @ TraceGraph % =0

false @ SystemRequirement Terminate RTP connection

have to be incorporated in the vectors to reflect the meaning of
the original software artifacts. However, two questions remain
open for discussion. First of all, which terms have to be
extracted from the original artifacts. Do all terms have to be
incorporated in the vector representation of the artifact or is it
sufficient to concentrate on just a few. The other question is

how to weight these terms appropriately so that they reflect the
meaning of the artifact best.

We address the latter question experimentally in our case
study in Section VI in which we study the performance of
several weighting schemes. The following section gives detail
information on how to extract terms from the artifacts.

perform tracing| [Add relevant artifacts to trace matrix

A. Term extraction

With the artifact attributes to incorporate in the vector
representation of the various software artifacts identified, we

v next extract terms from these attributes. The first step of the
Fig. 3. Tracing and relevance feedback view is shown on the left hand Siggtracnon-process Is to separate every term from the |n|t|a_1l string
The upper right hand side shows a graphical representation of the matrix. and save it in a hash table. Every hash table entry consists of a

key represented by the term itself and the weight of the term,

initially set to zero and increased by one every time the term is
In order to recognize and weight the various class attributes, {@ind thereafter.
implemented a source code parser. Rather than simply extractingy example, the tree in Figure V-A illustrates the term
terms by applying regular expressions like Marcus and Malecg@#traction process for the label of a lifeline message of a
[10], we produced an abstract syntax tree (AST) of every sourddIL sequence diagram consisting of a condition and method
code artifact. This allows us to weight attributes according &8ll. In the extraction process we separate the original string
the number of times they occur in the hierarchy. Implementirg§lown at the root into its constituent terms. Compound terms,
a fully featured parser for a modern programming languageSgch as onReceiveData and SIPMsg, are further divided into
cumbersome and complex task so we support only a subsethgir constituent terms that are, in turn, incorporated in the
the grammar that is required to extract the earlier describBash table. The rationale behind this is that compound terms
artifact attributes and skipped the rest. often represent identifiers, i.e., classes or names. Assuming that
most software developers follow best programming practises by
giving identifiers meaningful names, constituent terms can be
useful in determining the importance of the artifact itself.

The main feature of the prototype is the ability to recover After all attribute terms have been extracted, terms are
traceability links for a given artifact automatically. Figure 3temmed to their morphological root (see Section VII-D). Al-
shows the relevant user interface on the left hand side. th’bugh LSA itself provides a means to overcosygonymywe
order to start the traceability link recovery process, the enginggeund that in our case study, that additional stemming of terms
needs to select an artifact type to search from. Furthermore, fgroves search results, except where source code is involved.
engineer has to specify to what artifact type traceability links In the final step, we traverse the hash table and remove what
should be found. For example, in the example in Figure 3, thee known asstop words Stop words are auxiliary words like
engineer has decided to trace from an end-user requiremeohjunctions and prepositions that do not contribute directly to
calledPlace Call to all system requirement artifacts. After thehe semantics. As shown in Figure V-A, the weight of term
engineer has pressed tiikerform tracing button, the search on was identified as a stop word and set(® and is thus
operation starts and potentially relevant artifacts are rankedrio longer part of the vector representation of the attribute. In
a list according to their similarity to the search query. order to recognize stop words we used a slightly modified list
of terms created at the University of Tennessee [11]. We mainly
enhanced this list with keywords usually used in programming

.) i languages, such ast , boolean or object .
With the prototype system, the engineer is also able 10The profile of our final artifact corpus is given in Table I.
establish traceability links manually among artifacts. He can

D. Automated recovery of traceability links

E. Managing traceability links

either modify the trace matrix in a flat table representation or e O | e ot oy | toma e vorrs | it oauoney 1+~
Fhro_ugh connecting artifacts in a graph representation, as sh e irements 1 3 L5 ki
in Figure 3. B e T 58 T oo
Sequence diagrams 14 65.6 1.7 66%
State diagrams 12 27.5 1.59 0%
Classes 230 85.8 1.49 82%

V. BUILDING THE ARTIFACT CORPUS
TABLE |

In section | we presented a comprehensive model that ShOwS proriLE oF THE CORPUS ARTIFACTS USED IN THE CASE STUDY
how to represent software artifacts in the vector space model.
We explained which attributes, i.e. method names or comments,

lcall initiated] onReceiveData(SIPMsg msg) to trace the links manually is a huge task with potentially

\ m? documents to inspect. In the end we manually recovered
se traceability links from each user requirement to
(w =1.0) — other user and system requirements, including

