
A LINEAR FRAMEWORK FOR CHARACTER SKINNING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE,

FACULTY OF SCIENCE

OF THE UNIVERSITY OF CAPE TOWN

IN FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Bruce Merry

November 2007

Supervised by

Patrick Marais and James Gain

Abstract

Character animation is the process of modelling and rendering a mobile character in a virtual

world. It has numerous applications both off-line, such as virtual actors in films, and real-time,

such as in games and other virtual environments. There are a number of algorithms for determining

the appearance of an animated character, with different trade-offs between quality, ease of control,

and computational cost. We introduce a new method, animation space, which provides a good

balance between the ease-of-use of very simple schemes and the quality of more complex schemes,

together with excellent performance. It can also be integrated into a range of existing computer

graphics algorithms.

Animation space is described by a simple and elegant linear equation. Apart from making it

fast and easy to implement, linearity facilitates mathematical analysis. We derive two metrics on

the space of vertices (the “animation space”), which indicate the mean and maximum distances

between two points on an animated character. We demonstrate the value of these metrics by

applying them to the problems of parametrisation, level-of-detail (LOD) and frustum culling.

These metrics provide information about the entire range of poses of an animated character, so

they are able to produce better results than considering only a single pose of the character, as is

commonly done.

In order to compute parametrisations, it is necessary to segment the mesh into charts. We apply

an existing algorithm based on greedy merging, but use a metric better suited to the problem than

the one suggested by the original authors. To combine the parametrisations with level-of-detail,

we require the charts to have straight edges. We explored a heuristic approach to straightening

the edges produced by the automatic algorithm, but found that manual segmentation produced

better results. Animation space is nevertheless beneficial in flattening the segmented charts; we

use least squares conformal maps (LSCM), with the Euclidean distance metric replaced by one of

our animation-space metrics. The resulting parametrisations have significantly less overall stretch

than those computed based on a single pose.

Similarly, we adapt appearance preserving simplification (APS), a progressive mesh-based LOD

algorithm, to apply to animated characters by replacing the Euclidean metric with an animation-

space metric. When using the memoryless form of APS (in which local rather than global error is

considered), the use of animation space for computations reduces the geometric errors introduced

by LOD decomposition, compared to simplification based on a single pose. User tests, in which

users compared video clips of the two, demonstrated a statistically significant preference for the

animation-space simplifications, indicating that the visual quality is better as well. While other

methods exist to take multiple poses into account, they are based on a sampling of the pose space,

and the computational cost scales with the number of samples used. In contrast, our method is

analytic and uses samples only to gather statistics.

The quality of LOD approximations by improved further by introducing a novel approach to LOD,

influence simplification, in which we remove the influences of bones on vertices, and adjust the

remaining influences to approximate the original vertex as closely as possible. Once again, we

i

use an animation-space metric to determine the approximation error. By combining influence

simplification with the progressive mesh structure, we can obtain further improvements in quality:

for some models and at some detail levels, the error is reduced by an order of magnitude relative

to a pure progressive mesh. User tests showed that for some models this significantly improves

quality, while for others it makes no significant difference.

Animation space is a generalisation of skeletal subspace deformation (SSD), a popular method for

real-time character animation. This means that there is a large existing base of models that can

immediately benefit from the modified algorithms mentioned above. Furthermore, animation space

almost entirely eliminates the well-known shortcomings of SSD (the so-called “candy-wrapper” and

“collapsing elbow” effects). We show that given a set of sample poses, we can fit an animation-

space model to these poses by solving a linear least-squares problem.

Finally, we demonstrate that animation space is suitable for real-time rendering, by implementing

it, along with level-of-detail rendering, on a PC with a commodity video card. We show that

although the extra degrees of freedom make the straightforward approach infeasible for complex

models, it is still possible to obtain high performance; in fact, animation space requires fewer basic

operations to transform a vertex position than SSD. We also consider two methods of lighting LOD-

simplified models using the original normals: tangent-space normal maps, an existing method that

is fast to render but does not capture dynamic structures such as wrinkles; and tangent maps, a

novel approach that encodes animation-space tangent vectors into textures, and which captures

dynamic structures. We compare the methods both for performance and quality, and find that

tangent-space normal maps are at least an order of magnitude faster, while user tests failed to

show any perceived difference in quality between them.

ii

Acknowledgements

My supervisors, Patrick Marais and James Gain, were invaluable in offering direction and critical

comment in my thesis. Many times they returned drafts covered in comments saying “you need

to expand this,” and usually they were right. Dave Jacka and Ashley Reid took on a final-year

project based on my research, and their skills made it a success that strengthened my results. The

Geometry Interest Group, particularly Carl Hultquist and Chris de Kadt, also provided valuable

insights.

Finding usable data proved to be a problem, and I am indebted to those who made theirs available.

Robert Sumner posted the horse and cat models on his web page, and J. P. Lewis did likewise

with the arm model. The Blender Foundation included “mancandy” in the regression test suite

for Blender 2.43, and Id Software kindly gave permission for me to use the models from their

bestselling game Doom III for research purposes.

I would also like to thank all the people in the lab who for the last year have insisted on only

playing games that I did not like, meaning that I could get some work done and finish my thesis

on time.

The National Research Foundation provided funding for my research, as did the UCT Postgrad-

uate Funding Office through the KW Johnston, Myer Levinson, Nelli Brown Spilhaus and Harry

Crossley scholarships.

And finally, my thanks go to my family and friends who have been there for me over the last four

years.

iii

iv

Notation

Except where otherwise noted, we will use the following notation:

• scalars will be written in lowercase, normal font e.g., x;

• vectors will be written in lowercase bold e.g., x;

• matrices will be written in uppercase, normal font e.g., M ;

• standard sets will be written like this: R, Z;

• sets that we define will be written like this: A,P; and

• the space of m× n matrices over the field S will be written as Sm×n, e.g., R
m×n.

Vector and matrix notation

Throughout the thesis, we will work in a homogeneous space. We will also be doing some complex

manipulations of 4-vectors and 4× 4 transformation matrices in this space. In this section we will

define a few of pieces of notation to assist with this, and also list some basic identities to aid in

later proofs.

At times it will be useful to extract just the weight (4th) coordinate from a homogeneous vector,

which will be denoted v. The part of the vector excluding the weight is denoted v.

Let M be a 4 × 4 matrix. We will deal only with affine transformations, that is, matrices whose

last row is
(

0 0 0 1
)

. We define the linear part of M to be the top-left 3 × 3 submatrix,

denoted M . The translation part of M is the vector consisting of the first three elements of the

last column, denoted M .

The following identities are used frequently, and may easily be verified by expansion.

1. The four operators defined here are all linear operators.

2. Applying a matrix M to a vector s applies the linear part to s, then translates by s times

v

the translation part. The weight of s is not affected:

Ms = Ms + M s (1)

Ms = s. (2)

3. The “linear selector” operator distributes over multiplication:

AB = A B, (3)

4. Translations are transformed by matrices multiplied on the left:

AB = A + AB (4)

vi

Contents

Acknowledgements iii

Notation v

1 Introduction 1

2 Background 5

2.1 Notation for skeletal animation . 6

2.2 Skeletal subspace deformation . 7

2.2.1 The SSD equation . 8

2.2.2 Limitations of SSD . 8

2.3 Improvements to SSD . 9

2.3.1 Example-based techniques . 9

2.3.2 Extra bones . 10

2.3.3 Non-linear transformation blending . 11

2.3.4 Extra weights . 11

2.3.5 Comparison of methods . 12

2.4 Data acquisition . 13

2.4.1 Geometry . 13

2.4.2 Bones . 14

2.4.3 Weights . 14

3 Animation space 17

3.1 Reformulating SSD . 17

3.2 Comparison to MWE . 19

3.3 Distance metrics . 20

3.3.1 L2,2 norm . 20

3.3.2 Inner products . 25

3.3.3 L2,∞ norm . 26

3.4 Transforming a model . 29

3.4.1 Scaling a model . 29

3.4.2 Rotating and translating a model . 30

vii

3.5 Transformation of normals . 31

3.6 Summary . 32

4 Model creation 33

4.1 Fitting models . 33

4.1.1 Influence sets . 34

4.1.2 Regularisation . 35

4.1.3 Homogeneous weight . 36

4.1.4 Skeleton fitting . 36

4.2 Subdivision surfaces . 38

4.3 Tangent planes . 39

4.3.1 Fitting tangent planes to geometry . 39

4.3.2 Fitting tangent planes to SSD normals . 40

4.4 Summary . 41

5 Parametrisation 43

5.1 Background . 43

5.1.1 Segmentation into charts . 44

5.1.2 Flattening charts . 45

5.1.3 Packing charts into an atlas . 46

5.2 Segmentation . 47

5.2.1 Metric . 47

5.2.2 Optimisation process . 50

5.2.3 Edge straightening . 50

5.3 Flattening . 52

5.3.1 Stretch optimisation . 54

5.4 Packing . 55

5.5 Summary . 56

6 Level-of-detail 57

6.1 Background . 57

6.1.1 LOD and animation . 58

6.2 Appearance-preserving simplification . 60

6.2.1 Review of APS . 61

6.2.2 APS in animation space . 62

6.3 Influence simplification . 62

6.3.1 Combination with mesh simplification . 64

6.4 Summary . 65

7 Rendering 67

7.1 Target environment . 67

7.2 Frustum culling . 69

7.3 Level-of-detail . 70

viii

7.4 Vertex transformation . 71

7.4.1 CPU transformation . 72

7.4.2 Fragment program . 73

7.4.3 Vertex texturing . 75

7.5 Normals and lighting . 76

7.5.1 Rendering tangent maps . 78

7.6 Summary . 80

8 Results and discussion 81

8.1 Test setup . 81

8.2 Models and fitting . 82

8.3 Comparison to SSD and MWE . 85

8.3.1 Error metrics . 87

8.3.2 User testing . 90

8.4 Parametrisation . 90

8.4.1 Segmentation . 90

8.4.2 Flattening . 92

8.4.3 Edge straightening . 95

8.4.4 Packing . 95

8.5 Level of detail . 96

8.5.1 User testing . 100

8.6 Rendering . 104

8.6.1 Vertex transformation . 104

8.6.2 Normal transformation . 107

8.7 Summary . 110

9 Conclusions and future work 111

9.1 Modelling . 111

9.2 Applications . 112

9.3 Rendering . 113

9.4 Future work . 113

References 116

A Algorithms 127

A.1 Fitting a plane . 127

A.1.1 Basic algorithm . 127

A.1.2 Accounting for probabilities . 128

A.1.3 Other measures of distance . 130

A.2 Constrained least squares . 130

A.2.1 Unweighted case . 131

A.2.2 Positive weights . 131

A.2.3 Non-negative weights . 131

ix

A.2.4 Matrix weight . 132

B Proofs 133

B.1 Incremental constraints . 133

B.2 Expected value of E[RT MR] . 134

B.3 Under-determined coordinates . 134

C Shader code 137

D Raw experiment data 151

x

List of Tables

8.1 Properties of the models used in the experiments 83

8.2 Mean and maximum geometric and normal errors 89

8.3 Comparison of manual and automatic segmentation 93

8.4 Comparison of metrics for flattening . 93

8.5 L2 stretch with and without parametric edge straightening 95

8.6 Summary of texture efficiency . 96

8.7 Linear model for vertex transformation time on a GeForce 6600 105

8.8 Linear model for vertex transformation time on a GeForce 8800GTX 105

8.9 Comparison of rendering performance for SSD, animation space and MWE 107

8.10 Shading performance on a GeForce 6600 . 108

8.11 Shading performance on a GeForce 8800GTX . 108

D.1 Raw data from user experiment 1 . 152

D.2 Raw data from user experiment 2 . 153

D.3 Raw data from user experiment 3 . 154

D.4 Raw data from user experiment 4 . 155

D.5 Raw data for vertex transformation performance on a GeForce 6600. 156

D.6 Raw data for vertex transformation performance on a GeForce 8800GTX. 157

xi

List of Figures

1.1 A complex rig, or skeleton, created in Blender . 2

1.2 An example of a parametrisation . 3

1.3 The effect of computing LOD from the rest pose 3

2.1 Illustration of skeletal subspace deformation . 7

2.2 Collapsing elbow and candy wrapper effects . 8

2.3 Shape-by-example . 10

3.1 Coordinate systems and the transformations between them 18

3.2 Relationships between frames . 21

3.3 Visualisation of Equation (3.24) . 28

5.1 A sock . 48

5.2 Our segmentation metric . 48

5.3 Boundary straightening . 51

5.4 Edge straightening and socks . 51

5.5 Simplification and chart boundaries . 52

5.6 Introduction of a third corner . 53

5.7 Forced triangle flips . 53

5.8 Insertion of an extra corner . 54

5.9 Packing of charts into an atlas . 56

6.1 The edge collapse operation . 58

6.2 Lost elbow problem . 59

6.3 An edge collapse in parameter space . 61

6.4 The half-edge collapse . 61

6.5 Visualisation of two iterations of influence simplification 64

6.6 Edge updates from an influence simplification . 65

7.1 A programmable graphics pipeline . 68

7.2 LOD selection . 71

7.3 Data flow for fragment-program vertex processing 74

7.4 Texture layout for vertex-texturing vertex transformation 76

xii

7.5 Illustration of the normal map generation process 79

8.1 The models used in the experiments . 82

8.2 Horse model created from 11 example meshes . 84

8.3 Effect of different types of regularisation on fitting 84

8.4 Arm model, generated from the four poses in (a) 86

8.5 Collapsing elbow and candy wrapper effects . 87

8.6 Geometric and normal errors for the horse model 88

8.7 Geometric error in the arm, twist and camel models 89

8.8 Comparison of mesh segmentation metrics . 91

8.9 Comparison of automatic and manual segmentation 92

8.10 Three parametrisations of a tube, in three different poses 94

8.11 Sample parametrisations . 96

8.12 Absolute RMS errors for different simplification methods. 98

8.13 Comparison of relative RMS errors for different simplification methods. 99

8.14 The horse at three levels of detail, for three simplification methods 101

8.15 Percentage of users who preferred the full-detail scene to the LOD approximation . 102

8.16 Normal calculation methods for the horse at full detail 109

8.17 Normal calculation methods for the horse at reduced detail 109

A.1 Visualisation of the geometric algebra inner product for two planes 128

xiii

List of Algorithms

1 Vertex transformation on the CPU . 72

2 Alternative vertex transformation on the CPU . 72

3 Pseudo-code for generating a normal map . 79

xiv

Listings

C.1 vpcommon.cg . 137

C.2 fpcommon.cg . 138

C.3 vertex.cg . 138

C.4 fragment.cg . 139

C.5 geometry.cg . 139

C.6 rtvb frag fp.cg . 140

C.7 geometry texture.cg . 141

C.8 dnm fp.cg . 142

C.9 normal dynamic.cg . 143

C.10 normal static.cg . 143

C.11 lighting dot.cg . 144

C.12 ssd.vpm . 144

C.13 as.vpm . 146

C.14 mwe.vpm . 148

xv

xvi

Chapter 1

Introduction

Characters, be they animals, humans, or alien creatures, bring life to computer animation. There

are many examples of characters in films that are created with computer graphics. Alien creatures,

such as the giant bugs in Starship Troopers, are a common application, as the only reasonable

alternative is expensive animatronics. Character animation is also used for humanoid characters:

the character Gollum in the film adaptation of the Lord of the Rings trilogy is played by an actor

(Andy Serkis) wearing a motion capture suit [Serkis, 2003]; the on-screen character is generated

by computer graphics and mostly matched to the motions of the actor. In some cases, characters

may be produced both with real live actors and computer graphics: in The Matrix Reloaded, the

climatic battle between Neo and Agent Smith was created entirely with computer graphics, using

detailed scans of the actors [Borshukov et al., 2003], their environment, and even the reflectance

properties of their clothes [Borshukov, 2003]. Animated characters are also used to simulate large

crowds; huge battles were staged in the Lord of the Rings movies (some shots having over 200 000

characters), using software that simulated a simple “brain” for each character [Aitken et al., 2004].

Another major application area for character animation is in computer games. In the first-person

shooter genre, these are usually enemies or monsters that need to be killed, and this genre has

generally set the standard for detail and realism in the industry. However, other gaming gen-

res are progressing rapidly; for example, many real-time strategy games now use detailed three-

dimensional characters, making it possible to zoom in to the scene of a battle. Although the

purpose is different, many of the same problems and solutions are found in the creation of virtual

environments, which may be used for simulation, training or education.

The traditional work-flow for creating a three-dimensional animated character consists of four

steps: modelling, rigging, skinning and animating. A modeller creates the geometry of the char-

acter in a single pose, called the rest pose. This might be done entirely using a software package,

but it is also possible to capture a model created in the real world — either an actual character,

such as a person, or a physical model, such as a clay sculpture.

Rigging consists of creating controls for an animator to manipulate. Typically, this is done by

1

CHAPTER 1. INTRODUCTION

Figure 1.1: A complex rig, or skeleton, created in Blender. The black outlines show the bones
that the animator positions to control the character.

inserting a skeleton into the model. There may also be non-skeletal controls, such as controls for

facial actions (winking, smiling, etc.) and controls to determine the point at which the eyes will

look. Figure 1.1 shows an example of a complex rig.

Skinning is the process of connecting the “skin”, namely the geometry created by the modeller, to

the rig. It is possible to at least partially automate this by attaching every vertex to nearby bones

in the rig, but this usually does not give adequate results. In order for the skin to look natural, it

must deform smoothly around joints, and extensive manual adjustment may be required. While

the artist controls per-vertex parameters, an underlying algorithm is required to turn the settings

of the controls into a transformation of the skin. Many such algorithms exist, from complex

anatomically-based systems that model bone, muscle and fat (most applicable to high-quality

off-line rendering, such as film) to algorithms that simply blend transformations together.

Finally, to bring the character to life it must be animated — something must move the rig. In

film, and in many cases for games as well, the motion is determined by the artist in advance.

Inverse kinematics (IK) can simplify this process by allowing the artist to place the extremities

(for example, placing a hand on a button or a foot on the floor), and algorithmically determining

the joint angles necessary to achieve this. More recently, games have begun to use real-time

physics simulation to control the skeleton in some cases: a standard example is so-called “rag-

doll” physics, in which a corpse may be pushed down a flight of stairs, with limbs bending and

twisting in response to gravity and collisions.

The focus of this thesis is on skinning, and in particular on real-time skinning. There are two

main reasons that a simple, lower-quality framework might be preferred over a more complex and

realistic one. The first is speed: while anatomically-based physical simulations are ideal for the

off-line rendering used in film, and also necessary for the level of realism that is required of the

2

CHAPTER 1. INTRODUCTION

Figure 1.2: An example of a parametrisation. A chequerboard pattern is mapped back to the
surface of the cylinder using the parametrisation function.

Figure 1.3: The effect of computing level-of-detail from the rest pose. Left: a full-detail model
under animation, with the rest pose being a straight cylinder. Middle: a simplification computed
from only the rest pose. Right: a simplification computed taking all the poses into account.

major characters, they are generally far slower than the algorithms used for games and other real-

time applications. Secondly, the price of more generality is that more work is required to create

a model; it is necessary to find a balance between generality and ease of modelling that suits the

needs of the application in question.

Animation of any kind also introduces new challenges when combined with other areas of com-

puter graphics; particularly areas that have traditionally considered only static scenes. For ex-

ample, parametrisation maps the surface of an object to a simple 2D domain, aiming to minimise

distortion, usually for the purposes of mapping a 2D function onto the surface. (Figure 1.2 shows

an example). In the past, algorithms have considered only the rest pose of an object. However,

the distortion depends on geometric properties and so the optimal parametrisation for the rest

pose may not be optimal for the whole range of poses for the model. Similarly, level-of-detail

techniques create a sequence of lower-detail approximations to a mesh. Traditionally, they have

only been applied to the rest pose, but as can be seen in Figure 1.3, this may lead to very poor

results during animation. More recently there have been some techniques that take multiple poses

into account [Mohr and Gleicher, 2003a, Huang et al., 2006, DeCoro and Rusinkiewicz, 2005], but

these are based on sampling the space of poses rather than examining the underlying structure of

the animated character.

Our contribution is animation space, a character skinning framework described by a simple and

elegant linear equation. Vertices are defined at fixed locations in a high-dimensional space (the

3

CHAPTER 1. INTRODUCTION

“animation space”), and projected to 3D during rendering. We show that despite this simple

formulation, animation space has many attributes that are desirable in practice:

• Animation space is a strict generalisation of skeletal subspace deformation (SSD), a simple

technique popular for real-time rendering. It follows that the algorithms developed in this

thesis may be immediately applied to a large existing base of models.

• SSD is an extremely limited framework with well-known flaws. Like most subsequent skin-

ning frameworks, animation space is able to address these flaws, while adding a relatively

small number of degrees of freedom.

• We develop distance metrics on animation space that are independent of any particular pose.

This allows the parametrisation and level-of-detail problems mentioned above to be tackled

directly in animation space, rather than on a sample of poses in 3D space. The metrics also

have other applications, such as visibility culling.

• It is possible to apply subdivision processes directly within animation space, and the linearity

guarantees that the result is identical to applying the subdivision to a 3D pose.

The remaining chapters are organised as follows:

• Chapter 2 provides background on character animation techniques relevant to the thesis as

a whole. Each chapter also begins with some background relevant to that chapter.

• In Chapter 3 we introduce the fundamentals of animation space, and derive the metrics

referred to above.

• Chapter 4 demonstrates several methods of creating an animation-space model. This in-

cludes fitting a model to a set of example poses, which allows a modeller to easily generate

animation-space models without any knowledge of the animation-space algorithm. We also

show that the linear nature of animation space allows a natural application of subdivision.

• In Chapters 5 and 6 we show the practical benefits of the distance metrics developed in

Chapter 3. Chapter 5 considers parametrisations that minimise stretch, while Chapter 6

considers level-of-detail approximations that minimise error. In both cases, animation space

makes it possible to make measurements in a pose-independent manner to obtain solutions

that work well across a range of poses.

• The use of animation space adds some complications to real-time rendering. We detail our

implementation in Chapter 7, including the problem of reproducing full-detail shading on

simplified models, and a method for determining a bounding volume that is guaranteed to

contain any pose of the model.

• We finish with results in Chapter 8 and conclusions in Chapter 9.

4

Chapter 2

Background

There are a number of ways to animate characters [Collins and Hilton, 2001]. This thesis is con-

cerned solely with skeletal animation, but we briefly describe other methods here for comparison.

Direct methods

The simplest method (algorithmically speaking) is to have the animator position each vertex or

control point manually. However, while this is the most general method, it is also the most

painstaking, as there is no high-level control.

Skeletal animation

Animation can be simplified by modelling a character in layers. More complex systems use multiple

layers (such as bone, muscle, fat and skin), but simpler systems simply use bones and skin. The

bones do not have geometry; they are a simple “stick-figure” representation of the character. There

are two aspects to skeletal animation:

• The skin must be attached to the bones in some non-rigid way, so that it deforms smoothly

as joints are bent. This process is called skinning, and is the primary focus of this thesis.

• The animator controls the skeleton in some way. This can be done directly, but for some

applications it is preferable to position only certain key bones (usually extremities), and

solve for the joint angles automatically. This latter process is known as inverse kinematics

and is an active area of research; refer to Buss [2004] for a survey.

Shape interpolation

Shape interpolation is a method popular for facial animation. During modelling, a face is placed

in a number of poses, such as smiling, frowning, neutral and so on. The animator controls the

5

2.1. NOTATION FOR SKELETAL ANIMATION CHAPTER 2. BACKGROUND

expression of the face by interpolating between these poses. With simple linear blending, shape

interpolation can be written as

v =

n
∑

i=1

aivi, (2.1)

where i runs over the modelled poses, vi is the position of a vertex in pose i, ai is the weight given

to pose i, and v is the final position.

Shape interpolation on its own is not suitable for body animation, because it works in a global

coordinate system that does not consider rotations of joints. With linear interpolation, this would

result in vertices moving along straight lines, rather than arcs, when interpolating between poses.

Spatial deformation

Spatial deformations use a control structure such as a lattice [Sederberg and Parry, 1986] or curve

[Singh and Fiume, 1998] to define a transformation of the 3D space, along with objects embedded

in it. Spatial deformations are not specific to character animation, but have been adapted to it,

for example, by Chadwick et al. [1989] and Forstmann and Ohya [2006].

Physical simulation

The most accurate, but also the slowest, animations are produced by modelling the laws of motion

in a body. A typical system models multiple layers (bone, muscle, fat and skin) with a mass-spring

system, using Newton’s laws to simulate the motion of each layer; another approach is to minimise

an elastic energy of the skin surface [Collins and Hilton, 2001]. Because these approaches require

the solution of large systems of differential equations, they are generally not used for real-time

applications.

2.1 Notation for skeletal animation

In order to discuss skeletal animation in detail, we will require some notation. For modelling, bones

are represented as line segments, but for analysis and implementation purposes it is more useful to

consider the frames (coordinates systems) that they define. Each bone defines a local coordinate

system with its own origin (one end-point of the bone) and axes (relative to the direction of the

bone). The joints define the transformations between parent and child frames.

The number of bones will be denoted by b, and the bones (and their frames) are numbered from

0 to b− 1. The parent of bone j is denoted φ(j). We also make the following assumptions:

• There is a single root bone. Some modelling systems allow multiple root bones, but this can

be resolved by adding a new bone to act as a “super-root”.

6

CHAPTER 2. BACKGROUND 2.2. SKELETAL SUBSPACE DEFORMATION

v1v2

v

Figure 2.1: Illustration of skeletal subspace deformation. An originally straight limb is bent using
SSD. Bones are shown in grey, and the rigid transformation of each half is shown by dashed lines.
This produces v1 from the left bone and v2 from the right bone. The final position v is a linear
combination of the two.

• The root bone does not undergo character animation, and the root frame is thus equivalent

to model space. This does not restrict the animator, as transformation of the root bone is

equivalent to a rigid transformation of the model as a whole.

We will always label the root bone as bone 0. For each frame j, Gj is the matrix that transforms

coordinates in that frame to model space (so G0 = I, for example).

Modelling is done in a single pose, known as the rest pose (or dress pose). Values in this pose will

be indicated with a hat (i.e., v̂, Ĝ), while dynamic values will have no hat.

2.2 Skeletal subspace deformation

Skeletal subspace deformation (SSD), also known as enveloping, tweening, and linear blend skin-

ning, is the most popular form of character skinning for computer games and other real-time

environments. Its popularity is largely due to its simplicity and ease of hardware acceleration.

The standard form in which it is used was not originally published in the literature, although the

idea is generally credited to Magnenat-Thalmann et al. [1988].

In a model made of rigid pieces, it is sufficient to associate each vertex with a single bone in the

skeleton; this corresponds to the dashed rectangles in Figure 2.1. However, this is insufficient for

organic characters, whose skin stretches over joints. To accommodate this, SSD allows a vertex

to be associated with (or influenced by) multiple bones. The vertex is transformed separately by

each influencing bone, after which these transformed positions are linearly combined.

7

2.2. SKELETAL SUBSPACE DEFORMATION CHAPTER 2. BACKGROUND

(a) (b) (c) (d)

Figure 2.2: Collapsing elbow and candy wrapper effects. (a), (c) Skeletal subspace deformation,
exhibiting volume loss around the joint. (b), (d) Animation space, essentially free of these effects.

2.2.1 The SSD equation

We now define SSD more formally. The SSD equation is applied to each vertex independently, so

we will consider only a single vertex v in homogeneous space. Let its position in the rest pose be

v̂ and its influence from bone j be wj . First, v̂ is transformed into the various local frames:

v̂j = Ĝ−1
j v̂.

These local coordinates are then converted back into model-space coordinates, but this time using

the dynamic positions of the bones (i.e., their positions in the current frame):

vj = Gjv̂j = GjĜ
−1
j v̂.

Finally, these model-space positions are blended using the bone weights, as illustrated in Figure 2.1:

v =
b−1
∑

j=0

wjGjĜ
−1
j v̂ where

b−1
∑

j=0

wj = 1. (2.2)

2.2.2 Limitations of SSD

An alternative interpretation of SSD is found by rewriting (2.2) with different grouping, giving

v =





b−1
∑

j=0

wjGjĜ
−1
j



 v̂. (2.3)

In this form, the weights are seen as blending factors between transformation matrices. However, a

linear combination of rigid transformations need not be rigid, and as a result, SSD has some well-

known problems [Kavan et al., 2007]. The “collapsing elbow” and the “candy wrapper” effects are

shown in Figures 2.2(a) and 2.2(c). They are caused by the linear blending of rotation matrices

that have a large angle between them.

A less visible problem, but an important one in our approach, is that one cannot synthesise new

8

CHAPTER 2. BACKGROUND 2.3. IMPROVEMENTS TO SSD

vertices as affine combinations of old ones. For example, suppose one wished to create a vertex

that was the midpoint of two existing vertices. Averaging the rest positions and weights will not

work, because they combine non-linearly in equation (2.2). This implies that a modeller needing

extra vertices cannot simply subdivide a mesh; doing so will alter the animation, even if the new

vertices are not displaced. As will be seen in Chapter 5, it is also useful to be able to take the

difference between two points; however, the behaviour of the vector between two SSD vertices

cannot be described within the SSD framework.

2.3 Improvements to SSD

Most methods for real-time character animation start with SSD as a basis and modify it to address

the shortcomings, while aiming to preserve the simplicity and efficiency of SSD. The approaches

can be grouped into several categories:

2.3.1 Example-based techniques

Example-based techniques use a database of sculpted examples, either manually produced by an

artist, or generated from a physically-based modelling system (such as a finite element model,

as used by Kry et al. [2002]). Each example has an associated pose, and the database should

exercise the full range of each joint. The example meshes are compared to meshes generated with

SSD in corresponding poses, and difference vectors are stored. During rendering, scattered data

interpolation generates a new difference vector that adjusts the result of SSD, producing a higher

quality model.

Lewis et al. [2000] were the first to propose such a method, pose space deformation (PSD). In

their system, the underlying model is either rigid, or articulated but with rigid pieces (i.e., the

skin is not smoothed around joints). Interpolation is done within a pose space; generally the axes

of pose space correspond to joint angles in the model, but other types of control (such as “smile”

for facial animation) can be included as well. Interpolation is handled with Gaussian radial basis

functions, where the distance is simply the Euclidean distance within pose space.

Sloan et al. [2001] make several improvements to pose space deformation. They improve the data

interpolation by starting with a best-fitting hyperplane, and using radial basis functions to adjust

this hyperplane. The interpolation is also optimised by working in the space spanned by the

provided examples, with those examples forming a basis. Finally, they use SSD as the underlying

model; all interpolation is done in the rest pose, with the inverse of SSD applied to the examples

to bring them into the rest pose, as shown in Figure 2.3.

Eigenskin [Kry et al., 2002] makes two further improvements. Firstly, it identifies the support of

each joint — the region in which a change in the joint angle causes significant deviation. Secondly,

within each joint’s support, an eigenbasis is constructed, and only the dominant eigenvectors are

retained. This significantly reduces the number of variables that must be interpolated. Limiting

9

2.3. IMPROVEMENTS TO SSD CHAPTER 2. BACKGROUND

(a)

(b)

Figure 2.3: Shape-by-example. (a) An example provided by the artist. (b) The inverse of SSD is
applied to bring the example into the rest pose. The dashed lines indicate the results with plain
SSD.

the number of eigenvectors that are retained also makes it possible to pass all the necessary data

to a vertex shader, thus offloading computation from the CPU.

Kurihara and Miyata [2004] introduce weighted pose space deformation (WPSD), in which the

distance function in pose space becomes a per-vertex function. In PSD, the distance between two

poses a and b is defined as

d(a,b)2 =

b−1
∑

j=0

(aj − bj)
2, (2.4)

while in WPSD it is defined for vertex i as

di(a,b)2 =
b−1
∑

j=0

ui,j(aj − bj)
2. (2.5)

The weights ui,j determine the importance of each joint angle to vertex i; Kurihara and Miyata

[2004] report good results from simply using the SSD weights. The effect of this non-uniform

weighting is that the examples used to interpolate a vertex on an arm, for example, are chosen

according to the similarity of their poses in the arm region rather than global similarity, making

it possible to obtain good results with fewer poses. Unfortunately, evaluating the radial basis

functions on a per-vertex basis adds considerable computational cost.

These example-based techniques can produce high-quality models given a training set that spans

the range of motion, but conversely, the modeller must produce such a representative training set.

Steps must also be taken to avoid over-fitting the model; for example, there may happen to be a

correlation in the examples between a vertex on one leg and the pose of the other leg, but this is

an artefact of the data and should not be generalised.

2.3.2 Extra bones

Mohr and Gleicher [2003b] introduce pseudo-bones into their models. Each joint is given a pseudo-

bone that is rotated by half of the real joint angle. Vertices can be attached to this bone to receive

10

CHAPTER 2. BACKGROUND 2.3. IMPROVEMENTS TO SSD

this half-way rotation; since this is a spherical rather than linear interpolation, it avoids the

collapsing effect seen in Figures 2.1 and 2.2. They also introduce pseudo-bones that scale rather

than rotate, to support muscle bulging effects. The advantage of adding bones is that only the

model, and not the framework, is altered; however, the number of bone influences per vertex

increases, which reduces rendering performance. It may also complicate hardware acceleration, as

a straightforward implementation only allows a fixed number of attributes to be passed per vertex.

2.3.3 Non-linear transformation blending

While we have described SSD as a linear blending of vertices, it can also be seen as a linear

combination of the bone matrices (Equation 2.3), and the defects that occur arise because lin-

ear interpolation of rotation matrices does not correspond to an interpolation of their rotations.

Recently, several techniques have been proposed which use non-linear transformation blending

techniques. Magnenat-Thalmann et al. [2004] use the matrix blending operator of Alexa [2002] to

perform the interpolation; this improves the results, but is an expensive method (it is based on the

matrix exponential and logarithm). Spherical blend skinning [Kavan and Žára, 2005] addresses

the problem by computing linear interpolations of quaternions; the authors show that this is a

good approximation to spherical interpolation. This does not allow for interpolation of scaling

transformations, but a far more serious shortcoming is that blending translations between more

than two transformations is done in an ad-hoc and expensive manner. The same authors subse-

quently solved this problem using dual quaternions [Kavan et al., 2007], which elegantly handle

translations and rotations in a single framework.

2.3.4 Extra weights

Multi-weight enveloping (MWE) [Wang and Phillips, 2002] is the method most similar to our

approach. In order to explain MWE, we need to expand Equation (2.2). For each bone j, let

Nj = GjĜ
−1
j . This matrix defines the motion of the bone relative to its rest position. Substituting

Nj into Equation (2.2) gives

v =

b−1
∑

j=0

wjNjv̂ =

b−1
∑

j=0

wj













nj,11 nj,12 nj,13 nj,14

nj,21 nj,22 nj,23 nj,24

nj,31 nj,32 nj,33 nj,34

0 0 0 1













v̂. (2.6)

11

2.3. IMPROVEMENTS TO SSD CHAPTER 2. BACKGROUND

Multi-weight enveloping assigns a weight to each entry of the matrix Nj [Wang and Phillips, 2002],

giving the equation1

v =
b−1
∑

j=0













wj,11nj,11 wj,12nj,12 wj,13nj,13 wj,14nj,14

wj,21nj,21 wj,22nj,22 wj,23nj,23 wj,24nj,24

wj,31nj,31 wj,32nj,32 wj,33nj,33 wj,34nj,34

0 0 0 1
b













v̂. (2.7)

These extra weights allow for non-linear effects, and Wang and Phillips [2002] show that the extra

degrees of freedom make it possible to avoid the collapsing elbow and candy-wrapper effects. They

use a modified least-squares method to fit the weights to a database of examples; unlike with

the example-based techniques, the model approximates rather than interpolates the examples.

However, the rest pose configuration and vertex positions are determined by the user, presumably

selected from the database of examples.

MWE uses 12 weights per bone influence, while no joint has that many degrees of freedom. This

leads to problems with correlation and over-fitting during the fitting process. These are handling by

applying principal component analysis (PCA) [Jolliffe, 1986] and local ridge regression during the

fitting process [Wang and Phillips, 2002]. Note that while PCA works best with linear correlations,

the authors apply it to the entries of rotation matrices, which have non-linear relationships. The

large number of weights also increases storage and bandwidth costs.

2.3.5 Comparison of methods

Generality

Example-based techniques are able to represent the widest range of potential animations, because

they can interpolate any number of given poses exactly. Multi-weight enveloping has a fixed

number of degrees of freedom, so it can only approximate example poses, but it nevertheless

has significantly more freedom than SSD. The non-linear transformation blending methods have

exactly the same degrees of freedom as SSD, making them the least general. Extra bones introduce

more degrees of freedom; the amount of freedom will obviously depend on the number and type

of the extra bones.

It should be noted that more degrees of freedom can be a disadvantage: with more degrees of

freedom there is also more work in specifying them.

Animation space has a fixed number of degrees of freedom, between that of SSD and MWE.

1The original paper used 1 in place of 1

b
in equation (2.7), but this gives v a weight of b rather than the more

conventional 1. The difference is just a scale factor, so using this equation does not alter the method.

12

CHAPTER 2. BACKGROUND 2.4. DATA ACQUISITION

Rendering efficiency

It is difficult to quantify the efficiency of these methods, since no author has tested all the methods

with a single data set and hardware configuration. We can only report isolated results from the

literature:

• Rhee et al. [2006] implemented both PSD and WPSD with hardware acceleration and also

incorporate elements of Eigenskin [Kry et al., 2002]. They found PSD and WPSD to run at

about 85% and 5% as fast as SSD respectively.

• The dual quaternion implementation of Kavan et al. [2007] has performance of 70% of SSD,

again using hardware acceleration.

• The authors of multi-weight enveloping did not report rendering speeds, but we created a

basic hardware implementation (described in Section 8.6.1) where speeds ranged from 47%

to 61% of that of SSD.

Surprisingly, our results show that animation-space models are faster to render than SSD models.

Ease of use

A major strength of the non-linear transformation interpolation methods is that they can be

applied to existing SSD models with no changes. For creating new models, the limitations of

SSD still apply: an indirect interface, and the inability to place vertices outside of some subspace.

However, it is likely that the concepts used in direct manipulation interfaces [Mohr et al., 2003]

and example-fitting [Mohr and Gleicher, 2003b, James and Twigg, 2005] could be adapted to these

methods.

The other methods, as well as animation space, are all defined by a set of examples. While this

is a more direct and intuitive interface, it is also time-consuming, as it is necessary to create the

model in a variety of poses that exercises the full range of motion of all the joints.

2.4 Data acquisition

A skeletal animation framework is only useful if it is possible to obtain data to be used with

the framework. Several types of data are required: the shape of the model (possibly only a single

pose, but possibly a database of examples), a skeleton, and the skinning weights. We briefly review

common methods here; for further references, consult the survey by Collins and Hilton [2001].

2.4.1 Geometry

A model can either be captured from the physical world (for example, a human subject, or a clay

model of a more fanciful creature), designed entirely within a computer, or create by a hybrid of

13

2.4. DATA ACQUISITION CHAPTER 2. BACKGROUND

the two. Common techniques for capturing real-world objects are laser range scanning [Curless,

2000], stereopsis [Faugeras, 1993] and shape-from-silhouette [Potmesil, 1987]. A problem that

arises when multiple scans of the same subject are used with example-based techniques (discussed

in Section 2.3.1), is that the models must be in correspondence; that is, they must have the same

vertices and connectivity, so that it is meaningful to consider the position of a particular vertex

in each of the poses. However, each scanned model is reconstructed independently, and may not

even have the same number of vertices. The usual approach to bring meshes into correspondence

is to use one of them as a template, then find deformations that transform this template to be

as close as possible to the others. For rigid bodies, the classical method is the Iterated Closest

Points algorithm [Rusinkiewicz and Levoy, 2001], but it is not suitable for character animation

as characters undergo non-rigid animation. Allen et al. [2002] place markers on a body and use

these to solve for the pose of a pre-defined skeleton, and use a pre-defined subdivision surface

as the template. Anguelov et al. [2004a] obtain excellent results using expectation-maximisation

with a probability function that aims to preserve both local and global geodesic distances, without

requiring markers.

Computer modelling suffers from none of these issues. It is a mature field; numerous free and

commercial modelling packages exist (Blender, 3D Studio MAX, Maya and Lightwave to name a

few of the better-known ones), featuring a plethora of editing tools too numerous to review here.

