
A lightweight Web interface to Grid scheduling systems

Christopher Parker
University of Cape Town

Rondebosch
South Africa

cparker@cs.uct.ac.za

Hussein Suleman
University of Cape Town

Rondebosch
South Africa

hussein@cs.uct.ac.za

ABSTRACT
Grid computing is often out of reach for the very scientists
who need these resources because of the complexity of pop-
ular middleware suites. Some effort has gone into abstract-
ing away these complexities using graphical user interfaces,
some of which have been Web-based. This paper presents
a lightweight and portable interface for Grid management,
that is made possible using recent advances in dynamic tech-
nologies for Web applications. Case studies are presented to
demonstrate that this interface is both usable and useful. An
analysis of usage then highlights some positive and negative
aspects of this approach.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems;
D.2.2 [Software]: Interoperability

General Terms
Grid Computing Usability

Keywords
Grid Computing, Scheduling, AJAX, Usability

1. INTRODUCTION
Grid computing, although widespread, is still a relatively
young field in Computer Science as it was only formalised
by Foster and Kesselman [14] in the early 2000s. As with
any new field, however, Grid computing is not without its
shortcomings. Since Grids are inherently distributed sys-
tems with a strong focus to date on security, reliability and
functionality, little attention has been paid to usability [10].
Users of such environments are left with the burden of a
steep learning curve and are forced to use low-level tools
to accomplish the simplest of tasks. The success of Grid
technology is therefore largely dependent on the effective
usability of such systems. High-level tools and interfaces
that abstract low-level complexity from users are vital to
the long-term uptake of Grid technology.

In order to alleviate some of the problems plaguing Grid
systems, this paper describes a high-level Web interface to
a Grid environment built by taking a lightweight design
approach. By assuming such an approach, the problems
plaguing traditional Web applications, such as responsive-
ness, bandwidth efficiency, their level of dynamic interaction
and scalability, are minimized. Due to the amount of com-
putation, data transfer and interactivity expected from an
interface operating in a Grid environment, a high degree of
scalability and bandwidth efficiency is important. Further-
more, a lightweight approach differs from traditional Web
development techniques in that it provides users with the
feel expected from Web 2.0 applications. Social networking
sites such as Facebook [3] and applications such as Gmail
[5] and Flickr [4] have increased user awareness of Web 2.0.
Finally, a lightweight approach provides a structured, flow-
oriented and uninterrupted experience to users. Traditional
Web applications have assumed a task-oriented design where
users are forced to focus on one task at a time. A lightweight
dynamic approach assumes a resource- or object-oriented de-
sign that more closely maps to Grid computing.

The rest of this paper is outlined as follows: Section 2
provides a short overview of Grid computing followed by
a discussion on existing Grid interfaces in Section 3 and
lightweight Web technologies in Section 4. These sections
are then drawn together in Section 5 with an overview of
the architecture and functionality of the Web interface de-
signed as part of this research. Finally an overview of some
case studies is presented in Section 6. Section 7 provides
some concluding remarks.

2. GRID COMPUTING MIDDLEWARE
SCHEDULERS

The most common Grid middleware, also considered to be
the de-facto standard for Grid middleware, is the Globus
Toolkit [15]. Globus provides a set of tools that enable ac-
cess to a Grid but does not provide any mechanism for job
scheduling. For this research, a computational campus Grid
was built using Grid-aware scheduling middleware.

Many Grid systems and toolkits, such as the Globus Toolkit
[15], are merely underlying fabrics for connecting various
parts of the Grid together, ensuring secure communications
between these parts and providing abstractions of under-
lying complexities inherent in the core Grid architecture.
Many Grid tools rely on third party solutions for schedul-
ing at the execute node or cluster level. This architectural

characteristic allows for a wide range of schedulers to be em-
ployed based on the needs of a particular organisation. For
this research, and to test the capabilities of the tools devel-
oped, the Condor [24] and IBM Loadleveler [20] scheduling
systems were used.

2.1 Condor
The Condor batch scheduling system, developed at the Uni-
versity of Wisconsin at Madison [24], is an opportunistic sys-
tem that makes use of spare compute cycles on networked
Condor-enabled nodes to complete work submitted by a user
(on condition that certain user specified resource require-
ments are met). The Condor system supports a wide variety
of job types but only vanilla (binary) jobs were utilised.