— UML use cases, collaboration and state diagrams and
call SIPMsg
(w = 1.0) (w = 1.0) — Ci# Classes

o -/ N We also asked another experienced software developer to check

(lf?ltzmiet('l) (2 0) (“‘f‘g[“) the manually found traceability links, discussed changes and
' T T added or removed traceability links where necessary. In the end
onReceiveData we determined 593 links from 16 end-user requirements to the

(w=1.0 artifact types mentioned above.
]
on receive data
(w =0.0) (w=10) (w=10 B. Experiments and Results

In all experiments, the original matrid was transformed
using to the applicable weighting schemes, its SVD computed
and the resultant matri’ used for the analyses. The choice

VI. CASE STUDY of parameter_s for any one experiment is hug_e hqwever: one can
) apply stemming or not, the number of combinations of global,

As most authors will know, one of the hard parts aboyhcai' ang query weightings amount to 108 for our choice of
studying traceability in the software development life-cycle is r\?/eights in Section VII-A; the matrix reduction can range from
find properly maintained, relevant artifacts for a working sofly {1 9504 and the choice of threshold value can be anywhere

ware system. The need for confidentiality requires professiorbqiltween 0 and 1. Consequently, only a fraction of all results
software development companies not to make their softwacrgn be reported here.

documentation, if there is any, public. On the other hand, open
software systems mostly lack documentation other than the
source code. Hence, like other studies, for instance that by Mar-))
cus [10], we had to resort to an internal software project. The 1€ open literature contains several references [12], [S] to
most suitable project was the implementation of a voice over §8"ous techniques to improve the performance of LSA. We
(VoIP) system, based on the Session Initiation Protocol (SIf}jSCuss our interpretation and use of these in the following
The main object of the project was to use best programmif§ctions.

practises in describing the software in a detailed and complete

fashion using requirements analysis, design, implementation akadTerm Weighting

Fig. 4. Example expanded term tree

VII. | MPROVING LATENT SEMANTIC ANALYSIS

testing. We applied the most common term weights found in the
literature [9], [4], [14] to our corpus of software artifacts and
A. Tracing Links manually queries. A configuration of term weights that consists of a local

One obviously needs to manually identify the best set gfd global weight, is denoted in our case study (see Figure 5)
traceability links among the chosen software artifacts in order 3 >~ defined as follows:
determine how accurate the automatic traceability link recovery g —¢(Lcorpus, Goorpus, Louerys Gouery) Where
method is._Finding _the best suqh_ set of traceability links is Loorpus € {Log, MazT f, T} A
clearly subjective, since the decision whether or not software P ’ ’

artifacts are dependent upon one another is to a certain degree a Georpus € {Entrophy, Idf, None} N\
matter of interpretation. This is particularly true for artifacts like Louery € {AugT f, Log, MaxT f, Tf} A
requirements, that are usually described in natural language text GQuery € {Entrophy, Idf, None} a7

on an abstract level. On the other hand, deciding whether two)) o)
source code artifacts, like classes, are dependent is much ealiiéprder to describe the various weighting schemes found in the
A simple rule could be: “Class A is considered to be dependdiigrature, we first definef;;, the frequency of the term in the
upon class B if class A accesses fields, methods of class B offtifact;; af; the artifact frequency or the number of artifacts of
derived from it". The advantage of the prototype tool describdB€ total V' in which termi occurs and finallyq f; the absolute
in Section IV, is that it indeed removes the human interpretatiéigduency with which term occurs in the entire corpus.
which is inevitably present in any manual traceability technique. A Normalized term-frequencyf; ; of termi in document;
However, in order to say something about the performanceligfdiven by ;
our proposal, we needed the manually discovered links, however tf, ;= #
biased. We recovered traceability links as best as possible and 7 maxi{tfi;}
put a great deal of effort in validating them. We had to becomehere clearly the maximum term-frequency is computed over all
acquainted with the project and examined the provided souteems in document j. In the event that there are large differences
code and documentation in detail. We also compiled and ran ihethe term frequencieﬂog(ﬁij + 1) takes the log of the raw
source code to gain a better understanding of the dependentges frequency, thus dampening effects of large differences in
between the artifacts. The process of going through each artifieguencies.