2.4.2 Bones

Creating a skeleton for a model is relatively easy to do by hand, because it is simply a stick figure

and does not require the same fine detail as the skin. Manually defining a skeleton also gives

the animator control over the complexity of the skeleton: for example, areas like the shoulder

and spine actually consist of multiple joints [Allen et al., 2002], but it may be desirable to use a

simpler skeleton to ease animation.

Nevertheless, several automated techniques exist to extract skeletons from a set of example meshes.

James and Twigg [2005] consider the rotations applied to move triangles from one pose to another.

Triangles that are part of the same rigid section will undergo similar transformations, so bones are

identified as clusters in the space of rotations. Note, however, that this only identifies the transfor-

mations associated with a bone, but it does not identify endpoints or a hierarchy. Anguelov et al.

[2004b] use a statistical model that measures the probability of an assignment of vertices to rigid

sections together with transformations of those sections, and perform an expectation-maximisation

to optimise the assignments. Each rigid section corresponds to a bone, and the authors also solve

for the positions of the joints.

2.4.3 Weights

The conventional method of assigning weights is to have the artist “paint” them onto the surface

of a model. This is an indirect and often frustrating approach, as the artist cannot simply place

14

CHAPTER 2. BACKGROUND 2.4. DATA ACQUISITION

vertices where they need to go. Mohr et al. [2003] have developed a direct manipulation interface,

in which the user may position a vertex in some pose, and the weights are then calculated to match

the user’s specification as closely as possible. Mohr and Gleicher [2003b] use an example-based

technique, in which both the weights and the rest positions are determined using a bilinear solver

to match a given set of examples. James and Twigg [2005] take the rest positions as given, and

solve a non-negative least-squares problem to optimise the weights.

15

2.4. DATA ACQUISITION CHAPTER 2. BACKGROUND

16

Chapter 3

Animation space

In the previous chapter, we described skeletal subspace deformation (SSD), a simple and efficient

method for character animation. We also described a generalisation, multi-weight enveloping

(MWE), that reduces the more glaring deficiencies in SSD. While these methods are linear in the

bone matrices (and indeed, SSD is also known as linear blend skinning), they are non-linear in

the vertex coordinates since the weights are multiplied with the rest-pose positions.

This chapter introduces animation space, an animation framework whose generality lies between

that of SSD and MWE, and for which the animation is linear in both the matrices and the vertex

coordinates. We start by introducing animation space, motivating it as an alternative way to

express SSD which is also more general. The bulk of this chapter, however, is the derivation of a

set of metrics on animation space with meaningful geometric properties. Subsequent chapters will

identify applications for these metrics.

After deriving the metrics, we show that the probability density functions we used to compute

them are not required in order to make global alterations to the model: the expectations we

computed contain all the information necessary for the metrics to be updated.

We end the chapter by considering the problem of normals. Since animation space has a high

dimension, there is no normal vector to a 2D surface. Instead, we use tangent planes to model

derivatives.

3.1 Reformulating SSD

Let us re-examine equation (2.2) on page 8. We can combine the weight, the inverse rest-pose

matrix and the vertex into a single vector, and write

v =

b−1
∑

j=0

Gjpj , (3.1)

17

3.1. REFORMULATING SSD CHAPTER 3. ANIMATION SPACE

animation
matrix

model
matrix

view
matrix

viewport
transform

perspective
division

projection
matrix

animation-space

coordinates

object

coordinates

world

coordinates

eye

coordinates

window

coordinates

device

coordinates

clip

coordinates

Figure 3.1: Coordinate systems and the transformations between them

where pj = wjĜ
−1
j v̂. We can rearrange this as a matrix-vector product as follows:

v =
(

G0 G1 · · · Gb−1

)















p0

p1

...

pb−1















= Gp. (3.2)

One can view the vector p on the right as the coordinates of v in a multi-dimensional space,

which we will call animation space. This space is 4b-dimensional. The left-hand matrix converts

from animation space to model space; we label it G and refer to it as the animation matrix and

its operation as animation projection. Figure 3.1 illustrates the place of animation projection in

a typical rendering pipeline, such as that used in the OpenGL API1 [Segal and Akeley, 2006].

Animation projection does not produce final screen coordinates; rather, it produces coordinates

in a local model space, which may be further manipulated by the model matrix. This allows rigid

movement of the character (running, falling off a cliff, etc.) to be separated from control of the

limbs. Also note that the first four stages are all matrix multiplications, so any subsequence of

them may be collapsed into a single matrix if desired.

For a general element of the animation space, we find that

v = p0 + · · ·+ pb−1

(recall from page v that v is the homogeneous coordinate of v). We thus refer to the right-hand

side as the weight of p, and also denote it p. Just as we usually work with points in the 3D

hyperplane v = 1, we will generally work with points in the animation-space hyperplane p = 1.

In the context of equation (3.1), this simply says that the sum of the weights affecting a vertex is

1. The restriction to this hyperplane still gives us 4b− 1 degrees of freedom, while standard SSD

has only b + 2 degrees of freedom (b− 1 independent weights plus the coordinates of v).

An enormous advantage of this formulation over SSD is that it is truly linear; that is, linear

combinations of vertices distribute over animation projection, e.g., G(1
2p+ 1

2q) = 1
2Gp+ 1

2Gq. In

1OpenGL combines the model and view matrices into a single model-view matrix.

18

CHAPTER 3. ANIMATION SPACE 3.2. COMPARISON TO MWE

particular, every point in a triangle mesh can be expressed as a convex combination of the three

vertices forming one of its triangles, and hence has coordinates in animation space, not just the

vertices. A further benefit is that subdivision surfaces can be computed once in animation space,

then projected into model space (see Section 4.2).

3.2 Comparison to multi-weight enveloping

We can apply the same combining technique (that merged wj and v̂) to multi-weight enveloping.

Referring to equation (2.7), let uj,rs = wj,rsv̂s where 1 ≤ r ≤ 3 and 1 ≤ s ≤ 4. Then

v =
b−1
∑

j=0













uj,11nj,11 + uj,12nj,12 + uj,13nj,13 + uj,14nj,14

uj,21nj,21 + uj,22nj,22 + uj,23nj,23 + uj,24nj,24

uj,31nj,31 + uj,32nj,32 + uj,33nj,33 + uj,34nj,34

1
b













(3.3)

Unlike SSD, MWE does not gain any generality from this transformation, as it can be reversed by

setting Wj = Uj and v̂ =
(

1 1 1 1
)T

. This also reveals that the so-called rest positions are

in fact almost arbitrary, as weights can be found to match any rest position that does not have a

zero component. From this formulation, we see that MWE is a superset of animation space: if p

is a position in animation space and each row of Uj equals (Ĝjpj)
T , then

v =

b−1
∑

j=0













uj,11nj,11 + uj,12nj,12 + uj,13nj,13 + uj,14nj,14

uj,21nj,21 + uj,22nj,22 + uj,23nj,23 + uj,24nj,24

uj,31nj,31 + uj,32nj,32 + uj,33nj,33 + uj,34nj,34

1
b













=
b−1
∑

j=0













nj,11 nj,12 nj,13 nj,14

nj,21 nj,22 nj,23 nj,24

nj,31 nj,32 nj,33 nj,34

0 0 0 1













Ĝjpj

=

b−1
∑

j=0

NjĜjpj =

b−1
∑

j=0

GjĜ
−1
j Ĝjpj =

b−1
∑

j=0

Gjpj = Gp.

(3.4)

In practical terms, the extra generality of MWE allows a vertex to behave differently in different

dimensions; for example, a vertex attached to a rotating joint may remain fixed in the x and y

dimensions while moving sinusoidally in the z dimension. This has limited application, however,

because these are global dimensions rather than the local dimensions of a bone frame, and hence

any special effects obtained in this way will not be invariant under rotations of the model.

While MWE is more general than animation space, it is not necessarily better for all purposes.

Most importantly, Equation (3.3) does not have the elegant form of the animation-space equation

v = Gp which makes the analysis of the following sections possible. The extra weights also require

19

3.3. DISTANCE METRICS CHAPTER 3. ANIMATION SPACE

extra storage and processing, and do not necessarily contribute to the generality of the model:

Wang and Phillips [2002] use Principal Component Analysis to reduce the dimension of the space.

3.3 Distance metrics

For several applications, such as level-of-detail and parametrisation, we need a measure of distance

between two points in animation space. To be useful, such a metric should of course reflect some

property of the distance in 3D model space, and should account for all poses rather than a single

pose.

Instead of explicitly defining distances between p and q, we define norms on s = p− q. Since we

are only interested in p and q with weight 1, we will define our norms only for animation vectors

s with weight 0.

We describe two norms below, which we term the L2,2 and the L2,∞ norms. The first index

describes the spatial properties (both norms are related to the spatial Euclidean norm) and the

second describes the aggregation over the space of poses: the former is a root-mean-squared

distance, while the latter is an upper bound. In deriving algorithms to compute the L2,2 norm,

we will also develop some statistical models of animation space.

3.3.1 L2,2 norm

Since the L2,2 norm is a measure of average distance, we will need to make use of some statistics.

In particular, we will use the expectation operator E[·], which gives the expected (mean) value of

its argument. If x is a random variable with probability density function p(x), then

E
[

f(x)
]

=

∫

p(x)f(x)dx. (3.5)

Two important properties of E[·] are that it is linear and that E[xy] = E[x]E[y] provided that x

and y are independent variables.

We define the L2,2 norm as

‖s‖2,2 =
√

E [‖Gs‖2].

In this case, G is the random variable. Expanding the formula gives:

‖s‖22,2 = E
[

sT GT Gs
]

= sT E
[

GT G
]

s

= sT E

















GT
0 G0 · · · GT

0 Gb−1

...
. . .

...

GT
b−1G0 · · · GT

b−1Gb−1

















s.

(3.6)

20

CHAPTER 3. ANIMATION SPACE 3.3. DISTANCE METRICS

0

1 2

4 3 5

6

L1

L2

L3
L4

L5

L6

G4

G5
G3

G6

Figure 3.2: Relationships between frames. Solid arrows show child-to-parent relationships, mod-
elled by the joint matrices Li, while dashed arrows show frame-to-root relationships, modelled by
the matrices Gi. G1 and G2 are the same as L1 and L2.

So far we have treated each frame as a separate entity, with no relationships between them, but for

any meaningful statistical analysis we need to consider how the bones connect to each other. Each

frame is animated either relative to a parent frame, or else is frame 0 (model space). Rather than

work with the global transformations Gj (which transform directly to model space), we define Lj

to be the local transformation which maps frame j to its parent (see Figure 3.2). In particular,

if j 6= 0 then Gj = Gφ(j)Lj (recall that φ(j) is the parent of j). We will call these local matrices

joint matrices, since they define the action of the joints connecting bones.

Let P be E[GT G]; P is an expectation and hence independent of any particular pose of the

model. To compute the expectation, we will need further information about how the skeleton

will be animated. One option is to take samples of the pose space (such as from a recorded

animation), and average the values of GT G together. However, in such a high-dimensional space,

it is impractical to obtain a representative sampling. In order to make sampling practical, we

make the simplifying assumption that different parts of the body are independent e.g., arms can

move independently of legs. While not perfectly true (since body parts cannot interpenetrate), we

believe that this is a sufficiently good approximation that it is justified by the benefits of being

able to sample positions for each joint separately, rather than having to sample across all possible

combinations of positions, and the results support this approach.

In the following subsections, we will examine some statistical models to derive P . We begin with a

small number of assumptions about the statistical distributions, to obtain a fairly general model.

More general models require more parameters that must be determined by other means, so we

also show how we can add reasonable assumptions to reduce the amount of a priori knowledge

required.

21

3.3. DISTANCE METRICS CHAPTER 3. ANIMATION SPACE

Independent joints

In this model we make the assumption that the joint matrices are independent. Rather than

providing an explicit formula for E[GT
j Gk] (which is impractical, given that it depends on the tree

structure), we provide an O(b2) algorithm to compute the values inductively. We begin with the

assumption that we know E[Lj] and E[GT
j Gj] for each joint j, since in this model they cannot be

computed without further information. Later models will provides a means of calculating these.

In computing E[GT
j Gk], we start with the assumptions that j 6= k (since otherwise we already

have the value) and that k is not an ancestor frame of j (if it is, we can just swap the roles of j

and k). These assumptions guarantee that Lk is independent of both Gφ(k) and of Gj , so that

E[GT
j Gk] = E[GT

j Gφ(k)Lk] = E[GT
j Gφ(k)]E[Lk]. (3.7)

We can apply this formula recursively to the first factor on the right, until we obtain a factor of

the form E[GT
j Gj]. For example, in the skeleton shown in Figure 3.2,

E[GT
4 G6] = E[GT

4 G3]E[L6]

= E[GT
4 G1]E[L3]E[L6]

= E[GT
1 G4]

T E[L3]E[L6]

=
(

E[GT
1 G1]E[L4]

)T
E[L3]E[L6]

= E[L4]
T E[GT

1 G1]E[L3]E[L6].

(3.8)

From this point, we will consider statistical models on a per-joint basis. This allows several models

to be used within a single skeleton. In each case, we need only show how to derive E[Lj] and

E[GT
j Gj] for the joint in question, as the algorithm above shows that this is sufficient to compute

P .

Independent components

We can derive further results by assuming that the translation component of a joint matrix is

independent from the rest of the matrix. It is not clear whether there is any use for this model in

isolation, but the derivation is useful as a stepping stone for the next model (constant translations).

This time, we will start with the following known base information for each frame j 6= 0:

• E[Lj] and E[Lj];

• E[Gj
T
Gj], which is a measure of scale;

• E[Lj
T Gφ(j)

T
Gφ(j)Lj], which is a measure of the length of the bone in model space.

22

CHAPTER 3. ANIMATION SPACE 3.3. DISTANCE METRICS

We now show how to compute E[Lj] and E[GT
j Gj]. Trivially,

E[Lj] =

(

E[Lj] E[Lj]

0T 1

)

. (3.9)

To compute E[GT
j Gj], we first decompose it into its components.

E[GT
j Gj] = E

[(

Gj
T

0

Gj
T 1

)(

Gj Gj

0T 1

)]

= E

[(

Gj
T
Gj Gj

T
Gj

Gj
T Gj Gj

T Gj + 1

)]

=

(

E[Gj
T
Gj] E[Gj

T
Gj]

E[Gj
T Gj] E[Gj

T Gj] + 1

)

.

(3.10)

Since G0 is the identity (in which case the problem is trivial), we can ignore the case j = 0 and

assume that j has a parent. From equation (4) on page vi, we have Gj = Gφ(j)Lj = Gφ(j)+Gφ(j)Lj .

Substituting this into the bottom-right element of the matrix in (3.10) gives

E[Gj
T Gj] + 1 = E[Gφ(j)

T Gφ(j)] + 2E[Gφ(j)
T Gφ(j)Lj] + E[Lj

T Gφ(j)
T
Gφ(j)Lj] + 1

= E[Gφ(j)
T Gφ(j)] + 2E[Gφ(j)

T Gφ(j)]E[Lj] + E[Lj
T Gφ(j)

T
Gφ(j)Lj] + 1.

(3.11)

The expectations on the right-hand side are either assumed to be given, or else form part of

E[GT
φ(j)Gφ(j)]. Similarly,

E[Gj
T
Gj] = E[Lj

T
Gφ(j)

T
(Gφ(j) + Gφ(j)Lj)]

= E[Lj
T
Gφ(j)

T
Gφ(j) + Lj

T
Gφ(j)

T
Gφ(j)Lj]

= E[Lj]
T E[Gφ(j)

T
Gφ(j)] + E[Lj]

T E[Gφ(j)
T
Gφ(j)]E[Lj].

(3.12)

The last step is the only time we have used the independence of Lj and Lj . Once again, the

expectations on the right-hand side are either given or part of E[GT
φ(j)Gφ(j)]. Since the skeleton

imposes a partial order on the joints, it is always possible to compute E[GT
φ(j)Gφ(j)] in advance.

Fixed translations

Up to now, our treatment has considered bones simply as coordinate frames, albeit with connec-

tions to each other. In practice, these connections are usually rigid bones joined at sockets, that

constrain these coordinates frames to exist at fixed offsets relative to their parents. In this model,

all translation components (Lj) are fixed. This trivially makes them independent of each other

and of the linear components. We can thus apply the results in the previous section. Since Lj

will now factor out of expectations, we need only have the fixed value of Lj and the expectations

E[Lj] and E[Gj
T
Gj].

23

3.3. DISTANCE METRICS CHAPTER 3. ANIMATION SPACE

Rotation and fixed translation only

Depending on the required sophistication of an animation, it may be sufficient to use only rotation

matrices for the linear components (Lj). This accounts for joint movements, but not effects

like muscle bulging (which do not strictly fit into a “skeletal” animation model, but are often

approximated with one). Provided that the ancestor frames never produce non-uniform scaling

(i.e., stretch or shrink along some axis), then E[Gj
T
Gj] can be computed. Since Gφ(j) represents

only rotations and uniform scaling, Gφ(j)
T
Gφ(j) is of the form λI, where λ is a random variable.

It follows that
E[Gj

T
Gj] = E[Lj

T
Gφ(j)

T
Gφ(j) Lj]

= E[λLj
T
Lj]

= E[λI]

= E[Gφ(j)
T
Gφ(j)].

(3.13)

We thus need only Lj and E[Lj]. The former is simply the length and rest orientation of the bone,

and the latter can be computed given information about the range of motion of each joint: either

by sampling the range, or analytically from a distribution function. As an example, consider the

case of a joint that can only rotate about the z axis by angles between φ0 and φ1, with a uniform

distribution. Then

E[Lj] =
1

φ1 − φ0

∫ φ1

φ0









cos φ − sin φ 0

sin φ cos φ 0

0 0 1









dφ

=
1

φ1 − φ0









sinφ1 − sin φ0 cos φ1 − cos φ0 0

cos φ0 − cos φ1 sin φ1 − sinφ0 0

0 0 φ1 − φ0









.

(3.14)

This can be generalised to arbitrary axes of rotation and to multiple degrees of freedom (with

Euler angles), although the formulae become more cumbersome.

Uniform distribution of rotations, fixed translations

If a linear part Lj is equally likely to be any rotation matrix (as defined by the Haar measure

[Shoemake, 1992]), then E[Lj] = 0. This is quite an unlikely assumption (since it implies total

freedom for all joints), but it does allow the norm to be computed in the absence of almost all

information about the model: only Lj is required, which corresponds to the length of the bone.

This information is required anyway in order to define the rest pose, so no further work is needed

to obtain it.

In this case, we can also compute E[Gj
T
Gj] without the assumption that the ancestors perform

24

CHAPTER 3. ANIMATION SPACE 3.3. DISTANCE METRICS

only uniform scaling (or no scaling). In Appendix B.2 we show that

E[Gj
T
Gj] =

tr E[Gφ(j)
T
Gφ(j)]

3
· I. (3.15)

Fixed skeleton

The simplest possible model takes the rest pose and assumes that no animation occurs. The main

use for this model is that it lets us measure the Euclidean norm on the rest pose within the same

framework. In this model, E[Lj] = Lj and E[GT
j Gj] = LT

j E[GT
φ(j)Gφ(j)]Lj .

3.3.2 Inner products

In the previous section we showed how an average value for squared distance can be found. This

can be extended to finding the average value for the dot product. We use this to establish the

concept of orthogonality in animation space, but other applications will be developed in subsequent

chapters.

We define 〈s, t〉2,2 to be the expected dot product of model-space vectors Gs and Gt:

〈s, t〉2,2 = E[Gs ·Gt]

= E[sT GT Gt]

= sT E[GT G]t

= sT P t.

(3.16)

Since 〈s, s〉2,2 = ‖s‖22,2 is the expectation of a squared length, it cannot be negative. The other

properties of inner products are easily verified (since GT G is symmetric for all G), with the

exception of 〈s, s〉2,2 = 0 =⇒ s = 0. This will fail for any vector s in the null space of P . Such a

vector always exists in the rotations and fixed translations statistical model, because the skeleton

has only three degrees of freedom per joint while animation space has four dimensions per joint

(for a more rigorous proof, refer to Appendix B.3). In spite of this shortcoming of the L2,2 norm

and the inner product, we will continue to refer to them as such. Formally, they can be considered

to be a norm and an inner product on the quotient spaceM/N , where

M = {x ∈ R
4b : x = 0}

and N is the null space of P ; in this space they satisfy all the requirements of a norm and an

inner product.

In practice, the issue of rank deficiency in P only becomes important when optimising locations

in animation space (for example, this makes the L2,2 norm unsuitable for the edge constraints de-

scribed in Section 4.1.2). We do not project onto N⊥, as that would destroy sparsity in animation-

space coordinates.

25

3.3. DISTANCE METRICS CHAPTER 3. ANIMATION SPACE

We can define a linear transformation of animation space which maps the L2,2 norm and inner

product to the usual Euclidean norm and dot product. The matrix P is non-negative definite

symmetric, so there exists a matrix C such that CT C = P ; we have computed C = P
1
2 from the

singular value decomposition of P . If we let s̃ = Cs and t̃ = Ct, then

s̃ · t̃ = sT CT Ct = 〈s, t〉2,2. (3.17)

We refer to this transformed space as normalised animation space. In general we try to avoid

using it in implementations (because the transformation destroys sparsity), but it is a useful tool

for analysis.

3.3.3 L2,∞ norm

The metrics derived above are useful when a good estimate of the distance is required, but cannot

give hard bounds. Such bounds are sometimes required, for example with visibility culling, where

an under-estimate of distance could lead to a visible object being culled. In this section we will

derive an L2,∞ norm, such that

‖Gs‖ ≤ ‖s‖2,∞ for all G. (3.18)

As usual with an L∞ norm, it will be necessary to work with bounding volumes. Since a bounding

“volume” is essentially just a set, we will use the term for sets of matrices and scalars, as well

as sets of vectors. For an arbitrary set S, we will use the notation B[S] to mean a bounding

volume containing S. Of course, we would like it to be as small a bounding volume as possible,

but we do not absolutely require this as it may be too expensive to compute. We will also be

performing algebraic operations on sets: the result is a set consisting of applying the operation to

all possible combinations of elements from the input sets. For example, A + B is the Minkowski

sum {a + b : a ∈ A and b ∈ B}, while for a matrix N , NV = {Nv : v ∈ V}.

At a conceptual level, we can simply say that

‖s‖2,∞ = max{‖v‖ : v ∈ B[Gs]}, (3.19)

As before, s must be a true vector (i.e., s = 0). Like the expectation operator E[·], B[·] operates

on an expression and produces a bounding volume over all possible values of the expression (in

this case, over all possible values of G).

Let us consider a particular G, and expand Gs to
∑b−1

j=0 Gjsj . The geometric interpretation is that

each sj contains some part of the whole sum, but in a different coordinate frame (the various bone

frames). Instead of directly converting each sj to the root frame, we can propagate and combine

the values up the tree. Referring to Figure 3.2 (page 21), we can propagate s6 up to frame 3 to

obtain L6s6, then combine it with s3 to obtain a value of s3+L6s6 in frame 3. When this value and

s4 are propagated to frame 1 and combined with s1, we obtain a subtotal of s1+L4s4+L3(s3+L6s6)

in frame 1. Finally, all the contributions from the sj ’s will propagate up to frame 0, and we will

26

CHAPTER 3. ANIMATION SPACE 3.3. DISTANCE METRICS

have the value of Gs.

To compute B[Gs], we can no longer consider just a single value of G and propagate vectors.

Instead, we assume a bounding volume for each Lj , and propagate bounding volumes up the tree.

Before any propagation occurs, we have the bounding volume {sj} (a singleton set) in each frame

j. If at some point in the algorithm, frame j has a bounding volume Vj and its parent φ(j) has a

bounding volume Vφ(j), then propagation makes the replacement

Vφ(j) ←− B
[

Vφ(j) + B[Lj]Vj

]

. (3.20)

This is the equivalent of the update vφ(j) ←− vφ(j) + Ljvj we used for a fixed G in the example

above. We replace Lj with B[Lj] since we have to consider that Lj could take on any legal value;

the outer B[·] is needed because its argument may not be suitably shaped to represent directly.

So far we have been careful to develop the mathematics without reference to the types of bounding

volumes used, in order to produce a general model. We now consider the best choices for bounding

volumes. Spheres make a good choice, since they are closed under translation, rotation and

Minkowski summation. Translations are 3-vectors, so we bound them with straightforward spheres,

denoted by

S(v, r) := {u : u ∈ R
3, ‖u− v‖ ≤ r}. (3.21)

The positions we deal with occupy a 4D homogeneous space. We again limit the 3D part to a

sphere, but it will be seen below that there is enough information to limit w to a fixed value. We

thus use volumes of the form

Sw(v, r) := {u : u ∈ R
4, ‖u− v‖ ≤ r and u = w} (3.22)

(where v is a 3-vector).

Finally, we must choose a bounding volume for matrices. We separate a matrix into its translation

part (already covered) and linear part. We choose to limit the largest singular value2; for matrices

that are known to only rotate and not scale, this is trivially 1. We use the notation

M(s) := {A : A ∈ R
3×3, ‖A‖2 ≤ s}. (3.23)

We denote the set of matrices whose linear part lies in M(s) and whose translation part lies in

S(v, r) by M(s,v, r). The key equation (illustrated in Figure 3.3) that allows us to apply (3.20)

is

M(s)S(v, r) = S
(

0, s‖v‖+ sr
)

. (3.24)

Now suppose we have a volume V = Sw(v, r) in some frame j, and wish to transform it to the

parent frame φ(j). The joint matrix will itself have a bounding volume B[Lj] which must be

2The largest singular value of a matrix is the largest amount by which it can scale a vector, and is also known
as the 2-norm.

27

3.3. DISTANCE METRICS CHAPTER 3. ANIMATION SPACE

0v

‖v‖+ r

r ‖v‖ s‖v‖+ sr

S(v, r)

S(0, ‖v‖+ r)

S(0, s‖v‖+ sr)

Figure 3.3: Visualisation of Equation (3.24). The yellow sphere is the original volume. The red
sphere contains any rotation of the yellow sphere around the origin, while the blue sphere contains
any scaling of the red sphere by up to s.

taken into account; let B[Lj] =M(s,v1, r1). We compute the 3D and weight components of the

resulting volume separately:

B[Lj]V = B[Lj] V + B[Lj] V

=M(s)S(v, r) + wS(v1, r1)

= S(0, s‖v‖+ sr) + S(wv1, wr1)

= S(wv1, s‖v‖+ sr + wr1)

(3.25)

B[Lj]V = V = w. (3.26)

Therefore

B[Lj]V = Sw(wv1; s‖v‖+ sr + wr1). (3.27)

Equation (3.20) also requires the addition of two bounding volumes; but this is easy, since

Sw0
(v0, r0) + Sw1

(v1, r1) = Sw0+w1
(v0 + v1, r0 + r1). (3.28)

Since we have equality in all the above equations, we can apply the propagation process repeatedly

to obtain a tight bounding volume in the root space. In other words, there will exist some pose

for which the L2,∞ norm is attained, although this pose might not be physically possible, because

28

CHAPTER 3. ANIMATION SPACE 3.4. TRANSFORMING A MODEL

we have not restricted the range of rotations.

3.4 Transforming a model

For some applications, it is useful to be able to transform an entire model within the model space,

rather than just by modifying the model-to-world transformation. For example, it may be useful

to transform a collection of models so that they all have the same scale, orientation and position

relative to the model origin. This allows them to be combined in a scene without having to

maintain extra matrices to encode these normalisations.

For this purpose, we consider how an animation-space model can be transformed by any trans-

formation consisting of translations, rotations and uniform scaling. In particular, we show how

the bounds and expectations can be transformed without requiring knowledge of the probability

density functions originally used to compute them. Throughout the following sections, a prime is

used to denote the updated value of a variable, e.g., G′
j is the new value of Gj .

3.4.1 Scaling a model

We first consider how a model can be scaled by a uniform scale factor s about the origin. In-

troducing scaling into the matrices is undesirable, since it limits the choice of file formats and

rendering systems (e.g., Doom III’s model format represents transformations compactly using

quaternions [Henry, 2005]). Instead, we modify the coordinates of the vertices to achieve the same

effect. Specifically, we set pj
′ = spj and Gj

′ = sGj , and leave the remaining parts unchanged.

Expanding the animation space equation gives

v′ = G′p′ =
∑

G′
jp

′
j =

∑

(

G′
j p′

j + G′
j p′

j

)

=
∑

(

sGj pj + sGj pj

)

= sv.

(3.29)

Note that since we do not modify pj , we have v′ = v.

Now observe that
sGφ(j) + sGφ(j)Lj = sGj

= G′
j

= G′
φ(j) + G′

φ(j)L
′
j

= sGφ(j) + Gφ(j)L
′
j .

(3.30)

In order to satisfy this we must have L′
j = sLj ; that is, the translation part is scaled by s. The

linear parts of the Gj ’s do not change, so L′
j = Lj .

Finally, we must adjust the expectations and bounds. Since expectation is a linear map, E[L′
j] =

E[Lj] and E[L′
j] = sE[Lj]. Now let E[GT

i Gj] = (A B
C D), where A is 3 × 3, B is 3 × 1, C is 1 × 3

29

3.4. TRANSFORMING A MODEL CHAPTER 3. ANIMATION SPACE

and D is a scalar. Then

E[G′T
i G′

j] = E









G′
i

T
G′

j G′
i

T
G′

j

G′
i
T
G′

j G′
i
T
G′

j + 1







 =

(

A sB

sC s2(D − 1) + 1

)

. (3.31)

The bounds are simple to modify. There are no changes to the linear parts, so the largest singular

values are unchanged. The translation parts of each bone are scaled by s, and so the bounding

spheres for the translations must be similarly scaled.

3.4.2 Rotating and translating a model

Next, we consider how to rotate and translate a model by a matrix M . Note that any transfor-

mation in which scaling is uniform can be decomposed into a pure scale followed by a rotate-and-

translate. Since we wish to make the change in model-space, we cannot apply any change to the

root. However, we can apply M to the bones immediately below the root, setting L′
j = MLj

for all bones j that are children of the root. This has the effect of making G′
j = MGj for every

non-root bone. We thus set p′
0 = Mp0 to account for the transformations on vertices that are

influenced by the root, giving

v′ = G′
0p

′
0 +

b−1
∑

j=1

G′
jp

′
j = Mp0 +

b−1
∑

j=1

MGjpj = M



G0p0 +

b−1
∑

j=1

Gjpj



 = MGp = Mv. (3.32)

Updating E[Lj] and the bounds is simple: E[L′
j] = ME[Lj] for sub-root bones, the 2-norms of

Lj do not change, and the translation bounding sphere must be transformed by M for sub-root

bones. Updating E[GT
i Gj] is less trivial. Let MT M = (I B

BT C
) where B is a 3× 1 matrix and C is

a scalar; the top-left portion is the identity because M is a rigid transformation. Then for i, j > 0,

G′T
i G′

j = GT
i MT MGj

=

(

Gi
T

0

Gi
T 1

)(

I B

BT C

)(

Gj Gj

0T 1

)

=

(

Gi
T

0

Gi
T 1

)(

Gj Gj + B

BT Gj BT Gj + C

)

=

(

Gi
T

Gj Gi
T
Gj + Gi

T
B

Gi
T Gj + BT Gj Gi

T Gj + Gi
T B + BT Gj + C

)

= GT
i Gj +

(

0 Gi
T
B

BT Gj Gi
T B + BT Gj + C − 1

)

.

(3.33)

If instead i = 0, j > 0 then G′T
i G′

j = MGj , and similarly for i > 0, j = 0.

In order to evaluate Equation (3.33), we need the expected values of Gj for each j. But Gj = GT
0 Gj ,

so E[Gj] = E[GT
0 Gj], which we already have for the original model.

30

CHAPTER 3. ANIMATION SPACE 3.5. TRANSFORMATION OF NORMALS

3.5 Transformation of normals

Our formulation of character animation poses a unique challenge in correctly computing normals.

For a static model, it is well known that normals should be transformed by the inverse transpose

of the matrix used for transforming vertices [Turkowski, 1990]. That is, if v = M v̂ then

n = M
−T

n̂. (3.34)

For SSD a similar solution is often employed: the SSD equation is regrouped as v = (
∑

wjGjĜj

−1
)v̂

and so the transformed normal is computed as

n =
(

∑

wjGjĜj

−1
)−1

n̂. (3.35)

This equation is only correct in regions where the weights are constant, although it is possible to

correct it using terms involving derivatives of the weight fields [Merry et al., 2006].

SSD defines skinning as a deformation of a 3D surface (the rest pose), so the idea of a normal is

well-defined. Animation space, however, defines skinning as the projection of a surface in a higher-

dimensional space, where a normal vector is not well-defined. We could choose one of the many

vectors for which the L2,2 inner product (Section 3.3.2) with tangent vectors is zero; however, this

inner product gives only the expected dot product in 3D, so this vector would not be guaranteed

to be normal to the surface in all poses, and furthermore, it would be difficult to control whether

it pointed into or out of the surface.

A better approach is to note that the skin is a 2D surface in animation space, and hence has a

tangent plane at every point at which it is smooth. The linear animation projection will transform

this plane into a plane in 3D, which will be tangent to the projected surface. The desired normal

is thus perpendicular to this plane.

We implement this approach by storing with each sample point (vertex for per-vertex lighting,

or texture sample for per-pixel lighting) a pair of animation-space vectors s and t, which are

tangent to the surface at that point. For numerical stability, we choose them to be orthonormal

with respect to the L2,2 inner product. During animation, we apply animation projection to both

vectors, and take the normalised cross product of the results as the normal. Note that since {s, t}
spans the animation-space tangent plane, {Gs, Gt} will span the 3D tangent plane. It follows

that the cross product will be non-zero, and the normal well-defined, except where animation

projection collapses the tangent plane to a line or a point. This can only happen in pathological

situations which do not correspond well with the real world, such as surface self-intersection.

Computing good animation-space tangent planes is surprisingly challenging. We defer a discussion

of the approaches we have used until Section 4.3.

31

3.6. SUMMARY CHAPTER 3. ANIMATION SPACE

3.6 Summary

• We have defined animation space as a 4b-dimensional homogeneous space, together with a

pose-dependent linear projection that maps it to 4D homogeneous space. Animation-space

vectors are the difference between two points in animation space, and the projection operator

maps them to 3D vectors.

• Animation space is a generalisation of skeletal subspace deformation (SSD) and a speciali-

sation of multi-weight enveloping (MWE).

• We have developed an L2,2 norm which measures the root-mean-squared length of an animation-

space vector after projection (across all poses), together with a compatible inner product,

which depend on both the structure of the skeleton and the probability distribution of the

joint configurations. However, the inner product space thus defined generally has fewer than

4b− 1 true dimensions, due to the presence of null vectors in animation space that have no

effect on skinning.

• We have also developed an L2,∞ norm which provides a guaranteed bound on distance in

any pose. This norm also depends on the skeletal structure and range of motion, but not on

the probability distribution.

• We have shown that any non-shearing global transformation (i.e., a rigid transformation

together with uniform scaling) may be absorbed into the model, and it is not necessary to

store the original probability distributions in order to update the metrics.

• We have described (at a high level) how to compute normals. While our method is expensive

(requiring two animation projections), it is also accurate, unlike the majority of methods

which make the hidden and incorrect assumption that the transformation matrix will be

locally constant.

32

Chapter 4

Model creation

Chapter 3 covered the underlying theory of animation space, in which we showed that it has two

primary advantages:

(a) It provides a unifying framework for analysing the large body of existing SSD-based models

and tools.

(b) It is more general than SSD, allowing for models that are more accurate and realistic. There

are many models that cannot be represented with SSD that can be represented with animation

space.

The first aspect has immediate benefit, and in subsequent chapters we consider some applications

of the framework. However, in order to realise the full potential of animation space, we must

consider how new models may be created without the restrictions of SSD. As is generally the case

with a more general framework, the extra degrees of freedom come at the price of ease of use. The

following sections examine some methods for creating an animation-space model that are practical

to use.

In Section 4.1, we consider the problem of generating an optimal animation-space model, given a

set of example poses that we wish to match. Section 4.2 considers a less powerful but also less

onerous method: a coarse SSD model is refined by subdivision in animation space. Finally, in

Section 4.3 we describe several methods for computing tangent planes to the discrete mesh.

4.1 Fitting models to a database of examples

SSD models tend to be modelled by the user in a modelling package. The rest pose of the model

is built, then weights are “painted” onto the surface. This is a tedious and frustrating process,

as setting weights only indirectly controls vertex positions. Mohr et al. [2003] have developed an

authoring tool that allows vertices to be directly manipulated in posed positions, but the modelling

is still all done by hand. In animation space, it is not practical to directly assign a p vector to

33

4.1. FITTING MODELS CHAPTER 4. MODEL CREATION

each vertex, because there are too many degrees of freedom, and because the intuitive relationship

between SSD weights and “amount of influence” is lost. Thus, some other modelling technique is

necessary to take full advantage of the extra degrees of freedom that are available.

In the last few years there has been interest in fitting a model to a set of example poses. Example

poses can come from a variety of sources, such as laser range scans, high-end animation (e.g., a

physically-based model), or an artist. Wang and Phillips [2002] use a modified linear solver to fit

their multi-weighted enveloping model. Mohr and Gleicher [2003b] use a bilinear solver to fit an

SSD model, while James and Twigg [2005] take the rest positions as given and solve a non-negative

least-squares problem to compute the weights.

All of these fitting schemes have two initial requirements: the example meshes must be in corre-

spondence (i.e., each vertex in one mesh is associated with a particular vertex in the other meshes),

and a skeleton, or at least a set of bone coordinate frames, must be known along with its associated

pose for each of the examples. Establishing correspondence is a separate problem that we do not

address; refer to Section 2.4.1 for existing methods.

The linearity of animation space makes fitting a relatively simple least-squares problem. Consider

a single vertex, and a set of examples with poses G1, G2, . . . , Gn and corresponding vertex positions

v1,v2, . . . ,vn (we use superscripts to distinguish G1, an example of G, from G1, a component of

G). If the vertex has position p in animation space, then we aim to satisfy















G1

G2

...

Gn















p =















v1

v2

...

vn















. (4.1)

In general this may be an over-constrained problem, so instead we minimise the objective function

E(p) =

n
∑

k=1

∥

∥Gkp− vk
∥

∥

2

2
. (4.2)

In practice, however, this will lead to over-fitting (the resulting model will fit well to the example

poses, but will not generalise to new poses). Furthermore, it is likely that every bone will influence

every vertex, which will make it unusable for real-time rendering. In the following subsections we

address these issues.

4.1.1 Influence sets

Over-fitting tends to create spurious influences, where moving a bone in one part of the body has an

effect in a completely separate part of the body, simply because this produces a better fit. This is

usually avoided by limiting the bones influencing a vertex to a pre-defined set. Wang and Phillips

[2002] require the user to paint an influence map onto the surface to establish where influences

may exist for each bone; Mohr and Gleicher [2003b], Kry et al. [2002] and James and Twigg [2005]

34

CHAPTER 4. MODEL CREATION 4.1. FITTING MODELS

automatically determine influences by looking for correlations between joint movement and vertex

movement in the examples. Either of these approaches can be used for animation space; we have

used manually designated influence sets in our implementation.

4.1.2 Regularisation

Regularisation is a common method for preventing over-fitting [Wang and Phillips, 2002]. Equa-

tion (4.2) is modified to take the form:

E′(p) =
n
∑

k=1

∥

∥Gkp− vk
∥

∥

2

2
+ λ ‖p‖22 . (4.3)

The regularisation parameter λ is usually chosen to be much smaller than the other coefficients, so

that it has little effect when p is properly determined, but prevents p from becoming unnaturally

large when it is under-determined.

The use of influence sets introduces a characteristic artefact that is not fixed by this form of

regularisation. Vertices at the boundary of an influence set may receive a large influence from the

associated bone in order to obtain a good fit, while neighbouring vertices outside the influence

set receive no influence at all. When the model is placed into new poses, this often manifests as

a discontinuity, such as a shearing effect in a limb (see the neck in Figure 8.3(a) for an example

of this shearing). Wang and Phillips [2002] address this by adjusting the relative weights of the

fitting and regularisation terms to penalise large influences near the boundary (this requires a

smooth user-specified influence map).