Once the Condor system has found a suitable candidate
machine on which to execute a job, the job is packaged,
sent across to this machine, sandboxed and then begins ex-
ecution. Upon completion, result files are copied back to
the submission host. All these operations are taken care
of transparently by the underlying Condor system and no
user intervention is required once the job is submitted. For
the purposes of Grid computing, the Condor flocking system
[13] was configured for use in our test Grid. Flocking allows
a user to submit a job to his/her own compute nodes and
have them run on (or flock to) compute nodes owned by
others in a different administrative domain. Furthermore,
Condor transparently handles job or machine failures inher-
ent in large distributed systems such as Grids by restarting
and/or migrating failed jobs.

2.2 IBM Tivoli Workload Scheduler
Loadleveler

Loadleveler [20], like Condor, is a batch scheduling sys-
tem that takes advantage of idle Loadleveler-enabled ma-
chines on a network. Both Loadleveler and Condor are
very similar in their architecture and provide similar ser-
vices. Loadleveler, like Condor, has a flocking-type capabil-
ity termed the Loadleveler multi-cluster.

Condor and Loadleveler are by no means the only batch
schedulers available. Other scheduling systems such as LSF
[27], PBS [19], Torque [29] and Sun N1 Grid Engine [16]
are equally capable. PBS is no longer free and its open
derivative, OpenPBS, is no longer under development and
therefore was not taken into consideration. It should be
noted, however, that many researchers still make use of this
system. Torque is an open-source and actively developed
version of PBS, but this research focused only on Condor
and Loadleveler but could be extended to include Torque
as well. LSF, on the other hand, is proprietary software
and requires licensing to run, and was therefore also not
considered.

3. EXISTING GRID INTERFACES
Numerous Grid portal systems and development toolkits are
available to enable high-level access to Grid computing en-
vironments. Toolkits such as Gridport [11] and containers
such as Gridsphere [26] allow developers to quickly build
and deploy Grid-based tools. The aim of these systems is to
allow for a highly customizable, standards-compliant design

by allowing developers to write small portlets that plug into
a container.

The Gridport toolkit [11] is one of the more well known
Grid-portal development toolkits. This toolkit takes a lay-
ered approach, the first layer representing the actual Web
applications (scheduler interfaces, file managers, etc.) and
container. The second layer, the service layer, consists of
third party Grid software services (schedulers, Grid middle-
ware, etc.) upon which the Web applications rely. The third
layer, the resource layer, consists of the actual hardware re-
sources, comprising of both computational and storage re-
sources.

4. LIGHTWEIGHT USER INTERFACES
With the increased popularity of Web2.0 over the past few
years, a steady increase in sites utilising Web2.0 techniques
has been observed [21]. The concept of the Web page, in
Web2.0 terms, has been replaced with that of the Web ap-
plication or “webapp”. A Web application differs from a
Web page in terms of interactivity, its dynamic properties
and most importantly, the fact that it is an application that
is deployed within a Web browser.

Since the backend business logic of a typical Grid interface
requires mediation between the Grid software and a user’s
browser, the overhead imposed by an interface should be
kept to a minimum. By requesting only the minimal amount
of data required for a particular action, and relying heavily
on the client-side interface engine, this goal can be achieved.
The use of a combination of lightweight technologies there-
fore helps to create a more responsive, bandwidth efficient,
dynamic and usable interface that is especially suited for use
in a Grid environment.

Finally, due to the complexity of a Grid-based job, the use
of a dynamic interface helps users to not lose sight of the
task at hand by having to wait for subsequent screens to
load after each step in the job specification process. This
also reduces traffic between the browser and server once the
application has been transferred, thereby providing a more
responsive user experience.

This section will give an overview of technologies that aid
in making Web applications lightweight and more efficient.
Finally, a more in-depth discussion on AJAX, used in this
research, will be given.

4.1 DHTML
Since Web2.0 applications require a high degree of interac-
tivity and usability, traditional Web development has given
way to a more dynamic approach [31] with technologies such
as DHTML [28]. DHTML is a development paradigm and
not a standalone technology as it incorporates existing tech-
nologies such as Javascript, CSS and HTML. The ability of
DHTML to manipulate the Document Object Model (DOM)
within the browser allows for a page to be updated dynam-
ically and therefore does away with the need to refresh the
entire page. This approach has significant benefits in terms
of bandwidth efficiency between the browser and the Web
server as DHTML is a client-side technology. Data is only
transferred when a user makes a request in the form of an
update in the browser.