(18)

In order to improve the performance of LSA, a teintcan 0.1, matrix A’ reductions, and all corpus and query weighting
be given aglobal weightg; to stress its information contentcombinations.
across the document corpus, ankbeal weight /;; to stress the Although not very clear from that figure, the corpus weighting
content of the termi in document;. Tf-1df and Tf-Entrophy for the query weighting gave the best
Global weightings are meant to diminish the influence a@gsult for tracing to Classes.
words that occur frequently or in many of the documents. The|n another experiment, we selected the weighting which gave
weight w;; for a termi in document; is defined to be us the best F(2) value at a 97.5% matrix reduction and a
threshold value of 0.1. The results are shown in Figure 6 and
at 97.5% matrix reduction, the F(2) value lies between 0.5 and

As opposed to local weighting schemes, global weightirfy75 which is very good.
schemes take the distribution of terms in the whole document
corpus into account in order to weight terms within a document
appropriately. The inverse document frequencyidfrfactoris C. Effect of Threshold Value

a well known global weighting scheme [5] which is based on In the vector space model, a software artifact is represented

the premise that terms which occur in many documents are . . . i
S ann-dimensional vector, where is the number of unique

. a
not very useful in distinguishing a relevant document fro
y 9 9 ; rPerms, or words, that appear across the databasmrpus of
non-relevant ones. Terms that occur in many documents are . .
. : . artifacts. The threshold is defined as the dot product between
therefore, assigned a smaller weight. The Idf-factor of téim

. the vectors in the n-dimensional space.
given by — .
N As cos(3) = 0, the dot producfa’ - b of two perpendicular
idf; =log (—) +1 (20) — - .
afi vectors '@ and b is always zero. Thus, given that thew two

The best known weighting scheme for natural language te%/ﬁecrtsr; Ssl\éen Ibe;gtm and b, respectively, the angle between

documents is described by Saltehal [13] and balances local-
and global-weights. It is known as the term frequency-inverse, - =
0 = arccos ()

Wi = lz’j X g; (19)

document-frequency (Tf-1df) scheme, defined as follows: ab

tfidfi; = tf;;-idfs
fij | N 01 For. more than two dimensions,_this formula can be qsed to
m " 108 (aT‘i) (21) def_lne the_concept of angle and it is the cosine value of this angle
o ' ~which defines the threshold. The larger the bundle of vectors
Another global weighting scheme, or entropy scheme, firggyered by a particular angle from the query vector, the higher
proposed by Dumais [5], normalizes the term frequenty; the probability that the artifacts recovered will contain similar
by dividing by a f; as follows terms or the higher the recall. On the other hand the smaller
. tfi; the angle the higher the precision, since spurious vectors or
tfy = af; noise will not be included. The results of tracing from End-user
' N requirements to remaining artifacts, averaged over all matrix
tfi; = 1— b thij x logtf’, . (22) reductions, for various threshold values with corpus weighting
logN =1 ’ 7 Tf-Idf and Tf-Entrophy for the query weighting, is shown in
o Figure 7. At low threshold values, that is, wider angles, the
The term ;5 E;-V:l ftij xlogtf’; ; is called theentropy mean F(2) value is, as expected, better because of a higher recall
value.

B. Query Weightings

Apart from weighting of terms in the document collectionD
we also need to consider an appropriate weighting scheme of
the terms in the user query. Every term in the query vegter Stemming [5], or conflation, attempts to reduce all morpho-

Effect of stemming

(g1,--.,qr) for k the threshold value discussed in Sectio VII-Clogical variants of word to its stem or root form. Thus the terms
is weighted byw; where of a query or document are represented by stems rather than by
fi N the original words such as the word "call” rather than “calls” or
w; = <0.5 + 0.5 x Z> x log (—) (23) “calling”. We applied stemming by employing a lookup table
max; { fi} i which contains relations between root forms and inflected forms.

where f; is the frequency of termi in ¢ and max f; the To stem aword, the table is queried to find a matching inflection.
highest frequency of a term in the query vector. Apart from tHé a matching inflection is found, the associated root form is
term frequency, this weighting scheme also involves a glob@fturned.
weighting which, as already seen in Eq. 19, considers theNatural language text artifacts, such as requirements or
entropy of termi in the global context. architectural specification, are a major part of the software
In order to find the best weighting schemig (Eq. 17), we development life-cycle corpus. Stemming has a huge influence
refer to Figure 5, a plot of the resultant F(2) value while tracings we can see in Figure 8, particularly at higher threshold values.
from User Requirements to classes for a threshold value Mbt surprisingly, stemming has no effect in the case of Classes.