We address discontinuities by penalising large jumps between neighbouring vertices. Unfortu-

nately, this means that we can no longer solve for each vertex individually, but must solve for

them simultaneously. The objective function becomes

E′′(p1, . . . ,pV) =
V
∑

i=1

n
∑

k=1

∥

∥Gkpi − vk
i

∥

∥

2

2
+ δ

E
∑

j=1

1

ℓj

‖pj,1 − pj,2‖22 , (4.4)

where i runs over the vertices and j runs over the edges of the model, and k runs over the examples,

as before. pj,1 and pj,2 are the animation-space positions at the end-points of edge j, and ℓj is

an estimate of the length of edge j (computed as the average length in the example meshes). The

user specifies a value for δ, which weights the relative importance of continuity and closeness of

fit.

Since we have used a Euclidean measure throughout, the function is not scale-invariant. In par-

ticular, w components in animation space are scale-invariant while the other components are not.

To address this, we initially transform the models so that an axis-aligned bounding box around

the reference model has a maximum side length of 1 and is centred at the origin. It is tempting

to use the L2,2 norm (which elegantly handles the issue of scale invariance), but, unfortunately,

the directions which are under-determined are precisely those to which the L2,2 norm assigns a

35

4.1. FITTING MODELS CHAPTER 4. MODEL CREATION

low weight, because they are unlikely to contribute to the animated position. As discussed before,

positions in animation space may not be unique (see Appendix B.3) and so this is more than just

a theoretical concern.

Optimising all vertices simultaneously rather than one at a time makes it essential to exploit spar-

sity in the matrix system. We have used LSQR [Paige and Saunders, 1982], a variant of conjugate

gradients, as implemented by the Meschach library [Stewart and Leyk, 1994] to efficiently solve

this large but sparse system. Meschach allows the matrix to be represented implicitly by provid-

ing callbacks to compute Ax and AT x given x, and we have exploited this to reduce the memory

required. The implementation uses O(V n + I) memory to solve for V vertices, n example meshes

and I variables; we show in the results that, in practice, the time and memory requirements are

quite reasonable.

4.1.3 Homogeneous weight

The fitting process does not provide any guarantee that the resulting position p will satisfy p = 1;

in fact, the regularisation terms work against this. To guarantee p = 1, we choose some bone k

in the influence set and substitute

pk = 1−
∑

j 6=k

pj

into the linear equations before eliminating pk. The value of pk is determined from this equation

after solving for the rest of p. Note that here pj is the 4-element subvector corresponding to bone

j in position p, whereas in equation (4.4), pi is the animation-space position of vertex i.

4.1.4 Skeleton fitting

So far we have assumed that the skeleton (i.e., G) is known for all the example poses, but this may

not be the case. For ease of implementation, we have used a method that is partially user-guided

to determine a skeleton and associated poses. There are also fully-automated techniques available;

refer to Section 2.4.2.

In our system, the user creates a skeleton, and marks a set of core vertices associated with each

bone. The user-drawn skeleton is used only to provide a hierarchy and bone-vertex associa-

tions — the geometry is almost entirely ignored. From here the approach is similar to that of

James and Twigg [2005]. For each bone and each example, a least-squares optimisation is per-

formed to find the affine matrix that best transforms the core vertices to fit the positions in this

pose. Let the core vertices have homogeneous positions v̂1, . . . , v̂n in the reference pose, and

v1, . . . ,vn in the pose under consideration; and let M be the matrix for which we will solve. We

36

CHAPTER 4. MODEL CREATION 4.1. FITTING MODELS

find the least-squares solution to the set of equations









v̂T
1

...

v̂T
n





















M11 M21 M31

M12 M22 M32

M13 M23 M33

M14 M24 M34













=









v1
T

...

vn
T









. (4.5)

For the models we have dealt with, scaling and shearing effects appear to result from over-fitting

rather than properties of the models, and we eliminate them. We can apply the polar decomposition

[Golub and Van Loan, 1996] to write M = RS, where R is orthogonal and S is symmetric. We

replace M by R, which is the rotation part of the transformation [James and Twigg, 2005]. In

some cases we find that R is a reflection rather than a rotation. Usually this occurs because the

least-squares problem is ill-conditioned, for example, because all the core vertices lie close to a

plane. In this case, we negate the smallest eigenvalue of S and recompute R. Having modified the

linear part of M , the translation part may no longer be optimal. We perform another least-squares

optimisation to update just the translation part of M .

We initially tried to preserve the bone lengths marked by the user and modified only the rotation;

however, we found that it was difficult to manually determine the proper lengths, and incorrect

lengths would over-constrain the problem and lead to poor fits.

This method solves for the matrix required to move a bone from the reference pose to the target

pose, but it does not determine the animation projection matrix Ĝ for the rest pose. The rotations

of the Ĝj matrices are irrelevant, but the translations determine the end-points of the bones. We

initially used the user-provided skeleton to control this, but once again we found that the joints

might be poorly placed and would lead to large translation components in the joint matrices.

Apart from being anatomically infeasible, this would complicate calculation of the L2,2 metric, as

well as make the animator’s task more difficult by making it necessary to control both rotations

and translations.

To mitigate this problem, we compute a new matrix Ĝ that minimises the variance in the transla-

tion components of each joint matrix. Let Mp
j be the matrix that moves bone j from its reference

position to its position in pose p (the matrix labelled M above). Since we are free to choose

the linear part of Ĝj , we set it to the identity. The free variables are thus only the translation

components; let us denote them as hj = Ĝj . In pose p, we have Gp
j = Mp

j Ĝj and thus

Lp
j = (Gp

φ(j))
−1Gp

j

= (Mp

φ(j)Ĝφ(j))
−1Mp

j Ĝj

= Ĝ−1
φ(j)[(M

p

φ(j))
−1Mp

j]Ĝj

= Ĝ−1
φ(j) + Ĝ−1

φ(j)(M
p

φ(j))
−1Mp

j + Ĝ−1
φ(j)(M

p

φ(j))
−1Mp

j Ĝj

= −hφ(j) + (Mp

φ(j))
−1Mp

j + (Mp

φ(j))
−1Mp

j hj .

(4.6)

37

4.2. SUBDIVISION SURFACES CHAPTER 4. MODEL CREATION

We want to make the values of Lp
j as close to equal as possible, where j is held fixed and p ranges

over the example poses. This is achieved by minimising

n
∑

p=1

(Lp
j −mj)

2,

where mj is a free variable that will equal the mean of the target set when the function above is

minimised. We solve for each hj in turn, working down the tree; for each j we solve the linear

least-squares system with the free variables hj and mj . Note that this gives the same result as

a simultaneous optimisation over all the variables, because any change to hφ(j) is cancelled by a

corresponding change to mj without affecting hj .

Unfortunately, the solution may not always be well-determined. This is particularly true for joints

that rotate around only one axis, in which case the centre of rotation may be placed anywhere

along this axis. For this reason, we introduce an extra regularisation equation, λ(hj − uj) = 0,

where λ is a regularisation weight (10−3 in all our results) and uj is the original joint position

specified by the user. This is the only place in which the geometry of the user-specified skeleton

is used.

4.2 Subdivision surfaces

Subdivision surfaces are an extension of parametric surfaces to domains of arbitrary topology.

They are widely used in character animation, having been popularised by DeRose et al. [1998].

There are many subdivision schemes (Catmull-Clark [Catmull and Clark, 1978], Loop [1987] and√
3 [Kobbelt, 2000] being amongst the more popular), but they all have the same general approach:

a smooth surface is defined by a coarse base mesh and a subdivision rule that defines how to refine

the mesh. Each subdivision step splits the faces into multiple smaller faces, after which the

positions are smoothed. The subdivision surface is the limit that is approached as this subdivision

process is repeated over and over. We will not consider any particular subdivision scheme here,

but rather the general properties of the subdivision process.

Depending on the application, subdivision may be done as a pre-process or on-the-fly. Shiue et al.

[2005] have shown how a programmable GPU can be used to do hardware-accelerated subdivision

on the fly, but the method is quite complex. On-the-fly subdivision with geometry shaders is

relatively straightforward on fourth-generation programmable hardware such as the GeForce 8

series [Blythe, 2006], but at present this hardware has a very small installed base. An additional

advantage of pre-processed subdivision is that subdivision then becomes a potential modelling

tool: an artist may design a coarse approximation, apply subdivision to smooth edges, and then

create the fine detail.

We now show that subdivision can be applied as a pre-process within animation space. This

produces the same results as run-time subdivision of the animated 3D mesh, in contrast to SSD,

where subdividing the rest-pose control mesh does not produce the same results as run-time

38

CHAPTER 4. MODEL CREATION 4.3. TANGENT PLANES

subdivision. It is possible to do this in animation space because subdivision schemes define the

position of new vertices as affine combinations of the original ones. Let

V =
(

v1 · · · vn

)

be the matrix containing all the positions in the control mesh, and let V ′ be the corresponding

matrix after a subdivision step (for some arbitrary numbering of the vertices). Then there is a

subdivision matrix S such that V ′ = V S [Umlauf, 2005]. Critically, the matrix S depends only on

the connectivity of the mesh, and not the positions. Now let

P =
(

p1 · · · pn

)

(4.7)

be the equivalent matrix of animation space positions, and let P ′ = PS — that is, the result of

applying a subdivision step directly in animation space. If we apply animation projection to P ′ we

get GP ′ = GPS = V S = V ′, which is the same as applying subdivision to V in three dimensions.

4.3 Tangent planes

In Section 3.5 (page 31), we explained how we use tangent planes to model the normals of the

animated model. In this section we will present several techniques to generate tangent planes.

The underlying difficulty is that there is no obvious method to take linear combinations of planes.

Geometric algebra [Dorst and Mann, 2002] provides a well-defined linear combination, but in

more than three dimensions the result is not necessarily a plane, but a more general element of

the algebra. Another possibility is to take linear combinations of the basis elements, but this is

unsatisfactory as the result depends on the choice of basis. In practice we have found that this

leads to unsightly lighting artefacts, unless the bases are roughly aligned with each other. We

use this for run-time interpolation across faces or between texture samples for efficiency (where

we have taken care to ensure approximate alignment), but for off-line pre-processing we prefer

basis-invariant techniques.

4.3.1 Fitting tangent planes to geometry

With static models, it is common practice to estimate the normal at a vertex by averaging the

normals of the incident faces. We can extend this idea to estimate a tangent plane at a vertex from

the planes of the incident faces. We use geometric algebra to define a distance metric between

planes, and solve for the tangent plane that minimises the total distance to the given planes. The

details of the algorithm may be found in Appendix A.1.

39

4.3. TANGENT PLANES CHAPTER 4. MODEL CREATION

4.3.2 Fitting tangent planes to SSD normals

If our animated model was created using SSD, then it may have normals in the rest pose. Fur-

thermore, these normals may contain more accurate information than can be determined from the

geometry alone (they may, for example, control the apparent sharpness of a crease). It would be

useful to create tangent planes that mimic the behaviour of the SSD normal, so that SSD models

can be used with our system and produce the same results.

Fortunately, it is possible to choose a tangent plane that produces identical results to Equation

(3.35) on page 31. Let us pick some vertex with rest-pose position v̂. SSD transforms v̂ by a 4×4

matrix. Referring to equation (2.2), this is the matrix
∑b−1

j=0 wjGjĜ
−1
j , which we will refer to as

M . Now let ŝ and t̂ be orthogonal rest-pose tangents to the surface at v̂ (i.e., both tangents are

orthogonal to the normal stored in the model). SSD transforms the normal by M−T , which is

equivalent to transforming the tangents by M and then taking their cross product1. Let s = M ŝ

and t = M t̂ be these dynamic model-space tangents.

When we first introduced our animation scheme, we did it by separating M into its dynamic

portion (Gj) and static portion, and merging the static portion with the vertex. We can apply

the same method to the tangents, defining q in terms of ŝ as

q =









w0Ĝ
−1
0 ŝ

...

wb−1Ĝ
−1
b−1ŝ









, (4.8)

with r defined similarly in terms of t̂. Then

Gq =

b−1
∑

j=0

Gjqj =

b−1
∑

j=0

GjwjĜ
−1
j ŝ =

b−1
∑

j=0

wjGjĜ
−1
j ŝ = s, (4.9)

and similarly Gr = t. It follows that the tangent plane spanned by q and r has the desired

properties.

Merry et al. [2006] have shown that for SSD, tangents should more accurately be transformed by

the linear component of the matrix

N =

b−1
∑

j=0

wjGjĜ
−1
j + GjĜ

−1
j v̂

∂wj

∂v̂
. (4.10)

We can adapt Equation (4.8) by setting

qj = wjĜ
−1
j ŝ + Ĝ−1

j v̂
∂wj

∂v̂
ŝ, (4.11)

1The length is not the same, but only the direction of a normal is relevant.

40

CHAPTER 4. MODEL CREATION 4.4. SUMMARY

so that

Gq =

b−1
∑

j=0

Gjqj =

b−1
∑

j=0

wjGjĜ
−1
j ŝ + GjĜ

−1
j v̂

∂wj

∂v̂
ŝ = N ŝ. (4.12)

4.4 Summary

While animation space provides a linear framework for analysing SSD models, this in itself does not

overcome the flaws in SSD. We have demonstrated two practical methods for generating models

that are more general than those possible with SSD: fitting to a set of examples, an approach that

is already well-established with other animation frameworks; and subdivision of an existing SSD

model, a common run-time method that animation space allows during modelling. We have also

shown that although computing normals with animation space is relatively expensive, it is also

more general and can emulate correct transformation of SSD normals [Merry et al., 2006] with no

extra cost.

41

4.4. SUMMARY CHAPTER 4. MODEL CREATION

42

Chapter 5

Parametrisation

In this chapter, we will introduce the concept of a parametrisation, review some existing methods,

and then describe our implementation. Specifically, we adapt an existing method to use the

L2,2 metric of animation space. This makes it possible to produce parametrisations that balance

distortion across the probability distribution of poses.

5.1 Background

For many applications, it is convenient to have a 2D parametrisation of a mesh. A parametrisation

is a function that maps the surface of a mesh to a subset of R
2, and provides a convenient way

to sample and store a function defined on the mesh. The most common application is texture-

mapping: sampling mesh colour and storing it in an image, which can then be mapped back to

the surface in hardware. More recently, parametrisations have been used to store other values

such as position [Gu et al., 2002] and normals [Cohen et al., 1998]. Storing geometric properties

in a two-dimensional domain simplifies various algorithms; for example, Briceño et al. [2003] use

video-compression methods to compress an animation.

Since the topologies of most meshes are not directly embeddable in the plane (even a sphere cannot

be embedded), parametrisation schemes divide the mesh into a number of charts. These charts are

usually topological discs, and thus easily embedded in the plane. There has also been recent work

in parametrising over domains with spherical topology (e.g., Praun and Hoppe [2003]), which

can be done without cuts for genus-zero meshes. Mappings to a cube are particularly useful,

as hardware-based cube-mapping is now widely available. A weakness of these techniques is

their limited control over texture stretch. Tarini et al. [2004] address this with the polycube, a

generalisation of cube mapping. However, polycube-maps are expensive to render (the authors

use over 200 pixel shader instructions per pixel). On the whole, non-planar parametrisations are

significantly more complex, and we restrict our survey below to plane mappings.

43

5.1. BACKGROUND CHAPTER 5. PARAMETRISATION

Some desirable properties of a parametrisation are:

Few charts. This is particularly important for level-of-detail schemes, which are unable to sim-

plify features that cross chart boundaries [Sander et al., 2001].

Low stretch/length preservation. When a texture map is used to sample a function over a

mesh, it is desirable to have a more or less uniform sampling rate in all directions and over

all regions of the mesh (otherwise some regions will be either over- or under-sampled).

Conformality/angle preservation. For some applications, particularly texturing with a pre-

defined pattern, such as wood, it is important that shear and anisotropic stretch are min-

imised, which is the case for an angle-preserving map.

One-to-one. Without a one-to-one mapping, several points on the mesh can map to the same

point in the parametric domain, and so the inverse mapping becomes ambiguous.

In our implementation, the goal is to produce parametrisations that can be used to sample colour

and normal data from a character model, to be used in conjunction with the level-of-detail method

discussed in Chapter 6. This requires a one-to-one parametrisation, uniform stretch and few charts.

Conformality is not a requirement, other than to the extent that non-conformal maps will have

non-uniform stretch.

Parametrisation is normally separated into three steps: segmentation of the mesh into charts,

flattening of those charts onto the plane, and packing of the flattened charts into a rectangular

domain. Each step is discussed separately below. Global methods, such as those of Gu and Yau

[2003] and Khodakovsky et al. [2003], avoid the seams introduced by segmentation, but can have

very high stretch. Tapering elements (such as limbs) tend to be badly parametrised, making

such methods inappropriate for character animation. Kharevych et al. [2006] address this by

manually inserting conical singularities into the parametrisation domain. These singularities are

later flattened by introducing cuts, but unlike the cuts used in other global schemes, these are

determined only after the mapping is computed and hence have no effect on properties such as

stretch and conformality.

5.1.1 Segmentation into charts

The first step is to cut the surface into disc-like regions, referred to as charts. The goal is to create

roughly planar regions, so that the charts can be flattened without too much distortion. Although

it is sufficient for a region to be developable1 rather than planar, developable regions are difficult

to identify and so the schemes discussed below search for planar regions.

Eck et al. [1995] grow their charts from a number of seed points: each face is assigned to the chart

corresponding to the nearest seed. If this produces too few seeds, then more seeds are added and

the process is restarted. Lévy et al. [2002] use a similar approach, but modified to place chart

boundaries in areas of high curvature.

1A developable surface is one that has zero Gaussian curvature and hence can be flattened without stretching,
e.g., a cylinder.

44

CHAPTER 5. PARAMETRISATION 5.1. BACKGROUND

Sander et al. [2001] grow charts using a bottom-up merging approach. Initially, every face of the

mesh is a chart, and charts are iteratively merged. Potential merges are ranked by compactness

(measured by the length of the perimeter), and by planarity (measured by the distance to an

approximating plane). The approach is based on earlier work by Garland et al. [2001]. This

earlier work uses a discrete metric, summing the squared distance of each vertex from the plane,

while Sander et al. [2001] integrate the squared distance of every point on the surface from the

approximating plane. Since the surface is piecewise linear, this can be computed without resorting

to numerical integration. The advantage of the continuous scheme is that it is independent of the

resolution of the mesh, while the discrete scheme will over-weight densely triangulated regions.

Although used for a different application (shape approximation), Cohen-Steiner et al. [2004] use

k-means clustering to identify a fixed number of charts. They employ both the mean-squared

distance metric discussed above, as well as a metric that sums the squared error of the normals.

The latter produces better results, as it penalises charts in which some triangles are “flipped”

relative to the others.

5.1.2 Flattening charts

Somewhat confusingly, the process of flattening a single chart onto the plane, by assigning para-

metric coordinates to each vertex, is also known as “parametrisation”; in the interests of clarity,

we will refer to it as “flattening” instead. There is a large body of literature on flattening, which is

reviewed by Floater and Hormann [2004]. Rather than giving an exhaustive list of the algorithms

proposed, we will identify several categories and reference a few examples in each.

A common property of all the algorithms we consider is that they depend only on intrinsic prop-

erties of the surface, i.e., those that would be apparent to a two-dimensional “inhabitant” of the

surface. Since they are independent of the embedding, they can be adapted to animation space

simply by replacing the Euclidean metric with our L2,2 metric.

Linear methods

The majority of methods describe the parameters of each vertex in terms of a linear combination

of its one-ring neighbours. The algorithms vary by the choice of linear weights and the handling

of boundary conditions. Least squares conformal maps [Lévy et al., 2002] derives weights from an

energy function that measures deviation from conformality. Desbrun et al. [2002] generalise this

to a family of methods which includes a method which is locally area-preserving. Floater [2003]

uses a slightly different set of weights based on the Mean Value Theorem for harmonic functions.

Angle-based methods

Some recent work uses non-linear methods that minimise energies that directly measure the change

in angles. Angle-based flattening [Sheffer and de Sturler, 2000] solves for the angles in each flat-

45

5.1. BACKGROUND CHAPTER 5. PARAMETRISATION

tened triangle using constraints to ensure that the triangles do not flip and that it will be possible

to consistently choose sizes for the triangles. Kharevych et al. [2006] instead solve for the angles

between the circumcircles of triangles; the motivation is that this property is preserved by Möbius

transformations, which are conformal.

Length-based methods

Some earlier work on parametrisation used spring energy [Eck et al., 1995] or multi-dimensional

scaling [Zigelman et al., 2002] to minimise changes in edge length. This avoids the large range of

scales that can typically be produced by conformal methods, but unfortunately the parametrisa-

tions are not guaranteed to be one-to-one.

Sander et al. [2001] consider uniformity directly, with their texture stretch metric. They define L2

and L∞ measures of texture stretch in terms of the Jacobian of the parametrisation. They also

adjust the parametrisation once a progressive mesh has been created, to optimise both texture

stretch and texture deviation (deviation of the texture between levels of detail). The optimisation

is non-linear, so they use an iterative approach of moving one vertex at a time to a better position.

Because the texture stretch of a flipped triangle is defined to be infinite, all the triangles in an

optimal solution will be correctly oriented. However, if the initial estimate has too many flipped

triangles, the optimisation may fail to converge.

Later work by Sander et al. [2002] defines a metric that is more appropriate when the function to

be encoded is known, giving more parameter space to portions of the surface where the function

changes more rapidly. In the case of a uniform function, the metric degenerates to the stretch

metric discussed above. The non-linear optimisation is improved using a multi-resolution approach.

Boundary handling

Many earlier techniques require that the boundary of the patch be pre-specified, usually as a

convex region. This can introduce areas of high distortion. Several later papers [Lévy et al.,

2002, Sheffer and de Sturler, 2000, Sander et al., 2002] determine the boundary as part of the

algorithm, usually requiring only two points to be fixed to determine position and orientation.

Kharevych et al. [2006] go further by providing optional control of the exterior angle at each

boundary vertex.

5.1.3 Packing charts into an atlas

The flattening step maps each surface chart into a polygon in 2D parameter space. Texture

mapping hardware expects data in a regularly sampled rectangle, so it is necessary to place all

the polygons into a rectangular region with minimum wasted space. This problem is known to

be NP-hard [Sander et al., 2001]. Note that although the amount of available texture memory is

46

CHAPTER 5. PARAMETRISATION 5.2. SEGMENTATION

rapidly increasing, a tighter packing allows more detail to be represented with the same memory

footprint, and may also have benefits for memory bandwidth and caching.

Sander et al. [2001] use a simple rectangle-packing heuristic. Each polygon is first placed inside

a bounding rectangle, and the bounding rectangles are dropped in decreasing order of height,

alternately left-to-right and right-to-left. In their later work [Sander et al., 2002], this is exploited

in the parametrisation step by encouraging charts to grow into rectangular regions2. Lévy et al.

[2002] improve upon this with their “tetris” heuristic: the texture space is filled bottom-up, with

each polygon inserted so as to waste the minimum space between its bottom and the “skyline” of

the already placed textures.

5.2 Segmentation

Our segmentation algorithm is similar to that of Sander et al. [2001] and Garland et al. [2001],

but uses a metric more suitable for characters. These hierarchical schemes start by making every

triangle into a separate chart, and adjacent charts are then merged to create larger charts. The

choice of which charts to merge is driven by two factors:

1. topological constraints;

2. a cost metric.

In our case (as in that of Sander et al. [2001]), it is preferable that charts should be topologically

equivalent (homeomorphic) to discs. We thus disallow any merges that create charts that are not

discs. It is also possible to allow slightly more general charts if one only requires a continuous

function mapping it to a disc; this corresponds to making a cut on the original mesh. For ex-

ample, an uncapped cylinder could be made into a single chart, by cutting it down its length.

We do not support these more general charts as they would have significantly complicated the

implementation.

The cost metric determines the order of merges. The algorithm is greedy, always applying the legal

merge with the lowest cost. In this it is very similar to edge collapses in a progressive mesh, which

apply the lowest-cost legal collapse — in fact, Garland et al. [2001] demonstrate that a merge is

very similar to an edge collapse on the dual graph.

5.2.1 Metric

Sander et al. [2001] use the following metric to determine the cost of a chart (the cost of a merge

is defined as the cost of the chart it produces):

• For any plane, the mean-squared distance of the chart to the plane can be evaluated.

• The chart cost is the minimum such distance over all possible planes.

2While this reduces conformality, it improves sampling rate.

47

5.2. SEGMENTATION CHAPTER 5. PARAMETRISATION

Figure 5.1: A sock. The plane indicated by the dashed line is close to the sock at every point, yet
the sock is far from planar.

(a) (b)

Figure 5.2: Our segmentation metric. (a) A planar chart, where the surface area is the same as
the area of the boundary. (b) A non-planar chart, where the surface area is much greater than
that of the boundary.

Their motivation is that a completely planar chart will have zero cost (because the best-fitting

plane will be the plane through the chart), while a highly curved chart will have a large mean-

squared distance from any plane. Garland et al. [2001] proposed essentially the same algorithm

earlier; the difference is that Sander et al. evaluate mean-squared distance as an integral over the

surface, while Garland et al. only evaluate it at the vertices.

Unfortunately, this metric (which we will refer to as the “mean-squared distance” metric) has

a flaw that is particularly damaging when applied to character models. Consider a model with

limbs, and consider a chart that has the shape of a sock, i.e., a cylinder capped at one end (see

Figure 5.1). If the sock is long and narrow (as it would be for a limb), then it is reasonably

well approximated by a plane containing its axis. In the extreme case of a completely flattened

sock, it will be planar and have a cost of zero. However, it is impossible to flatten a sock without

introducing significant stretch. The problem is exacerbated by systems that aim for compact

charts by rewarding those with a short boundary.

There are two ways to address the “sock” problem: detection and prevention. Lévy et al. [2002]

try to detect socks after segmentation, and insert a cut to improve the parametrisation. This raises

new questions, such as the threshold at which to make the cut, and how the cut should be made.

We take a preventative approach, by using an alternate metric that heavily penalises sock-shaped

charts. Rather than adding an extra “sock-penalising” term to the existing metric (which would

then require a weight to be tuned by the user), we use a metric that better measures how unfolding

will stretch a mesh. It is equivalent to the L2,1 metric of Cohen-Steiner et al. [2004], but we derive

it in a different manner.

Consider first the special case of a chart with a planar boundary. The boundary can be considered

to be a polygon in this plane, with a well-defined area. If the chart itself coincides with this polygon

(Figure 5.2(a)), then the chart and the boundary polygon will have the same area. However, if

the chart is far from planar (Figure 5.2(b)), then the chart’s surface area will greatly exceed that

48

CHAPTER 5. PARAMETRISATION 5.2. SEGMENTATION

of the boundary. Thus, we can measure the planarity of the chart as

Earea =
surface area

boundary area
. (5.1)

If the chart boundary is not planar, then the area of the “boundary polygon” ceases to be well-

defined. Instead we define it as the largest possible area of the projection of the boundary onto

any plane. In fact, the area of the projected boundary is just the area of the projected mesh itself

(with flipped triangles having negative area). So, our generalised error metric is

Earea =
surface area

maximum projected surface area
. (5.2)

In three dimensions, this is quite simple to calculate. For each triangle i, let ni be the normal

to the triangle, scaled by its area. The area is then trivially ‖ni‖, while the area when projected

onto a plane with unit normal n is ni · n. The projected area of the whole surface is simply

∑

ni · n =
(

∑

ni

)

· n ≤
∥

∥

∥

∑

ni

∥

∥

∥ ,

and the maximum is achieved when n is parallel to
∑

ni. Thus,

Earea =

∑ ‖ni‖
‖∑ni‖

. (5.3)

It is also possible to perform the calculation in animation space, as described in Appendix A.1.

Since sock-like regions tend to remain sock-like under animation, working in animation space does

not usually improve the quality of the parametrisation, and in some cases can degrade it3. However,

it causes chart boundaries to align better to the joints, which is beneficial for simplification as

chart boundaries cannot be adjusted dynamically.

Sander et al. [2001] also aim to minimise a compactness term, which they define as

(perimeter)2

4π(area)
,

and which has a value of 1 for a circle. This rewards charts that have roughly circular boundaries.

Unfortunately, it also rewards sock-like charts, as they have a large area but a small boundary. A

smooth boundary is beneficial for a number of reasons, so we use a similar compactness term. To

avoid sock-like regions, we define ours as

(perimeter)2

4π(maximum projected area)
.

3We have not determined why degradation occurs, but it is most likely to be due to the chaotic effects of making
a choice between two merges with very similar costs.

49

5.2. SEGMENTATION CHAPTER 5. PARAMETRISATION

This metric depends only on the shape of the border, not the interior, and it cannot be less than

1. Our combined metric is defined as

Ecombined =
surface area + ρ(perimeter)2/4π

maximum projected area
, (5.4)

with ρ being the weighting factor for the compactness term.

The L2,1 metric of Cohen-Steiner et al. [2004] can be shown to be equivalent to ours (without the

compactness term), but is expressed differently (as the integral of squared errors in the normal).

We feel that our expression of the metric is more intuitive, and the modified compactness term is

novel.

5.2.2 Optimisation process

The metric Ecombined, as defined in equation (5.4), is scale-invariant. However, we would clearly

prefer bad charts to be smaller and good charts to be larger, so we define a metric for the entire

mesh as

Emesh =

∑

EiAi
∑

Ai

, (5.5)

where Ei is Ecombined for chart i and Ai is the surface area of chart i. Our optimisation process

greedily merges charts so as to minimise Emesh, considering only merges that leave all charts

with disc-like topology. Note that the denominator is constant and hence has no effect on the

optimisation itself; we have included it to make the metric scale-invariant and hence comparable

across models. The theoretical lower bound for the metric is 1 + ρ.

5.2.3 Edge straightening

The greedy merging of charts often leaves rather ragged boundaries. As explained in the next

section, it is desirable that the boundaries be straight. We follow Sander et al. [2001] in replacing

each boundary with the shortest possible route between the original corners, that does not intersect

other boundaries (see Figure 5.3).

There are some cases where straightening an edge leads to extremely poor results. This is usually

due to sock-like regions of the mesh, as shown in Figure 5.4. After each straightening, we recompute

the segmentation metric for the two charts adjoining the edge. If either new metric exceeds the old

by more than some user-specified ratio, the straightening is re-computed but with an additional

constraint: the straightened edge may only use those mesh vertices present on the original edge,

but it may “short-cut” some vertices (Figure 5.3(c)). This keeps the edge in essentially the same

place, but prevents any mesh triangle from sharing more than one edge with the boundary, as

occurs for the grey triangle in Figure 5.3.

50

CHAPTER 5. PARAMETRISATION 5.2. SEGMENTATION

(a) Original ragged boundary (b) Straightened boundary (c) Restricted straightening

Figure 5.3: Boundary straightening. The ragged boundary (a) is improved by replacing it with
the shortest path between the marked corner points (b). Note that the grey triangle in (a) touches
the boundary on two sides; if this boundary were mapped to a straight line in parameter space,
the triangle would become degenerate. If (b) causes either chart to become too curved, we use the
straightest path that uses only a subset of the original vertices, as shown in (c).

(a) Original boundary (b) Shortened boundary

Figure 5.4: Edge straightening and socks. The original segmentation (left) cuts the sock neatly
in half. After edge straightening (right) the cut is much shorter, but one chart covers most of the
sock.

51

5.3. FLATTENING CHAPTER 5. PARAMETRISATION

(a) Chart with straight parametric boundary (b) Chart with ragged boundary

(c) Simplified straight boundary (d) Simplified ragged boundary

Figure 5.5: Simplification and chart boundaries. On the left, a simplified version of the mesh
covers the same area in parametric space. On the right, the ragged boundary cannot be simplified
because it alters the coverage in parametric space.

5.3 Flattening

Once the charts have been created, we proceed to flatten them onto the plane. The conditions listed

in Section 5.1 depend only on the intrinsic properties of the mesh4, and not on any embedding.

It follows that any parametrisation scheme that depends only on these intrinsic properties can be

trivially adapted to work in animation space, using the L2,2 metric. Fortunately, all the flattening

methods discussed so far have this property.

Our parametrisation scheme is an implementation of least squares conformal maps [Lévy et al.,

2002], with some additional processing to make the result suitable for simplification. Least squares

conformal maps (LSCMs) have an advantage over several other schemes in allowing the boundary

to be solved, rather than pre-specified, and in particular it allows for non-convex boundaries.

When the charts themselves are far from circular, this may enable a better parametrisation (refer

to Section 5.1 for other schemes with this property).

Unfortunately, an arbitrary boundary in parameter space is undesirable when used with simplifi-

cation schemes. Simplification should not allow parts of parameter space to appear or disappear

from the model. Hence, boundary vertices can only be removed if they lie on a straight section

of boundary, on all charts on which the vertex lies (Figure 5.5). It is thus necessary to force the

parameter-space boundaries to lie straight whenever possible.

The LSCM algorithm allows for an arbitrary number of boundary vertices to be fixed in advance.

We use a first pass in which the minimum number (two) is fixed to determine the general layout,

and then pin all the boundary vertices in a second pass. The corners are left as is, while the edge

vertices are placed along straight lines between the corners, distributed by the lengths of the mesh

edges between them. This scheme can, however, fail for several reasons:

1. A chart may have only two corners with other charts. In this case, we introduce an artificial

corner, midway between the existing corners, as shown in Figure 5.6.

2. In the first pass, Lévy et al. [2002] have shown that the parametrisation is guaranteed to

4Those properties that could be measured by a Flatlander “inhabiting” the mesh

52

CHAPTER 5. PARAMETRISATION 5.3. FLATTENING

(a) (b)

Figure 5.6: Introduction of a third corner. (a) The central chart initially has only two corners
(black dots). (b) We introduce a third corner (red square) to facilitate boundary straightening.

(a) (b)

Figure 5.7: Forced triangle flips. (a) A chart that has been laid out with an unconstrained
boundary. The red dots mark points where three charts meet. (b) The boundary edges are pinned
to straight lines. This forces the grey triangle to flip over, and also to lie outside the chart.

be free of flipped or degenerate triangles. We have found that numerical instability may

lead to degenerate or marginally flipped triangles. To counter this, we follow all passes with

Sander et al.’s non-linear optimisation, which can also improve the overall quality of the

parametrisation [Lévy et al., 2002]. The implementation is discussed in Section 5.3.1.

3. In the second pass, there may be triangles that are forced to flip due to the boundary

pinning (especially triangles with all three vertices on boundaries — see Figure 5.7). If this

happens, then a third pass is done where the corners are instead placed around a unit circle

(distributed by the arc length), and the edge vertices are again placed along straight lines.

4. The third pass may also fail, particularly if there is a triangle whose vertices all lie along

the same boundary edge (since the pinning then forces this triangle to be degenerate). This

will not usually happen, because the chart edge straightening (Section 5.2.3) eliminates such

cases. However, the boundaries of holes in the mesh cannot be altered, and may cause this

type of failure. If the third pass fails, we introduce an extra corner, as shown in Figure 5.8.

We select the vertex whose sum of distances (in animation space) from the neighbouring

53

5.3. FLATTENING CHAPTER 5. PARAMETRISATION

(a) (b)

Figure 5.8: Insertion of an extra corner. (a) The original parametrisation (dashed) and the
straightened form (solid). (b) An extra corner is added to allow the straightened form to more
closely approximate the original.

corners exceeds the distance between those corners by the greatest amount. After adding

the corner, the algorithm restarts from the beginning.

We note that the last failure case is a possible area for future research. Currently, either all edges

are straightened, or none are. It should be possible to obtain partial straightening in the presence

of holes.

The steps above ensure that we will always have a parametrisation that is free from flipped or

degenerate triangles. However, this is not quite sufficient to guarantee a one-to-one parametri-

sation, because the boundary may self-intersect. After flattening, the boundary is searched for

self-intersections. If an intersection between two edges is found, we partition the chart into two

subcharts, and recursively apply the flattening algorithm to each. We use a crude heuristic to

perform the split: we perform a two-source breadth-first search to assign every face to one sub-

chart or the other, based on which of the two edges involved in the intersection is closer to the

face in question. Distance is measured as the minimum number of edges that must be crossed in

a path. Since each subchart will be connected and the original chart had disc-like topology, so

will the subcharts. We have found that this often fails to eliminate all self-intersections in the

first split, and so more splits than necessary are made. We have not attempted to improve the

splitting algorithm because these self-intersections are quite rare, and become even more so if the

initial segmentation produces good results.

5.3.1 Stretch optimisation

As discussed above, we follow LSCM with a non-linear optimisation to reduce the stretch. The

search is implemented essentially as described by Sander et al. [2001]: individual vertices are

adjusted by performing a line search along a randomly chosen direction. However, we found that

with suitable pre-computation it was possible to improve performance by 1–2 orders of magnitude

over a näıve implementation.

Let f be the function that maps parametric coordinates to geometric coordinates. The L2 texture

54

CHAPTER 5. PARAMETRISATION 5.4. PACKING

stretch of a triangle in a static model is defined as

√

σ2
1 + σ2

2

2
,

where σ1 and σ2 are the singular values of the Jacobian of f . Sander et al. [2001] show that

∂f

∂s
=

1

2A

[

p1(t2 − t3) + p2(t3 − t1) + p3(t1 − t2)
]

, (5.6)

and similarly for ∂f
∂t

, where the vertices have positions p1, p2, p3 and texture coordinates (s1, t1),

(s2, t2), (s3, t3), and A is the area of the triangle in parameter space. We can rewrite this as

J =
(

∂f
∂s

∂f
∂t

)

=
(

p1 p2 p3

)

S, (5.7)

where S is a 3×2 matrix that depends only on the parametric coordinates of the vertices. However,

the correct space to measure the stretch is not animation space, but rather normalised animation

space (see Section 3.3.2), where the Euclidean norm is geometrically meaningful. This means that

we need the singular values of CJ , which can be determined from

(CJ)T CJ = JT PJ = ST









〈p1,p1〉2,2 〈p1,p2〉2,2 〈p1,p3〉2,2

〈p2,p1〉2,2 〈p2,p2〉2,2 〈p2,p3〉2,2

〈p3,p1〉2,2 〈p3,p2〉2,2 〈p3,p3〉2,2









S. (5.8)

The observation that allows us to significantly accelerate the optimisation process is that the

middle factor above is invariant for each triangle and may be computed in advance. This makes

the speed of the optimisation independent of the number of bones, since this is a 3 × 3 matrix

regardless of the dimension of animation space.

5.4 Packing

We use the heuristic of Sander et al. [2001] of packing charts into bounding rectangles, then filling

in the rectangles alternately left-to-right and right-to-left, as shown in Figure 5.9. The rectangles

are first sorted by height, and the optimal scaling factor (i.e., such that all the charts fit without

being smaller than necessary) is found by binary search. While there are more sophisticated

heuristics, this approach is very simple to implement and generally makes reasonable use of the

available space.

We also follow Sander et al. [2001] in attempting to orient the charts to minimise the area used

by the bounding rectangle, with the long axis aligned vertically. However, we approximate this by

sampling the range of orientations rather than optimising it exactly.

55

5.5. SUMMARY CHAPTER 5. PARAMETRISATION

Figure 5.9: Packing of charts into an atlas. The charts are packed alternately left-to-right and
right-to-left. The colours in the figure indicate three passes.

5.5 Summary

Parametrisation conventionally occurs in three phases: segmentation, flattening, and packing.

Our segmentation implementation was necessary for the development of level-of-detail (discussed

in Chapter 6), but the results show that further work is required to produce a fully-automated

solution that can be relied upon in all cases. For packing, we simply used an existing algorithm;

our real contribution is in the area of flattening. We showed how one algorithm could be adapted

to animation space simply by using the L2,2 metric in place of the 3D Euclidean metric. This is

a very general approach, and so more sophisticated parametrisation algorithms could be adapted

just as easily. The results will show that this makes an improvement to stretch in practice, without

it becoming prohibitively slow.

56

Chapter 6

Level-of-detail

Level-of-detail (LOD) techniques aim to display an object with only the amount of detail that

is necessary at the time. High-detail representations can be used in situations where quality is

important, while low-detail representations can be used to improve frame rate where the loss of

quality will not be noticed. Typically, low-detail representations are used when the object is far

away, although there are approaches that consider the attention of the user, e.g., Brown et al.

[2003]). Using low-detail approximations for unimportant objects allows them to be drawn faster,

enabling real-time rendering of scenes that nominally contain millions of polygons.