4.2 AJAX
AJAX, or Asynchronous Javascript and XML, is a term
first coined by Jesse-James Garrett in 2005 [9]. AJAX pro-
vides a development paradigm for building lightweight Web
applications. A typical AJAX application makes use of
technologies including: DHTML for event-driven compo-
nents; HTML/XHTML, CSS, HTTP, server-side scripting,
Javascript, XML/Document Object Model (DOM), and most
importantly, XMLHttpRequest (XHR) [25].

AJAX’s XHR calls, along with its ability to modify the DOM
in the browser by way of DHTML, allow for page elements
to be updated dynamically and hence do away with a full
page refresh required by the traditional Web development
paradigm. AJAX applications, once loaded, appear to be
more responsive due to the minimal data transfer between
the browser and the server and the ability to update only
the necessary screen elements.

Technologies such as the Wireless Application Protocol (WAP)
have illustrated how lightweight communication can be achieved
by allowing asynchronous transaction requests [30] and thereby
shortening total communication time and increasing respon-
siveness. In the Web environment, the WAP equivalent of
lightweight communication is the XMLHttpRequest (XHR)
[25] API. This API allows Web applications to make syn-
chronous or asynchronous calls, the latter being more com-
mon, in order to transfer data between a client and Web
server on demand. This behaviour decreases application re-
sponse time and allows for dynamic data transfer.

Although AJAX is a relatively new concept, many popular
websites and services currently make use of AJAX-based in-
terfaces. One of the first such interfaces was Google Suggest
[17]. This interface makes search engine query suggestions
appear in a drop-down list as one begins to type the search
term. Google has been successful in making AJAX tech-
niques popular by incorporating this design approach into
services such as Gmail. Many of the elements in the GMail
mailbox are dynamically updated depending on the event a
user triggers. Another well known service that makes exten-
sive use of AJAX techniques is Google Maps [23]. In this
application, data is dynamically transferred to the browser
as a user exposes portions of off-screen maps.

AJAX has had application beyond classic webapps. Gozali
et al. [18] outline an AJAX-based user interface to Open
Public Access Catalogs (OPACs) for better usability and
task support. Interactive network visualization tools cre-
ated by Douitsis et al. [12] illustrate the use of AJAX in
conjunction with SVG to create a more responsive and dy-
namic online tool.

This research is considering the application of lightweight
user interfaces to the Grid domain.

5. DESIGNING A LIGHTWEIGHT GRID
INTERFACE

5.1 Grid Environment
The test Grid built for this research is composed of three
separate clusters, a handful of independent laboratory com-
puters and a Grid server. This server runs the Web interface

and also contains local installations of the two scheduling
systems, discussed in Section 2. Jobs are pushed from the
Grid server to the Grid-enabled clusters via the flocking and
multi-cluster capabilities of Condor and Loadleveler respec-
tively. In total, the test Grid was comprised of approxi-
mately 60 cores belonging to approximately 25 computers.

One of the chief concerns when designing this system was
catering for multiple local schedulers in one interface. Since
scheduling systems can become deprecated or simply be
overtaken by better systems, it is important to ensure that
a Web interface is able to accommodate any new scheduler
by creating a language—and scheduler-free base architec-
ture. Multi-scheduler support therefore ensures that local
Grid environments consisting of many different scheduling
systems, perhaps in different administrative domains, are
controlled from one central location by providing a simple
mechanism by which to select the scheduler of choice when
submitting a job. By giving users the power to alter the
base scheduling system, one allows for the submission of jobs
to parts of the Grid not under direct control of one of the
scheduling systems for example. If there are resources on
one part of such a divided Grid that an application needs in
order to execute, then being able to change the base sched-
uler becomes important. Since current scheduling systems
are not interoperable, it is not possible to simply transfer
jobs from one scheduling system to another. Another ben-
efit of the multi-scheduler approach is that users only need
to learn one procedure for submitting and monitoring jobs
on a Grid.

5.2 Grid Interface Design Details
After careful consideration of various Web interface tech-
nologies, it was decided that the interface designed for this
research project would be built by taking an AJAX ap-
proach. Since the aim of the research was to build not only
a lightweight system, but also a system that has a high de-
gree of interactivity and usability, an AJAX approach pro-
vides the framework necessary to realise these goals. The
ZK (Zero-Kode) [8] AJAX-based toolkit was used for the
development of the system presented in this paper. Reasons
for choosing this toolkit include the large set of predefined
widgets and adequate documentation.