L N e e |
=L oo
=
&
i -3
“-{é
-y
T |
-
I3
C:
=
=
E
e
=T
B
=
)
3
B
=
3
B

== ==
=
=

—
=]
=

]

L s

a 03 0 ,V '\J #
& 2 g i) i} i &
. idauiprtiAin il *
' i | —+— 25% reduction —8—75% meduction —4—95% reduction
] T T T T 17T T T 1T T T T T T T Tt
s D e e B
........ BEER T
CHEEEREEERERFessasssss s HEHH L s e e e
EEEEE SRR ET NN Ea?ﬁ:ﬁ%ooog‘ﬁg'??? BT E R R R RE AR R o ERRE S H R R R A
?s?rrrgggaaaggiEﬂggg*w e “ﬂﬁﬁsﬁiggggsg?E%FEEEEEEEEEEEé%%Egﬁqugag=“gg;§ g
AR R R % pRRT ipas ROEEd B8 il ¥ ey ksl R R B < B
i o il £ g B EER 4 SRR TR TRRTNEILG ediinin T Y 3 G
=T ERSE z ¥ & 2 LW SR g €
LI | g AR SR S B
%

k]
all global and guery weight combinations

Fig. 5. Tracing from User Requirements to Classes for a threshold of 0.1, various matrdductions and all corpus and query weighting combinations

n.a R R i [—
— D——— = : —
¥ 0.a } ————— =
::'___I:,:_——-
= @ = % [e |
£ 04 = ——]
E:l: /
S
o—''_'_'_'_v_'-'_
0 * *
0.0% 25, 0% S0.0% T5.0% o0.0% 05, 0% 07, 5%
pertentage matiix reduction
—— Tl tate Diagram THAf A ug TEHone —m— Class TE-IAf, TFEntrophy —— TmlS equenceDiag tam TFHone Aug TR
—— A rchite chiralFe atue T TN one —#— TmlllseCase TEEntwo phy, TEILF —— S5 tenmBaquire ment TFHone, TR

Fig. 6. Tracing from User Requirements to Classes for a threshold of 0.1, various matrix reductions and the best corpus and query weighting in each particula
case at a 97.5% matrix reduction

0.z
0.7 A
0.6
___.HF._

03
04 — fj /:;j
02 — 1=
0.1 .____Fa__ir“’ﬁ ‘_—_:F::‘_F:i:’/ —

F{2)value

] » ¥ -—— &
0a (1] 0.4 0 0z 0.1
thre shold values
—— TmlS tateDiagzram —m— Class —a— UImlSequence Dlagram
—b— AwhitectiralFeatnre —a— UTmlllseCase —— S vstemBequirement

Fig. 7. Tracing from End-user requirements to remaining artifacts, averaged over all matrix reductions, for various threshold values with corpus weighting Tf-1df
and Tf-Entrophy for the query weighting

E. Relevance Feedback (RF) he can attempt to improve the results based on his own expert
knowledge through the process of relevance feedback.
In our prototype and as advocated by others such as Dumaigror this, he judges some of the suggested artifacts as relevant
et al. [5], Salton [14] and Lee [2], the software engineer caar irrelevant by selecting them from the candidate list and
either accept the artifacts which are returned by the system,poessing theAdd as relevanbr Add as irrelevantbutton. The

07000

\

0.6000

é o // /r/
[/
En 0.3000
¢ / "
& 0200 =
',_,_,-I”-' ’_'_'_4/-'-"/./
,,—'—'—'_'_.-'_'_'_'_
01000
] B et
0,000 " * —
0.a 05 0.4 03 0.2 01
thres hold values
Umlstate Diagram —B—TmlS tateDiagram(s tanming) Class
——Clas s [stenmung) —#— 5 wstemPaqu rement —i— Sz temPle quirerme nt (5 te novme

Fig. 8. Tracing from End-user requirements to some other artifacts for various threshold values with and without stemming with corpus weighting Tf-Idf and
Tf-Entrophy for the query weighting.

artifacts will be removed from the candidate list and adde(eraton System Architectural ?Jrgzga.srige Sequence State Classes
to the user artifact list above. The system is subsequently———|-Sauemens | feaures 5 dagrams | dagrams | Classes
advised to incorporate these artifacts into a potentially improved—2 u > 3 : : o
search query. At the same time, the engineer is allowed [0 a u o d ! 2 2
modify a number of retrieval parameters, such as cut-off thresh= TABLE I

olds, dimensionality reduction through LSI, query- and corpus

weightings and stemming for the next iteration if the artifact ig"VERAGE PERCENTAGE INCREASE INF(2) AT EVERY QUERY REFINEMENT

considered relevant.
In Dumais,et aI. [5]' Salton [14] and Lee [2], usage Of WITH CORPUS WEIGHTINGTF-IDF AND TF-ENTROPHY FOR THE QUERY

relevance feedback was found to greatly improve overall search WEIGHTING.