In this chapter, we make two contributions. The first is to adapt an existing LOD method, namely

appearance preserving simplification, to operate directly in animation space. This is done in a

similar manner to the adaptation of LSCM in the previous chapter, namely by substituting the

L2,2 metric for the Euclidean metric. The second contribution is influence simplification, which

simplifies models not by removing geometric detail (edges, faces and vertices), but by removing

influences of bones on vertices. We show how the L2,2 metric can be used to do this optimally,

which can produce significant savings for models with superfluous influences. We also demonstrate

that influence simplification can be integrated into the geometric LOD structures to produce a

unified LOD system.

6.1 Background

LOD is a well-explored field, and providing a full survey here would be impractical. We will cover

only a few techniques that have application to our research. For the interested reader, Garland

[1999] provides a survey of the available methods.

One of the most popular LOD data structures is the progressive mesh [Hoppe, 1996]. The funda-

mental operation of the progressive mesh is the edge collapse, shown in Figure 6.1. The collapse

removes one edge and up to two faces from the mesh. By applying the edge collapse repeatedly

one can produce a sequence of progressively simpler meshes. Algorithms that use the progressive

57

6.1. BACKGROUND CHAPTER 6. LEVEL-OF-DETAIL

Figure 6.1: The edge collapse operation. The thick edge is collapsed, causing the shaded faces to
vanish.

mesh structure differ in the way they choose which edge to collapse at each stage. Most employ

an error metric that measures the deviations between the original and the new mesh. A popu-

lar and efficient error metric is the quadric error metric (QEM) of Garland and Heckbert [1997],

which has also been extended to handle surface attributes such as colour [Garland and Heckbert,

1998, Hoppe, 1999]. However, many other metrics exist, trading off mesh quality against speed of

evaluation.

A common problem with purely geometric error metrics is that they do not take texture coordinates

into consideration. If geometry is preserved but texture coordinates are not, then textures may

be displaced along the surface, a phenomenon known as texture sliding. Cohen et al. [1998] and

Sander et al. [2001] use an error metric that bounds the maximum distance between points on

the original and simplified surfaces that have corresponding texture coordinates. Because the

technique is based directly on texture coordinates, both geometric error and texture sliding are

addressed within a single framework. Both sets of authors also sample normal maps that allow

the original normal field to be used on the simplified mesh, thus maintaining high-fidelity lighting.

These approaches yield high quality object display even with low triangle counts, although they

require a parametrisation of the mesh (as discussed in Chapter 5).

Progressive meshes have level-of-detail applications beyond simply pre-computing a few static

representations [Hoppe, 1996]. They provide an almost continuous sequence of presentations,

allowing a triangle budget to be met to within one triangle. Furthermore, it is possible to do

selective refinement [Hoppe, 1997, Xia and Varshney, 1996]: that is, applying a variable amount

of simplification across the model. This is most commonly used with terrains, so that the ground

that one stands on has high resolution, while distant hills are at a lower resolution. Selective

refinement can also be used to create high-quality silhouettes. For other applications, the extra

overhead usually outweighs the gains on modern hardware [Dietrich, 2000], although there has

been some work to optimise the rendering of selective refinements [El-Sana et al., 1999].

6.1.1 LOD and animation

In this section we will briefly review previous attempts to combine level-of-detail techniques with

animation. The work that exists mainly focuses on using a simpler model of the high-level anima-

tion for unimportant objects, rather than on geometric simplification.

The Cal3D [Cal3d] library for 3D character animation provides a level-of-detail mechanism, based

58

CHAPTER 6. LEVEL-OF-DETAIL 6.1. BACKGROUND

(a) Original model, rest pose (b) Simplified model, rest pose

(c) Original model, animated pose (d) Simplified model, animated pose

Figure 6.2: “Lost elbow” problem. A näıve LOD algorithm may simplify (a) to (b) (an apparently
good approximation), ignoring the fact that this causes (c) to reduce to (d) (a poor approximation).

on progressive meshes with quadric error metrics [Garland and Heckbert, 1997]. The scheme

considers only the rest-pose positions of vertices, ignoring the structure of the skeleton. This

has the capacity to create progressive meshes which animate very poorly. For example, consider

simplifying an arm with an elbow joint. Clearly, high detail is required around the elbow to

produce the appearance of a curved surface. However, if the rest pose has the arm extended then

the elbow may be completely eliminated, as illustrated in Figure 6.2, and more graphically in

Figure 1.3.

Kähler et al. [2001] consider the inverse problem of adding detail to a mesh to smooth over joints.

They use a variation of subdivision surfaces to add triangles only in high-curvature parts of the

mesh, and the curvature is evaluated at run-time. However, the technique can only smooth over

sharp creases; it cannot recover detail that was lost in simplifying the mesh in the first place. The

animation is also a mass-spring system, rather than skeletally-based character animation.

Adaptive level of detail for human animation (ALOHA) [Giang et al., 2000] applies level-of-detail

ideas to animated characters. However, it does not use either progressive meshes or SSD. Instead,

it uses an anatomically-based approach to skinning, using bones, muscle, fat and skin. The muscles

are modelled as super-ellipsoids which distort as the bones move. The fat and skin are attached

with springs, with spring end-points corresponding to skin vertices. Level of detail is controlled by

the number of springs used, and hence the number of vertices on the skin. The complex animation

process makes this approach unsuitable for real-time rendering (certainly for real-time rendering

of crowds). The subdivision process used to create the springs does not take into account the

curvature of the skin, so simple models will be of much lower quality than similar models created

as progressive meshes.

Shamir and Pascucci [2001] consider LOD for very general animated meshes with a pre-specified

animation path (such as for movies or cut-scenes in games). Like Cal3D, it uses progressive

meshes with a quadric error metric, and computes a decimation from a single pose. However, it

only decides which edges to collapse at run-time. This is made possible by organising the collapses

into a dependency graph, and adjusting the choice of edges to collapse based on the graph and

the cost of each collapse in the current frame. This method produces good results, but

59

6.2. APPEARANCE-PRESERVING SIMPLIFICATION CHAPTER 6. LEVEL-OF-DETAIL

• requires a pre-specified animation path, making it unsuitable for dynamic animation in

games;

• requires more CPU processing due to the view-dependent LOD1 algorithm [Dietrich, 2000].

Geometry videos [Briceño et al., 2003] offer a different approach, based on the geometry images of

Gu et al. [2002]. The mesh is first parametrised (see Chapter 5), then re-sampled over a regular

grid in parameter space. The result is a 2D image with 3 channels, for x, y and z coordinates.

The mesh geometry is stored or transmitted simply as an image stream (video), which can be

compressed using existing video compression methods. Level-of-detail is obtained by sub-sampling

the images, while being careful to preserve cut boundaries. While geometry images have their own

advantages (particularly the implicit connectivity), they suffer the same disadvantages as all re-

meshing strategies i.e., it is impossible to recover the original mesh exactly.

Deformation sensitive decimation [Mohr and Gleicher, 2003a] is more similar to our approach. In-

stead of applying simplification in a single rest pose, a sampling of poses is used. The quadric error

metric [Garland and Heckbert, 1997] for each potential edge collapse is summed over the samples,

and the collapse with the lowest total penalty is chosen. This can eliminate the “lost elbow”

problem, provided that a good sampling is chosen. DeCoro and Rusinkiewicz [2005] improve this

technique by using stratified random sampling to automatically sample the pose space, given a

description of its probability density function; this frees the user from having to select a represen-

tative set of samples. Huang et al. [2006] use a similar metric for a pre-specified animation (with

every frame forming a sample), and augment it with a term that promotes detail-preservation in

areas that undergo large frame-to-frame deformations. Nevertheless, these methods all depend on

a sampling of the pose space, and the computation time scales with the product of the number of

edges and the number of sample poses. In contrast, our method is analytic and does not require

any sampling; if samples are available they can be used to extract statistics, but the running time

is independent of the number of samples.

6.2 Appearance-preserving simplification

Our level-of-detail scheme is an extension of appearance-preserving simplification (APS) to an-

imation space. APS suits our needs well because it uses a parametrisation to match up corre-

sponding points between the simplified model and the original, which would otherwise be difficult

to do in such a high-dimensional space. We also considered adapting a quadric error metric

[Garland and Heckbert, 1997], but since it relies on the solution of a least-squares problem for

every potential collapse, it would scale very poorly to the high dimensions used in animation

space.

1Here the “viewpoint” is determined by position in time rather than in space, but the underlying approach is
the same.

60

CHAPTER 6. LEVEL-OF-DETAIL 6.2. APPEARANCE-PRESERVING SIMPLIFICATION

v1

v2

v′

Figure 6.3: An edge collapse in parameter space, where v1v2 is collapsed to v′. Dashed lines
represent the new triangles and dots represent cell corners.

Figure 6.4: The half-edge collapse. Compare to Figure 6.1, where a new vertex is created.

6.2.1 Review of APS

APS scores potential collapses by the maximum deviation they could introduce between the orig-

inal and the simplified surface, in terms of the correspondence implied by the parametrisation.

Computing the maximum deviation precisely is prohibitively expensive, so some conservative ap-

proximations are used. For each face, an axis-aligned bounding box is maintained that bounds

the offset vector between any point on that face and the corresponding point in the original mesh.

Figure 6.3 shows how this information is used to score a potential edge collapse. In parameter

space, the old and new triangles are overlaid, which partitions the local neighbourhood into cells.

Within each cell, the deviation between old and new is linear, and the prior bounding box is

constant. It follows that the maximum deviations must lie at the corners of cells. For every cell

corner in the diagram, the new deviation is added to the bounding box for each of the original

faces on which it is incident, and the greatest length amongst these deviations is deemed to be

the cost of the collapse.

When a collapse is actually performed, the bounding box information must be propagated to the

new faces. For each new face, the same calculation is done for each incident cell corner, and the

resulting bounding boxes are merged to produce the new bounding box.

We have followed Sander et al. [2001] in using the half-edge collapse. This is a restricted form

of the edge collapse, in which the edge is collapsed to one of the existing end-points rather than

to a new point (Figure 6.4). This is computationally cheaper (in that no optimisation is needed

61

6.3. INFLUENCE SIMPLIFICATION CHAPTER 6. LEVEL-OF-DETAIL

to determine the new vertex position), and also leads to more compact representations as there

are no new vertices to encode. The disadvantage is that the quality of the simplified meshes is

worse for the same number of triangles. In particular, volume loss effects are increased because

the simplified model cannot protrude beyond the convex hull of the original. We leave computing

the optimal location for a new vertex in animation space as a possible area for future research.

Sander et al. [2001] also use a simpler “memoryless” form of the error metric. They do not maintain

the bounding box information that is used by standard APS, but instead define the cost to be the

largest deviation between the immediately previous and the new neighbourhood. This is just the

largest deviation at any cell corner in Figure 6.3. Because only half-edge collapses are used, there

are also generally far fewer cell corners to consider.

6.2.2 APS in animation space

We have implemented both the standard and the memoryless forms of APS, and adapted them

to animation space. For the memoryless form, the adaptation is simply a matter of replacing the

Euclidean metric with our L2,2 metric.

For the standard form, some changes need to be made to accommodate the bounding-box propaga-

tion. Our initial implementation used a bounding box aligned to the axes of animation space, but

this is in fact a poor choice because the axes are not orthogonal in terms of the corresponding inner

product. Appendix B.3 shows that in some circumstances, certain displacements have no cost in

terms of the L2,2 norm, but an axis-aligned bounding box that contains them will be unnecessarily

large. Instead, we compute the bounding boxes in normalised animation space (see Section 3.3.2),

in which the Euclidean metric corresponds to the L2,2 metric in animation space. Deviations with

zero (or almost zero) L2,2 norm will become zero (or very small) when transformed to normalised

animation space, ensuring a suitably sized bounding box.

A disadvantage of this approach is that the transformation to normalised animation space destroys

the sparsity of the vectors concerned. This does not have a major impact on performance (since

the bounding box updates constitute only a small part of the running time), but it does greatly

increase the memory requirements for models with many bones.

6.3 Influence simplification

The progressive mesh structure discussed so far reduces complexity by removing edges and faces

from the model. However, the complexity of a skinned model arises not only from the number

of vertices and faces, but also from the number of bones that influence each vertex. Reducing

the number of influences on a vertex reduces the cost of rendering it, without decreasing the

amount of detail in the model. In the extreme case, it is possible to reduce all vertices to only one

bone influence, giving totally rigid limbs with no smooth transition from one to the next. From

62

CHAPTER 6. LEVEL-OF-DETAIL 6.3. INFLUENCE SIMPLIFICATION

a suitable distance, such rigidity may not be noticeable to a viewer. We refer to the process of

reducing the number of influences on a vertex as influence simplification.

A näıve approach to influence simplification would be to simply discard influences that are deemed

to be minor. We have developed a more sophisticated strategy that makes two improvements:

1. It is able to quantify the error that is introduced, in a manner that allows influence simpli-

fication to be combined with a progressive mesh.

2. The error is minimised by adjusting the remaining influences to match the effect of the lost

influence as closely as possible.

The L2,2 metric provides a natural error metric for influence simplification, as it indicates how

much geometric error the simplification is expected to introduce. We consider each influence on

an animation-space position p in turn, determine how to optimally eliminate it, and then choose

the elimination that introduces the smallest error. To pose this problem formally, we introduce

some additional notation: let I(p) be the set of indices of the bones that influence p. In order

to eliminate a particular influence, say that of bone i, we replace p with p + s, where s is chosen

subject to the following:

1. s has no influences that are not part of p, since otherwise we would be introducing new

influences: sj = 0 for all j 6∈ I(p).

2. p + s is not influenced by bone i: si = −pi.

3. s is a vector, since we wish p + s to be a point on the projection hyperplane: s = 0.

4. The expected error ‖s‖2,2 is minimal subject to the above constraints.

5. This minimum may be not be well-defined, in which case we choose the minimum that also

minimises ‖s‖2 (the Euclidean norm).

The constraints are all linear equations, and s2
2,2 = sT P s, so this is just a matter of minimising a

quadric subject to linear constraints. While the optimisation can be done directly in this form, it

will not exploit any sparsity in p. Instead, we note that since bones not in I(p) play no role, we

can entirely eliminate them from the problem. Let pI(p) and sI(p) be the restrictions of p and s

to the dimensions corresponding to the influences on p, and PI(p) similarly be the submatrix of

P consisting of those rows and columns. Then since we have only eliminated zero values from s,

we find that

‖s‖22,2 = sT P s = sT
I(p)PI(p)sI(p). (6.1)

The constraints on s translate directly to sI(p), except that the first is no longer necessary as it

is implicit in the dimension reduction. The problem of optimising sI(p) now has the same form

as the original, but with exactly five linear constraints (items 2 and 3 above) and only 4|I(p)|
dimensions.

This type of constrained least-squares problems essentially amounts to transformation to a suitable

space (in this case, normalised animation space) followed by a projection onto the subspace defined

by the constraints. The details are slightly complicated by the fact that P may be non-singular

63

6.3. INFLUENCE SIMPLIFICATION CHAPTER 6. LEVEL-OF-DETAIL

P

P ′

P ′′

Figure 6.5: Visualisation of two iterations of influence simplification. Projecting P onto the red
plane and then onto the line of intersection gives the same result as projecting P directly onto the
line of intersection.

and hence the minimum is not well-defined. A description of our implementation may be found

in Appendix A.2. The implementation does some computation on PI(p) as well as on the matrix

AI(p),i which holds the coefficients for the linear constraints. Since these matrices do not depend

on the actual value of p, it is frequently possible to reuse the results of these computations. We

exploit this by maintaining the pre-processed results for the last 128 (I(p), i) pairs encountered.

In each step, we optimise the new position to fit the previous (possibly already simplified) position

as closely as possible, rather than the original position as closely as possible. This is more efficient

since we are then working in a lower-dimensional space and we do not need the memory to hold

the original position. A formal proof that these are equivalent is given in Appendix B.1, but it

may be seen intuitively from the 3D thought experiment conducted in Figure 6.5: consider two

planes in space, representing two different sets of linear constraints, and a point, representing the

original value of p. Let p′ be the closest point to p on the first plane, and p′′ be the closest point

to p′ on the line of intersections of the planes (which represents the points satisfying both sets of

constraints). Then clearly p′′ is also the closest point on this line to p.

Depending on which lighting method is used (see Section 7.5), we may also need to compute per-

vertex tangent planes during rendering. In order to reap the full rewards of the simplification, it is

thus necessary to simplify the tangents as well. Since the tangents are not relevant to all uses of the

simplified model, we decide which influence to eliminate based only on the position. Whichever

influence is removed from the position is also removed from the tangents. After removing the

influences, we adjust the tangents to again form an orthonormal basis for the tangent plane using

the Gram-Schmidt process [Golub and Van Loan, 1996].

6.3.1 Combination with mesh simplification

Since our implementations of both influence simplification and mesh simplification use the same

metric (distance between corresponding points), we can combine them in a hybrid simplification

scheme with a single sequence of simplifications, some of which are edge collapses and some of which

are influence simplifications. Conceptually, potential edge collapses and influence simplifications

64

CHAPTER 6. LEVEL-OF-DETAIL 6.4. SUMMARY

Figure 6.6: Edge updates from an influence simplification. When the central vertex has its position
simplified, the edge collapses corresponding to the solid edges must be updated.

share a single priority queue, but for implementation reasons2 we have a separate queue for each

and always process the head-of-queue with the least cost. Apart from the usual maintenance that

needs to be done when constructing a progressive mesh, after applying an edge collapse we need to

remove the two old positions from the influence simplification queue and insert the new position.

After applying an influence collapse, any edge incident on a neighbour of this position must be

re-evaluated as a potential collapse (see Figure 6.6).

With memoryless APS, the cost of a simplification is simply the L2,2 distance between the original

and the simplified vertex. For standard APS, it is necessary to consider the bounding box infor-

mation. For each incident triangle, there is an associated bounding box that provides a bound on

the existing deviation of the vertex; we can thus take their intersection and add the new offset (s)

to get a bound on the total deviation after simplification. After applying a simplification, we take

this bounding box for the vertex’s total deviation and propagate it back to the incident faces, by

making the new face bounding box the union of the old face bounding box and the new vertex

bounding box.

6.4 Summary

As with parametrisation, we have shown that an existing LOD framework can be readily adapted

to animation space, in order to produce approximations that work well, on average, across poses.

Memoryless APS works particularly well for this purpose, as it does not require high-dimensional

bounding boxes to be maintained. We confirm the improvements experimentally in Chapter 8.

We have also introduced the novel concept of influence simplification — removing influences of

bones on vertices to produce a sparser model. The results indicate that for some models, this can

make a substantial improvement, although in other cases it makes little difference and can even be

slightly worse. We have discussed influence simplification in the context of run-time level-of-detail,

but it could potentially also be applied as a once-off process to eliminate unnecessary influences

in a model, or to control the maximum number of influences on any vertex. Our rendering

implementation (Chapter 7.4) allows for an arbitrary number of influences, but in the absence of

run-time LOD or on legacy hardware, it may be more efficient to use a vertex program with a

fixed number of influences per vertex.

2We use a C++ templatised priority queue class, which makes it inconvenient to place two different types in the
same queue.

65

6.4. SUMMARY CHAPTER 6. LEVEL-OF-DETAIL

66

Chapter 7

Rendering

To render a large crowd of animated characters at interactive rates, we must take advantage

of rendering hardware — even with level-of-detail optimisations, current general purpose CPUs

are still too slow. In this chapter we will consider exclusively the task of interactive rendering on

standard consumer video cards. The off-line rendering used in the film industry is less performance

critical, and will benefit less from the low-level optimisations described in this chapter.

We start by considering frustum culling (eliminating objects that lie entirely off-screen) using

the L2,∞ metric, and our implementation of level-of-detail with a pixel error tolerance. These

concepts are generic and could be applied to any rendering system. We then consider how to

efficiently perform animation projection, taking into account the variable number of influences

per vertex and the limitations of hardware. Finally, we describe two methods for encapsulating

normal information in textures, for high-fidelity lighting on simplified models.

Our implementation is based on OpenGL [Segal and Akeley, 2006], and the following explanations

are in terms of the terminology and features of OpenGL.

7.1 Target environment

In 2001, the GeForce 3 video card introduced programmable pipelines to consumer video cards

[Lindholm et al., 2001]. Since then, the level of programmability has steadily increased, but in

order to get good performance, the programming model is still restricted in a number of ways. We

have chosen to target the feature-set available in the GeForce 6 and 7 video cards (the so-called

Shader Model 3.0). While this model has a rich feature-set, it has already been superseded by

the GeForce 8 series which implements Shader Model 4.0 and the features in Direct3D 10 [Blythe,

2006].

Figure 7.1 shows the stages of a programmable graphics pipeline that are relevant to this chapter.

Some of the important features and limitations of the implementation in the GeForce 6 and 7

series are listed below:

67

7.1. TARGET ENVIRONMENT CHAPTER 7. RENDERING

Constants Textures Constants

Vertex
buffers

Vertex
program

Rasterisation
Fragment
program

Colour
buffers

Blending
Depth
Test

Depth buffer

256 512
4 16

16 16 16

4

Figure 7.1: A programmable graphics pipeline. Ovals represent data stores while boxes represent
processes. Numbers represent the maximum number of inputs/outputs supported by a GeForce
6600.

• The primary data type is a vector of four floating-point values, referred to here just as a

“vector”.

• A fixed number of vectors (up to 16) may be associated with each vertex. These are typically

used for positions, normals and texture coordinates, but also for other per-vertex data.

Vertex programs also have access to a small bank of constants (256 vectors), which can be

addressed with a variable expression, and textures. Texture lookups are not optimised, as

they are intended primarily for fragment programs, and hence introduce a large latency.

Vertex programs support flow control, including branching and looping. The “constants”

are fixed from the perspective of the vertex program, but the CPU program may alter them

between draw calls through the OpenGL API.

• Fragment programs receive up to 16 vectors from interpolation of the vertex program outputs.

Three levels of precision are supported: 12-bit fixed point (a range of −2 to 2), 16-bit

floating point (half-precision) and 32-bit floating point (full-precision). The lower-precision

instructions are significantly faster. Again, a small bank of constants is available, but they

can only be addressed with constant indices. The fragment pipelines are designed for efficient

texture lookups, and it is common practice to encode complex functions in texture maps.

Fragment programs support both predicated execution1 and dynamic branching. Dynamic

branching is relatively expensive, particularly when fragments that are being processed in

parallel follow different code-paths.

Fragment programs may modify the depth of a fragment, and may output up to four separate

colours.

• Floating point textures and colour buffers are supported at both 16- and 32-bit precision, but

certain state combinations are not supported. In particular, texture filtering and framebuffer

1Predicated execution means that instructions may be labelled as conditionally executed depending on a flag
register. This avoids the overheads of true branching, but the instructions have a cost regardless of whether they
are executed or not. Predicated execution is best suited to conditionals with a small amount of calculation in each
branch.

68

CHAPTER 7. RENDERING 7.2. FRUSTUM CULLING

blending are not supported at 32-bit precision.

We have written vertex and fragment programs in Cg, a high-level shading language developed

by NVIDIA [2005a]. It generates low-level assembler code that is loaded into OpenGL using

the GL_ARB_vertex_program and GL_ARB_fragment_program extensions. Apart from the usual

advantages of using a higher-level language, we found that Cg had several benefits over coding

with either the low-level assembly language or the high-level OpenGL shading language:

• It exposes the lower-precision types (half and fixed). These are not exposed by the

OpenGL shading language, and can only be used in the assembly language by invoking

NVIDIA-specific extensions. In contrast, Cg has a number of backends, and can either out-

put assembler code that uses these extensions, or produce portable code by mapping the

low-precision types to a generic floating-point type.

• In contrast to the OpenGL shading language, it is possible to examine the assembler code

that is produced. In a number of cases, this has allowed us to identify cases where instructions

could be saved by doing some pre-processing.

• While experimenting with different methods for lighting and shading, it is convenient to

have a single program with if statements to control the execution flow. Cg allows these

switches to be labelled as seldom changing; when the user switches lighting models, the

program is automatically recompiled and the if statement is optimised away. In contrast,

doing the same thing with the low-level language requires the program to be constructed at

run-time, which complicates debugging of compilation errors, as well as requiring manual

register allocation.

7.2 Frustum culling

A simple but effective technique to speed up rendering is to entirely skip objects that lie completely

outside the view frustum. To be useful, the test must be much cheaper than simply rendering the

object regardless, and it is standard practice to test against bounding volumes.

In Section 3.3.3 on page 26, we developed an L∞ metric to measure the maximum possible distance

between two points in the animation space. By choosing some fixed point c in animation space and

finding the maximum of ‖c− p‖2,∞ over all vertices p of the model, we can establish a bounding

sphere. This sphere is guaranteed to contain the object in any pose, provided that the skeleton

does not violate the stored bounds on bone translation or scaling.

In order to minimise the cost of transforming the centre c to object space (i.e., computing Gc),

we have chosen values for c that are only affected by the root bone, and hence are already in

object space. Specifically, we have taken the expected object-space position of the centroid of the

object, computed using the uniform rotations and fixed translations model (Section 3.3, page 24).

We use this model even if we have more accurate expectations, because the actual distribution is

irrelevant and can introduce unwanted bias into the location of the centre.

69

7.3. LEVEL-OF-DETAIL CHAPTER 7. RENDERING

At run-time, we need only determine whether each bounding sphere intersects the frustum. We

reject the object if it lies entirely on the outside of any of the planes defining the frustum; this is

easily computed by comparing the distance of the centre to the plane against the radius. This is a

conservative test, because the sphere may intersect several of the planes without intersecting the

frustum itself.

7.3 Level-of-detail

Since we are rendering characters that can be expected to have a roughly uniform distance from the

viewer (over the surface of an individual character), we do not need selective refinement methods;

these methods are more suitable for terrain modelling where the terrain exists at a wide range of

distances. Instead, we sample the progressive mesh to create a discrete set of representations, each

with half as many influences as the previous one. This allows us to compute texture coordinates,

triangle indices and so on, in advance, and prevents the CPU from becoming a bottleneck during

rendering.

We use geomorphing [Hoppe, 1996] to smooth the discontinuities between these discrete levels

of detail, which otherwise manifest as “popping” as one representation is replaced with another

when the viewing distance changes. Geomorphing linearly interpolates vertices between the levels

of detail. Based on the distance of the object from the viewer, a real-valued level of detail l is

chosen, and this is used to interpolate between the discrete levels ⌊l⌋ and ⌊l⌋ + 1. Let p⌊l⌋ be

a position in the more refined representation (level 0 being the original model); by tracking p

through edge and influence collapses, one may find a corresponding point p⌊l⌋+1 in the coarser

representation. Geomorphing places the vertex at

pl = p⌊l⌋ + (l − ⌊l⌋)(p⌊l⌋+1 − p⌊l⌋). (7.1)

As long as l varies continuously, so will the chosen representation. We use a user-specified pixel

error tolerance p to choose the largest value for l (lowest detail) for which we can guarantee

that this error bound is not exceeded. Because we wish to use a conservative bound, we use the

minimum depth of any point on the bounding sphere. We determine a lower bound ǫ on the

geometric error that could give rise to this on-screen error. Let w be the width of the viewport

(in pixels) and 2θ be the horizontal field of view (we use the horizontal dimensions since they are

typically larger than the vertical dimensions). The worst case occurs when the object is at the

edge of the viewport, as shown in Figure 7.2. Referring to the notation of the figure, the ratio

ǫ : q = d : w
2 cot θ and q = p cos θ, giving

ǫ =
2pd sin θ

w
. (7.2)

Each discrete level of detail has an associated ǫl value, which is simply the largest cost of any

simplification encountered in reducing the original model to that representation. Since our sim-

70

CHAPTER 7. RENDERING 7.4. VERTEX TRANSFORMATION

view point

view plane

object depth

w
2

p

ǫ

d

q

θ

w
2 cot θ

Figure 7.2: LOD selection

plification schemes measure cost in terms of geometric deviation, we can simply select the level

whose ǫl equals ǫ. Of course, there will generally be no exact match, so we choose l by linear

interpolation between the two levels of detail that bracket ǫ.

7.4 Vertex transformation

With a static character, vertex transformation can be handled entirely by OpenGL: we simply

specify the transformation matrix using standard OpenGL API calls. For our animated characters,

however, we have to compute the matrix-vector product Gp, where G is a 4 × 4b matrix and p

a 4b-vector. The hardware limit of 16 vertex attributes is a more severe limitation than for SSD,

because we must pass a 4-vector per influence rather than just a scalar weight. Geomorphing

doubles these requirements, and even worse, one of our lighting methods uses per-vertex tangents,

which further triples the requirements (a six-fold increase in total). For these reasons, it is not

practical to perform vertex transformations simply by using a vertex program that operates on

vertex attributes.

For comparison, we have implemented four methods of vertex transformation: two forms of purely

CPU-based transformation, a two-pass GPU approach that uses the fragment pipeline for vertex

transformation, and a single-pass GPU approach that uses vertex texture lookups; each is described

in one of the following subsections. All of these approaches implement geomorphing in a similar

manner. Referring to Equation (7.1), denote l − ⌊l⌋ by ∆l and p⌊l⌋+1 − p⌊l⌋ by ∆p⌊l⌋. We pre-

compute p⌊l⌋ and ∆p⌊l⌋ to make the evaluation of Equation (7.1) more efficient. Furthermore, we

ensure that p⌊l⌋ and ∆p⌊l⌋ are influenced by the same set of bones, potentially introducing zero

71

7.4. VERTEX TRANSFORMATION CHAPTER 7. RENDERING

influences to align them. This allows the interpolation to be done on an influence-by-influence

basis, without burdening the rendering process with checking for missing influences.

7.4.1 CPU transformation

We transform the vertices on the CPU, using SSE2 to accelerate the computations. We use one

array to hold all the elements of the p⌊l⌋ and ∆p⌊l⌋ vectors (interleaved), a second to hold all the

bone indices, and a third to hold the number of influences per vertex. Each vertex is transformed

in turn, as shown in Algorithm 1.

Algorithm 1 Vertex transformation on the CPU

for all attributes ∈ {position, tangent1, tangent2} do
for all vertices do

v← 0 //3D position/tangent
for each influencing bone j do

v← v + Gj

(

p
⌊l⌋
j + ∆l∆p

⌊l⌋
j

)

end for
write v to appropriate buffer

end for
end for

We have also implemented a variant of this technique in which the outer loop iterates over bones,

rather than over vertices (Algorithm 2). For each bone, we store a list of all vertices influenced

by that bone and the influences themselves. The disadvantage of the former method is that the

inner loop iterations are short and highly variable in length, which is bad for branch prediction. In

contrast, this alternative method has relatively long-running inner loops (the number of vertices

influenced by each bone). It also uses one transformation matrix at a time, rather than randomly

accessing them. The disadvantage is that updates to the vertex buffer are not sequential (although

the inner loop iterates over the vertices in order, so accesses have some coherence).

Algorithm 2 Alternative vertex transformation on the CPU

for all attributes ∈ {position, tangent1, tangent2} do
zero the buffer v for this attribute
for all bones j do

load Gj

for all vertices p with index k influenced by bone j do

v[k]← v[k] + Gj

(

p
⌊l⌋
j + ∆l∆p

⌊l⌋
j

)

end for
end for

end for

Depending on the lighting method used (Section 7.5), we may also need to transform per-vertex

tangents. These are handled similarly, using a completely separate set of arrays, a separate

transformation pass and separate output buffers. A potential area of future work is to determine

2Streaming SIMD Extensions, a set of single-instruction multiple-data instructions supporting four single-
precision operations concurrently.

72

CHAPTER 7. RENDERING 7.4. VERTEX TRANSFORMATION

whether it is more efficient to build shared bone and count arrays and perform only a single pass,

as is done in the GPU-based rendering methods. This has the potential to improve cache hit rates,

since each bone index and transformation matrix will be used three times in a row.

7.4.2 Fragment program

Modern graphics cards have significantly more computational power than CPUs [NVIDIA, 2007].

We can take advantage of this by using two passes to transform the vertices. In the first pass,

we map the vertices to pixels in an off-screen floating-point buffer. The animation-space positions

are encoded into a set of textures and the transformations into another texture, and a fragment

program is used to do the transformations. At the end of the first pass, we copy the data from

the output image to a vertex buffer. The second pass sources the positions from this buffer. This

improves throughput compared to CPU-based transformation, but there is a significant overhead

in switching between the passes.

Packing the data into textures is complicated by the fact that different vertices may have different

numbers of influences. In order to get optimal performance, we must consider the following goals:

(a) The amount of wasted space in the texture should be kept small. In particular, allocating the

same amount of texture area per vertex (which would correspond to the maximum number

of influences on any vertex) can easily double the required texture size. This will increase

bandwidth requirements, degrade texture cache performance and reduce the number of vertices

that can be stored in device memory.

(b) Dynamic branching on the GeForce 6 series is most effective when branches are spatially

coherent, that is, when nearby fragments take the same branches [NVIDIA, 2005b].

We handle (b) by re-ordering the vertices in decreasing order of number of influences. The influ-

ences for each vertex are arranged in a vertical block within the texture. These blocks are packed

into the texture sequentially, left-to-right then bottom-to-top. For reasons explained later, it is

necessary for all the blocks in a row to have the same height, so a small number of vertices may

be augmented with a zero influence into order to satisfy this. Figure 7.3 shows an example of this

texture layout.

The wider the texture is, the more wasted space there is likely to be. We start with a width of

4, and successively double it until the packing produces a height of no more than 512. Since the

half-precision floating-point type has only a 10-bit mantissa, this limit on the height is necessary

to ensure that we can exactly address the centres of texels (which have half-integer coordinates).

This influence texture holds only the actual influences themselves (i.e., the elements of p, not the

information about which influence goes with which bone). This allows us to store the four real

values of each influence in the RGBA channels of a floating-point texture. The corresponding

bone data, indicating which bone applies to each value in the influence texture, is stored in a

separate bone texture. This is a single-channel fixed-point texture, with the same organisation as

73

7.4. VERTEX TRANSFORMATION CHAPTER 7. RENDERING

bone texture transformation texture

tile vertex array Transform Sum

influence textures

Geomorphing output buffer

Figure 7.3: Data flow for fragment-program vertex processing. Each small rectangle in the bone
and influence textures holds information about one vertex, with individual influences represented
by dots. The red dots indicate a vertex being processed. Note that some zero influences (empty
spaces) are introduced to keep the structure regular. The blue, green and yellow regions each
correspond to a particular influence count, and to a single quadrilateral submitted to the OpenGL
pipeline.

74

CHAPTER 7. RENDERING 7.4. VERTEX TRANSFORMATION

the influence texture. This texture is looked up in the fragment program, and the value is then

used to address the transformation texture. Figure 7.3 illustrates the data flow in this algorithm.

We implement geomorphing by using two influence textures: the first holds data for p⌊l⌋ and the

second holds data for ∆p⌊l⌋. Since we have represented these values for each vertex on a common

set of bones, we can share the bone texture as well as the texture layout. Similarly, when tangents

are required for lighting, we use a total of six influence textures (two for position and two for each

tangent) with a common bone texture and texture layout, adding zero influences where necessary

to produce a common influence set. In this case the fragment program writes three outputs per

fragment (position and two tangents) to separate buffers.

Finally, we must pass the relevant parameters to the fragment program. Here we take advantage of

the regular structure of the textures. All rows with a particular height are rendered using a single

quadrilateral (each colour in Figure 7.3 corresponds to one quadrilateral). The texture coordinates

are set so that the fragment program receives the coordinates of the first and last influence of the

vertex, making it possible to iterate over the influences.

7.4.3 Vertex texturing

The GeForce 6 series supports texture lookups from a vertex program, although there are signifi-

cant restrictions and the performance is poor compared to the performance in a fragment program

[Gerasimov et al., 2004]. We can use vertex texture lookups to perform the vertex transformations

in a similar way to the previous technique (Section 7.4.2), but using only a single pass. This has

the advantage of eliminating the state switching, but throughput suffers from the high latency

of the texture lookups. A second disadvantage is that a vertex will be referenced multiple times

during a single frame, and even with a hardware vertex cache, this may result in this expensive

process being repeated many times.

While we do not expect this method to be optimal on a GeForce 6 series card, it has the most

potential for future hardware such as the GeForce 8 series. For this newer hardware, a unified

shader architecture makes vertex texturing just as capable as fragment texturing, and transform

feedback [Blythe, 2006] makes it possible to perform the transformations as a pre-process.

The setup is similar to that of Section 7.4.2, but slightly simplified. We made the following

modifications, illustrated in Figure 7.4:

• The vertices are not sorted by influence count — instead, they are placed in the order they

are first encountered in the triangle list, to improve locality of access (this is also done for

the CPU-based transformation routines).

• The influences on a vertex are arranged horizontally rather than vertically, and the texture

is made as wide as possible rather than as narrow as possible. This is done because we no

longer need the rectangular structure seen in Figure 7.3.

• The two values for geomorphing (p⌊l⌋ and ∆p⌊l⌋) are stored one above the other in the

75

7.5. NORMALS AND LIGHTING CHAPTER 7. RENDERING

bone texture
vertex buffer

influence texture

bone matrices

(constant memory)

Transform Geomorphing

Sum Rasterisation

Figure 7.4: Texture layout for vertex-texturing vertex transformation. The rectangles represent
positions and the dots represent individual influences. The red dots represent a vertex undergoing
processing; the grey and black dots in the influence texture represent p⌊l⌋ and ∆p⌊l⌋, respectively.

same texture, rather than in separate textures. The original intention was to use the texture

filtering hardware to perform geomorphing with only one texture instruction. Unfortunately,

GeForce 6 series hardware does not support texture filtering in a vertex program. The texture

layout code was kept, but it would be equivalent to use pairs of textures as in Figure 7.3

(the performance may differ, but further investigation would be required to determine this).

The grey and black dots in Figure 7.4 correspond to p⌊l⌋ and ∆p⌊l⌋, respectively.

• The transformation matrices are placed into vertex program constants rather than a texture;

despite the smaller constant bank (which limits this method to about 80–85 bones), this is

more suitable than using a texture (as was done for the fragment program method) due to

the existence of an address register as well as the poor performance of vertex texturing on

GeForce 6 hardware. Newer cards (GeForce 8 series) have a larger constant bank, and also

allow a buffer to be used for constants, making it possible to upload all the matrices with a

single API call.

The indexing data (i.e., the texture coordinates for the bone and influence textures) are passed as

vertex attributes.

7.5 Normals and lighting

Cohen et al. [1998] use high-fidelity lighting to disguise the loss of detail in simplified models, and

today it is common practice to encode shading information into textures at a higher resolution

than is practical or necessary for the geometric detail. We have used a simple lighting model,

consisting of two directional diffuse light sources, but arbitrarily complex lighting methods can be

used once a normal is available.

Blinn [1978] first proposed that surface features could be simulated by altering the normals of

an object through a lookup table, without adding true geometric detail. He proposed encoding

76

CHAPTER 7. RENDERING 7.5. NORMALS AND LIGHTING

a displacement to the surface, in the direction of the normal, for each point on a parametric

surface. The perturbed normal is computed from the geometric normal and partial derivatives of

the displacement function, evaluated using central differences.

While this encoding is memory-efficient (requiring only one scalar per sample), it is inconvenient

for hardware application because it requires multiple table lookups for each normal calculation.

Subsequent representations include:

Object-space normal maps [Peercy et al., 1997] All the normals for the object are expressed

in a single coordinate system. This works well for static meshes, but there is insufficient

information to adjust the normals during animation.

Tangent-space normal maps [Peercy et al., 1997] Instead of using a global coordinate system,

a separate frame is defined for each vertex, using the geometric normal, a tangent and a

binormal. These frames are interpolated across faces, to define a frame at every point on

the surface. Normals are then encoded relative to this frame. Since this frame is defined

relative to the local neighbourhood, it will animate correctly and hence so will the normals.

A variation of this technique is to exclude the coordinate corresponding to the geometric

normal, and encode only the other two coordinates. Since the normal is known to have unit

length, this third coordinate can be recovered provided that the geometric and perturbed

normals are within 90◦ of each other.

Tangent-space normal maps (TSNMs) are not ideal for LOD (particularly continuous LOD),

because the encoding is dependent on the geometry and hence a different map is required

for each level of detail.

Frame maps Frame maps [Kajiya, 1985] are a concept developed for anisotropic lighting models.

In addition to a normal, a surface tangent is stored for each surface sample point. The

direction of the tangent indicates the orientation of the anisotropic surface; it might, for

example, indicate the direction of a wood grain.

None of these schemes can represent surface detail that varies under animation. For example,

areas of skin may be wrinkled in some poses and smooth in others, but if the geometry does not

capture the wrinkles then there is no way to encode this behaviour into the maps. Furthermore,

each has disadvantages for either LOD or animation.