Interviews were held with four senior scientists from dif-
ferent scientific domains, such as Chemistry and Physics,
that actively make use of (High Performance Computing
(HPC) resources. Data on application types, software tools,
scheduling systems, dataset sizes, operating systems, archi-
tectures, run times and many other such metrics were gath-
ered during these interviews. From this data, it was clear
that parameter-sweep applications would be most useful to
the scientists. Parameter-sweep applications are Single In-
struction Multiple Data (SIMD) type applications where the
same program or binary is used to process slightly different
input data on each “sweep” of the application. An exam-
ple of such an application would be a High Energy Physics
application looking for patterns in data passed to it from a
detector. Such data is always in the same format.

The final design considerations that were decided upon were
the components that the interface was to support. These in-
clude Grid status, job creation, job submission, job query,

Figure 1: High-level system design

admin and file transfer components (see Figure 1). As can be
seen from this figure, each of the components are split into
client- and server-side components. The client-side is re-
sponsible for making requests to the server for new informa-
tion as well as displaying the output of these requests while
the server-side is responsible for receiving requests and gen-
erating the data to update the Web interface. An overview
of each of these components is presented in the following
sections.

5.3 System Status
The status component is responsible for providing up-to-the-
minute information on the status of the computational Grid
environment. As can be seen from Figure 1, each sched-
uler has a custom-built Status Daemon (SD) wrapper script
which is executed at five minute intervals. These scripts
wrap around the low-level command-line status utilities bun-
dled with each scheduler. The purpose of these scripts is to
gather information from all Grid machines on which the par-
ticular scheduler is installed, extract the relevant informa-
tion from the wealth of status statistics and then populate
a MySQL database with this information. The status com-
ponent of the Web interface is then periodically updated by
an XHR call to reflect the latest status of the Grid. It is im-
portant to note that only the status component is updated
and a full page refresh is not required.

The status component contains a summary bar for each pool
where an overview of the overall pool resource information is
provided graphically (load, memory, diskspace and compute
power). Furthermore, an expanded view provides details
about which pool machines are available as well as their
operating systems and architectures.

5.4 Job Submission
The job submission component allows a user to submit a
job to the Grid in a two-step process, namely job creation
followed by job launching.

The first step in the job submission process is the job cre-
ation step. During this step a user specifies a job by fol-
lowing steps outlined in a wizard, or alternatively, loads an
existing job template from file—the origins of which will be
discussed shortly. The interface provides a seven step wiz-
ard that prompts users for various pieces of information as
listed below:

• Job specific information (job name, description, etc.)

• Application specific information (similar to job infor-
mation)

• Resource filtering (architectures, OSes, etc.)

• Executable selection

• Input file selection

• Input argument enumeration

• Output-specific settings

The wizard was designed to look and feel like wizards found
in most desktop applications. By making use of the DHTML
functionality present in AJAX, parts of this wizard can be
hidden as new parts are revealed, thereby providing the il-
lusion of the familiar guided wizard. Furthermore, parts of
the wizard not required by the user are not loaded prior
to its use, thereby reducing overall communication between
the browser and the server and also reducing latency. This
principle holds for many of the interface components. The
job creation wizard, for example, is loaded for the first time
only when a user selects this option from the main interface
window.

There are two parts of the wizard that deserve special men-
tion. The first of these parts is the filtering step. As can be
seen from Figure 2, a user is able to select the platform and
operating system their Grid application is to be executed
upon by selecting from the set of available architectures and
operating systems, or by selecting a set of clusters or pools
from the groupbox to the right. Furthermore, the selected
machines can be further filtered by applying a set of resource
constraints. These values are automatically generated by the
Grid interface and represent the lower and upper bounds for
these values depending on the current Grid status.

The next part of the job creation process is the input ar-
gument enumeration component. Since it was decided that
the interface would support parameter sweep type applica-
tions, an argument enumeration system was developed and