performance in text documents. They discovered that queries

composed from the highest ranked relevant document, returned

by the initial query, gave an average overall improvement Bf ite the progression through structured programming, object
33% and queries composed of the three highest ranked relevant” Progres: gn s Prog 9. 00
griented programming, model driven architectures, UML and

documents gave an average overall improvement of 67%. Their

studies also found that the user typically views only a smeicﬂm'lar C’/'.\SE tools, and so, on the progress, in comparison to
rogress in say, telecommunications, has been meagre, to say

number of the documents returned by the initial search in orcfr least. The authors believe that a larae factor contributin
to locate a few relevant documents. On the average, the mos‘l ' 9 g

relevant document was the top ranked document and the thtro his limited success in software engineering, as compared to
gther engineering disciplines, is the important human element

most relevant documents were within the top seven rankmvolved Human subjectivity and egoism play a role in writin
documents. In their definitiony; represents theé-th query, the ') ya 9 play 9
computer code and always will.

ITERATION OVER ALL THRESHOLD LEVELS AND 95% MATRIX REDUCTION

document vectors are designa@, j=1,...,m as before.) .)
The constantsy, 3,7 < 1 are multipliers such that In this paper we _present a te?“ﬁ'q“e to reduce the__lmpact
. 4 of human subjectivity and the limited human capability to
Giv1=aq; + 0 Z L v Z g (24) recognise synonyms and polysemy, introduced by the various
reIevant'a'j| non-relevan{a'j‘ developers in the document corpus of the development life-

In contrast to the work of the authors mentioned above, t gqle. While other researchers havg done similar work., W?
software development life-cycle document corpus does lieve that the work reported here is more comprehensive in

X ! >
contain only text documents. Nevertheless we found that t%ms of the types of artifacts used, as well as the exposition of
shown in Table II, witha = 1, 3 = v = 0.5 [12], feedback can, LSA improvement techniques. Our results show that software

improve certain query searches by as much as 20 percent. traceability, based on LSA, is viable in that, depending on the

While not a spectacular improvement, as one would expéXPe of artifact, the reduction of the word-document matrix, the

with such an inhomogeneous corpus of artifacts, the impro\}ggightings used and the threshold value, an accuracy of 75%
ment is nevertheless significant can be achieved in a metric which favours recall over precision.

VIIl. CONCLUSION

Improving the quality of professionally developed software
systems has been an objective of research for software engineek&e would like to thank Paolo Pileggi for his careful proof-
and computer scientists since the early years of computimgading of the original draft.

IX. ACKNOWLEDGEMENT

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[20]

[11]

[12]

[13]

[14]

REFERENCES

Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia,
and Ettore Merlo. Recovering traceability links between code and
documentationlEEE Transactions on Software Engineer,ii$(10):970—
983, 2002.

H. Chuang D. Lee and K. Seamons. Effectiveness of document ranking and
relevance feedback techniquéBEE Software 14(2):67—75, March/April
1997.

A. de Lucia et al. Enhancing an artefact management system with
traceability recovery features. I€SM '04: Proceedings of the 20th IEEE
International Conference on Software Maintenapages 306—-315, 2004.
Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. L, and
Richard Harshman. Indexing by latent semantic analydosirnal of the
American Society for Information Scienel:391-407, 1990.

S. T. Dumais. Improving the retrieval of information from external sources.
Behavior Research Methods, Instruments, and Compu28¢g):229-236,
1991.

Jane Huffman Hayes, Alex Dekhtyar, and James Osborne. Improving
requirements tracing via information retrieval. RE, pages 138—, 2003.
Jane Huffman Hayes, Inies C. M. Raphael, Elizabeth Ashlee Holbrook,
and David M. Pruett. A case history of international space station
requirement faul. INCECCS pages 17-26, 2006.

Marco Lormans and Arie van Deursen. Can LSI help Reconstructing
Requirements Traceability in Design and Test?C8MR pages 47-56,
2006.

Carol Lundquist, David A. Grossman, and Ophir Frieder. Improving
relevance feedback in the vector space model. pages 16-23. CIKM, 1997.
A. Marcus and J.I. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. Rroc. of 25th
International Conf. on Software Engineeringages 125-135, Portland,
Oregon, 2003.

Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and
Santosh Vempala. Latent semantic indexing: a probabilistic analysis.
In PODS '98: Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systpages 159-168,
New York, NY, USA, 1998. ACM.

G. Salton and C. Buckley. Improving retrieval performance by relevance
feedback. Technical Report 87-881, Department of Computer Science,
Cornell University, November 1987.

G. Salton and C. Buckley. Parallel text search meth@tsmmunications

of the ACM 31(2):202—-215, February 1988.

G. Salton and C. Buckley. Term weighing approaches in automatic
text retrieval. Journal of the American Society for Information Science
41(4):288-297, 1990.