We have implemented two approaches. The first uses TSNMs, with a separate texture for each

discrete level of detail. When geomorphing between levels of detail, we simultaneously morph

between the two applicable textures. The normals to encode are selected from an arbitrary user-

designated pose. TSNMs work best if the tangents of neighbouring vertices are roughly aligned,

since the interpolation between bases is done with linear rather than spherical interpolation. We

achieve this by computing animation-space tangents at a vertex that align as closely as possible

to the orientation of the parameter space at that vertex.

The second method uses a tangent map, each sample of which is a pair of animation-space surface

tangents. The normal is computed by applying animation projection to the tangents and taking

77

7.5. NORMALS AND LIGHTING CHAPTER 7. RENDERING

their cross product, as for per-vertex normals, but on a sample-by-sample basis. We discuss in the

next section how the tangent map is stored in memory for efficient rendering.

7.5.1 Rendering tangent maps

In order for lighting to look realistic, it is important that normals sampled from a texture are con-

tinuous. If the underlying textures are simply point-sampled (taking the nearest texture element),

then each sample will produce a constant normal over an area, with discontinuities between the

coverage of neighbouring samples. This gives a faceted appearance with very poor visual quality.

Furthermore, since we pack data into textures in a space-saving manner, we cannot use OpenGL’s

texture filtering capabilities (for example, some textures hold indices into arrays). Bilinear fil-

tering may be implemented in a fragment program by doing the computations once for each of

the four surrounding texels, but this reduces performance by a factor of four. Instead, we do a

normal-map generation pass immediately before the main pass for each rendered model. This

generation pass converts the pose-independent tangent map into a pose-dependent object-space

normal map, which is then used with hardware-accelerated filtering for the main rendering pass.

In Section 7.4.2 we encoded elements of animation space into textures for transformation in a

fragment program. Unfortunately, that method relies upon reordering the elements to group those

with the same number of influences together. Since the ordering of the tangent map samples is not

arbitrary, this technique is not applicable to tangent maps, and a more complex packing scheme

is required. We trade off a regular layout against maximum density by splitting the parameter

space into equally-sized square tiles. Within each tile, we force every tangent-map sample to be

influenced by the same number of bones, adding zero influences as before. Note that although we

force the two tangents of a sample to have the same set of influences (allowing one set of bone

indices to cover both tangents), we allow different samples within the same tile to have different

influence sets as long as they are of the same size. An n×n tile with b influences is represented as

a bn×n region in the input textures, which are two RGBA floating-point textures to hold the two

tangents, and a single-channel fixed-point texture to hold the bone indices. Each sample within

the tile is represented by a b× 1 region of the textures. The algorithm is given in pseudo-code in

Algorithm 3 and illustrated in Figure 7.5.

The remaining details are very similar to the fragment program for vertex transformation, with

a separate quadrilateral rendered for each tile. We have found that tile sizes of around 4 × 4 to

16 × 16 work well in practice; for smaller sizes the number of quadrilaterals causes the vertex

program to form a bottleneck, while larger sizes reduce the packing efficiency and hence increase

demand on memory bandwidth and cache.

Compared to directly rendering the normals, generating a normal map has the additional advan-

tage that each tangent map sample is transformed only once. On the other hand, every sample

is always transformed, even if it is not visible in the scene (e.g., it may apply to a back face).

This is particularly important for distant characters, since they will generate far fewer fragments

and so should not require as large a normal map. We handle this by generating versions of the

78

CHAPTER 7. RENDERING 7.5. NORMALS AND LIGHTING

tile vertex

array

tangent textures

bone texture

transformation

texture

Transform

Transform

Normal texture

Cross

product

Sum

Sum

Figure 7.5: Illustration of the normal map generation process. Each colour indicates a 2× 2 tile,
and the red dots indicate a single vertex being processed.

Algorithm 3 Pseudo-code for generating a normal map

CPU:

for all tiles do
render a rectangle

end for

Fragment program:

t1 ← 0 //first tangent
t2 ← 0 //second tangent
for s = sfirst to slast do

j ← bone-texture(s, t) //bone index
Gj ← transform-texture({0, 1, 2}, j) //transformation matrix
for i = 1, 2 do

pj ← tangent-texturei(s, t)
ti ← ti + Gjpj

end for
end for
n← t1 × t2

n← n/‖n‖

79

7.6. SUMMARY CHAPTER 7. RENDERING

tangent map at multiple resolutions (stepping in powers of two), and selecting the one with the

appropriate resolution at normal-map generation time. This is similar to the idea of mipmaps in

OpenGL, except that we select one level for the entire model rather than on a per-fragment basis.

The minified tangent maps are produced by averaging blocks of 2× 2 samples to produce a single

sample in the reduced map, using the algorithm in Appendix A.1. Note that this level-of-detail

selection is unrelated to the LOD described in Chapter 6 and Section 7.3.

7.6 Summary

Previous chapters have established many advantages of animation space, but without an efficient

way to render animation-space models, its use would be limited to animation-space computations

applied to SSD models. The biggest potential problem with animation space is that the larger

number of per-vertex parameters, particularly when combined with geomorphing, may exceed

hardware limitations. We have demonstrated several algorithms that are not subject to these

hardware limits; in the next chapter, we will show that these methods perform well in practice.

Each generation of video cards is also more generic and less limited than the previous one, so it is

likely that this will become even less of an issue over time.

We also considered the problem of reproducing the original lighting on simplified models. We

noted that an existing method, tangent-space normal maps, applies just as well to animation-space

models, but does not capture dynamically changing features such as wrinkles. We introduced a

new method, the tangent map, which stores tangents in animation space. Tangent maps can

capture dynamically changing features, but they are more expensive to store and render.

80

Chapter 8

Results and discussion

We now present our evaluation of the methods described in this thesis. We have used a combi-

nation of computed quality metrics, user evaluations, and benchmarking. Section 8.1 covers the

hardware and software setup used for evaluations. Section 8.2 describes the test models used,

and in particular how we applied our fitting procedure (Section 4.1) to produce realistic models.

Section 8.3 provides an external validation of animation space as a modelling tool, by comparing

the quality of fitted models based on the skeletal subspace deformation (SSD), animation space,

and multi-weighted enveloping (MWE) frameworks.

Our applications of animation space as an algorithmic framework, namely parametrisation and

level-of-detail, are evaluated in Sections 8.4 and 8.5 respectively. In Section 8.6 we evaluate

our renderer, comparing our methods for vertex transformation and lighting, and also compare

performance to SSD and MWE.

8.1 Test setup

We implemented the algorithms discussed throughout the thesis using C++, compiled with GNU

GCC 4.1 and executed under Gentoo GNU/Linux. The hardware consisted of an Athlon XP 2800+

(clock speed of 2.083GHz) with 512MB of DDR400 RAM. With one exception discussed later, we

did not use any assembly code or SIMD (Single Instruction Multiple Data) extensions for the

CPU. In particular, it should be noted that Meschach [Stewart and Leyk, 1994], the linear algebra

library that we used, has a straightforward C implementation of low-level matrix operations and

does not benefit from SIMD extensions, and it also does not perform block-based computations

for cache efficiency as is done by ATLAS [Whaley and Petitet, 2005].

For all operations except rendering we used double precision. While using single precision may

improve performance (particularly when combined with SIMD instructions), our experience was

that even with double precision it was still necessary to compensate for numerical errors in calcu-

lations. This is not surprising, given the well-known problems of maintaining accuracy in matrix

81

8.2. MODELS AND FITTING CHAPTER 8. RESULTS AND DISCUSSION

(a) horse (b) cat (c) arm

(d) cylinder (e) mancandy (f) cyberdemon

Figure 8.1: The models used in the experiments. Horse, cat, arm and cylinder are fits to sample
poses. Mancandy is a sample Blender model with two iterations of Catmull-Clark subdivision.
Cyberdemon is a character from Doom III (copyright Id Software and used with permission).

computations [Golub and Van Loan, 1996].

8.2 Models and fitting

We used six models for our experiments. These are shown in Figure 8.1, while Table 8.1 summarises

their properties. Cyberdemon is a character from Doom III and is used unaltered. Mancandy is

a test model for Blender; the Blender file specifies two iterations of Catmull-Clark subdivision,

which we have applied as a pre-process. This subdivision gives mancandy a high vertex count and

average number of influences per vertex, which is useful in testing the scalability of our system.

The remaining models were produced using the fitting process described in Chapter 4.1. For horse,

cat and arm we downloaded reference poses from the Internet. These reference poses had vertices

in correspondence, but no skeletons, so we fit skeletons as described in Section 4.1.4. It is not

known exactly what method was used to produce the downloaded models, but we have no reason

to believe that they should be unusually favourable to an animation-space approximation, and in

particular they exhibit none of the flaws that we would expect if they were produced with skeletal

subspace deformation.

For the arm model, we found that the rest pose selected (an example pose with the elbow bent) led

82

CHAPTER 8. RESULTS AND DISCUSSION 8.2. MODELS AND FITTING

Table 8.1: Properties of the models used in the experiments. Influences is the number of bones
influencing each vertex. Holes is the number of boundary loops and not the genus.

Model Vertices Bones Influences Holes
Max Avg

Horse 8431 25 6 2.6 0
Cat 7207 26 5 2.2 0
Arm 1600 4 3 2.1 2
Cylinder 2426 2 2 2.0 0
Mancandy 42654 96 12 2.4 12
Cyberdemon 2282 65 6 1.5 4

to unnatural-looking shadows when using tangent-space normal maps, so we replaced it with one

in which the elbow was only half bent. For all the other models, we used the provided references:

neutral standing poses for horse, cat, mancandy and cyberdemon, and a straight cylinder.

The reference models for the horse consists of 11 poses, covering a range of head positions and

standing, walking and running poses. We manually marked influence sets, using the vertices with

only one influence to determine the skeleton, then further expanded the influence sets to obtain a

better fit. We found that using δ = 0.005 in Equation (4.4) produced good results. The iterative

least-squares solver converged in 4185 iterations, and the whole fitting process took 524 seconds

(spent almost entirely in the least-squares solver). In fitting the 8431 vertices to the 11 models,

slightly less than 40MB of resident memory was used.

Figure 8.2(a) shows four of the reference poses for the horse, while Figure 8.2(b) shows our fitted

model in the same four poses. It is clear that we have obtained visually identical results. In

addition to the reference poses, we also obtained a 48-frame animation of the horse galloping

(these poses were not used in fitting the model). We used our skeleton extraction to determine the

ideal skeletal configurations corresponding to these poses, and thus produced a gallop animation

from our fitted model. Figure 8.2(c) shows four frames from this animation, and it is clear that

the model generalises well.

In Figure 8.3 we show the effects of regularisation, using a pose from the gallop sequence (i.e., not

one used for the fitting). Figure 8.3(a) has no regularisation, and as a result there are prominent

artefacts. A large bump appears on the top of the front leg, and there is a shear in the front of

the neck at the boundary between two influence sets. Figure 8.3(b) shows vertex regularisation

(Equation 4.3) with λ = 0.02. Although the artefacts are reduced, they are still present, and

there are even new artefacts: the back-right leg is crooked, and there is a black spot on the tail.

Figure 8.3(c) is the final, edge-regularised model we used (δ = 0.005); it has minimal protrusion

from the front-left leg, no shearing of the neck, and the tail and back-right leg are smooth. The

edge regularisation does, however, cause the horse to shrink slightly, as the edges seek to become

as short as possible to minimise the regularisation term; as a result, the overall geometric error is

actually slightly higher in Figure 8.3(c) than in 8.3(b).

The process for the cat was quite similar, the significant differences being that only ten poses were

available (and no separate animation equivalent to the gallop sequence), and we used δ = 0.01.

83

8.2. MODELS AND FITTING CHAPTER 8. RESULTS AND DISCUSSION

(a) 4 of the 11 examples meshes used to create the model

(b) the fitted model in the same four poses

(c) new poses generated from the fitted model

Figure 8.2: Horse model created from 11 example meshes

(a) No regularisation (b) Vertex regularisation, λ =
0.02

(c) Edge regularisation, δ = 0.005

Figure 8.3: Effect of different types of regularisation on fitting. The second row shows closeups of
the neck.

84

CHAPTER 8. RESULTS AND DISCUSSION 8.3. COMPARISON TO SSD AND MWE

The arm was more challenging, as only four reference poses (Figure 8.4(a)) were available. The

influence sets we used are shown in Figure 8.4(e): the top of the upper arm is included in the

influence set for the forearm, because that muscle bulges depending on the angle of the elbow

joint. We found that δ = 0.02 produced reasonable results, and that the quality was far more

sensitive to the choice of δ than for the other models. Smaller values tend to allow discontinuities,

while larger values cause volume loss in convex areas (such as the muscles) as the edge lengths are

minimised. The iterative solver converged in 554 iterations, and the entire fitting process took 8

seconds. The results for the original poses can be seen in Figure 8.4(b), and other poses are shown

in Figures 8.4(c) and (d).

Finally, the cylinder is an artificial example, designed to show the advantages of animation space.

We procedurally generated 40 poses of the cylinder as it bent through 90◦, maintaining a uniform

cross-section, then fitted an animation-space model to this ideal. Although it is not used further in

our experiments, we also fitted a variant in which the cylinder is twisted (like a wrist) rather than

bent (like an elbow). Figure 8.5 compares these models to the equivalent SSD models, showing

that animation-space is better able to preserve the shape of the cylinder as it is bent.

In the case of the cat and the arm, no existing animations were available. We used Blender to

create short animations by positioning the skeleton in key frames and using Blender’s animation

system to interpolate between them.

8.3 Comparison to SSD and MWE

A qualitative and quantitative comparison of skeletal subspace deformation (SSD), multi-weight

enveloping (MWE) and animation space was undertaken by two fourth-year students supervised

by the author. Their findings are available as a separate technical report [Jacka et al., 2007], but

we reproduce their results here as they pertain to animation space.

Jacka et al. implemented a fully automated skeleton extraction, based on the work of Anguelov et al.

[2004b] and James and Twigg [2005], and also produced an independent implementation of our

fitting method, using Equation (4.3) on page 35: that is, they applied vertex regularisation, but

no edge regularisation. This allowed the implementation to execute significantly faster and with

less memory use, as without edge regularisation it is possible to solve for vertices independently

rather than as a single large optimisation. They found that the higher quality of the extracted

skeletons made the artefacts shown in Figure 8.3(b) far less significant.

For comparison, they implemented similar fitting techniques for SSD and MWE, as described

by James and Twigg [2005] and Wang and Phillips [2002] respectively. The fits were compared

objectively for geometric and normal deviation from an ideal (either one of the training poses, or

a non-training pose for which an ideal was available), and subjectively by obtaining ratings from

human subjects.

The models used for testing are the “horse” and “arm” models shown in Figure 8.1, and the

“twist” and “camel” models shown in the bottom two rows of Figure 8.7. It should be noted that

85

8.3. COMPARISON TO SSD AND MWE CHAPTER 8. RESULTS AND DISCUSSION

(a) example meshes used to create the model

(b) the fitted model in the same poses

(c) new poses generated from the fitted model

(d) large extrapolation (e) influence sets used

Figure 8.4: Arm model, generated from the four poses in (a)

86

CHAPTER 8. RESULTS AND DISCUSSION 8.3. COMPARISON TO SSD AND MWE

(a)
(b)

(c) (d)

Figure 8.5: (a) and (c): Cylinder animated with SSD, showing the collapsing elbow and candy
wrapper wrapper effects. (b) and (d): Cylinders modelled in animation space, relatively free of
these effects.

the non-training poses of the camel were produced from those of the horse by deformation transfer

[Sumner and Popović, 2004], and hence are not expected to provide significant further insight.

8.3.1 Error metrics

The fitted models were compared to the reference models, both in the training poses, and in new

poses for which a reference was available but which were not used in fitting. This comparison was

done using Polymeco [Silva et al., 2005], a tool that computes geometric and normal deviations

between meshes. Figure 8.6 provides a visual comparison of these errors in the case of the horse.

The geometric errors are the most informative: when examining a pose used in the training set

(first row), SSD produces large errors, as it is simply not general enough to represent the animation.

In contrast, the errors for both animation space and MWE are quite small, and relatively little

benefit is gained from the extra degrees of freedom in MWE. When considering a new pose,

animation space still out-performs SSD, but the extra degrees of freedom in MWE have clearly

led to over-fitting, causing it to generalise quite poorly to the new pose. Figure 8.7 shows the

geometric deviations of a single (non-training) pose for the other three models considered, which

show the same trends: under-fitting in SSD for the twist model (middle row), and over-fitting in

MWE for the arm and camel models (top and bottom). The data sets each have between 3 and

10 training poses, which may account for the surprisingly poor fits for MWE, in contrast with

the superior results obtained by Wang and Phillips [2002] using hundreds of training poses. Such

large training sets are practical when they are generated from a non-realtime animation system,

but are infeasible to design by hand.

Table 8.2 summarises the geometric and normal deviations for the four models across all available

poses. In every metric except maximum normal error, animation space has the least deviation

in every case. The large maximum normal deviations in three of the models suggests that the

discontinuity/shearing effect discussed in Section 4.1.1 may be present: this may cause one piece

of the mesh to slide very slightly over another, introducing a minimal geometric error but causing

a small number of triangles to flip over.

87

8.3. COMPARISON TO SSD AND MWE CHAPTER 8. RESULTS AND DISCUSSION

SSD Animation space MWE

(a) Geometric error, training pose

(b) Geometric error, non-training pose

(c) Normal error, training pose

(d) Normal error, non-training pose

Figure 8.6: Geometric and normal errors for the horse model. A rainbow colour scale is used, with
blue representing no error and red representing large error. The scale is consistent within each
row, but varies between rows.

88

CHAPTER 8. RESULTS AND DISCUSSION 8.3. COMPARISON TO SSD AND MWE

SSD Animation space MWE

(a) Arm

(b) Twist

(c) Camel

Figure 8.7: Geometric error in the arm, twist and camel models. The colouring is as for Figure 8.6,
and once again the scale is consistent within each row but varies between rows. The poses shown
were not part of the training sets.

Table 8.2: Mean and maximum geometric and normal errors. The mean and maximum values are
taken across all the available poses, including non-training poses. The best result in each section
is shown in bold.

Model Framework Mean Geom Max Geom Mean Normal Max Normal
Error (×10−3) Error (×10−3) Error (◦) Error (◦)

SSD 1.17 68.7 2.43 177.3
Horse AS 0.73 53.3 2.41 179.1

MWE 1.43 99.1 4.29 178.8

SSD 1.22 78.5 3.18 180.0

Camel AS 0.31 50.2 2.29 180.0

MWE 6.13 109.5 7.66 180.0

SSD 26.9 961. 1.25 55.6

Arm AS 16.9 475. 0.68 21.6
MWE 229.9 535. 1.38 22.3

SSD 5.20 42.1 6.23 85.

Twist AS 2.18 26.0 3.42 166.

MWE 18.24 126.7 14.46 179.

89

8.4. PARAMETRISATION CHAPTER 8. RESULTS AND DISCUSSION

8.3.2 User testing

The perceptual quality of the fits was evaluated by 19 test subjects. Each subject was shown

several pairs of animations, and asked to provide a rating of how similar the animations in each

pair were (on a 1–10 scale from least similar to most similar). In each case, one animation was

produced from the reference model (generally including poses not used for training), and the other

from a model fitted to either the SSD, animation space or MWE framework.

The mean ratings for SSD, animation space and MWE were respectively 7.88, 8.88 and 6.29, and

t-tests confirmed that the difference between each pair of means was highly statistically significant

(p < 10−6). This indicates that animation space was able to produce the best models, confirming

the objective tests. Further details are available in the technical report [Jacka et al., 2007].

8.4 Parametrisation

The parametrisation method itself is not the focus of this thesis, and so in evaluating it, we have

not undertaken a methodical analysis of the various tuning parameters. Rather, we used ad-hoc

trial and error to find values that gave the desired effect. Except where otherwise stated, we have

used the following parameters:

• A compactness term weight ρ in Equation (5.4) of 0.2.

• Geometric edge straightening (Section 5.2.3): if the first attempt at straightening increases

the segmentation metric by a factor of more than 1.2, the constrained form of straightening

is used.

• Parametric edge straightening (Section 5.3): if forcing the chart boundaries to follow straight

lines in parametric space causes the L2 stretch metric to increase by a factor of more than

4.0, then we introduce extra corners.

8.4.1 Segmentation

In Section 5.2, we introduced a new segmentation metric, which we now show is an improvement on

the “mean-squared” metric used by Sander et al. [2001]. Figure 8.8 shows both methods applied

to the horse model, which is then parametrised. We made the following choices for both cases:

• In the interests of comparability, no compactness term was used, since they take different

forms for the two metrics (ours uses projected area rather than surface area).

• We disabled both edge straightening mechanisms, since their effect on quality is quite variable

and unpredictable.

• We performed the segmentation calculations in 3D rather than animation space, because we

have not adapted the mean-squared metric for animation space.

90

CHAPTER 8. RESULTS AND DISCUSSION 8.4. PARAMETRISATION

(a) Mean-squared metric [Sander et al., 2001]

(b) Our area ratio metric

Figure 8.8: Comparison of mesh segmentation metrics, showing the head and legs of the horse.
The mean-squared metric causes the left ear and front feet to be completely wrapped, leading to
poor parametrisations as shown by the wide variation in scales.

From the figure, it is clear that by failing to consider orientation, the mean-squared metric is not

able to handle flat areas such as the ear of the horse. Narrow limbs (such the front legs in the

example) are also problematic for the mean-square metric, whereas our area-ratio metric is able

to avoid creating sock-like charts.

Unfortunately, while the segmentation metric is an improvement on prior work, it is still lacking

in some respects. A common failure is that it allows a sock to form, provided that it is attached

to a larger planar region. Since the sock is small, it contributes little to either the numerator or

denominator in Equation (5.4), and so there is only a small penalty. However, the detrimental

effect of the sock on the parametrisation is far greater than is suggested by the metric. Figure 8.9

shows an example of such a problem: one finger of the cyberdemon is completely enveloped by

the chart covering the top of the arm. When this chart is parametrised, the finger-tip takes a

disproportionately small area in parameter space, forcing the rest of the chart to be over-sampled.

In order to ensure that these problems did not adversely affect our results, we chose to manually

segment the models. Common 3D modelling packages support this task (we used Blender), and

so it is not overly onerous. Even for the more complicated models (cyberdemon and mancandy),

91

8.4. PARAMETRISATION CHAPTER 8. RESULTS AND DISCUSSION

(a) automatic, without geometric
edge straightening

(b) automatic, with geometric
edge straightening

(c) manual

Figure 8.9: Top-down view of cyberdemon, segmented manually and automatically, parametrised,
and textured with a chequerboard pattern. The automatic methods completely enclose one of the
fingers, which causes the disparate scale on the arm. The effect of automatic straightening can be
seen on the top of the head.

segmentation required no more than a few hours, with little prior experience required. While

reliable automatic segmentation would of course be preferable, this is a small investment in time

compared to that needed to model, rig, skin and animate a detailed character.

Table 8.3 shows the value of the segmentation metric and the L2 stretch for a parametrisation of

this segmentation, all computed in animation space. In most cases, the manual segmentation has

a higher area-ratio metric, but a lower L2 stretch. This is most likely because in designing the

manual segmentation, we aimed for developable charts, rather than planar ones. As an example,

we generally used two charts per arm or leg (excluding the hand or foot), since a hemicylinder is

perfectly developable despite being non-planar.

8.4.2 Flattening

One of the motivations for developing animation-space metrics was that they would allow parametri-

sation to be performed in animation space, and thereby improve the overall quality of the parametri-

sation across all poses. We now present results to support this. For the same reasons as supplied

for segmentation, we did not attempt to straighten the chart boundaries in parameter space. For

each model, we have performed parametrisation using three methods:

1. using only the rest pose, with computations in 3D;

2. using animation space, with the uniform rotations, fixed translations statistical model; that

is, using only information from the skeletal structure and no knowledge of the intended

animation;

3. using animation space, with expectations estimated from an animation.

92

CHAPTER 8. RESULTS AND DISCUSSION 8.4. PARAMETRISATION

Table 8.3: Comparison of manual and automatic segmentation. The methods are A = auto-
matic, AS = automatic with straightening, M = manual. The best result in each block is shown
in bold.The automatic methods failed to produce a valid parametrisation for mancandy due to
foldovers, and applying straightening caused some triangles to become degenerate (horse) or almost
degenerate (cat).

Model Charts Method Metric L2 stretch
A 2.15 5.27

Horse 30 AS 2.23 ∞
M 2.62 1.04
A 1.95 1.08

Cat 36 AS 1.96 33.43
M 2.63 1.10
A 1.96 1.00

Arm 6 AS 1.93 1.00
M 2.29 1.00
A 4.03 1.10

Cylinder 6 AS 2.91 1.16
M 2.84 1.00

Mancandy 69 M 3.60 1.13
A 1.91 1.22

Cyberdemon 67 AS 2.05 1.27
M 2.44 1.17

Table 8.4 shows the resulting average L2 stretch. Since our aim is to validate animation space as a

meaningful space in which to perform measurements, we do not show animation-space L2 stretch

in the table, but rather the average of 3D-space L2 stretch across the frames of the animation. In

a few instances, using the uniform rotations, fixed translation model causes the chart boundaries

to self-intersect in parameter space. Normally, we would split such charts to eliminate the self-

intersection, but this would change the segmentation and bias the comparison, so we have left

these charts as is. The affected results are shown in brackets in the table.

The metric based only on the skeleton performs poorly, as it assumes that joints have total freedom

of motion. In contrast, the 3D model assumes that joints have zero freedom of motion, which is

Table 8.4: Comparison of metrics for flattening. The column headings refer to the information
that was used to define the distance metric. The values are the average L2 stretch metric for
the animation, computed in 3D space. The best result in each row is shown in bold. Values in
brackets indicate that some charts had self-intersecting boundaries: in the interests of using the
same segmentation for all the results, we did not split these charts.

Model L2 stretch Time (s)
None (3D) Skeleton Animation 3D AS

Horse 1.096 (1.505) 1.056 15.0 19.8
Cat 1.249 1.740 1.147 8.6 10.7
Arm 1.044 1.081 1.025 1.7 2.2
Cylinder 1.015 1.035 1.008 2.9 3.4
Mancandy 1.088 (2.392) 1.285 119.0 146.8
Cyberdemon 1.210 (2.187) 1.182 1.9 2.4

93

8.4. PARAMETRISATION CHAPTER 8. RESULTS AND DISCUSSION

1.003 1.019 1.027

1.027 1.029 1.005

1.129 1.092 1.076

(a) No dynamic information (b) Skeleton only (c) Skeleton and animation

Figure 8.10: Three parametrisations of a tube, in three different poses. (a) Only the top pose is
considered. (b) The skeleton is used, but no information about the animation is considered. (c)
Statistics about the animation are used. The numbers below each figure indicate the L2 texture
stretch. The stretch is most visible on the red chart in the area of the joint.

closer to the truth for small ranges of motion. Extracting the freedom of motion (in the form of

expectations) from the animation gives the best results in all the models except mancandy. In

the case of mancandy, the animation-space method produces distortions around the ankles. We

have not yet determined why this is the case, but it is most likely due to an interaction between

translations and rotations that is not captured by our statistical model of independent translation

and rotation components.1

Figure 8.10 shows an example of flattening in 3D and in animation space, using an artificial model

of a tube to highlight the differences. The flattening in 3D space is computed from the pose shown

in the top row. In this pose the parametrisation is almost distortion-free. However, because this

parametrisation is only optimised for this pose, the distortion is worse in other poses.

For this simple example, it is clear that the choice of “rest” pose (i.e., the pose in which to perform

flattening) was poor, and that better results could have been obtained from the intermediate pose.

In general, however, it is far from obvious how best to select a pose for parametrisation, or even

that a single pose can ever be sufficient, while animation-space simplification frees the user from

having to make such choices.

We have shown that in most cases, animation space is the appropriate space for flattening, but if

it is orders of magnitude slower it may not be justified. Table 8.4 also shows the time required to

parametrise a model in 3D space and in animation space; in the worse case (horse) the animation-

space method takes only 32% longer. It should be noted that we used the same code in both cases;

code that is written specifically for the 3D case is likely to run faster. Nevertheless, parametrisation

in animation space is unlikely to be an order of magnitude slower than in 3D, and since it is a

once-off process, the potential for an improved parametrisation should justify its use.

1Mancandy has quite large and variable translation components in some of the joints, which is anatomically
implausible.

94

CHAPTER 8. RESULTS AND DISCUSSION 8.4. PARAMETRISATION

Table 8.5: L2 stretch with and without parametric edge straightening. We used manual seg-
mentations and performed computations (including the computation of L2 stretch) in animation
space.

Model Unstraightened Straightened
Horse 1.040 1.354
Cat 1.101 1.210
Arm 1.003 1.105
Cylinder 1.000 1.016
Mancandy 1.138 1.340
Cyberdemon 1.172 1.510

8.4.3 Edge straightening

In order to use our parametrisations in a progressive mesh, it was necessary for the edges to be

straight in parameter space (this is a standard problem, and in no way related to animation space).

We implemented an ad-hoc scheme which has a few shortcomings. In particular, our choice of

which points to label as corners was rather arbitrary, and it was not unusual for a large number

of corners to be added before an acceptable parametrisation was found. Manual segmentation

helped alleviate some of the deficiencies, because we were able to see problematic cases and add

extra charts in order to force corners at specific points. We were also able to make decisions

based on global information, such as placing boundaries in areas where the polygonisation made

it possible to produce a straight boundary, which was not possible for the greedy, bottom-up

algorithm. With manual segmentation, we are satisfied that the edge straightening was good

enough to obtain meaningful LOD results.

Table 8.5 compares the L2 stretch for parametrisations computed with and without edge straight-

ening. The straightening clearly introduces additional stretch, but because of the quality of the

manual segmentation, the stretch remains reasonable. It is also worth comparing the Unstraight-

ened column in Table 8.5 with the Animation column in Table 8.4 — they are, respectively, the

average 3D L2 stretch and the animation-space L2 stretch for the same parametrisation. While

they are not the same, they are similar, although in the case of mancandy there is a large difference

for the same reason that the animation-space parametrisation performed poorly in the first place.

8.4.4 Packing

We added no novelty to the problem of packing charts into a single texture atlas, simply using the

alternating left-to-right and right-to-left algorithm of Sander et al. [2001]. Figure 8.11 shows two

examples of packings produced by this algorithm.

Table 8.6 summarises the final parametrisations produced for each of the models, including the

segmentation and parametrisation. This includes parametric edge straightening, with computa-

tions performed in animation space using estimated expectations. The running time is dominated

95

8.5. LEVEL OF DETAIL CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.11: Sample parametrisations of the horse (left) and cyberdemon (right), illustrating the
packing and edge straightening. Note that in the case of the horse, we show the edges of a
simplified version (1000 faces) to ensure the triangles are large enough to be visible.

Table 8.6: Summary of texture efficiency. Packing efficiency is the fraction of the parametric
domain that is occupied by the parametrisation. Texture efficiency measures what fraction of the
parametric space has been wasted, either by packing or by variable sampling; it is equal to the
packing efficiency over the square of L2 stretch.

Packing Texture
Model Charts L2 stretch Efficiency Efficiency Time (s)

Horse 30 1.354 0.386 0.211 47.7
Cat 36 1.210 0.467 0.319 35.4
Arm 6 1.105 0.486 0.398 5.0
Cylinder 6 1.016 0.613 0.593 7.3
Mancandy 62 1.340 0.372 0.207 2681.2
Cyberdemon 63 1.510 0.370 0.162 12.7

by the flattening; the differences in times between Tables 8.4 and 8.6, particularly in the case of

mancandy, are due to the edge straightening process that causes some charts to be flattened many

times as corners are successively introduced.

Texture efficiency is mostly in the 20%–40% range. For the cyberdemon model it is worse, due

to the higher L2 stretch. The cylinder is a simple and artificial model, which leads to a tighter

packing and hence better texture efficiency.

8.5 Level of detail

We improved the level of detail of animated models in two ways: by using the L2,2 metric within

the framework of appearance preserving simplification (APS), and by removing bone influences

on vertices. We compare animation-space LOD with and without influence simplification, and we

consider both the standard and memoryless forms of APS.

Figures 8.12 and 8.13 show the errors introduced by the various LOD methods. In each case, the

RMS error refers to the square root of the mean squared error, with the mean taken across both

space and time. The error is measured between corresponding points in parameter space, for the

same reason that APS defines the error metric in this way (namely, to account for texture sliding).

96

CHAPTER 8. RESULTS AND DISCUSSION 8.5. LEVEL OF DETAIL

We obtained the measurements by rendering geometry images [Gu et al., 2002] at a resolution of

2048× 2048, then taking the difference between geometry images for full-detail and approximated

models. A side-effect of this measurement methodology is that the spatial mean is weighted by

parametric area, rather than geometric area, but Table 8.5 indicates that these are similar. The

models were scaled to fit in an axis-aligned bounding cube of unit size, so that the absolute errors

are roughly comparable between graphs.

Figure 8.12 shows the absolute errors on a logarithmic scale. The graphs all have similar shape,

and suggest that simplification has three phases2. In the first phase (to the right on the graphs),

the superfluous vertices and influences are eliminated, but these are quickly exhausted and the

logarithm of the error climbs rapidly, although the errors are still negligible. In the middle phase,

curves are gradually flattened out and surface detail is lost, while the error climbs smoothly. Once

all the detail has been eliminated, the final phase is to remove large-scale structure such as ears

and the shape of the face until no further collapses are possible; during this phase the error again

increases rapidly.

Figure 8.13 shows relative errors on a linear scale, where it easier to compare different techniques.

It is clear that animation-space simplification, influence simplification, and standard APS are a

poor combination (green). In a high-dimensional space such as animation space, the axis-aligned

bounding boxes used in standard APS are an extremely conservative approximation. The result

is that in some cases, an edge collapse would be the best choice but the inaccuracy in the error

metric leads to an influence simplification being used instead. The problem is exacerbated by

the fact that we have made no attempt to choose sensible axes in normalised animation space.

To a lesser extent, this shortcoming of standard APS in animation space can also be seen in a

comparison of the two instances of animation-space simplification without influence simplification:

in every case the memoryless form (blue) performs better than the standard form (pink). As there

is no clear indication that standard APS is an improvement on memoryless APS in rest-pose

simplification (cyan versus black), and as memoryless simplification is simpler, faster, and more

memory-efficient, we will restrict further discussion to memoryless simplification.

In every case, animation-space simplification without influence simplification (blue) gives better

overall results than pure rest-pose simplification (cyan); the only situations in which it is worse are

at very low influence counts for some of the models. The effect of including influence simplifications

(red) is more variable: on arm, cylinder and cyberdemon it makes a huge improvement across all

levels of detail, but for mancandy it performs very poorly in the centre of the range, and for other

models it is generally slightly worse across the range. The improvements appear to stem from

the ends of the range, most clearly seen for mancandy: superfluous influences can be removed

immediately at negligible cost, and for extreme simplifications, influences may be removed in

preference to edge collapses of large-scale features.

Our algorithm ranks simplifications purely by geometric deviation, rather than by geometric devi-

ation per removed influence. Influence simplifications remove only a single influence, whereas edge

2Two of the graphs for the cylinder model deviate from this shape, but this is because the cylinder model is an
artificial example with perfectly straight sides.

97

8.5. LEVEL OF DETAIL CHAPTER 8. RESULTS AND DISCUSSION

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 5000 10000 15000 20000 25000

R
M

S
 e

rr
o

r

Influences

horse

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

R
M

S
 e

rr
o

r
Influences

cat

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 500 1000 1500 2000 2500 3000 3500

R
M

S
 e

rr
o
r

Influences

arm

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
M

S
 e

rr
o
r

Influences

cylinder

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 20000 40000 60000 80000 100000 120000

R
M

S
 e

rr
o
r

Influences

mancandy

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 500 1000 1500 2000 2500 3000 3500 4000

R
M

S
 e

rr
o
r

Influences

cyberdemon

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

Figure 8.12: Absolute RMS errors for different simplification methods. The errors are shown on
a logarithmic scale to handle the large range of values. Note that this makes the differences seem
smaller than they actually are; refer to Figure 8.13 for a relative comparison.

98

CHAPTER 8. RESULTS AND DISCUSSION 8.5. LEVEL OF DETAIL

 0

 0.5

 1

 1.5

 2

 2.5

 0 5000 10000 15000 20000 25000

R
M

S
 e

rr
o

r

Influences

horse

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

R
M

S
 e

rr
o

r
Influences

cat

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500

R
M

S
 e

rr
o
r

Influences

arm

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
M

S
 e

rr
o
r

Influences

cylinder

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20000 40000 60000 80000 100000 120000

R
M

S
 e

rr
o
r

Influences

mancandy

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 500 1000 1500 2000 2500 3000 3500

R
M

S
 e

rr
o
r

Influences

cyberdemon

AS with influence simplification (memoryless)
AS with influence simplication

AS without influence simplification (memoryless)
AS without influence simplification

3D rest pose (memoryless)
3D rest pose

Figure 8.13: Comparison of relative RMS errors for different simplification methods. The errors
for each method are divided by the error for the memoryless rest-pose only method.

99

8.5. LEVEL OF DETAIL CHAPTER 8. RESULTS AND DISCUSSION

collapses may remove several. This is why including influence collapses may result in lower quality

at the same influence count, even if we have a good estimate of their cost. Ranking simplifications

by error per removed influence may yield improvements for mean error, but it will also admit edge

collapses with extremely large errors if the vertex that is to be removed has a large number of

influences.

Figure 8.14 provides a visual comparison between the results of the three memoryless variants.

As expected, a 3D simplification provides particularly poor simplification around the joints of the

legs and tail, which are the parts that move most during the animation (note particularly the

back-right ankle, which disappears at 680 influences). Using influence simplification reduces the

required number of edge collapses, and thus allows more curvature and detail to be maintained. Of

course, influence simplification is not free and does introduce some error: at the lowest influence

count shown (which would normally only be applied to very distant models), it causes a vertex

on the chest to be displaced, leading to the bump on the chest visible in the bottom-right of

Figure 8.14.

8.5.1 User testing

While animation-space simplification has lower geometric error than rest-pose simplification, this

does not guarantee that users will find this to be a visually superior approximation. We thus

conducted user experiments to confirm the results above.

The first experiment was run to determine how sensitive users are to different levels of detail. In

each test, users were shown pairs of videos. Videos were shown one after the other, rather than

side-by-side, so that users would focus on overall quality rather than trying to identify low-level

differences. The videos in each pair showed the same scene and used the same camera path (an

inward spiral, intended to cover a range of viewing angles and distances), but were created with

different rendering options. The videos were kept short (7–8 seconds each) to allow them to be

retained in working memory [Baddeley, 1986]. They were rendered at 1280× 1024 resolution with

anti-aliasing, and were stored with a lossless video codec. After watching each pair of videos, the

user was required to specify which one had better quality, with a forced choice. Each pair of videos

appeared in two tests, with the order reversed, to eliminate any ordering bias. The tests were also

conducted in random order, to avoid any systematic learning bias. Users were told that they were

comparing different rendering methods for quality, but nothing more about the nature of those

methods.

The tests were conducted in a separate room to reduce external noise and to control lighting.

We initially intended to conduct the experiments with the lights turned off, to eliminate glare.

However, a pilot user complained that the contrast between the video clips (with a black back-

ground) and the window that appeared between tests (with a standard light grey background)

caused significant eye strain, and so the tests were conducted with the lights on.

For this first experiment, one video was rendered without level-of-detail, while the other was ren-

dered with memoryless animation-space level-of-detail with influence simplification, at a certail

100

CHAPTER 8. RESULTS AND DISCUSSION 8.5. LEVEL OF DETAIL

1363 influences 680 influences 337 influences

(a) Simplification from 3D rest pose

1366 influences 680 influences 338 influences

(b) Animation-space simplification, no influence simplification

1366 influences 683 influences 341 influences

(c) Animation-space simplification with influence simplification

Figure 8.14: The horse at three levels of detail, for three simplification methods. Notice how
simplification computed purely on the rest pose does not correctly handle the joints at the ankles
and in the tail, causing them to vanish.