Figure 2: Job Creation : Filtering

incorporated into the wizard (see Figure 3). This system
allows a user to specify or enumerate arguments that would
traditionally appear only on the command-line, by using the
Web interface. Each enumeration, which can be thought of
as a row in a table, is then passed to the application as
one “sweep”.A user is able to specify arguments by creating
a field and then selecting from one of four different types,
namely, flag, number, multiple-file and single-file. A flag is
simply a textual entry that is repeated for the number of
arguments a user specifies and is repeated verbatim for each
run of the application. The number type is a dynamically
allocated argument for each run. A user specifies a mini-
mum value, a maximum value and the incremental value at
which the argument will advance. In order to handle input
files, two file types are provided. The multiple-file type al-
lows a directory of input files specified as part of the job
creation process to be distributed over the entire applica-
tion run. Finally, the single-file argument operates much
like the flag argument; however, it specifies a single file to
be included as an argument to each run. It is important to
note that with n runs of an application, the user specifies
an argument only once. If the application happens to re-
quire multiple arguments per run, the user simply adds a
new field corresponding to each argument and the interface
will populate the runs with the appropriate values. In other
words, if some application requires 100 sub-jobs, where each
sub-job requires 4 arguments, the user only creates four ar-
guments and sets how the interface should distribute the
arguments to each run by making use of argument types
just mentioned. Futhermore, arguments can be reordered
by use of a drag and drop interface built into the wizard.
Furthermore, a sample command-line window is provided
that allows users to see the final output of their argument
selection in real-time. This window is dynamically updated
each time a change to an argument is made.

Once the job to run has been specified and the job creation
process is complete, the interface creates a job template file
in the user’s home directory. This template, specified in
XML, is based on the Job Submission Description Language
(JSDL) [6] which provides a standard, language-independent
way to specify Grid-based jobs. JSDL, however, was deemed
unsuitable for parameter sweep applications due to inade-

Figure 3: Job Creation : Argument Enumeration

quate support for multiple argument specifications. In or-
der to compensate for this shortcoming, a modified version
of JSDL, termed Parameter Sweep Description Language
(PSDL) was created.

Once a job has successfully been created, it can be launched
on the Grid. Since a user can load a job template from file,
the job creation and submission steps have been separated.
In order to launch a job, the interface provides visual cues in
a job notification panel to alert a user that the job is ready
to be launched. Once the alert, in the form of a flashing icon,
is clicked, the job submission process begins. The process
starts by selecting the scheduler that the user has specified
as the current default scheduler. A submission script associ-
ated with the chosen scheduler is loaded and executed with
the PSDL template as input (see Figure 1).

The time taken to set up a job depends on the number of
runs. If, for example, a job consisting of 100 individual runs
of 50mb data each is submitted, the submission process will
naturally take longer than, say, 100 runs of 10mb data each.
Therefore, submissions containing gigabytes of input data
take tens of minutes to submit since all input files are copied
to a spool directory on the submit machine.

5.5 Job Querying
The job query component allows a user to browse all jobs
previously submitted as well as monitor the status of jobs
currently running or still in the run queue, delete jobs, and
retrieve the output generated from completed jobs. A user
can at any time choose to update the information displayed
in this component. Once again, only the status information
is retrieved from the server and all other interface compo-
nents remain unaffected.

5.6 Other Interface Components
The four components described so far account for the main
functionality present in the interface; however, mechanisms
for file transfer as well as administration were deemed im-
portant. The administration system allows for the addition
of users, the changing of user passwords as well as the abil-
ity to view the details of and delete all jobs submitted using
the Web interface. Furthermore, the administration system

allows for the addition of user quotas to the system. This
is important in controlling who has access to the Grid, for
how long and when such users are allowed access, thereby
ensuring a fair and equitable share of Grid resources.

The final component of importance is the file transfer com-
ponent, based on Webdav [22], which relies on functional-
ity built into the Apache Tomcat container. The Webdav
subsystem provides users with a quick and efficient way to
bulk-upload files to their home directory on the submission
system, by creating a network share on desktop operating
system. Users can then transfer files from their desktop
to the submission server using simple copy and paste. Since
the interface deals with parameter sweep applications, which
could typically consist of many hundreds of files, a Web-
based upload system was not considered to be feasible for
large numbers of files. Nevertheless, the core interface also
has file upload capabilities built into an AJAX file browser
for cases when users wish to upload or overwrite single files.

6. CASE STUDIES
In order to test both the performance and the ability of the
Web interface to cater for different parameter sweep sce-
narios, a number of case studies were conducted. A set of
realistic problems were chosen from well-defined application
domains that are known to make use of high performance
computing resources.

The whetstone benchmark, a classic computational perfor-
mance benchmark, formed the first case study to be launched
using the Web interface. The aim of this case study was sim-
ply to run the benchmark on all the execute nodes present
on the Grid to ensure the correct operation of all the ap-
propriate systems. For the second case study, a simple text
indexer was run. The aim of the indexer is to build an
inverted file for each word in a set of text files—an opera-
tion fundamental to search engines. The third case study
involved the conversion of audio from .wma format to .mp3

format. This study represents those applications requiring
data conversion, an operation that is usually computation-
ally intensive. The final case study involved the rendering
of animations across the Grid. By making use of Blender
[1], an open source rendering package, as well as animations
from the open movie Elephant’s Dream [2], this case study
served to illustrate the diverse set of problems for which a
parameter sweep-specific interface can be used.

6.1 Analysis - Issues
For both the audio conversion and distributed rendering case
studies, an alternate submission mechanism was needed. The
audio conversion required a series of sub-programs to be run
in sequence in order to convert from .wma to .wave formats
(requiring one program) and then from .wave to .mp3 (re-
quiring another program). Furthermore, both these case
studies required shared object files to be packaged along
with the binaries in order to run on platforms where cer-
tain software, such as Python (required by Blender), was
not installed.

Since the interface takes only one executable per job, it was
necessary to write a bash script which would be able to exe-
cute the jobs described so far. In the case of the distributed
rendering case study, instead of specifying the Blender bi-

nary as the executable, the bash script was specified as the
executable and the Blender binary, along with all other re-
quired files, was packaged into a tar archive and passed to
the script as a single-file argument in the interface. The
script, shown below, therefore serves as a wrapper for the
job.

#!/bin/bash

tar xvfz inputFiles.tar.gz

export LD_LIBRARY_PATH=.

./blender -b input.blend -x 1 -o \

output -F MOVIE -s $1 -e $2 -a

rm blender lib* inputFiles.tar.* \

input.blend

In this script, $1 and $2 represent numerical frame range
values passed to the script from the interface. For each run
of a job, a different set of frame ranges are passed to the
script with the same input file. This input file contains all
the object files (referred to by LD_LIBRARY_PATH) as well as
the animation to be rendered and the Blender binary.

6.2 Analysis - Performance
For each case study conducted a range of timing informa-
tion was gathered to gain insight into interface and scheduler
performance. Summarised in Table 1, these results include
the time taken to render the PSDL XML document after
the job creation step; the cumulative spool file size for all
subjobs; the number of runs of the application; the time
taken to submit the job to the scheduler (including copying
of input files and executables to the spool file); the approx-
imate real compute time (excluding scheduler negotiation);
the total run time of the job (including scheduler negotia-
tion) and the time taken for the job to execute on a single
CPU. For all case studies, all machines on the test Grid
(approximately 50 Linux-based cores) were utilised. Since
the time taken for certain scheduling operations is variable,
approximate timing values are indicated with a tilde.

The results show that the time to generate the PSDL docu-
ment is negligible for both small and large jobs. Jobs such as
the audio converter, complex in terms of the number of runs
as well as input arguments, take only three seconds to gen-
erate. Since the PSDL file for a job this large contains more
than 8000 lines, this time is acceptable due to the speed at
which Xerces [7] can extract and generate XML data. The
time to submit such a large job, however, is noticeable. In
Table 1, submit times are shown for all four case studies. It
was found that the time to submit a job is, unsurprisingly,
directly proportional to the total data size of the job. This
is due to the scheduling system creating a spool directory
for each subjob into which it places the executable as well
as any input files required by the job. For a large job such
as the audio converter the submission process took approx-
imately 17 minutes due to this copying procedure. It was
observed that no jobs are scheduled until the entire job has
been spooled. This observation is a scheduler-specific lim-
itation and futher investigation is needed into determining
its cause.

The process of submitting a job, unfortunately, renders the
Web interface unusable until after the job has been submit-

Case Study PSDL Gen. Data Size Runs Submit Grid Real Grid Total Speedup
Whetstone Benchmark 0.258 550 Kb 50 1.487 ˜1867 ˜2248 ˜20.35
Text Indexer 1.855 89.78 Mb 500 25.2 ˜1649 ˜1024 ˜6.67
Audio Converter 3.000 4750.13 Mb 500 1036 ˜1718 ˜2438 ˜21.81
Distributed Rendering 0.726 783.21 Mb 89 106.736 ˜1320 ˜1680 ˜8.29

Table 1: Case study performance data (time reported in seconds)—Speedup = Serial Time / Grid Total
Time

ted, due to an interface instance running as a single thread.
For small jobs this is not a problem, but for large jobs such as
the one just mentioned, this is a severe limitation. It is pos-
sible to overcome this limitation but this has not currently
been implemented. By having the interface delegate the job
submission process to a separate process on the server, for
example, and by removing the submission logic from the in-
terface in its entirety, this problem can be overcome. Futher-
more, by making use of AJAX, the interface can be set to
display a message as soon as the job has been submitted
successfully.