101

8.5. LEVEL OF DETAIL CHAPTER 8. RESULTS AND DISCUSSION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 o
f

s
a

m
p

le
s

Pixel tolerance

Horse
Cat
Arm

Mancandy
Cyberdemon

Mean

Figure 8.15: Number of users who preferred the full-detail scene to the LOD approximation. Each
of the 17 subjects evaluated each scene at each tolerance twice, so the points on the graph reflect
34 samples. The mean graph is the average over the five scenes, so each point reflects 170 samples.
The error bars on the mean graph are 95% confidence intervals, although they do not take the
learning bias into consideration.

pixel error tolerance. We used a set of twelve different error tolerances, and five scenes. Each

scene consisted of one model from Figure 8.1 (cylinder was excluded, as being too artificial),

replicated a number of times. Note that the actual errors may be larger than the nominal tol-

erances, since memoryless simplification only requires that each individual collapse, rather than

their accumulation, is within the tolerance.

The raw results may be found in Table D.1, and they are plotted graphically in Figure 8.15.

Unfortunately, even with 170 samples per tolerance, there is too much noise in the data for any

general conclusions to be reached. We found that the number of times a scene had previously been

shown to a subject was a highly significant (p < 0.002) predictor of whether the user would pick the

full-detail video, indicating that a learning effect was present. This confirms responses to a post-

experiment questionnaire, which suggested that subjects would identify specific artefacts (such

as mancandy’s head developing a point at the top), and then use those artefacts to distinguish

between the videos. There was also statistically significant variation between scenes and between

subjects, even after accounting for the learning effect.

We ran a further three forced-choice experiments as a single set. The comparisons made in each

were:

Experiment 2 animation-space simplification against 3D rest-pose simplification, in both cases

without influence simplification (which is meaningless in 3D),

Experiment 3 animation-space simplification with and without influence simplification, and

Experiment 4 two different methods of computing normals during rendering (the results of this

experiment are reported later with other rendering results).

102

CHAPTER 8. RESULTS AND DISCUSSION 8.5. LEVEL OF DETAIL

The setup was essentially the same as for the first experiment, with users watching pairs of videos

and choosing which was preferred. A different set of 23 users, mostly students at the University

of Cape Town, took part in this experiment, with only two of them having also taken part in

the previous one. We made some improvements based on feedback from the first experiment, and

some changes based on the nature of the experiments:

• We used a dark background for the test application, to reduce contrast with the videos, and

turned off the lights during the experiment to reduce screen glare.

• In the first experiment, several subjects claimed that there were differences in speed between

the videos in a pair. We confirmed that all the videos were recorded correctly, but found

that the player was unable to decode the lossless codec fast enough. As a result, videos

may have played at slightly variable speed, depending on the CPU load. For the second

set of experiments, we reduced the frame rate to 20fps (from a nominal 30fps and roughly

25fps in practice). This had the additional benefit of giving subjects more time to study the

animations.

• Because the pixel tolerance is only an approximation of the actual error, it does not make

sense to compare different simplifications at the same pixel tolerance. Instead, we used

tolerances of 1.5, 3 and 6 pixels for one video in each pair (the animation-space one for

Experiment 2, the one with influence simplification for Experiment 3), and computed the

pixel tolerance for the second video that gave, as closely as possible, the same number of

influences rendered over all the frames of the video. In a few cases for Experiment 3, we

were forced to omit the tests with a pixel tolerance of 3 or 6 pixels, as without influence

simplification it was impossible to simplify the other video to the necessary extent.

• In order to reduce the learning effect seen in the previous experiment, we added a “training

phase”. During this first phase, every pair of videos was shown once, in a random order,

and preferences were gathered but discarded. After this the real experiment began, in which

each pair was shown twice, once in each order (the order of pairs being randomised within

each phase). The intent was that subjects would learn to recognise artefacts during the

training phase, making the order of pairs during the experiment phase less of a factor. Users

were not told that a training phase was used, and the training and experiment phases were

indistinguishable to the user.

In Experiment 2, we expected that the error tolerance would be an influencing factor, with more

statistical significance at higher error tolerances (since with a zero or small tolerance, the result

is indistinguishable from the ideal irrespective of the LOD algorithm). We were surprised to

find that the reverse was true. At 1.5 pixels, there was a significant preference (p < 0.002) for

animation-space simplification over 3D rest-pose simplification, while at 3 and 6 pixels there was

no statistically significant result. We conjecture that at 1.5 pixels the errors in the 3D rest-pose

simplifications are just noticeable to users but those of animation-space simplifications are not,

while at higher tolerances users are unable to distinguish between large errors with little relative

difference.

103

8.6. RENDERING CHAPTER 8. RESULTS AND DISCUSSION

The training phase was successful in reducing the ordering bias seen in Experiment 1. We found

no statistically significant dependence on the number of times a scene had been previously shown.

The ordering bias was still present (users being more likely to choose the second of the two videos),

but was only statistically significant for tolerances of 3 and 6 pixels. This is most likely because at

these tolerances users made arbitrary choices, whereas at 1.5 pixels the choices were more informed

by the content. We found no dependence on the scene or subject.

In Experiment 3, the choice of scene was highly significant. This is unsurprising, as some mod-

els have more redundant influences than others. Only the horse and mancandy models showed

statistically significant results, with users preferring influence simplification. This is in spite of

the apparently poor performance of influence simplification on mancandy shown in Figure 8.13,

suggesting that errors at high and low details are more important than errors at intermediate lev-

els of detail. There was also some variation between subjects for the cyberdemon and mancandy

models, but it was not very significant (0.02 < p < 0.05).

8.6 Rendering

For benchmarking rendering, we used two test systems. The first is the system described at the

start of the chapter, equipped with a 256MB GeForce 6600 on an AGP 8x bus. Graphics hardware

continues to make rapid advances, both in raw performance and in architectural improvements, so

we also ran tests on a second machine. This machine has an Intel Core2Duo E6600 (clock speed

of 2.4GHz), 1GB of DDR800 RAM, and a GeForce 8800GTX with 768MB of RAM on a PCI

Express bus.

For maximum performance, we implemented the CPU-based vertex transformation methods in

single precision, using SSE.

8.6.1 Vertex transformation

To measure the performance of vertex transformation in isolation, we disabled all shading, LOD

selection (we manually specified the discrete level of detail to use, although all the code for geo-

morphing was still active) and frustum culling, and pointed the camera away from the models in a

scene. For each vertex transformation method, we ran tests with a variety of models (the models

in Figure 8.1, excluding cylinder), vertices, influences, and number of objects in the scene in order

to establish a linear model. In each case we used 200 frames, and discarded the first five, in order

to eliminate the effect of startup costs.

We used GNU R [R Development Core Team, 2005] to compute a linear model for each rendering

method. Rather than using the default of weighting all observations equally, we assumed that

the variance of each observation is proportional to the rendering time, since random fluctuations

accumulate over time. The model we fitted was of the form T = aV + bI + cO + d, where T is the

average time to render a frame, V the number of vertices, I the total number of influences and O

104

CHAPTER 8. RESULTS AND DISCUSSION 8.6. RENDERING

Table 8.7: Linear model for vertex transformation time on a GeForce 6600. The coefficients are
given in microseconds for the per-frame and per-object overheads, and nanoseconds for the number
of vertices and influences. We also report the R2 value of the linear regression.

Method µs/Frame µs/Object ns/Vertex ns/Influence R2

CPU 2165 −38 60 31 0.977
Alternative CPU 2224 −81 71 36 0.938
Fragment program 2419 125 51 11 0.983
Vertex textures 2122 −23 4 327 0.997

Table 8.8: Linear model for vertex transformation time on a GeForce 8800GTX. The coefficients
are given in microseconds for the per-frame and per-object overheads, and nanoseconds for the
number of vertices and influences. We also report the R2 value of the linear regression. The
per-influence cost of the fragment program was computed as 0.35ns, but with a standard error of
0.4ns, and so we eliminated it from the model.

Method µs/Frame µs/Object ns/Vertex ns/Influence R2

CPU 48 15 9.2 10.3 0.989
Alternative CPU 66 12 6.5 9.4 0.983
Fragment program 48 84 10.9 — 0.978
Vertex textures 63 15 1.8 3.4 0.885

the number of objects (d being a per-frame overhead). Table 8.7 shows these coefficients for the

GeForce 6600, while Table 8.8 shows the same data for the GeForce 8800GTX. The raw data are

available in Tables D.5 and D.6.

The variation in per-frame overheads between the different rendering methods is well below 1ms

and is not statistically significant, so we will ignore it in discussing the relative performance of the

different methods. The negative coefficients for the number of objects in Table 8.7 are counter-

intuitive, but they are statistically significant. They arise because we instanced a single object

multiple times, rather than using different objects. As a result, a single large object will consume

100 times as much memory as 100 instances of a small object with the same total number of

vertices and influences; this places greater demands on the memory subsystem, and as a result the

rendering is slower, even though per-object code is executed less often. The other test machine

(Table 8.8) had more memory, higher memory bandwidth and a larger cache on both the CPU and

the video card, and so per-object overheads outweighed these benefits to yield positive coefficients.

On the GeForce 6600, the fragment-program based transformation is faster than CPU-based trans-

formation on a per-vertex and per-influence basis, but also has significantly higher per-object over-

head. It will likely be faster for high-detail representations (at least several thousand vertices),

but slower for extremely simplified models. A possible approach for a production implementation

would be to select the appropriate method on an object-by-object basis to obtain the benefits of

both methods, although it it is possible that the overhead of switching methods would be greater

than any potential saving. While the GeForce 6600 offers vertex texturing, the performance is

clearly inadequate for this purpose.

On the GeForce 8800GTX, the performance is of course much better, but different relationships

105

8.6. RENDERING CHAPTER 8. RESULTS AND DISCUSSION

emerge. Firstly, the alternative method for CPU transformation (iterating over bones rather

than over vertices) becomes slightly better than the original CPU method, at least in terms of

per-vertex and per-influence performance; this is likely due to internal differences in the CPUs

(Athlon XP compared to a Core2Duo) and memory architectures. The fragment program method

becomes essentially independent of the number of influences; we assume that there must be some

dependence, but we had insufficient data to determine it with statistical significance (the value

reported by R was 0.35ns ± 0.4ns).

Finally, it is clear that the improved vertex texturing capabilities of the GeForce 8 series make the

vertex texturing approach a far more attractive option. The per-object overhead is roughly 3µs

higher than the alternative CPU method, so it may under-perform on scenes with many distant

objects at extremely low detail (fewer than 250 vertices). It will also have poorer per-vertex

performance than the fragment program for models with more than about three influences per

vertex (although the standard deviations in the coefficients are too large to identify a specific

cross-over point) and the high per-object overhead for the fragment program means that this is

only a concern for large models.

We also emphasise that the vertex texturing scheme was designed to fit the constraints of the

GeForce 6 series, and so it is likely that further optimisation is possible. In particular, the GeForce

8 would allow us to use hardware texture filtering to perform geomorphing with a single texture

lookup, as discussed in Section 7.4.3.

Comparison to SSD and MWE

So far we have compared different methods of vertex transformation for animation space, but it is

also important to know whether animation space sacrifices the high performance that made SSD

practical for real-time rendering. In fact, we will see that the opposite is true.

To keep this comparison as simple and as general as possible, we did not use run-time LOD, and

lighting was ignored. We implemented vertex programs, shown in listings C.12 through C.14, that

performed the necessary computations for SSD, animation space and MWE respectively, taking

all per-vertex data as OpenGL vertex attributes. This limited the number of influences per vertex

to 8 in the case of animation space, and 4 in the case of MWE. In order to reduce the impact of

overheads not related to vertex transformation, we used models with high vertex counts (in some

cases, by applying Catmull-Clark subdivision to a model that we have used previously) and placed

the model outside the view frustum to avoid per-fragment costs. Some of the models exist in fully

general animation space, and have no exact SSD equivalent; we produced SSD approximations by

simply taking the weight components from the animation-space vectors as weights for SSD. This

gives a poor approximation, but quality is of no concern for this test.

Table 8.9 shows the frame rates for the three skinning methods, on the GeForce 6600. Surpris-

ingly, animation space is faster than a straightforward implementation of SSD. The reason is that

SSD requires the weight to be multiplied with the position, whereas for animation space it is

pre-multiplied and this reduces the instruction count. Of course, the vertex program used for an-

106

CHAPTER 8. RESULTS AND DISCUSSION 8.6. RENDERING

Table 8.9: Comparison of rendering performance for skeletal subspace deformation (SSD), anima-
tion space (AS) and multi-weight enveloping (MWE). MWE can only support four influences on
any bone in a straightforward implementation, and hence some entries are absent.

Model Vertices Bones Average FPS
Influences SSD AS MWE

Cylinder 38786 2 2.0 538 748 358
Tube 57346 2 1.8 366 500 192
Arm 100160 3 1.8 206 286 142
Hand 102274 29 2.5 204 285 —
Horse 137634 24 3.0 154 214 —

imation space could equally well apply to SSD models, since they are a subset of animation-space

models. NVIDIA [Dominé, 2003] present a very similar method, but they fail to gain the extra

instruction because they do not pre-multiply the weight. For multi-weight enveloping, we based

our implementation on Equation (3.3), and the resulting vertex program has almost identical

structure to the animation-space program; however, the cost of the extra weights that must be

passed (12 per vertex instead of 4) becomes significant, and so MWE is far slower to render than

both SSD and animation space.

8.6.2 Normal transformation

For each of the models, we sampled a 256 × 256 tangent map. To prevent aliasing, we started

with a 1024 × 1024 map, then down-sampled it. We used a simple box filter and the algorithm

in Appendix A.1 to average together tangent-plane samples. This resolution is not sufficient

for a one-to-one sample-to-pixel correspondence in close-up shots; however, we expect that in a

production implementation, close-up models would be rendered at full geometric detail with per-

vertex normals for maximum quality. Tangent-space normal maps (TSNMs) were also sampled at

256× 256 resolution.

Performance

Tables 8.10 and 8.11 show the performance of three different methods for computing normals:

Phong shading (per-vertex normals are interpolated across faces), TSNMs, and tangent maps.

We rendered the scenes using the same spiralling camera path employed in user experiments

(Section 8.5.1), but the models were deliberately forced to the most extreme simplification to

reduce the impact of per-vertex costs on the measurements. In the case of mancandy, this was

clearly insufficient, as over 1000 vertices remained and the rendering was an order of magnitude

slower than for other models, but we have included the results for completeness.

With both video cards, but particularly on the newer GeForce 8 card, TSNMs have little impact

on performance (at worst, rendering takes 50% longer). In contrast, tangent maps are far more

expensive, as is to be expected from a method that performs two animation projections on the fly.

107

8.6. RENDERING CHAPTER 8. RESULTS AND DISCUSSION

Table 8.10: Shading performance on a GeForce 6600. The numbers represent time per fragment,
in nanoseconds. Vertex is Phong shading (normals interpolated between vertices). The results for
tangent maps are reported by tile size, and the result for the best tile size is shown in bold. The
ratios are the ratio between the TSNM or best tangent-map time and the Phong-shading time.
The models were rendered at the lowest level of detail to reduce the influence of per-vertex costs.

Model Vertex TSNM Tangent map (TM) TSNM TM
2 × 2 4 × 4 8 × 8 16 × 16 32 × 32 Ratio Ratio

horse 88.4 98.3 12690.1 9364.3 8535.1 10675.5 11128.6 1.11 96.52
cat 43.0 48.0 4129.3 2752.1 2253.4 2557.2 2920.1 1.12 52.35
arm 54.2 67.6 3238.4 1891.5 1469.0 1506.0 1566.9 1.25 27.11
cylinder 28.0 34.7 648.1 330.5 279.2 264.1 259.2 1.24 9.27
mancandy 1170.7 1770.6 11972.1 9134.0 9227.2 12568.0 15218.3 1.51 7.80
cyberdemon 78.1 82.6 3041.3 2193.7 2311.7 3151.8 4122.3 1.06 28.09

Table 8.11: Shading performance on a GeForce 8800GTX. The columns have the same meaning
as Table 8.10.

Model Vertex TSNM Tangent map (TM) TSNM TM
2 × 2 4 × 4 8 × 8 16 × 16 32 × 32 Ratio Ratio

horse 37.7 41.2 768.4 384.3 302.7 313.4 306.3 1.09 8.03
cat 18.8 19.9 268.0 137.0 102.6 107.3 102.8 1.06 5.47
arm 25.3 23.3 239.6 143.3 119.2 114.1 110.4 0.92 4.37
cylinder 11.4 12.4 61.7 49.6 46.8 46.6 46.1 1.08 4.03
mancandy 223.5 228.3 867.4 482.5 359.9 388.3 415.5 1.02 1.61
cyberdemon 33.3 34.3 215.1 106.5 86.7 95.5 107.4 1.03 2.61

The impact is particularly noticeable on the older hardware, where it can reduce performance by

two orders of magnitude. The newer hardware is able to adapt better to this type of workload,

and reduces performance by at most one order of magnitude. It is also worth noting that the best

tangent-map performance on the GeForce 8800GTX is in several cases less than double that of

the TSNM performance on the GeForce 6600; it is thus likely that future hardware will be able to

render tangent maps at the same rate as current consumer-level hardware renders TSNMs.

For both hardware configurations, it appears that 8×8 tiles produce a reasonable trade-off between

tiles that are too small (and do not fully exploit the available parallelism, as can clearly be seen

for 2 × 2 tiles) and too large (and waste memory when influence counts vary over the surface).

Although this is not always the optimal size, the performance is consistently within 10% of optimal.

Quality

Figures 8.16 and 8.17 show the horse shaded with interpolated per-vertex normals and with our

two per-pixel normal methods. Figure 8.16 shows the full-detail horse, and in particular, 8.16(a)

is the ideal image. In this figure it is clear that the tangent-space normal map produces visually

identical results; this is to be expected, as the normal map contains corrections to the per-vertex

normal, and at full detail there are no corrections to make. The tangent map does less well: there

are visible seams on the face due to chart boundaries, the eye is darker than it should be, and the

surface of the tail appears jagged because it runs at an angle through the texture.

Figure 8.17 shows a simplified version of the horse, which is of course the circumstance under

108

CHAPTER 8. RESULTS AND DISCUSSION 8.6. RENDERING

(a) Vertex normals (b) Static normals (c) Dynamic normals

Figure 8.16: Normal calculation methods for the horse at full detail

(a) Vertex normals (b) Static normals (c) Dynamic normals

Figure 8.17: Normal calculation methods for the horse at reduced detail

109

8.7. SUMMARY CHAPTER 8. RESULTS AND DISCUSSION

which we expect the texture-based shading methods to be applied. The geometry of the face has

been almost entirely removed, but the shading restores the nostril, eye, and start of the mane, as

well as adding definition to the muscles of the front shoulders and correcting the shading on the

front-right foot. In this case, there is very little difference between the two texture-based methods:

both show seams at chart boundaries and artefacts on the tail.

Since the level of detail shown in Figure 8.17 would normally only be used for a distant horse,

it is unlikely that users would be able to distinguish between the shading methods. Our fourth

user experiment, conducted as described in Section 8.5.1, aimed to determine this. We found that

overall there was no statistically significant preference for one method over the other and that

there was no variation between scenes or subjects. The order in which videos were shown was a

significant factor, with users more likely to choose the second video shown. The probability of

selecting a TSNM over a tangent map has a 95% confidence interval of [0.46, 0.54], i.e., the results

not necessarily identical, but any differences are quite minor.

8.7 Summary

Fitting an animation-space model to a set of examples provides a good fit. Edge regularisation

eliminates some shearing artefacts, but even without edge regularisation (i.e., using vertex regu-

larisation), animation space provides a close yet robust fit. In contrast, SSD provides a poor fit

while MWE suffers from over-fitting.

Our area-ratio metric for segmentation produces better results than the prior mean-squared dis-

tance metric, but our ad-hoc methods for straightening chart edges behave poorly in many cases.

Flattening benefits from computations performed in animation space, provided that expectations

are estimated from some poses (rather than relying on the uniform rotations, fixed rotations

model).

Level of detail approximations computed in animation space are better than those computed from

only a single pose, both on the basis of geometric deviation and users’ perception. Influence

simplification can substantially reduce geometric errors at a particular level of detail, but can also

increase them (particularly when used with standard, rather than memoryless, APS). Perceptually,

influence simplification was either an improvement or made no measurable difference, depending

on the model used.

Animation space models are far cheaper to render than MWE models, and the most efficient way

to render SSD models is to transform them into animation space. On the GeForce 6600, which

has poor vertex texturing support, the most efficient of our vertex transformation methods is the

fragment program, at least for representations with many vertices. On the GeForce 8800GTX,

which has good vertex texturing support, vertex texturing is faster for representations with few

influences per vertex. Tangent-space normal maps are an order of magnitude faster to render than

tangent maps, and we found no perceptual difference between them.

110

Chapter 9

Conclusions and future work

Our primary contribution is the animation-space framework, based on the simple and elegant linear

equation v = Gp (where p, G and v are respectively the model-space position, the animation

projection matrix, and the animation-space position), together with the L2,2 and L2,∞ metrics

we defined on it. This makes animation space a powerful framework, both for its flexibility

in modelling, and as a mathematical basis for adapting existing 3D algorithms to operate on

animated characters. Furthermore, it is highly efficient and suitable for real-time rendering.

9.1 Modelling

Animation space provides four degrees of freedom per influencing bone, in contrast to the one

provided by SSD. Although some of these degrees of freedom are redundant, this generality allows

it to represent shapes that are impossible with SSD.

Extra degrees of freedom are not always desirable, since they complicate the modelling process.

We have, however, shown that it is practical to create animation-space models with a variety of

methods. The easiest is to simply create an SSD model, or indeed reuse an existing SSD model:

since animation space generalises SSD, the applications in the next section can be readily applied

to the large existing base of SSD models. However, the extra degrees of freedom make it possible

to create higher-quality models than is possible with SSD. We have presented three methods to

create animation-space models that cannot be represented in SSD:

fitting a model to examples This requires that examples are created or are available from some

other source, such as a high-end physically-based animation system that is too expensive for

real-time applications. We found that animation space was robust to over-fitting, even for

small numbers of sample poses, making this a practical approach.

subdivision surfaces Unlike SSD, applying any subdivision scheme in animation space is pre-

cisely equivalent to applying it to each 3D pose of a model. While there are currently no

111

9.2. APPLICATIONS CHAPTER 9. CONCLUSIONS AND FUTURE WORK

user interfaces to allow editing in animation space, this theoretically makes multi-resolution

editing feasible in a way that is not possible with SSD.

influence simplification Although we have not presented influence simplification in these terms,

applying it to an SSD model will generally produce an output that is no longer representable

in SSD. This means that modellers may continue to use existing software tools, and use

helper bones or pseudo-bones [Mohr and Gleicher, 2003b] to work around the limitations

of SSD, then use influence simplification to eliminate these crutches. This will produce an

animation-space model that has fewer influences and will hence be faster to render.

9.2 Applications

Our first validation of animation space as a computational framework was in parametrisation.

We found that computing parametrisations using the animation-space L2,2 metric reduces the

overall texture stretch across a range of poses. Independently of animation space (or indeed of

animation in general), we can conclude that the greedy bottom-up merging process proposed by

Garland et al. [2001] produces charts that are poorly shaped for level-of-detail applications (due

to the ragged boundaries), even when we introduce an alternative cost metric that avoids some

shortcomings of the original.

We also demonstrated the value of using animation space by applying it to level of detail (LOD).

Again, we were able to leverage an existing algorithm, appearance preserving simplification (APS),

by replacing the existing Euclidean metric by our L2,2 metric. We obtained good results only with

the memoryless form of APS, but since this is faster, more memory efficient and has similar quality

to the standard form when used in 3D, this is not really a disadvantage. For the same number

of influences (and hence a similar rendering cost), we found that the simplifications produced by

animation space have far less error on a number of practical examples. User tests confirmed this by

showing that subjects had a statistically significant preference for animation-space simplifications.

Furthermore, the significant results were found at low error tolerances, where LOD is typically

used in practice, rather than on models that were deliberately over-simplified in order to emphasise

distortions. While other methods exist to take multiple poses into account, they are based on a

sampling of the pose space, and the computational cost scales with the number of samples used.

In contrast, we use samples only to compute statistics, and the time required to evaluate the L2,2

metric is independent of the number of samples.

We further improved the LOD of animated models with a novel approach, influence simplification,

in which we simplify the position of a vertex by removing the influence of a bone on it. We

combined influence simplification with a standard progressive mesh structure to obtain superior

quality in simplification. The results vary according to the number of extraneous influences in the

original model, but in some cases this approach reduces the deviation at a particular influence count

by an order of magnitude. Similar results were seen in user testing, with no difference found for

some models, but a highly significant preference for influence simplification in others. Apart from

112

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 9.3. RENDERING

reducing approximation error, influence simplification also makes it possible to simplify a model

further than is possible with edge collapses alone, potentially reducing rendering cost significantly

for large crowd scenes where many of the models are extremely distant.

These two examples were selected to illustrate the value of animation space as a framework for

bringing static 3D algorithms into an animated context, but are by no means the only possible

applications.

9.3 Rendering

Finally, we considered rendering aspects. We showed that the extra per-vertex data needed by

animation space, particularly when doing geomorphing and projecting tangent planes, can be

handled by exploiting the features of modern hardware. The latest generation of commodity GPU

hardware has extra capabilities (namely, the ability to load data into the vertex shader other

than through vertex attributes) that make this relatively straightforward, and as video hardware

continues to evolve we expect that this will soon entirely cease to be a concern. Furthermore,

we found that unlike all other improvements to SSD, there is no loss in performance, at least on

NVIDIA hardware — in fact, implementing SSD in the form suggested by animation space (that

is, by pre-multiplying the weight) makes it faster.

We also implemented two shading methods: tangent-space normal maps (TSNMs), which encode

only non-animated information, and tangent maps, which encode the animation-space tangent

plane at every sample point on the mesh. Unlike the use of animation space in creating sim-

plifications, which has no extra cost during rendering, tangent maps are an order of magnitude

slower than TSNMs. However, tangent maps provide close to ideal shading, and are thus useful

as a baseline against which to measure TSNMs, in spite of their relatively poor performance. We

conducted user tests, and found no statistically significant preference for either method. We can

thus recommend TSNMs for rendering most animation-space models, even though they are tied

to a single rest pose.

9.4 Future work

While we have presented methods to create a model as a whole, we have not developed any

methods or user interfaces for editing such models. A possible application would be in refining an

existing SSD model, by adjusting it only in areas where SSD produces unacceptable results.

We encountered several problems in trying to produce charts with edges that lay along straight

lines in parameter space, which was necessary to obtain good results from APS (none of these

problems were related to animation). It appears that this restriction of the parametrisation prob-

lem has not received much attention in the literature. A promising approach is circle-pattern

parametrisation [Kharevych et al., 2006], which provides control over the angle at each bound-

113

9.4. FUTURE WORK CHAPTER 9. CONCLUSIONS AND FUTURE WORK

ary point, thus allowing the boundary to be forced straight, without constraining the lengths of

boundary segments. Since circle-pattern parametrisation, and indeed all the flattening schemes

with which we are familiar, depend only on the intrinsic properties of the surface, they can be

adapted to animation space in the same way that we adapted LSCM.

When creating a progressive mesh, we used only the half-edge collapse. While this eased imple-

mentation, it also constrains any simplification to lie within the convex hull of the original, and

as a result models appear to shrink as they are simplified. Applying a full edge collapse requires

a position to be computed for the newly created vertex; we expect that optimisation techniques

similar to those we used for influence simplification should be applicable here.

We considered only two applications of animation space as a computational framework, but there

are many other possibilities. An example is run-time subdivision, where animation space would

make it possible to determine the error in any particular representation, much as is currently

done in our level-of-detail scheme. The L2,∞ metric was not heavily used in this thesis (the one

exception being view frustum culling), but it should be applicable wherever bounding volumes

are appropriate, such as collision detection or visibility determination. It should also be possible

to apply the L2,∞ metric (in place of the L2,2 metric) to level-of-detail, which would give error

bounds that are guaranteed for any legal pose.

A theoretical inconvenience of animation space is that the expectation matrix P = E[GT G] may

be singular, meaning that the L2,2 “norm” is not a true norm. In many cases this is not an

issue, but it adds complications to fitting and influence simplification, where the optimum may

be ill-defined. We handled this on a case-by-case basis, but a more elegant and unified solution

would be preferable. A possible avenue of exploration is to apply some form of regularisation to

the computation of the expected values, i.e., assume that every joint has at least some freedom

of rotation around any axis and of translation in any direction, even when this is not observed in

example poses. Apart from resolving the problem of a singular P matrix, this would make models

more robust to new poses that lie outside the space spanned by their statistical models.

Another issue related to the L2,2 norm is that, since it is non-Euclidean, an axis-aligned bounding

box is a poor choice for algorithms such as standard APS. We solved this by using a bounding

box in normalised animation space, a linear transformation of animation space in which the

L2,2 norm is transformed to the Euclidean norm, but the transformation destroys the sparsity

of the original animation-space coordinates. As a result, algorithms using it scale poorly with

the number of bones in the entire model. Furthermore, the axes of normalised animation space

may be chosen freely, and our essentially arbitrary choice means that the bounding boxes may be

poor approximations. It would be interesting to determine whether it is possible to choose a set of

axes which either makes the transformation from animation space sparser, or has some meaningful

geometric interpretation, or both. An alternative bounding volume that overcomes the density

problem, but whose approximation quality would need investigation, is a bounding ellipsoid defined

by {p : ‖p − c‖2,2 ≤ r} (a sphere in normalised animation space). When combining bounding

volumes, the new centre would lie within the span of the existing centres, and so sparsity would

be maintained as long as the original centres all had similar influence sets.

114

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 9.4. FUTURE WORK

Although we found that tangent-space normal maps provide acceptable shading, it is nevertheless

unsatisfying to have this one piece of the modelling and rendering process depend on a specific rest

pose. It should be possible to compute an optimal normal map that minimises the errors in the

normals across all poses. However, the L2,2 norm is likely to be insufficient, and some non-linear

optimisation may be required.

Our rendering method based on vertex textures is designed to operate within the constraints of the

GeForce 6 series. There are many features in DirectX 10 [Blythe, 2006] and the equivalent OpenGL

extensions that could allow further optimisations. Most notably, vertex texturing is required to

support filtering, which could be exploited to do geomorphing at almost no cost, and transform

feedback would make it possible to transform every vertex exactly once per model rather than

each time it is encountered in the triangle list.

Currently, our system uses only one vertex transformation method and one normal transformation

method at a time. The results indicate that some methods are better for representations with few

vertices (due to low overheads) while others are better for large numbers of vertices (due to high

throughput). It is worth investigating a hybrid scheme which selects a rendering method on a

per-object basis within each frame. The key question is whether the benefits of using the optimal

rendering method for each model outweigh the costs of switching between the methods, or the

extra memory required to store the same model in multiple formats.

115

9.4. FUTURE WORK CHAPTER 9. CONCLUSIONS AND FUTURE WORK

116

References

Matt Aitken, Greg Butler, Dan Lemmon, Eric Saindon, Dana Peters, and Guy Williams. The

Lord of the Rings: the visual effects that brought middle earth to the screen. In SIGGRAPH

’04: ACM SIGGRAPH 2004 Course Notes, page 11, New York, NY, USA, 2004. ACM Press.

doi: http://doi.acm.org/10.1145/1103900.1103911.

Marc Alexa. Linear combination of transformations. In SIGGRAPH ’02: Proceedings of the 29th

annual conference on Computer graphics and interactive techniques, pages 380–387, New York,

NY, USA, 2002. ACM Press. ISBN 1-58113-521-1. doi: http://doi.acm.org/10.1145/566570.

566592.

Brett Allen, Brian Curless, and Zoran Popović. Articulated body deformation from range scan

data. In SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer graphics and

interactive techniques, pages 612–619, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-

521-1. doi: http://doi.acm.org/10.1145/566570.566626.

D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, H. Pang, and J. Davis. The correlated corre-

spondence algorithm for unsupervised registration of nonrigid surfaces. In Proceedings of the

Neural Information Processing Systems (NIPS) Conference, 2004a.

Dragomir Anguelov, Daphne Koller, Hoi-Cheung Pang, Praveen Srinivasan, and Sebastian Thrun.

Recovering articulated object models from 3D range data. In AUAI ’04: Proceedings of the 20th

conference on Uncertainty in artificial intelligence, pages 18–26, Arlington, Virginia, United

States, 2004b. AUAI Press. ISBN 0-9749039-0-6.

A. D. Baddeley. Working memory. Clarendon Press, 1986.

James F. Blinn. Simulation of wrinkled surfaces. In SIGGRAPH ’78: Proceedings of the 5th

annual conference on Computer graphics and interactive techniques, pages 286–292, New York,

NY, USA, 1978. ACM Press. doi: http://doi.acm.org/10.1145/800248.507101.

David Blythe. The Direct3D 10 system. ACM Trans. Graph., 25(3):724–734, 2006. ISSN 0730-

0301. doi: http://doi.acm.org/10.1145/1141911.1141947.

George Borshukov. Measured BRDF in film production: realistic cloth appearance for “The Matrix

Reloaded”. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Sketches and Applications, New York,

NY, USA, 2003. ACM Press. doi: http://doi.acm.org/10.1145/965400.965468.

117

REFERENCES REFERENCES

George Borshukov, Dan Piponi, Oystein Larsen, J. P. Lewis, and Christina Tempelaar-Lietz.

Universal capture: image-based facial animation for “The Matrix Reloaded”. In SIGGRAPH

’03: ACM SIGGRAPH 2003 Sketches and Applications, New York, NY, USA, 2003. ACM Press.

doi: http://doi.acm.org/10.1145/965400.965469.

Hector M. Briceño, Pedro V. Sander, Leonard McMillan, Steven Gortler, and Hugues Hoppe.

Geometry videos: a new representation for 3D animations. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, pages 136–146. Eurographics

Association, 2003. ISBN 1-58113-659-5.

Ross Brown, Luke Cooper, and Binh Pham. Visual attention-based polygon level of detail manage-

ment. In Proceedings of the 1st international conference on Computer graphics and interactive

techniques in Austalasia and South East Asia, pages 55–ff. ACM Press, 2003. ISBN 1-58113-

578-5. doi: http://doi.acm.org/10.1145/604471.604485.

S. R. Buss. Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped

least squares methods. URL http://www.math.ucsd.edu/˜sbuss/ResearchWeb/ikmethods/

index.html. April 2004.

Cal3d. cal3d — an open source 3D character animation library that can be used on almost any

platform. URL http://gna.org/projects/cal3d/.

Edwin Catmull and James Clark. Recursively generated B-spline surfaces on arbitrary topological

meshes. Computer-Aided Design, 10:350–355, 1978.

J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for deformable animated

characters. In SIGGRAPH ’89: Proceedings of the 16th annual conference on Computer graphics

and interactive techniques, pages 243–252, New York, NY, USA, 1989. ACM Press. ISBN 0-

201-50434-0. doi: http://doi.acm.org/10.1145/74333.74358.

Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving simplification. In

Proceedings of the 25th annual conference on Computer graphics and interactive techniques,

pages 115–122. ACM Press, 1998. ISBN 0-89791-999-8. doi: http://doi.acm.org/10.1145/280814.

280832.

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape approximation. ACM

Trans. Graph., 23(3):905–914, 2004. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/1015706.

1015817.

G. Collins and A. Hilton. Modelling for character animation. Software Focus, 2(2):44–51, 2001.

Brian Curless. From range scans to 3D models. SIGGRAPH Comput. Graph., 33(4):38–41, 2000.

ISSN 0097-8930. doi: http://doi.acm.org/10.1145/345370.345399.

Christopher DeCoro and Szymon Rusinkiewicz. Pose-independent simplification of articulated

meshes. In SI3D ’05: Proceedings of the 2005 symposium on Interactive 3D graphics and games,

pages 17–24, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-013-2. doi: http://doi.

acm.org/10.1145/1053427.1053430.

118

REFERENCES REFERENCES

Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in character animation. In

Proceedings of the 25th annual conference on Computer graphics and interactive techniques,

pages 85–94. ACM Press, 1998. ISBN 0-89791-999-8. doi: http://doi.acm.org/10.1145/280814.

280826.

Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic parameterizations of surface meshes.

Computer Graphics Forum, 21(3):209–218, 2002.

Sim Dietrich. Optimizing for hardware transform and lighting, 2000. URL http://developer.

nvidia.com/object/hardware tnl.html.

Sébastien Dominé. Mesh skinning, 2003. URL http://developer.nvidia.com/object/skinning.html.

Leo Dorst and Stephen Mann. Geometric algebra: A computational framework for geometrical

applications (part 1). IEEE Computer Graphics and Applications, 22(3):24–31, 2002.

Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and Werner

Stuetzle. Multiresolution analysis of arbitrary meshes. In Proceedings of the 22nd annual

conference on Computer graphics and interactive techniques, pages 173–182. ACM Press, 1995.

ISBN 0-89791-701-4. doi: http://doi.acm.org/10.1145/218380.218440.

Jihad El-Sana, Elvir Azanli, and Amitabh Varshney. Skip strips: maintaining triangle strips for

view-dependent rendering. In Proceedings of the conference on Visualization ’99, pages 131–138.

IEEE Computer Society Press, 1999. ISBN 0-7803-5897.

Olivier Faugeras. Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cam-

bridge, MA, USA, 1993. ISBN 0-262-06158-9.

M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In N. A. Dodgson,

M. S. Floater, and M. A. Sabin, editors, Multiresolution in Geometric Modelling. Springer, 2004.

Michael S. Floater. Mean value coordinates. Comput. Aided Geom. Des., 20(1):19–27, 2003. ISSN

0167-8396. doi: http://dx.doi.org/10.1016/S0167-8396(02)00002-5.

Sven Forstmann and Jun Ohya. Fast skeletal animation by skinned arc-spline based deformation.

In EG 2006 Short Papers, 2006.

Michael Garland. Multiresolution modeling: Survey and future opportunities. In Eurographics ’99

– State of the Art Reports, pages 111–131, 1999.

Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In

Proceedings of the 24th annual conference on Computer graphics and interactive techniques,

pages 209–216. ACM Press/Addison-Wesley Publishing Co., 1997. ISBN 0-89791-896-7. doi:

http://doi.acm.org/10.1145/258734.258849.

Michael Garland and Paul S. Heckbert. Simplifying surfaces with color and texture using quadric

error metrics. In Proceedings of the conference on Visualization ’98, pages 263–269. IEEE

Computer Society Press, 1998. ISBN 1-58113-106-2.

119

REFERENCES REFERENCES

Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical face clustering on polyg-

onal surfaces. In Proceedings of the 2001 symposium on Interactive 3D graphics, pages 49–58.

ACM Press, 2001. ISBN 1-58113-292-1. doi: http://doi.acm.org/10.1145/364338.364345.

Philipp Gerasimov, Randima Fernando, and Simon Green. Shader model 3.0: Using vertex

textures, 2004. URL http://download.nvidia.com/developer/Papers/2004/Vertex Textures/

Vertex Textures.pdf.

T. Giang, R. Mooney, C. Peters, and C. O’Sullivan. ALOHA: Adaptive level of detail for human

animation: towards a new framework. In Eurographics 2000 short paper proceedings, pages

71–77, 2000.

Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins University Press,

3rd edition, 1996. ISBN 0-8018-5414-8.

Xianfeng Gu and Shing-Tung Yau. Global conformal surface parameterization. In Proceedings of

the Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 127–137. Euro-

graphics Association, 2003. ISBN 1-58113-687-0.

Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. In Proceedings of the

29th annual conference on Computer graphics and interactive techniques, pages 355–361. ACM

Press, 2002. ISBN 1-58113-521-1. doi: http://doi.acm.org/10.1145/566570.566589.

David Henry. MD5Mesh and MD5Anim file formats (Doom 3’s models), 2005. URL http://tfc.

duke.free.fr/coding/md5-specs-en.html.

Hugues Hoppe. Progressive meshes. In Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, pages 99–108. ACM Press, 1996. ISBN 0-89791-746-4. doi:

http://doi.acm.org/10.1145/237170.237216.

Hugues Hoppe. New quadric metric for simplifiying meshes with appearance attributes. In Pro-

ceedings of the conference on Visualization ’99, pages 59–66. IEEE Computer Society Press,

1999. ISBN 0-7803-5897.

Hugues Hoppe. View-dependent refinement of progressive meshes. In Proceedings of the 24th

annual conference on Computer graphics and interactive techniques, pages 189–198. ACM

Press/Addison-Wesley Publishing Co., 1997. ISBN 0-89791-896-7. doi: http://doi.acm.org/

10.1145/258734.258843.

Fu-Chung Huang, Bing-Yu Chen, and Yung-Yu Chuang. Progressive deforming meshes based on

deformation oriented decimation and dynamic connectivity updating. In SCA ’06: Proceedings

of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 53–62,

Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association. ISBN 3-905673-34-7.

David Jacka, Ashley Reid, Bruce Merry, and James Gain. A comparison of linear skinning tech-

niques for character animation. Technical Report CS07-03-00, Department of Computer Science,

University of Cape Town, 2007.

120

REFERENCES REFERENCES

Doug L. James and Christopher D. Twigg. Skinning mesh animations. ACM Trans. Graph., 24

(3):399–407, 2005. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/1073204.1073206.

I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

Kolja Kähler, Jörg Haber, and Hans-Peter Seidel. Dynamic refinement of deformable triangle

meshes for rendering. In Proceedings of Computer Graphics International ’01, pages 285–290.

IEEE Computer Society Press, 2001.

James T. Kajiya. Anisotropic reflection models. In Proceedings of the 12th annual conference on

Computer graphics and interactive techniques, pages 15–21, New York, NY, USA, 1985. ACM

Press. ISBN 0-89791-166-0. doi: http://doi.acm.org/10.1145/325334.325167.

Ladislav Kavan and Jǐŕı Žára. Spherical blend skinning: a real-time deformation of articulated

models. In SI3D ’05: Proceedings of the 2005 symposium on Interactive 3D graphics and games,

pages 9–16, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-013-2. doi: http://doi.acm.

org/10.1145/1053427.1053429.

Ladislav Kavan, Steven Collins, Jiri Zara, and Carol O’Sullivan. Skinning with dual quaternions.

In 2007 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. ACM Press,

April/May 2007.

Liliya Kharevych, Boris Springborn, and Peter Schröder. Discrete conformal mappings via circle

patterns. ACM Trans. Graph., 25(2):412–438, 2006. ISSN 0730-0301. doi: http://doi.acm.org/

10.1145/1138450.1138461.

Andrei Khodakovsky, Nathan Litke, and Peter Schröder. Globally smooth parameterizations

with low distortion. ACM Trans. Graph., 22(3):350–357, 2003. ISSN 0730-0301. doi: http:

//doi.acm.org/10.1145/882262.882275.

Leif Kobbelt.
√

3-subdivision. In Proceedings of the 27th annual conference on Computer graphics

and interactive techniques, pages 103–112, New York, NY, USA, 2000. ACM Press/Addison-

Wesley Publishing Co. ISBN 1-58113-208-5. doi: http://doi.acm.org/10.1145/344779.344835.

Paul G. Kry, Doug L. James, and Dinesh K. Pai. Eigenskin: real time large deformation character

skinning in hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, pages 153–159. ACM Press, 2002. ISBN 1-58113-573-4. doi: http:

//doi.acm.org/10.1145/545261.545286.

Tsuneya Kurihara and Natsuki Miyata. Modeling deformable human hands from medical images.

In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer

animation, pages 355–363, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Associa-

tion. ISBN 3-905673-14-2. doi: http://doi.acm.org/10.1145/1028523.1028571.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares conformal maps for

automatic texture atlas generation. In Proceedings of the 29th annual conference on Computer

graphics and interactive techniques, pages 362–371. ACM Press, 2002. ISBN 1-58113-521-1. doi:

http://doi.acm.org/10.1145/566570.566590.

121

REFERENCES REFERENCES

J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified approach to shape

interpolation and skeleton-driven deformation. In Proceedings of the 27th annual conference on

Computer Graphics and Interactive Techniques, pages 165–172. ACM Press/Addison-Wesley

Publishing Co., 2000. ISBN 1-58113-208-5. doi: http://doi.acm.org/10.1145/344779.344862.

Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-programmable vertex engine. In

Proceedings of the 28th annual conference on Computer graphics and interactive techniques,

pages 149–158. ACM Press, 2001. ISBN 1-58113-374-X. doi: http://doi.acm.org/10.1145/

383259.383274.

Charles Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah,

Dept. of Mathematics, 1987.

N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. Joint-dependent local deformations

for hand animation and object grasping. In Proceedings on Graphics interface ’88, pages 26–33.

Canadian Information Processing Society, 1988.

Nadia Magnenat-Thalmann, Frederic Cordier, Hyewon Seo, and George Papagianakis. Modeling of

bodies and clothes for virtual environments. In Third International Conference on Cyberworlds

(CW’04), pages 201–208, 2004.

Bruce Merry, Patrick Marais, and James Gain. Normal transformations for articulated models.

In ACM SIGGRAPH 2006 Conference Abstracts and Applications, 2006.

Alex Mohr and Michael Gleicher. Deformation sensitive decimation. Technical Report 4/7/2003,

University of Wisconsin, Madison, 2003a.

Alex Mohr and Michael Gleicher. Building efficient, accurate character skins from examples.

ACM Trans. Graphics, 22(3):562–568, 2003b. ISSN 0730-0301. doi: http://doi.acm.org/10.

1145/882262.882308.

Alex Mohr, Luke Tokheim, and Michael Gleicher. Direct manipulation of interactive character

skins. In Proceedings of the 2003 symposium on Interactive 3D graphics, pages 27–30. ACM

Press, 2003. ISBN 1-58113-645-5. doi: http://doi.acm.org/10.1145/641480.641488.

NVIDIA. Cg toolkit user’s manual — a developer’s guide to programmable graphics, September

2005a. URL http://developer.nvidia.com/object/cg toolkit.html.

NVIDIA. NVIDIA CUDA: Compute unified device architecture, 2007. URL http://developer.

download.nvidia.com/compute/cuda/1 0/NVIDIA CUDA Programming Guide 1.0.pdf.

NVIDIA. NVIDIA GPU programming guide, July 2005b. Version 2.4.0. URL http://download.

nvidia.com/GPU Programming Guide/GPU Programming Guide.pdf.

Christopher C. Paige and Michael A. Saunders. LSQR: An algorithm for sparse linear equations

and sparse least squares. ACM Trans. Math. Softw., 8(1):43–71, 1982. ISSN 0098-3500. doi:

http://doi.acm.org/10.1145/355984.355989.

122

REFERENCES REFERENCES

Mark Peercy, John Airey, and Brian Cabral. Efficient bump mapping hardware. In SIGGRAPH

’97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques,

pages 303–306, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. ISBN

0-89791-896-7. doi: http://doi.acm.org/10.1145/258734.258873.

Michael Potmesil. Generating octree models of 3D objects from their silhouettes in a sequence

of images. Comput. Vision Graph. Image Process., 40(1):1–29, 1987. ISSN 0734-189X. doi:

http://dx.doi.org/10.1016/0734-189X(87)90053-3.

Emil Praun and Hugues Hoppe. Spherical parametrization and remeshing. ACM Trans. Graph.,

22(3):340–349, 2003. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/882262.882274.

R Development Core Team. R: A language and environment for statistical computing. R Founda-

tion for Statistical Computing, Vienna, Austria, 2005. URL http://www.R-project.org. ISBN

3-900051-07-0.

Taehyun Rhee, J.P. Lewis, and Ulrich Neumann. Real-time weighted pose-space deformation on

the GPU. Computer Graphics Forum, 25(3):439–448, 2006.

Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In Proceedings of

the Third Intl. Conf. on 3D Digital Imaging and Modeling, pages 145–152, 2001.

Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture mapping progressive

meshes. In Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, pages 409–416. ACM Press, 2001. ISBN 1-58113-374-X. doi: http://doi.acm.org/

10.1145/383259.383307.

Pedro V. Sander, Steven J. Gortler, John Snyder, and Hugues Hoppe. Signal-specialized

parametrization. In Proceedings of the 13th Eurographics workshop on Rendering, pages 87–

98. Eurographics Association, 2002. ISBN 1-58113-534-3.

Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geometric models. In

Proceedings of the 13th annual conference on Computer graphics and interactive techniques,

pages 151–160, New York, NY, USA, 1986. ACM Press. ISBN 0-89791-196-2. doi: http://doi.

acm.org/10.1145/15922.15903.

Mark Segal and Kurt Akeley. The OpenGL graphics system: a specification, December 2006. URL

http://www.opengl.org/registry/doc/glspec21.20061201.pdf. Version 2.1.

Andy Serkis. Gollum: A Behind the Scenes Guide of the Making of Gollum. Houghton Mifflin,

2003. ISBN 0618391045.

Ariel Shamir and Valerio Pascucci. Temporal and spatial level of details for dynamic meshes. In

Proceedings of the ACM symposium on Virtual reality software and technology, pages 77–84.

ACM Press, 2001. ISBN 1-58113-427-4. doi: http://doi.acm.org/10.1145/505008.505023.

A. Sheffer and E. de Sturler. Surface parameterization for meshing by triangulation flattening. In

Proc. 9th International Meshing Roundtable, pages 161–172, 2000.

123

REFERENCES REFERENCES

Le-Jeng Shiue, Ian Jones, and Jörg Peters. A realtime GPU subdivision kernel. ACM Trans.

Graph., 24(3):1010–1015, 2005. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/1073204.

1073304.

Ken Shoemake. Uniform random rotations. In David Kirk, editor, Graphics Gems III, pages

124–132. Academic Press, 1992.

Samuel Silva, Joaquim Madeira, and Beatriz Sousa Santos. POLYMECO: A polygonal mesh

comparison tool. In IV ’05: Proceedings of the Ninth International Conference on Information

Visualisation (IV’05), pages 842–847, Washington, DC, USA, 2005. IEEE Computer Society.

ISBN 0-7695-2397-8. doi: http://dx.doi.org/10.1109/IV.2005.98.

Karan Singh and Eugene Fiume. Wires: a geometric deformation technique. In Proceedings of

the 25th annual conference on Computer graphics and interactive techniques, pages 405–414,

New York, NY, USA, 1998. ACM Press. ISBN 0-89791-999-8. doi: http://doi.acm.org/10.1145/

280814.280946.

Peter-Pike J. Sloan, Charles F. Rose, III, and Michael F. Cohen. Shape by example. In Proceedings

of the 2001 symposium on Interactive 3D graphics, pages 135–143. ACM Press, 2001. ISBN 1-

58113-292-1. doi: http://doi.acm.org/10.1145/364338.364382.

David Stewart and Zbigniew Leyk. Meschach library version 1.2b, 1994. URL http://www.math.

uiowa.edu/˜dstewart/meschach/README.

Robert W. Sumner and Jovan Popović. Deformation transfer for triangle meshes. In SIGGRAPH

’04: ACM SIGGRAPH 2004 Papers, pages 399–405, New York, NY, USA, 2004. ACM Press.

doi: http://doi.acm.org/10.1145/1186562.1015736.

Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. Polycube-maps. ACM

Trans. Graph., 23(3):853–860, 2004. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/1015706.

1015810.

Ken Turkowski. Transformations of surface normal vectors. Technical Report 22, Apple Computer,

Inc., July 1990.

Georg Umlauf. Analysis and tuning of subdivision algorithms. In SCCG ’05: Proceedings of the

21st spring conference on Computer graphics, pages 33–40, New York, NY, USA, 2005. ACM

Press. ISBN 1-59593-203-6. doi: http://doi.acm.org/10.1145/1090122.1090128.

Xiaohuan Corina Wang and Cary Phillips. Multi-weight enveloping: least-squares approximation

techniques for skin animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, pages 129–138. ACM Press, 2002. ISBN 1-58113-573-4.

doi: http://doi.acm.org/10.1145/545261.545283.

R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance costs in support-

ing persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121, February

2005. URL http://www.cs.utsa.edu/˜whaley/papers/spercw04.ps.

124

REFERENCES REFERENCES

Julie C. Xia and Amitabh Varshney. Dynamic view-dependent simplification for polygonal models.

In Proceedings of the 7th conference on Visualization ’96, pages 327–ff. IEEE Computer Society

Press, 1996. ISBN 0-89791-864-9.

G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening via multidi-

mensional scaling. IEEE Transactions on Visualization and Computer Graphics, 8(2):198–207,

2002. ISSN 1077-2626. doi: http://dx.doi.org/10.1109/2945.998671.

125

REFERENCES REFERENCES

126

Appendix A

Algorithms

A.1 Fitting a plane

In this section, we derive an algorithm to fit a plane to a set of given oriented planes (all passing

through the origin), within a space of arbitrary dimension. The algorithm is used in Sections 4.3.1

(page 39) and 5.2.1 (page 47). To define and solve the problem, we will use geometric algebra,

following the notation of Dorst and Mann [2002].

A.1.1 Basic algorithm

To represent a plane, we will use the bivectors (2-blades) of geometric algebra, which we will

denote with uppercase bold letters. Bivectors also have magnitude, which is useful as it allows us

to weight the elements we want to fit. To measure the “distance” between B1 and B2, we will

use the negative of the inner product −B1 ⌋ B2 (we negate the inner product since we want the

value to be larger the closer together the planes are). In three dimensions, this is equivalent to the

dot product of the normal vectors. If B1 and B2 are unit bivectors, then this metric can also be

visualised as the area obtained by projecting a unit square in the one plane onto the other plane,

as shown in Figure A.1.

To set up the optimisation problem, let the input planes be represented by the bivectors Bi (with

possibly non-uniform magnitudes, if there is a need to weight the inputs), and the fitted plane be

the unit bivector B. We aim to maximise

D = −
∑

Bi ⌋ B. (A.1)

We proceed by expanding the bivectors into outer products: let Bi = ai ∧ bi and let B = a ∧ b.

To regularise the problem, we will only consider orthonormal bases {a,b} for B. Using the rules

127

A.1. FITTING A PLANE APPENDIX A. ALGORITHMS

Figure A.1: Visualisation of the geometric algebra inner product for two planes. The red unit
square in the red plane is projected onto the blue plane. The resulting blue rectangle has a directed
area of 1 if the planes are parallel, 0 if they are perpendicular, and −1 if they are parallel but with
opposite orientation.

for expanding inner products,

D = −
∑

(Bi ⌋ B)

= −
∑

(ai ∧ bi ⌋ a ∧ b)

=
∑

[

(ai · a)(bi · b)− (ai · b)(bi · a)
]

=
∑

[

aT aib
T
i b− aT bia

T
i b
]

= aT
[

∑

aib
T
i − bia

T
i

]

b.

(A.2)

Let A be the anti-symmetric matrix
∑

(aib
T
i −bia

T
i), and let σ be the largest singular value of A.

Then aT Ab ≤ ‖Ab‖ ≤ σ. Conversely, let a and b be left and right singular vectors corresponding

to σ, in which case σbT a = aT Aa = 0 (since A is anti-symmetric), and therefore a and b are

orthonormal with aT Ab = σ. It follows that this choice of a and b will produce an optimal

tangent plane.

A.1.2 Accounting for probabilities

So far we have been fitting the plane on the assumption that animation space is Euclidean.

However, in Section 3.3.1 (page 20) we spent considerable effort in devising a non-Euclidean norm

128

APPENDIX A. ALGORITHMS A.1. FITTING A PLANE

that estimates corresponding lengths in 3D space. The norm is defined as ‖p‖2,2 = pT Pp, where

P is a non-negative definite symmetric matrix. Normalised animation space, on the other hand,

was defined in Section 3.3.2 as a space whose Euclidean norm was equivalent to the L2,2 norm of

animation space. If p is an element of animation space, then the equivalent point in normalised

animation space is Cp, for some matrix C satisfying CT C = P .

Conceptually, we could solve the plane-fitting problem in normalised animation space, then trans-

form the solution back to standard animation space. Doing this directly would be quite inefficient

though, as C may be a dense matrix, so we first apply some algebra.

If we let u = Ca, v = Cb then the objective function becomes

D = uT
[

∑

(Cai)(Cbi)
T − (Cbi)(Cai)

T
]

v

= uT C
[

∑

aib
T
i − bia

T
i

]

CT v

= uT (CACT)v

(A.3)

and the constraints become

‖u‖ = 1, ‖v‖ = 1,u · v = 0. (A.4)

Using the same reasoning above, it follows that the optimal solution is obtained by choosing u

and v as left and right singular vectors corresponding to the largest singular value of CACT . We

still need to find solutions to Ca = u and Cb = v. Fortunately,

σu = CACT v (A.5)

σv = (CACT)T u = −CACT u (A.6)

and hence we can define

a =
ACT v

σ
(A.7)

b = −ACT u

σ
. (A.8)

Up to this point, we have ignored three crucial questions:

1. Are the computed tangents guaranteed to have zero weight? Tangents with non-zero weight

would be problematic, since they would alter under global translations of the model.

2. Are the tangents sparse? Common sense tells us that any bones with no effect on the input

planes should also not affect the fitted plane, but does the algorithm guarantee this?

3. Can the algorithm be optimised for sparsity? As presented, we would have to compute the

matrix CACT , which is potentially dense even if A is sparse.

As we will show, the answer to all three questions is yes. Suppose w is an element of the null

space of A i.e., Aw = 0. Note that since A is anti-symmetric, wT A = (AT w)T = −(Aw)T = 0T

129

A.2. CONSTRAINED LEAST SQUARES APPENDIX A. ALGORITHMS

as well. It follows that

w · a = wT ACT v/σ = 0 (A.9)

w · b = −wT ACT v/σ = 0. (A.10)

In other words, the fitted tangent plane is orthogonal to the null space of A.

Since A =
∑

(aib
T
i −bia

T
i), it immediately follows that whenever x ·ai = x ·bi = 0 for each input

plane, we will also have x · a = x · b = 0. But the equation describing a zero-weight vector has

precisely this form, so the fitted tangents will have zero weight provided that the input tangents

have zero weight (which should always be the case).

Similarly, if there is a bone with no effect on the input planes (i.e., the corresponding elements

of the tangents are all zero), then the same must apply to a and b. This guarantees that a and

b will be reasonably sparse if the set of input planes is. Furthermore, since we know in advance

that a and b will be empty in particular elements, we can eliminate the corresponding rows and

columns from CACT before we even compute the SVD. Indeed, we need not even compute the

full value of CACT , only the submatrix corresponding to indices that may appear in a and b.

A.1.3 Other measures of distance

Linear algebra also has a notion of distances between subspaces, which is not the same as the one

defined above. For completeness, we provide a comparison here. We deal only with the Euclidean

version of the problem.

Between two 2D subspaces (planes), there are two principle angles, 0 ≤ θ1 ≤ θ2 ≤ π/2. These

are the minimum and maximum angles between vectors within the two planes. Let the planes be

a1 ∧b1 and a2 ∧b2, with each basis being orthonormal. Golub and Van Loan [1996, p. 604] show

that the cosines of the principle angles are the singular values of the matrix

(

a1 · a2 a1 · b2

b1 · a2 b1 · b2

)

. (A.11)

Our fit metric is the determinant of this matrix, so it equals ± cos θ1 cos θ2. In contrast, linear

algebra defines the distance to be sin θ2. Note that geometric algebra, unlike linear algebra,

considers planes to be oriented, so the principle angles are insufficient to compute the geometric

inner product (hence the ± sign). This orientation is important for our applications, which is why

we have used geometric algebra to formulate our metric.

A.2 Constrained least squares

In this section we describe the implementation we used to solve a number of constrained least-

squares problems. Each problem is a generalisation of the previous one, and also uses the previous

130

APPENDIX A. ALGORITHMS A.2. CONSTRAINED LEAST SQUARES

ones to solve the more general version. The most general version is used in Section 6.3 to select

optimal positions when performing influence simplifications.

All the problems have in common an m×n matrix A and an m-vector b, and the linear constraint

Ax = b. In every case we require that rankA = m i.e., that the constraints are independent. For

our application this is always the case, but in fact this is not a critical restriction. If the constraints

are not independent then they are either inconsistent or redundant. In the first case there can be

no solutions, and in the second the redundant constraints can be eliminated by computing a basis

for the constraints.

In the following derivations, we will use a number of concepts from computational linear algebra

without reference. Golub and Van Loan [1996] provide a thorough guide to the theory of matrix

computations, including all the techniques used here. The computations were implemented using

the Meschach linear algebra library [Stewart and Leyk, 1994].

A.2.1 Unweighted case

The first problem we consider is that of minimising ‖x‖2, subject to Ax = b.

The Gram-Schmidt process gives the decomposition LA = Q where L is an invertible lower

triangular matrix and QQT = I (the fact that L is invertible is equivalent to A having full rank).

The given constraint is thus equivalent to Qx = Lb. Let x = QT Lb + y; the linear constraint

then forces Qy = 0 and so

‖x‖2 = ‖QT Lb‖2 + ‖y‖2.

Clearly, this is minimised when y = 0 and so x = QT Lb.

A.2.2 Positive weights

We now consider a generalisation of the problem to the weighted case. Specifically, the problem

is to minimise
∑

λix
2
i subject to a linear constraint Ax = b, with the same limitations on A as

before, and λi > 0 for each i.

Let S = diag(λ
1
2
1 , . . . , λ

1
2
m), y = Sx and B = AS−1. The problem can now be rewritten as

minimising ‖y‖2, subject to the constraint By = b. This can be solved using the method for the

unweighted case discussed previously; the solution to the original problem is then retrieved from

the equation x = S−1y. Note that since the columns of A are only scaled by non-zero values,

their span remains the same and so the rank of A is not reduced.

A.2.3 Non-negative weights

The previous derivation breaks down if any of the weights are zero, because the diagonal matrix

S becomes non-invertible. Without loss of generality, assume that the weights are ordered so that

131

A.2. CONSTRAINED LEAST SQUARES APPENDIX A. ALGORITHMS

all positive weights precede all zero weights. We can then make the partitions

A =
(

A1 A2

)

and x =

(

x1

x2

)

where the first part corresponds to the non-zero weights and the second to the zero weights.

Next, compute the QR factorisation A2 = Q2R2. The original constraint may now be re-written

as QT
2 Ax = QT

2 b, which is equivalent to QT
2 A1x1 + R2x2 = QT

2 b. We can now separate these

constraints into two groups: those corresponding to non-zero rows of R2, and those corresponding

to zero rows of R2 and hence only constraining x1.

At this point we solve for x1, taking into account only the latter set of constraints, using the

technique from the previous subsection (recall that x1 contains the variables with the non-zero

weights). Since the weights for x2 are all zero, this will be the optimal solution for the full problem,

provided that we can solve for x2 to satisfy the remaining constraints in the equation

R2x2 = QT
2 b−QT

2 A1x1.

But R2 is upper triangular, so this can always be done by backward substitution. In practice, we

minimise ‖x2‖2 subject to this linear constraint, in order to handle the case of a rank-deficient R2

in a predicable manner.

A.2.4 Matrix weight

The most general case we consider is to minimise xT Px where P is non-negative definite symmetric,

subject to the constraint Ax = b, with the same requirements on A as before.

We start by computing the diagonalisation P = UΛUT , where U is orthogonal and all the eigen-

values are non-negative (this is guaranteed by the conditions on P). Let Â = AU and x̂ = UT x, so

that the problem can be restated as minimising x̂T Λx̂ =
∑

λix̂
2
i subject to the constraint Âx̂ = b.

This is the weighted case that can be solved as before, and the solution to the original problem

may be extracted as x = U x̂.

132

Appendix B

Proofs

B.1 Incremental constraints

When doing influence simplification, a vertex will be simplified several times. Rather than always

starting with the original position and solving a constrained least-squares problem to eliminate a

set of influences, we instead take the previously reduced position and eliminate a single influence.

This is cheaper to compute, and the following theorem proves that it gives the same result.

Theorem 1. Given are a non-negative definite symmetric matrix P and two consistent sets of

constraints A1x = b1 and A2x = b2. Let Ax = b be the equation that results from combining the

two sets of constraints (i.e., redundancies between the sets are eliminated). Let

x1 minimise xT
1 Px1 subject to A1x1 = b1

x2 minimise xT
2 Px2 subject to Ax2 = b.

Then amongst all vectors x satisfying Ax = b, x2 minimises (x− x1)
T P (x− x1).

In other words, applying one set of constraints to get x1, then solving for the minimum correction

to x1 to additionally satisfy a second set, gives an equivalent result to finding a minimum vector

to satisfy both sets in one step. Note that the solutions are not necessarily identical if the minima

are not unique.

Proof. Consider any x satisfying Ax = b, and let x = x2 + y. Then Ay = 0 which implies that

A1(x1 + y) = b1. From the definitions of x1 and x2,

xT
1 Px1 ≤ (x1 − y)T P (x1 − y) = xT

1 Px1 + (y − 2x1)
T Py (B.1)

⇐⇒ 0 ≤ (y − 2x1)
T Py (B.2)

133

B.2. EXPECTED VALUE OF E[RT MR] APPENDIX B. PROOFS

and

xT
2 Px2 ≤ (x2 + y)T P (x2 + y) = xT

2 Px2 + (y + 2x2)
T Py (B.3)

⇐⇒ 0 ≤ (y + 2x2)
T Py. (B.4)

It follows that 0 ≤ (y + 2(x2 − x1))
T Py, and so

(x− x1)
T P (x− x1) = (y + (x2 − x1))

T P (y + (x2 − x1)) (B.5)

= (x2 − x1)
T P (x2 − x1) + (y + 2(x2 − x1))

T Py (B.6)

≥ (x2 − x1)
T P (x2 − x1). (B.7)

Since x2 also satisfies the linear constraint on x, the result follows.

B.2 Expected value of E[RT
MR]

Theorem 2. Let M be a fixed symmetric 3×3 matrix and let R be a 3×3 random rotation matrix

with a uniform distribution. Then

E[RT MR] =
trM

3
I. (B.8)

Proof. Let the singular values of E[RT MR] be σ1 ≥ σ2 ≥ σ3. Let v1 and v3 be unit-length

right singular vectors corresponding to σ1 and σ3, and let A be a fixed rotation matrix such that

Av1 = v3. The Haar criterion [Shoemake, 1992] requires that RA has the same distribution as R,

so

σ1 = ‖E[RT MR]v1‖ = ‖E[AT RT MRA]v1‖ = ‖AT E[RT MR]Av1‖ = ‖E[RT MR]v3‖ = σ3.

(B.9)

It follows that the singular values of E[RT MR] are all equal and hence it has the form σI (since

it is also symmetric).

The trace operator is invariant under similarly transforms and is also a linear operator, so

trE[RT MR] = E[tr RT MR] = E[tr M] = trM. (B.10)

The result follows since tr σI = 3σ.

B.3 Under-determined coordinates in a simple skeleton

Theorem 3. If the joints in a b-bone model have fixed translations relative to their parents, then

there exist at least b − 1 independent vectors in animation space that animation projection will

always map to a zero vector in model space.

134

APPENDIX B. PROOFS B.3. UNDER-DETERMINED COORDINATES

This seems somewhat surprising: it says that in such models, animation-space vectors are not

well defined. In particular, it says that although we found a way to convert an SSD model to an

equivalent animation-space model (see Section 3.1), it is not unique. It does make sense when

considering degrees of freedom: each joint has three degrees of freedom for rotation, but animation

space has 4b dimensions.

Proof. Let 1 =
(

0 0 0 1
)T

; we will use it frequently so it is useful to have a symbol.

Choose a particular bone i 6= 0, and let p be the animation-space position which is zero everywhere

except for pi = 1 (i.e., a weight of 1 associated with bone i). Write the joint matrix Li as RiTi,

where Ri is a linear matrix (no translation) and Ti is a constant translation matrix. Then

Gp =
b−1
∑

j=0

Gjpj

= Gipi

= Gφ(i)Lipi

= Gφ(i)RiTipi

= Gφ(i)Ri

(

Ti

1

)

= Gφ(i)Ri

(

Ti

0

)

+ Gφ(i)Ri1

= Gφ(i)RiTi

(

Ti

0

)

+ Gφ(i)1

= Gi

(

Ti

0

)

+ Gφ(i)1

= Gq,

(B.11)

where

qφ(i) = 1,qi =

(

Ti

0

)

.

It follows that the vector r = p− q satisfies Gr = 0 for all G, and is non-zero because ri = 1.

Now if we apply this to each bone i in turn, we can generate a set of vectors r1, r2, . . . , rb−1 with the

required properties. It remains only to show that they are independent. Without loss of generality,

assume that the bones are numbered in a top-down manner; in particular that φ(i) < i for all i.

Then for any i < j, ri
j = 0 and hence rj is independent of the previous vectors r1, . . . , rj−1.

In fact the proof shows that the result can be strengthened: the weights of an animation vector

can be chosen arbitrarily, as long as the total weight is kept constant. This can be achieved by

adding appropriate multiples of the ris, in decreasing order of i. Because ri only affects bones i

and φ(i) (and φ(i) < i), the later adjustments do not disturb those already made.

135

B.3. UNDER-DETERMINED COORDINATES APPENDIX B. PROOFS

136

Appendix C

Shader code

Listing C.1: vpcommon.cg: common structures and variables for vertex shaders. The IGeometryVP

interface is responsible for computing the position, tangents and vertex normal, while IShaderVP

is for any per-vertex colouring. Per-vertex colouring was used for debugging purposes, such as a

shader that assigned a different colour to each parametrisation chart.

1 #ifndef VPCOMMON_CG

2 #define VPCOMMON_CG

3

4 #i f defined(VERTEX_TANGENTS) || defined(VERTEX_NORMALS)

5 #define VERTEX_DERIVATIVES

6 #endif

7

8 uniform const f loat u_flod = 0.0; // f r a c t i o n a l par t o f the LOD l e v e l

9

10 struct OutputData

11 {

12 f loat4 position : POSITION;

13 #ifdef TEXCOORDS

14 f loat2 texcoords : TEXCOORD0;

15 #endif

16 #ifdef VERTEX_NORMALS

17 f loat3 normal : TEXCOORD1;

18 #endif

19 #ifdef VERTEX_TANGENTS

20 f loat3 tangents [2] : TEXCOORD2;

21 #endif

22 f loat4 color : COLOR; // alpha ca r r i e s f l o d

23 };

24

25 interface IGeometryVP

26 {

27 void process(inout OutputData o);

28 };

29

30 interface IShaderVP

137

APPENDIX C. SHADER CODE

31 {

32 f loat4 color ();

33 };

34

35 #endif

Listing C.2: fpcommon.cg: common structures and variables for fragment shaders. An INormalFP

produces a normal vector, which is then passed to an ILightingFP, which determines the light

level. The IShaderFP interface is used for shaders that compute a colour on the surface.

1 #ifndef FPCOMMON_CG

2 #define FPCOMMON_CG

3

4 uniform half u_light_ambient ;

5 uniform half u_light_diffuse ;

6 uniform half3 u_light_direction;

7 uniform half u_flod = 0.0;

8

9 struct InputData

10 {

11 #ifdef TEXCOORDS

12 f loat2 texcoords : TEXCOORD0;

13 #endif

14 #ifdef VERTEX_NORMALS

15 f loat3 normal : TEXCOORD1;

16 #endif

17 #ifdef VERTEX_TANGENTS

18 f loat3 tangents [2] : TEXCOORD2;

19 #endif

20 half4 color : COLOR; // alpha ca r r i e s f l o d

21 };

22

23 interface IShaderFP

24 {

25 half4 color(const InputData id);

26 };

27

28 interface INormalFP

29 {

30 half3 normal(const InputData id);

31 };

32

33 interface ILightingFP

34 {

35 half4 luminance(const half3 normal);

36 };

37

38 #endif

Listing C.3: vertex.cg: driver shader for vertex processing.

1 #include "vpcommon.cg"

138

APPENDIX C. SHADER CODE

2 #include "geometry.cg"

3 #include "geometry_texture.cg"

4 #include "patches.cg"

5 #include "influences.cg"

6

7 uniform IGeometryVP geometry;

8 uniform IShaderVP shaders [];

9

10 void main(out OutputData o)

11 {

12 geometry.process(o);

13 i f (shaders.length)

14 {

15 o.color = shaders [0]. color ();

16 for (int i = 1; i < shaders.length; i++)

17 o.color *= shaders[i]. color ();

18 }

19 else

20 o.color.xyz = 1.0;

21 o.color.w = u_flod;

22 }

Listing C.4: vertex.cg: driver shader for fragment processing.

1 #include "fpcommon.cg"

2 #include "normal_vertex .cg"

3 #include "normal_static .cg"

4 #include "normal_dynamic.cg"

5 #include "normal_null.cg"

6 #include "lighting_dot.cg"

7 #include "lighting_cube .cg"

8 #include "lighting_normal .cg"

9 #include "isolines.cg"

10 #include "distance.cg"

11 #include "decal.cg"

12

13 uniform IShaderFP shaders [];

14 uniform INormalFP normal;

15 uniform ILightingFP lighting;

16

17 void main(const InputData id ,

18 out half4 color : COLOR)

19 {

20 color = id.color;

21 for (int i = 0; i < shaders.length; i++)

22 color *= shaders[i]. color(id);

23 color *= lighting.luminance(normal.normal(id));

24 color.w = 1.0;

25 }

Listing C.5: geometry.cg: vertex program for pre-transformed vertices. This program is used

for the CPU-based vertex transformation (Section 7.4.1) and the rendering pass of the fragment

139

APPENDIX C. SHADER CODE

program-based vertex transformation (Section 7.4.2). It applies the model-view-projection trans-

formation, computes the vertex normal and interpolates texture coordinates between levels of

detail.

1 #include "vpcommon.cg"

2

3 uniform float4x4 mvp : state.matrix.mvp;

4 uniform float4x4 mv : state.matrix.modelview;

5 uniform float4x4 imv : state.matrix.modelview.invtrans;

6

7 varying float4 i_position : POSITION;

8 #ifdef VERTEX_DERIVATIVES

9 varying float3 i_tangents [2];

10 #endif

11 #ifdef TEXCOORDS

12 varying float4 i_texcoords;

13 #endif

14

15 struct GeometryVP : IGeometryVP

16 {

17 void process(inout OutputData o)

18 {

19 o.position = mul(mvp , i_position);

20 #ifdef VERTEX_TANGENTS

21 o.tangents [0] = normalize(mul(float3x3(mv), i_tangents [0]));

22 o.tangents [1] = normalize(mul(float3x3(mv), i_tangents [1]));

23 #endif

24

25 #ifdef VERTEX_NORMALS

26 #ifdef VERTEX_TANGENTS

27 o.normal = normalize(cross(o.tangents [0], o.tangents [1]));

28 #else

29 o.normal = normalize(mul(float3x3(imv),

30 cross(i_tangents [0], i_tangents [1])));

31 #endif

32 #endif

33

34 #ifdef TEXCOORDS

35 o.texcoords = i_texcoords.xy + u_flod * i_texcoords.zw;

36 #endif

37 }

38 };

Listing C.6: rtvb frag fp.cg: the fragment program for fragment program-based vertex transfor-

mation (Section 7.4.2). It applies animation projection to the position and optionally the tangents,

writing either one or three outputs.

1 // REPS i s #de f ined to be e i t h e r 1 (p o s i t i o n s only) or 3 (p o s i t i o n s and tangent s)

2

3 void main(half3 tc : TEXCOORD0 ,

4 out half4 col[REPS] : COLOR0 ,

5 uniform samplerRECT bone_tex ,

140

APPENDIX C. SHADER CODE

6 uniform samplerRECT transform_tex ,

7 uniform samplerRECT inf_tex[REPS][2],

8 uniform half flod)

9 {

10 half4 ans[REPS];

11 half4 bc = half4 (0.5, 1.5, 2.5, 0.0);

12

13 for (int i = 0; i < REPS; i++)

14 ans[i] = half4 (0.0h, 0.0h, 0.0h, 1.0h);

15

16 // tc . z ho ld s the maximum coord inate

17 for (; tc.y < tc.z; tc.y++)

18 {

19 bc.w = h4texRECT(bone_tex , tc.xy).x * 255.0h + 0.5h;

20 half3x4 T = half3x4(h4texRECT(transform_tex , bc.xw),

21 h4texRECT(transform_tex , bc.yw),

22 h4texRECT(transform_tex , bc.zw));

23

24 for (int r = 0; r < REPS; r++)

25 ans[r].xyz += mul(T, h4texRECT(inf_tex[r][0], tc.xy)

26 + flod * h4texRECT(inf_tex[r][1], tc.xy));

27 }

28 for (int r = 0; r < REPS; r++)

29 col[r] = ans[r];

30 }

Listing C.7: geometry texture.cg: vertex program for vertex-texturing vertex transformation

(Section 7.4.3).

1 #include "vpcommon.cg"

2

3 varying float4 i_offsets : POSITION;

4

5 #ifdef VERTEX_DERIVATIVES

6 #define CHANNELS 3

7 #else

8 #define CHANNELS 1

9 #endif

10 uniform sampler2D bones;

11 uniform sampler2D influences[CHANNELS];

12 uniform float3x4 u_transforms [80]; // bone trans format ions

13 uniform float u_xstep; // 1 / t e x t u r e width

14

15 struct GeometryTextureVP : IGeometryVP

16 {

17 void process(inout OutputData o)

18 {

19 // x : f i r s t s coord inate y : t coord inate f o r base

20 // z : t coord inate f o r d e l t a w: l a s t s coord inate

21 f loat4 offsets = i_offsets;

22

23 f loat3 coords[CHANNELS];

141

APPENDIX C. SHADER CODE

24 for (int c = 0; c < CHANNELS; c++)

25 coords[c] = 0.0;

26 while (offsets.x < offsets.w)

27 {

28 f loat bone = tex2D(bones , offsets.xy).x;

29 f loat4 inf[CHANNELS][2];

30 for (int c = 0; c < CHANNELS; c++)

31 {

32 inf[c][0] = tex2D(influences[c], offsets.xy);

33 inf[c][1] = tex2D(influences[c], offsets.xz);

34 }

35 for (int c = 0; c < CHANNELS; c++)

36 coords[c] += mul(u_transforms [(int) bone],

37 inf[c][0] + u_flod * inf[c][1]);

38 offsets.x += u_xstep;

39 }

40 o.position = mul(mvp , f loat4 (coords [0], 1.0));

41 #ifdef VERTEX_TANGENTS

42 o.tangents [0] = normalize(mul(float3x3(mv), coords [1]));

43 o.tangents [1] = normalize(mul(float3x3(mv), coords [2]));

44 #endif

45

46 #ifdef VERTEX_NORMALS

47 #ifdef VERTEX_TANGENTS

48 o.normal = normalize(cross(o.tangents [0], o.tangents [1]));

49 #else

50 o.normal = normalize(mul(float3x3(imv), cross(coords [1], coords [2])));

51 #endif

52 #endif

53

54 #ifdef TEXCOORDS

55 o.texcoords = i_texcoords.xy + u_flod * i_texcoords.zw;

56 #endif

57 }

58 };

Listing C.8: dnm fp.cg: normals from tangent maps, pre-computation pass. The shader applies

animation projection to two tangent vectors, as described in Section 7.5.1, then takes their cross

product to determine a normal. The corresponding vertex program is not shown, as it simply

passes through the position and texture coordinates.

1 uniform samplerRECT bone_tex;

2 uniform samplerRECT tangent_tex [2];

3 uniform samplerRECT transform_tex ;

4 uniform float3x3 imv : state.matrix.modelview.invtrans;

5

6 void main(f loat3 tc : TEXCOORD0 , out half4 color : COLOR)

7 {

8 half3 tangents [2];

9 half4 bc = half4 (0.5, 1.5, 2.5, 0.0);

10

11 for (int i = 0; i < 2; i++)

142

APPENDIX C. SHADER CODE

12 tangents[i] = half3 (0.0h, 0.0h, 0.0h);

13

14 for (; tc.x < tc.z; tc.x++)

15 {

16 bc.w = h4texRECT(bone_tex , tc.xy).x * 255.0h + 0.5h;

17 half3x4 T = half3x4(h4texRECT(transform_tex , bc.xw),

18 h4texRECT(transform_tex , bc.yw),

19 h4texRECT(transform_tex , bc.zw));

20

21 for (int i = 0; i < 2; i++)

22 tangents[i] += mul(T, h4texRECT(tangent_tex[i], tc.xy));

23 }

24

25 color.xyz = 0.5h * normalize(mul(float3x3(imv), cross(tangents [0], tangents [1])))

26 + 0.5h;

27 }

Listing C.9: normal dynamic.cg: normals from tangent maps, rendering pass. This shader simply

extracts the normal that was computed during the first pass, and remaps the [0, 1] colour range

to a [−1, 1] coordinate range.

1 #include "fpcommon.cg"

2

3 #ifdef TEXCOORDS

4

5 struct NormalDynamicFP : INormalFP

6 {

7 uniform sampler2D normal_texture;

8 half3 normal(const InputData id)

9 {

10 return 2.0h * h4tex2D(normal_texture , id.texcoords.xy).xyz - 1.0h;

11 }

12 };

13

14 #endif

Listing C.10: normal static.cg: tangent-space normal maps. This shader interpolates the

tangent-space normal between discrete levels of detail, then transforms it from tangent space

to a global space.