The results also show the speedup from utilising the Grid
as opposed to a single machine. The theoretical speedup for
the test Grid should be of the order of 50 times more than
a single machine due to 50 cores being utilised. The results,
however, show that the maximum speedup attained was at
most 20. There are many reasons for this, the first having to
do with scheduler negotiation time. Since it can take several
minutes to identify a machine on which a job is able to run
(see Table 1), there is an idle period in which no work is be-
ing done. The main reason for this in the Grid used for this
research, is that Condor flocking was enabled. The flocking
process has to obtain information on many clusters as well as
schedule new jobs to these clusters. It was observed that the
scheduling process took much longer on the flocking-enabled
Grid as opposed to a single cluster installed with the Con-
dor scheduler. It was also noted that jobs begin to execute
on some flocked clusters before others, indicating that there
may be a delay in receiving information from these latter
clusters. This delay is a possible reason for the lengthy idle
times observed, although further investigation is required.
The interface is therefore in no way responsible for these
performance issues.

The time taken to transfer large volumes of data, both to and
from remote hosts, affects the speedup. The results verify
the theoretical size/time Grid tradeoff in that the longer a
job runs, the less overhead in terms of negotiation and file
transfer will be incurred relative to the total running time
of the job itself. Although the use of a Grid has benefits for
jobs that run for short periods of time, a significant speedup
will only be noticed if thousands of such jobs are to be run
as pre-startup negotiation tends to take longer than post-
startup negotiation.

6.3 Analysis - Feasibility of AJAX
An AJAX-based approach to Web application development
promises to enhance many facets of Web applications from
system efficiency to usability. The cost at which such im-
provements are achieved must, however, be considered.

Firstly, the development time for complex AJAX-based Web

applications can be shortened by using toolkits such as ZK
that deal with browser details and present the programmer
with a simple and familiar desktop- or Web-metaphor API.

The speed of AJAX-based Web applications is often inversely-
related to the functionality provided by the toolkit. Vari-
ous optimisations are possible to deal with this, including
the selective and on-demand inclusion of libraries and inter-
face elements. Such techniques were used in this study. A
production system would typically include hand-optimised
AJAX code.

The download size of the application was larger than a typi-
cal Web page, but this is compensated for over time because
further pages are not loaded from the server—only raw data
updates are transferred over the network. Due to the large
amount of information that Grid jobs produce, an AJAX-
based interface effectively reduces the amount of bandwidth
required to update and display this information, thereby re-
ducing traffic in networked environments.

Furthermore, due to the high frequency of updates to the
status of Grid jobs and Grid resources, the dynamic proper-
ties of interfaces built using the AJAX approach ensure that
data displayed in the interface is always fresh.

While there are potential pitfalls, most of these can be ad-
dressed adequately. AJAX has thus been demonstrated to
be a feasible approach, in this study, for the development of
a lightweight Grid scheduling interface.

7. CONCLUSION
Grids have traditionally been controlled and used through
relatively low-level interfaces. This study attempted to cre-
ate a higher-level interface in the context of recent advances
in Web technology.

A proof-of-concept lightweight Grid scheduler interface was
developed using the AJAX bundle of technologies. The ex-
perience of the case studies confirms the usefulness of this
type of abstraction for real problems, notwithstanding some
complexity in current AJAX toolkits. However, as demon-
strated, the interface presented to the end-user can be simi-
lar to that of desktop applications. Such an approach should
thus contribute to the widespread adoption of Grid comput-
ing tools.

The tools developed during this research will be made pub-
lically available once all changes suggested during the user
evaluations as well as some improvements have been made.

Ongoing work is focused on controlled usability studies and
additional performance measurements, to provide further in-

sights and evidence in support of the applicability of AJAX
in such applications.

8. ACKNOWLEDGMENTS
This work is based upon research supported by the National
Research Foundation.

9. REFERENCES
[1] Blender, free open source 3d content creation suite.

WWW Page, April 2008. http://www.blender.org/.

[2] Elephant’s dream the open movie. WWW Page, April
2008. http://www.elephantsdream.org/.

[3] Facebook. WWW Page, April 2008.
http://www.facebook.com/.

[4] Flickr photo sharing. WWW Page, April 2008.
http://www.flickr.com/.

[5] Google mail. WWW Page, April 2008.
http://www.gmail.com/.

[6] Job submission description language (jsdl). WWW
Page, Aptil 2008.
http://www.ggf.org/documents/GFD.56.pdf.

[7] Xerces java parser. WWW Page, April 2008.
http://xerces.apache.org/xerces-j/.

[8] The zk ajax toolkit. WWW Page, April 2008.
http://zkoss.org/.

[9] Apadtive Path Corporation. Ajax: A new
approach to web applications. WWW Page, April 2008.
http://www.adaptivepath.com/publications/essays/archives/
000385.php.

[10] B. Beckles, V. Welch, and J. Basney. Mechanisms for
increasing the usability of grid security. International
Journal of Man-Machine Studies, 63(1-2):74–101,
2005.

[11] M. Dahan, M. Thomas, E. Roberts, A. Seth,
T. Urban, D. Walling, and J. R. Boisseau. Grid portal
toolkit 3.0 (gridport). In Proc. 13th International
Symposium on High-Performance Distributed
Computing (13th HPDC’04), pages 272–273, Honolulu,
Hawaii, USA, June 2004. IEEE Computer Society.

[12] A. Douitsis and D. Kalogeras. Interactive network
management visualization with SVG and AJAX. In
LISA, pages 233–245. USENIX, 2006.

[13] X. Evers, J. F. C. M. de Jongh, R. Boontje, D. H. J.
Epema, and R. van Dantzig. Condor flocking: Load
sharing between pools of workstations. In NLUUG
Voorjaarsconferentie, pages 111–126, May 1994.

[14] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the Grid: Enabling scalable virtual organization.
The International Journal of High Performance
Computing Applications, 15(3):200–222, Fall 2001.

[15] I. T. Foster. Globus toolkit version 4: Software for

service-oriented systems. J. Comput. Sci. Technol,
21(4):513–520, 2006.

[16] W. Gentzsch. Sun grid engine: Towards creating a
compute power grid. In CCGRID, pages 35–39. IEEE
Computer Society, 2001.

[17] Google Corporation. Google suggest. WWW Page,
April 2008.
http://www.google.com/webhp?complete=1.

[18] J. P. Gozali and M.-Y. Kan. A rich OPAC user
interface with AJAX. In E. M. Rasmussen, R. R.
Larson, E. Toms, and S. Sugimoto, editors, JCDL,
pages 329–330. ACM, 2007.

[19] R. L. Henderson. Job scheduling under the portable
batch system. Lecture Notes in Computer Science,
949:279–??, 1995.

[20] IBM Corporation. Ibm tivoli workload scheduler
loadleveler. WWW Page, April 2008. http://www-
03.ibm.com/systems/clusters/software/loadleveler/index.html.

[21] M. Jazayeri. Some trends in web application
development. In FOSE ’07: 2007 Future of Software
Engineering, pages 199–213, Washington, DC, USA,
2007. IEEE Computer Society.

[22] E. J. W. Jr. and M. Wiggins. WEBDAV: IETF
standard for collaborative authoring on the web. IEEE
Internet Computing, 2(5):34–40, 1998.

[23] R. M. Lerner. At the forge: Google maps. Linux
Journal, 2006(146), June 2006.

[24] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor -
A hunter of idle workstations. In ICDCS, pages
104–111, 1988.

[25] M. Mahemoff. Ajax Design Patterns. O’Relly Media,
2006.

[26] J. Novotny, M. Russell, and O. Wehrens. Gridsphere:
a portal framework for building collaborations.
Concurrency and Computation: Practice and
Experience, 16(5):503–513, 2004.

[27] Platform Computing Corporation. LSF product
information. WWW Page, 1996.
http://www.platform.com/.

[28] J. A. Ramalho. Learn advanced HTML 4.0 with
DHTML. Wordware Publishing,
pub-WORDWARE:adr, 1999.

[29] G. Staples. TORQUE - TORQUE resource manager.
In SC, page 8. ACM Press, 2006.

[30] H. Ueno, N. Ishikawa, H. Suzuki, H. Sumino, and
O. Takahashi. Performance evaluation of WAP and
internet protocols over W-CDMA networks. Cluster
Computing, 8(1):27–34, 2005.

[31] H. Weinreich, H. Obendorf, E. Herder, and M. Mayer.
Not quite the average: An empirical study of web use.
TWEB, 2(1), 2008.