1 #include "fpcommon.cg"

2

3 #i f defined(VERTEX_TANGENTS) && defined(VERTEX_NORMALS) && defined(TEXCOORDS)

4

5 struct NormalStaticFP : INormalFP

6 {

7 uniform sampler2D normal_map_a; // from higher−res LOD

8 uniform sampler2D normal_map_b; // from lower−res LOD

9

10 half3 normal(const InputData id)

11 {

143

APPENDIX C. SHADER CODE

12 half3 local_normal_a = h4tex2D(normal_map_a , id.texcoords).xyz;

13 half3 local_normal_b = h4tex2D(normal_map_b , id.texcoords).xyz;

14 // co l o r .w ca r r i e s f l o d (f r a c t i o n a l par t o f LOD)

15 half3 local_normal = lerp(local_normal_a , local_normal_b , id.color.w);

16 // map [0 , 1] co l our s to [−1 , 1] coord ina te s

17 local_normal = 2.0h * local_normal - 1.0h;

18 // s e t up tangent−space space f o r trans format ion to model space

19 half3x3 trans = half3x3(id.normal , id.tangents [0], id.tangents [1]);

20 return normalize(mul(local_normal , trans));

21 }

22 };

23

24 #endif

Listing C.11: lighting dot.cg: simple dot-product lighting. There is one light in the positive

Z direction and another in a user-specified direction, as well as an ambient term. The saturate

function is a Cg built-in that clamps the argument to [0, 1]; on some platforms, this is a hardware

operation which is cheaper than calculating max(x, 0).

1 #include "fpcommon.cg"

2

3 struct LightingDotFP : ILightingFP

4 {

5 half4 luminance(const half3 normal)

6 {

7 return saturate(dot(normal , u_light_direction)) * u_light_diffuse

8 + saturate(normal.z) * u_light_diffuse

9 + u_light_ambient ;

10 }

11 };

Listing C.12: ssd.vpm: low-level SSD shader used to generate Table 8.9. Note that the shader is

run through a macro pre-processor to generate the actual assembly code, to create a specialisation

that is tuned for a specific maximum number of influences

1 include(‘shaders.m4 ’)dnl

2 !! ARBvp1 .0

3

4 ATTRIB iRest = vertex.attrib [0];

5 frombone(0, ‘ATTRIB iBonesA = vertex.attrib [1];’)

6 frombone(0, ‘ATTRIB iWeightsA = vertex.attrib [2];’)

7 frombone(4, ‘ATTRIB iBonesB = vertex.attrib [3];’)

8 frombone(4, ‘ATTRIB iWeightsB = vertex.attrib [4];’)

9 PARAM mvp [4] = { state.matrix.mvp };

10 PARAM matrices[parameters] = { program.env [0.. lastparameter] };

11 ADDRESS index;

12 TEMP local , pos;

13 OUTPUT oPos = result.position;

14 OUTPUT oCol = result.color;

15

16 frombone(0, ‘

144

APPENDIX C. SHADER CODE

17 ARL index.x, iBonesA.x;

18 DP4 local.x, matrices[index.x + 0], iRest;

19 DP4 local.y, matrices[index.x + 1], iRest;

20 DP4 local.z, matrices[index.x + 2], iRest;

21 MUL pos.xyz , local , iWeightsA.x;

22 ’)

23

24 frombone(1, ‘

25 ARL index.x, iBonesA.y;

26 DP4 local.x, matrices[index.x + 0], iRest;

27 DP4 local.y, matrices[index.x + 1], iRest;

28 DP4 local.z, matrices[index.x + 2], iRest;

29 MAD pos.xyz , local , iWeightsA.y, pos;

30 ’)

31

32 frombone(2, ‘

33 ARL index.x, iBonesA.z;

34 DP4 local.x, matrices[index.x + 0], iRest;

35 DP4 local.y, matrices[index.x + 1], iRest;

36 DP4 local.z, matrices[index.x + 2], iRest;

37 MAD pos.xyz , local , iWeightsA.z, pos;

38 ’)

39

40 frombone(3, ‘

41 ARL index.x, iBonesA.w;

42 DP4 local.x, matrices[index.x + 0], iRest;

43 DP4 local.y, matrices[index.x + 1], iRest;

44 DP4 local.z, matrices[index.x + 2], iRest;

45 MAD pos.xyz , local , iWeightsA.w, pos;

46 ’)

47

48 frombone(4, ‘

49 ARL index.x, iBonesB.x;

50 DP4 local.x, matrices[index.x + 0], iRest;

51 DP4 local.y, matrices[index.x + 1], iRest;

52 DP4 local.z, matrices[index.x + 2], iRest;

53 MAD pos.xyz , local , iWeightsB.x, pos;

54 ’)

55

56 frombone(5, ‘

57 ARL index.x, iBonesB.y;

58 DP4 local.x, matrices[index.x + 0], iRest;

59 DP4 local.y, matrices[index.x + 1], iRest;

60 DP4 local.z, matrices[index.x + 2], iRest;

61 MAD pos.xyz , local , iWeightsB.y, pos;

62 ’)

63

64 frombone(6, ‘

65 ARL index.x, iBonesB.z;

66 DP4 local.x, matrices[index.x + 0], iRest;

67 DP4 local.y, matrices[index.x + 1], iRest;

68 DP4 local.z, matrices[index.x + 2], iRest;

145

APPENDIX C. SHADER CODE

69 MAD pos.xyz , local , iWeightsB.z, pos;

70 ’)

71

72 frombone(7, ‘

73 ARL index.x, iBonesB.w;

74 DP4 local.x, matrices[index.x + 0], iRest;

75 DP4 local.y, matrices[index.x + 1], iRest;

76 DP4 local.z, matrices[index.x + 2], iRest;

77 MAD pos.xyz , local , iWeightsB.w, pos;

78 ’)

79

80 DPH oPos.x, pos , mvp [0];

81 DPH oPos.y, pos , mvp [1];

82 DPH oPos.z, pos , mvp [2];

83 DPH oPos.w, pos , mvp [3];

84 MOV oCol , 1.0;

85 END

Listing C.13: ssd.vpm: low-level animation-space shader used to generate Table 8.9. Note that

the shader is run through a macro pre-processor to generate the actual assembly code, to create

a specialisation that is tuned for a specific maximum number of influences.

1 include(‘shaders.m4 ’)dnl

2 !! ARBvp1 .0

3

4 frombone(0, ‘ATTRIB iBonesA = vertex.attrib [0];’)

5 frombone(0, ‘ATTRIB P0 = vertex.attrib [1];’)

6 frombone(1, ‘ATTRIB P1 = vertex.attrib [2];’)

7 frombone(2, ‘ATTRIB P2 = vertex.attrib [3];’)

8 frombone(3, ‘ATTRIB P3 = vertex.attrib [4];’)

9 frombone(4, ‘ATTRIB iBonesB = vertex.attrib [5];’)

10 frombone(4, ‘ATTRIB P4 = vertex.attrib [6];’)

11 frombone(5, ‘ATTRIB P5 = vertex.attrib [7];’)

12 frombone(6, ‘ATTRIB P6 = vertex.attrib [8];’)

13 frombone(7, ‘ATTRIB P7 = vertex.attrib [9];’)

14 PARAM mvp [4] = { state.matrix.mvp };

15 PARAM matrices[parameters] = { program.env [0.. lastparameter] };

16 ADDRESS index;

17 TEMP local , pos;

18 OUTPUT oPos = result.position;

19 OUTPUT oCol = result.color;

20

21 frombone(0, ‘

22 ARL index.x, iBonesA.x;

23 DP4 pos.x, matrices[index.x + 0], P0;

24 DP4 pos.y, matrices[index.x + 1], P0;

25 DP4 pos.z, matrices[index.x + 2], P0;

26 ’)

27

28 frombone(1, ‘

29 ARL index.x, iBonesA.y;

30 DP4 local.x, matrices[index.x + 0], P1;

146

APPENDIX C. SHADER CODE

31 DP4 local.y, matrices[index.x + 1], P1;

32 DP4 local.z, matrices[index.x + 2], P1;

33 ADD pos.xyz , pos , local;

34 ’)

35

36 frombone(2, ‘

37 ARL index.x, iBonesA.z;

38 DP4 local.x, matrices[index.x + 0], P2;

39 DP4 local.y, matrices[index.x + 1], P2;

40 DP4 local.z, matrices[index.x + 2], P2;

41 ADD pos.xyz , pos , local;

42 ’)

43

44 frombone(3, ‘

45 ARL index.x, iBonesA.w;

46 DP4 local.x, matrices[index.x + 0], P3;

47 DP4 local.y, matrices[index.x + 1], P3;

48 DP4 local.z, matrices[index.x + 2], P3;

49 ADD pos.xyz , pos , local;

50 ’)

51

52 frombone(4, ‘

53 ARL index.x, iBonesB.x;

54 DP4 local.x, matrices[index.x + 0], P4;

55 DP4 local.y, matrices[index.x + 1], P4;

56 DP4 local.z, matrices[index.x + 2], P4;

57 ADD pos.xyz , pos , local;

58 ’)

59

60 frombone(5, ‘

61 ARL index.x, iBonesB.y;

62 DP4 local.x, matrices[index.x + 0], P5;

63 DP4 local.y, matrices[index.x + 1], P5;

64 DP4 local.z, matrices[index.x + 2], P5;

65 ADD pos.xyz , pos , local;

66 ’)

67

68 frombone(6, ‘

69 ARL index.x, iBonesB.z;

70 DP4 local.x, matrices[index.x + 0], P6;

71 DP4 local.y, matrices[index.x + 1], P6;

72 DP4 local.z, matrices[index.x + 2], P6;

73 ADD pos.xyz , pos , local;

74 ’)

75

76 frombone(7, ‘

77 ARL index.x, iBonesB.w;

78 DP4 local.x, matrices[index.x + 0], P7;

79 DP4 local.y, matrices[index.x + 1], P7;

80 DP4 local.z, matrices[index.x + 2], P7;

81 ADD pos.xyz , pos , local;

82 ’)

147

APPENDIX C. SHADER CODE

83

84 DPH oPos.x, pos , mvp [0];

85 DPH oPos.y, pos , mvp [1];

86 DPH oPos.z, pos , mvp [2];

87 DPH oPos.w, pos , mvp [3];

88 MOV oCol , 1.0;

89 END

Listing C.14: ssd.vpm: low-level MWE shader used to generate Table 8.9. Note that the shader is

run through a macro pre-processor to generate the actual assembly code, to create a specialisation

that is tuned for a specific maximum number of influences.

1 include(‘shaders.m4 ’)dnl

2 !! ARBvp1 .0

3

4 frombone(0, ‘ATTRIB iBonesA = vertex.attrib [0];’)

5 frombone(0, ‘ATTRIB iWeights00 = vertex.attrib [1];’)

6 frombone(0, ‘ATTRIB iWeights01 = vertex.attrib [2];’)

7 frombone(0, ‘ATTRIB iWeights02 = vertex.attrib [3];’)

8 frombone(1, ‘ATTRIB iWeights10 = vertex.attrib [4];’)

9 frombone(1, ‘ATTRIB iWeights11 = vertex.attrib [5];’)

10 frombone(1, ‘ATTRIB iWeights12 = vertex.attrib [6];’)

11 frombone(2, ‘ATTRIB iWeights20 = vertex.attrib [7];’)

12 frombone(2, ‘ATTRIB iWeights21 = vertex.attrib [8];’)

13 frombone(2, ‘ATTRIB iWeights22 = vertex.attrib [9];’)

14 frombone(3, ‘ATTRIB iWeights30 = vertex.attrib [10]; ’)

15 frombone(3, ‘ATTRIB iWeights31 = vertex.attrib [11]; ’)

16 frombone(3, ‘ATTRIB iWeights32 = vertex.attrib [12]; ’)

17 PARAM mvp [4] = { state.matrix.mvp };

18 PARAM matrices[parameters] = { program.env [0.. lastparameter] };

19 ADDRESS index;

20 TEMP local , pos;

21 OUTPUT oPos = result.position;

22 OUTPUT oCol = result.color;

23

24 frombone(0, ‘

25 ARL index.x, iBonesA.x;

26 DP4 pos.x, iWeights00 , matrices[index.x + 0];

27 DP4 pos.y, iWeights01 , matrices[index.x + 1];

28 DP4 pos.z, iWeights02 , matrices[index.x + 2];

29 ’)

30

31 frombone(1, ‘

32 ARL index.x, iBonesA.y;

33 DP4 local.x, iWeights10 , matrices[index.x + 0];

34 DP4 local.y, iWeights11 , matrices[index.x + 1];

35 DP4 local.z, iWeights12 , matrices[index.x + 2];

36 ADD pos.xyz , pos , local;

37 ’)

38

39 frombone(2, ‘

40 ARL index.x, iBonesA.z;

148

APPENDIX C. SHADER CODE

41 DP4 local.x, iWeights20 , matrices[index.x + 0];

42 DP4 local.y, iWeights21 , matrices[index.x + 1];

43 DP4 local.z, iWeights22 , matrices[index.x + 2];

44 ADD pos.xyz , pos , local;

45 ’)

46

47 frombone(3, ‘

48 ARL index.x, iBonesA.w;

49 DP4 local.x, iWeights30 , matrices[index.x + 0];

50 DP4 local.y, iWeights31 , matrices[index.x + 1];

51 DP4 local.z, iWeights32 , matrices[index.x + 2];

52 ADD pos.xyz , pos , local;

53 ’)

54

55 DPH oPos.x, pos , mvp [0];

56 DPH oPos.y, pos , mvp [1];

57 DPH oPos.z, pos , mvp [2];

58 DPH oPos.w, pos , mvp [3];

59 MOV oCol , 1.0;

60 END

149

APPENDIX C. SHADER CODE

150

Appendix D

Raw experiment data

151

APPENDIX D. RAW EXPERIMENT DATA

Table D.1: Raw data from user experiment 1. A • indicates that the user chose the full-detail
model and a ◦ that the user chose the LOD approximation. The two values in each cell are for
the two orders in which the videos could be shown.

Scene Subject ID Pixel tolerance

0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8

1 ◦ ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ • • • • • • ◦ • • ◦ •

2 ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • • ◦ • • • • • • • • ◦ •

3 • ◦ • ◦ ◦ • ◦ • ◦ • • • • ◦ • • • ◦ • • • • • •

6 ◦ • ◦ • • • ◦ • ◦ ◦ • ◦ • ◦ • ◦ • • ◦ ◦ • • ◦ •

7 • ◦ • • • • • • • • • ◦ • ◦ • ◦ ◦ • • • • • • •

8 ◦ • • • ◦ • • • • • • • • • • • • • • • • • • •

9 • ◦ • • • • • ◦ • ◦ • • • • • • • • • ◦ • • • •

10 • ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ • • • ◦

arm 11 • ◦ ◦ ◦ • • • • • • • • • ◦ • • ◦ • • • • • • •

12 ◦ ◦ ◦ • ◦ • • ◦ • • • ◦ • ◦ • • • ◦ • ◦ • • ◦ ◦

13 ◦ • • ◦ • ◦ • ◦ • • • ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ • ◦

14 ◦ ◦ ◦ ◦ • ◦ ◦ • • ◦ • • ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦

15 • ◦ • ◦ ◦ ◦ • • • ◦ • • • • • ◦ • • • • • • • •

16 • • ◦ • • • • ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ • ◦

17 • • • ◦ ◦ ◦ ◦ • • ◦ • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦

18 ◦ ◦ • ◦ ◦ • ◦ • • • • ◦ • • • • ◦ ◦ ◦ • ◦ • • •

19 • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ • ◦

Total (/34) 15 18 21 20 22 23 22 20 22 20 25 23

1 ◦ • ◦ ◦ • • ◦ • • • • • ◦ • ◦ • ◦ • • • • • • •

2 • • ◦ • • • • ◦ • ◦ ◦ • • • • • • • • • • • • •

3 • ◦ • • • • • • ◦ ◦ • • • • ◦ • • • • ◦ • • • •

6 • • ◦ ◦ • • ◦ • • • • ◦ • • ◦ ◦ • ◦ ◦ • • ◦ • ◦

7 • ◦ • • • ◦ ◦ • • • • ◦ • • • ◦ • ◦ • ◦ • ◦ • ◦

8 ◦ • ◦ ◦ • • • • ◦ • • • • ◦ • • • • • • • • • •

9 ◦ • ◦ • • ◦ • ◦ • ◦ • • • • • • • • ◦ • • • • •

10 • ◦ • ◦ • • ◦ ◦ • • • ◦ ◦ • ◦ ◦ • ◦ • ◦ • • ◦ ◦

cat 11 • • ◦ ◦ ◦ • ◦ • ◦ • • ◦ • • ◦ • ◦ • ◦ ◦ • • • ◦

12 ◦ • • ◦ • • ◦ ◦ • ◦ • ◦ • • ◦ • • • • • • • • •

13 • ◦ • ◦ • • • • • • • ◦ • • • • • ◦ • • • • • •

14 ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ • • • • • • ◦ • ◦ • ◦ • • ◦

15 • • • ◦ ◦ • • ◦ • • • • • ◦ • ◦ • • • • • • • •

16 • ◦ • • ◦ ◦ • • ◦ • • ◦ ◦ • • • ◦ ◦ • ◦ • ◦ • •

17 • • • • • • ◦ • • • ◦ ◦ ◦ • ◦ • ◦ • • • • • ◦ ◦

18 • ◦ • ◦ • ◦ • • • ◦ • • • ◦ • ◦ ◦ ◦ • • • ◦ • ◦

19 • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • • • ◦ • ◦ • • • ◦ • ◦

Total (/34) 21 17 25 20 22 23 27 21 21 25 28 24

1 • ◦ ◦ ◦ • • • ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦

2 ◦ • • • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ • • • ◦ • • • •

3 • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • • ◦ ◦ • • •

6 • • ◦ • ◦ ◦ • • • • • ◦ • ◦ • ◦ • ◦ • • • • ◦ •

7 • ◦ • • • • • • • ◦ • ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ • ◦

8 • • ◦ • ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ • • • • •

9 • ◦ ◦ ◦ • ◦ • • • ◦ • ◦ • ◦ • ◦ • • ◦ • • • • •

10 • ◦ • • • • ◦ ◦ ◦ • • ◦ • • ◦ • • ◦ • ◦ ◦ ◦ • ◦

cyberdemon 11 • ◦ • ◦ ◦ • • ◦ ◦ ◦ • • ◦ • ◦ • • • ◦ • • • ◦ •

12 ◦ • ◦ ◦ • • • ◦ ◦ • ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ •

13 • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ • ◦ • ◦

14 • ◦ • • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦

15 ◦ • • • ◦ ◦ ◦ ◦ • ◦ • • • • • • • • • ◦ ◦ ◦ ◦ •

16 ◦ ◦ • ◦ • ◦ • ◦ ◦ • • • • ◦ • ◦ • • ◦ ◦ • ◦ ◦ •

17 • ◦ • ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • • • • • ◦

18 ◦ • ◦ • • • • • ◦ • • ◦ ◦ ◦ ◦ ◦ • • • • ◦ • ◦ ◦

19 • • • ◦ • ◦ • • • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • •

Total (/34) 19 19 21 18 14 17 14 16 21 18 20 19

1 • • ◦ • • • • • • • • • • • • ◦ ◦ • • • ◦ • • •

2 ◦ • ◦ • • • • • ◦ ◦ • • • • • • • • ◦ • • • • •

3 • ◦ ◦ • • • • • ◦ • • • • ◦ • • • • • • • • • •

6 • ◦ • • • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • •

7 ◦ ◦ ◦ ◦ • • • • ◦ ◦ • ◦ • • • • • • • • • • • •

8 • ◦ • ◦ ◦ • ◦ • ◦ ◦ • • ◦ • ◦ • • • • • • • ◦ •

9 ◦ • • • • • ◦ • ◦ ◦ • • • ◦ • ◦ • • • • • • • •

10 • ◦ ◦ • ◦ • ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ • • • • • • ◦

horse 11 ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ • • • ◦ • • • • • • •

12 • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ • • ◦ • • ◦ • • •

13 • ◦ • ◦ • ◦ • ◦ • • • ◦ • • • • • • • • • • • •

14 ◦ ◦ ◦ • • • • • • • • ◦ • ◦ • ◦ • • ◦ ◦ ◦ • • •

15 ◦ ◦ ◦ • • • • • • • ◦ ◦ • • • ◦ • • • • • • • ◦

16 ◦ • ◦ • ◦ • ◦ • ◦ • • • ◦ ◦ ◦ • • • ◦ • ◦ • ◦ •

17 ◦ • ◦ • • • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • • • ◦

18 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • ◦ ◦ • • •

19 ◦ ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • • ◦ ◦ • ◦ ◦ ◦

Total (/34) 12 16 23 19 17 22 20 19 25 25 26 27

1 ◦ • • ◦ ◦ ◦ ◦ • • • ◦ • • • • • • • • ◦ • • ◦ •

2 ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • • • ◦ • • ◦ • ◦ • • • • • ◦

3 • ◦ • • • • • ◦ • • ◦ ◦ • • • ◦ • ◦ • ◦ ◦ ◦ ◦ •

6 • • • ◦ • • • • ◦ • • • • ◦ • ◦ ◦ • • • ◦ ◦ ◦ •

7 • ◦ • ◦ • • • ◦ • • • • ◦ • • • • • • ◦ • • • •

8 • • ◦ • ◦ • • ◦ ◦ • ◦ ◦ • • • • ◦ • ◦ • • • • ◦

9 ◦ ◦ • ◦ • ◦ ◦ • • ◦ • • • • • • • ◦ • ◦ ◦ • • •

10 ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ • • ◦ ◦

mancandy 11 • • • ◦ • ◦ • • • ◦ • • • • • • • • ◦ • • • • •

12 • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ • • • • • ◦ • ◦ • ◦ ◦ • ◦ ◦

13 ◦ ◦ • ◦ • ◦ • ◦ • ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

14 • ◦ • • • ◦ • • ◦ ◦ • • • ◦ • ◦ • ◦ ◦ ◦ • • • ◦

15 ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • • • • ◦ ◦ ◦ • •

16 ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

17 ◦ ◦ • • ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • • • ◦

18 • • • • • • ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ • • • ◦

19 • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦

Total (/34) 15 19 20 17 16 19 20 22 19 15 22 17

Total (/170) 82 89 110 94 91 104 103 98 108 103 121 110

152

APPENDIX D. RAW EXPERIMENT DATA

Table D.2: Raw data from user experiment 2. A • indicates that the user chose the animation-
space simplification and a ◦ that the user chose the 3D simplification. The grey cells are from the
training phase and are not included in the totals.

Pixel Subject Scene Total

tolerance ID arm cat cyberdemon horse mancandy

2 • • • • • • ◦ ◦ • ◦ ◦ ◦ • • • 7/10
3 • • ◦ • • ◦ • • • ◦ ◦ • ◦ ◦ • 6/10
4 • ◦ • ◦ • • • ◦ ◦ ◦ • • ◦ ◦ • 6/10
6 • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • • • • 5/10
7 ◦ • • • • • ◦ • ◦ • • ◦ ◦ • • 8/10
8 • • • • ◦ • ◦ ◦ • • • • ◦ ◦ ◦ 6/10
9 ◦ ◦ ◦ • • ◦ • • • ◦ ◦ ◦ ◦ ◦ • 4/10
12 • • • • ◦ • ◦ ◦ • • • • ◦ ◦ • 7/10
13 ◦ • • ◦ • ◦ • • ◦ • ◦ ◦ • ◦ • 5/10
15 ◦ • • ◦ • • ◦ ◦ ◦ ◦ ◦ • • • • 7/10
16 • ◦ • • • • • • • • ◦ ◦ • ◦ ◦ 5/10

1.5 17 • • ◦ ◦ • • ◦ • ◦ • • • • • • 8/10
18 • ◦ • • • ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ 4/10
19 ◦ ◦ • • ◦ ◦ ◦ • ◦ • • • • • • 6/10
20 • • ◦ • ◦ • • ◦ ◦ • • ◦ ◦ ◦ • 4/10
22 • • • ◦ • ◦ ◦ • • • • • • ◦ • 8/10
23 ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ • • • ◦ 4/10
24 • • ◦ ◦ • ◦ • • • ◦ • ◦ ◦ • • 7/10
26 • • • ◦ • • • ◦ ◦ • • ◦ ◦ ◦ • 6/10
27 ◦ • • ◦ ◦ • • ◦ • ◦ ◦ • ◦ • • 7/10
28 ◦ ◦ • ◦ • • ◦ • • ◦ • ◦ ◦ • • 8/10
29 ◦ ◦ • • • • • ◦ • ◦ • ◦ ◦ • ◦ 6/10
30 • ◦ • ◦ • ◦ ◦ ◦ • • • ◦ • • • 6/10

30/46 30/46 24/46 26/46 30/46 140/230

2 • ◦ ◦ • ◦ • ◦ ◦ • ◦ • • • • • 6/10
3 • ◦ ◦ • ◦ • • ◦ ◦ • ◦ • • ◦ ◦ 2/10
4 ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ • 4/10
6 • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • ◦ 4/10
7 • ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ • • ◦ ◦ 2/10
8 ◦ • • • ◦ • • ◦ ◦ • • ◦ • • • 6/10
9 ◦ ◦ • • ◦ • • • ◦ • • ◦ ◦ ◦ • 5/10
12 ◦ ◦ • • ◦ • ◦ ◦ • ◦ ◦ • • ◦ • 5/10
13 ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • • ◦ • ◦ ◦ 2/10
15 ◦ • • ◦ • • • ◦ • • • • ◦ ◦ • 8/10
16 • ◦ ◦ ◦ ◦ • • ◦ • • ◦ • ◦ ◦ • 4/10

3 17 ◦ • ◦ • • ◦ ◦ ◦ • ◦ • ◦ • • • 6/10
18 ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ • • ◦ ◦ • 5/10
19 • • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • 4/10
20 ◦ • • • • ◦ ◦ ◦ • ◦ • • • ◦ • 7/10
22 • • • ◦ • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ 4/10
23 ◦ ◦ • • • • ◦ ◦ • ◦ • ◦ • ◦ ◦ 5/10
24 ◦ • • • • ◦ • • • ◦ ◦ • ◦ ◦ • 7/10
26 • • • • ◦ • • • ◦ • • • ◦ ◦ • 7/10
27 • ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ • • • • 5/10
28 ◦ ◦ • • ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ • 4/10
29 ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ • • ◦ 2/10
30 • • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ • • ◦ 4/10

22/46 20/46 20/46 24/46 22/46 108/230

2 ◦ • • • ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • 5/10
3 ◦ • ◦ ◦ • • ◦ ◦ • ◦ • • • ◦ • 7/10
4 ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ 4/10
6 ◦ • • ◦ ◦ • • • • ◦ • ◦ • • • 8/10
7 • • • • • ◦ ◦ • ◦ • • • ◦ • ◦ 7/10
8 • • ◦ • • • • ◦ • • ◦ • ◦ ◦ ◦ 5/10
9 ◦ • • • ◦ ◦ ◦ • ◦ • • ◦ ◦ • • 6/10
12 • ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • 5/10
13 ◦ • ◦ ◦ • • • ◦ ◦ • • ◦ • ◦ ◦ 4/10
15 • • • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • 3/10
16 • • • ◦ • • • ◦ • • ◦ ◦ • ◦ ◦ 5/10

6 17 • ◦ ◦ • • • • ◦ ◦ • ◦ ◦ ◦ • • 4/10
18 • ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ • ◦ ◦ 2/10
19 • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • 3/10
20 • • ◦ • ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ • 3/10
22 ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ ◦ 3/10
23 • ◦ ◦ ◦ • • • ◦ ◦ • • • • • ◦ 5/10
24 ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ 3/10
26 • • • • ◦ ◦ ◦ • • • • • • ◦ • 7/10
27 ◦ ◦ ◦ • • • • ◦ • ◦ • • ◦ ◦ • 6/10
28 ◦ ◦ ◦ ◦ ◦ • • ◦ • • ◦ • ◦ ◦ • 4/10
29 ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ • • ◦ • ◦ 5/10
30 ◦ • • ◦ • ◦ ◦ ◦ • • • ◦ ◦ ◦ • 6/10

25/46 21/46 22/46 22/46 20/46 110/230

Total 77/138 71/138 66/138 72/138 72/138 358/690

153

APPENDIX D. RAW EXPERIMENT DATA

Table D.3: Raw data from user experiment 3. A • indicates that the user chose the model
that included influence simplification and a ◦ that the user chose the model without influence
simplification. The grey cells are from the training phase and are not included in the totals.

Pixel Subject Scene Total

tolerance ID arm cat cyberdemon horse mancandy

2 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • 5/10
3 ◦ ◦ • • ◦ • • • ◦ • ◦ • • • • 6/10
4 • • ◦ • • • ◦ • • • • ◦ ◦ • • 8/10
6 • • ◦ ◦ • • • ◦ ◦ • ◦ • ◦ • ◦ 5/10
7 ◦ • ◦ • • ◦ ◦ ◦ ◦ • • ◦ • • • 5/10
8 ◦ ◦ ◦ • ◦ ◦ ◦ • • • • • • ◦ ◦ 4/10
9 • ◦ • ◦ • • • • • ◦ • • • • • 9/10
12 • • • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • 6/10
13 ◦ • • • ◦ • ◦ • ◦ • ◦ ◦ ◦ • • 6/10
15 • ◦ ◦ • ◦ ◦ ◦ • • • ◦ • ◦ ◦ • 4/10
16 ◦ • • • • ◦ ◦ ◦ ◦ • • • • • • 7/10

1.5 17 • • ◦ ◦ ◦ ◦ • • ◦ ◦ • • ◦ ◦ ◦ 4/10
18 • ◦ ◦ • • ◦ ◦ ◦ • • • ◦ • • • 5/10
19 ◦ ◦ • • • • • • ◦ • ◦ ◦ ◦ • • 6/10
20 • • • ◦ • ◦ ◦ • • • ◦ • • • • 8/10
22 ◦ ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ • • • 4/10
23 • ◦ ◦ • ◦ • • • • • ◦ • • • • 6/10
24 • ◦ • • ◦ ◦ ◦ • • • ◦ ◦ ◦ • • 5/10
26 ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • • 5/10
27 • • • ◦ ◦ • ◦ ◦ • ◦ • ◦ • • ◦ 6/10
28 • ◦ • • ◦ • ◦ ◦ • ◦ • • • • • 7/10
29 • ◦ • • • • • ◦ • • • ◦ • • ◦ 6/10
30 • • ◦ ◦ • ◦ • ◦ • ◦ • ◦ • ◦ ◦ 4/10

21/46 22/46 27/46 26/46 35/46 131/230

2 • ◦ • • ◦ ◦ • ◦ • • • • 4/8
3 ◦ ◦ • • • ◦ • • ◦ ◦ • • 5/8
4 ◦ ◦ ◦ • • ◦ • ◦ • • • • 4/8
6 ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦ • 4/8
7 • • • • • ◦ • ◦ ◦ ◦ • ◦ 4/8
8 ◦ • ◦ • • ◦ ◦ ◦ • • • • 5/8
9 • • • • ◦ ◦ • • • • ◦ • 5/8
12 ◦ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ 2/8
13 • ◦ ◦ • ◦ • ◦ ◦ ◦ • • • 3/8
15 ◦ ◦ • • • • • • • ◦ ◦ ◦ 5/8
16 • • • • • • ◦ ◦ ◦ • • • 6/8

3 17 ◦ • ◦ • • ◦ • • ◦ • ◦ • 4/8
18 • • ◦ • • ◦ • • • • • • 6/8
19 ◦ ◦ ◦ • • • • ◦ • • ◦ • 4/8
20 • ◦ ◦ • ◦ • • • • • • • 5/8
22 ◦ • • • ◦ • • • ◦ ◦ • • 6/8
23 ◦ • • • • • • • ◦ • • • 7/8
24 ◦ • • • ◦ ◦ • ◦ ◦ • ◦ • 3/8
26 • ◦ ◦ • • • ◦ • • • • • 6/8
27 ◦ ◦ • ◦ ◦ • • • • ◦ • • 6/8
28 • ◦ • ◦ • • ◦ ◦ ◦ • • • 5/8
29 ◦ ◦ • • • ◦ • ◦ ◦ • • • 4/8
30 ◦ • • • • ◦ ◦ ◦ • • • ◦ 5/8

25/46 25/46 23/46 35/46 108/184

Total 46/92 47/92 50/92 61/92 35/46 239/414

154

APPENDIX D. RAW EXPERIMENT DATA

Table D.4: Raw data from user experiment 4. A • indicates that the user chose the tangent-space
normal map and a ◦ that the user chose the tangent map. The grey cells are from the training
phase and are not included in the totals.

Pixel Subject Scene Total

tolerance ID arm cat cyberdemon horse mancandy

2 ◦ ◦ ◦ • ◦ • ◦ • • ◦ ◦ • • ◦ ◦ 4/10
3 ◦ • ◦ • • • ◦ • ◦ ◦ • • • ◦ ◦ 6/10
4 ◦ ◦ • ◦ • • • ◦ ◦ ◦ ◦ ◦ • ◦ • 4/10
6 ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ • ◦ ◦ • • 4/10
7 ◦ • • • • ◦ ◦ • ◦ ◦ • ◦ • • ◦ 6/10
8 ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ • • • ◦ • 5/10
9 • • ◦ • ◦ ◦ ◦ • • • • • ◦ ◦ ◦ 5/10
12 • ◦ • • ◦ • • ◦ • ◦ ◦ • ◦ ◦ ◦ 4/10
13 ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • • 3/10
15 ◦ ◦ • • ◦ • • ◦ • ◦ ◦ • • ◦ • 5/10
16 • ◦ ◦ ◦ ◦ • ◦ ◦ • • • • • • ◦ 5/10

1.5 17 ◦ ◦ • • • ◦ • ◦ ◦ • • ◦ ◦ ◦ • 4/10
18 • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • 3/10
19 ◦ ◦ ◦ • ◦ • • • • • ◦ • • ◦ • 5/10
20 • • ◦ ◦ • ◦ • ◦ • ◦ • • • ◦ • 6/10
22 • • ◦ • • ◦ ◦ • ◦ • • • ◦ • ◦ 6/10
23 • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ 3/10
24 ◦ ◦ • • ◦ • • ◦ • ◦ ◦ ◦ • • • 5/10
26 • • • • • ◦ • ◦ • ◦ ◦ • ◦ • • 7/10
27 • ◦ ◦ • ◦ • ◦ ◦ • ◦ • ◦ • ◦ • 4/10
28 ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • • ◦ • 4/10
29 ◦ ◦ • ◦ • • • ◦ • • ◦ • ◦ • ◦ 6/10
30 ◦ ◦ • ◦ • • • ◦ • ◦ • ◦ • • • 7/10

18/46 24/46 21/46 25/46 23/46 111/230

2 • • ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ • ◦ • 5/10
3 • ◦ ◦ ◦ • ◦ • • ◦ • ◦ ◦ ◦ • • 4/10
4 • ◦ • • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • 4/10
6 ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ 3/10
7 • • ◦ ◦ • ◦ ◦ • ◦ • • • • • • 7/10
8 • • ◦ ◦ • • • • ◦ ◦ ◦ ◦ • • • 6/10
9 • • ◦ • • ◦ ◦ • • ◦ • • ◦ ◦ • 7/10
12 ◦ ◦ • • ◦ • • ◦ • ◦ ◦ • • ◦ • 5/10
13 ◦ ◦ • ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • 4/10
15 • ◦ • • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • 5/10
16 • • ◦ ◦ • • • ◦ • • • • • • • 8/10

3 17 • • ◦ • • • • ◦ ◦ ◦ • ◦ ◦ • ◦ 5/10
18 ◦ ◦ • ◦ ◦ ◦ • ◦ • • ◦ • ◦ • • 5/10
19 ◦ • ◦ • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ 3/10
20 ◦ ◦ • ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ ◦ 3/10
22 • • ◦ • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ 3/10
23 • ◦ • ◦ ◦ • • • • • ◦ • • • ◦ 6/10
24 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ 3/10
26 ◦ • • ◦ ◦ • • ◦ • ◦ • ◦ • • • 7/10
27 • ◦ • • • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ 5/10
28 ◦ ◦ • ◦ ◦ • • ◦ • • • ◦ ◦ ◦ ◦ 4/10
29 • • • ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ 6/10
30 • • ◦ • ◦ ◦ • ◦ • • • ◦ • ◦ • 4/10

23/46 21/46 23/46 21/46 24/46 112/230

2 ◦ • • ◦ ◦ • ◦ • ◦ • • ◦ ◦ ◦ ◦ 5/10
3 • • • • ◦ ◦ • • • • ◦ ◦ ◦ • • 6/10
4 ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ • 4/10
6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • • 4/10
7 ◦ ◦ • • • ◦ ◦ • ◦ • • ◦ ◦ • ◦ 5/10
8 • ◦ ◦ • ◦ ◦ • • ◦ • ◦ • • • • 4/10
9 ◦ • • • • ◦ ◦ • • • • ◦ ◦ • • 8/10
12 • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ • 5/10
13 • • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ 2/10
15 ◦ • • • ◦ • • ◦ • • ◦ • • ◦ • 6/10
16 • • ◦ ◦ • ◦ ◦ ◦ ◦ • • • ◦ • ◦ 5/10

6 17 ◦ ◦ • ◦ • ◦ • ◦ • • ◦ • ◦ ◦ • 5/10
18 ◦ • ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ • ◦ • 4/10
19 ◦ • ◦ ◦ • ◦ • • ◦ • ◦ • ◦ ◦ • 5/10
20 ◦ • ◦ • • ◦ ◦ ◦ ◦ • ◦ • • ◦ • 4/10
22 ◦ • ◦ • • • ◦ • ◦ ◦ • • ◦ ◦ • 7/10
23 • ◦ • ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ • ◦ 3/10
24 • • ◦ • • • ◦ • ◦ ◦ • • • ◦ ◦ 6/10
26 • • ◦ ◦ • • ◦ • • • • • • • • 9/10
27 ◦ ◦ • • ◦ • • • ◦ ◦ ◦ ◦ • • • 5/10
28 • ◦ • • ◦ • ◦ ◦ • ◦ • ◦ • • • 6/10
29 ◦ ◦ • ◦ • • • • • • ◦ ◦ ◦ • ◦ 6/10
30 ◦ • • • • • • ◦ • • • ◦ • ◦ • 7/10

26/46 23/46 23/46 22/46 27/46 121/230

Total 67/138 68/138 67/138 68/138 74/138 344/690

155

APPENDIX D. RAW EXPERIMENT DATA

T
ab

le
D

.5:
R

aw
d
ata

for
vertex

tran
sform

ation
p
erform

an
ce

on
a

G
eF

orce
6600.

T
h
e

tim
es

rep
orted

for
each

of
th

e
fou

r
m

eth
o
d
s

are
th

e
average

n
u
m

b
er

of
m

illisecon
d
s

p
er

fram
e.

T
h
e

lin
ear

m
o
d
els

com
p
u
ted

from
th

ese
d
ata

are
sh

ow
n

in
T
ab

le
8.7

.
T

h
e

vertex
tex

tu
res

resu
lts

b
ased

on
m

an
can

d
y

w
ere

om
itted

from
th

e
tab

le
(an

d
th

e
lin

ear
m

o
d
el)

b
ecau

se
th

ey
ex

h
au

sted
availab

le
m

em
ory

an
d

led
to

sw
ap

p
in

g.

A
lt

e
r
n
a
t
e

F
r
a
g
m

e
n
t

V
e
r
t
e
x

A
lt

e
r
n
a
t
e

F
r
a
g
m

e
n
t

V
e
r
t
e
x

O
b
j
e
c
t
s

V
e
r
t
ic

e
s

I
n
fl
u
e
n
c
e
s

C
P
U

C
P
U

P
r
o
g
r
a
m

T
e
x
t
u
r
e
s

O
b
j
e
c
t
s

V
e
r
t
ic

e
s

I
n
fl
u
e
n
c
e
s

C
P
U

C
P
U

P
r
o
g
r
a
m

T
e
x
t
u
r
e
s

1
1
7
6
4

3
7
6
5

2
.2

9
1

2
.7

5
2

2
.8

6
8

3
.4

7
9

1
8
2
1
1

1
8
3
7
3

3
.1

0
6

3
.0

7
6

3
.3

8
2

8
.1

9
3

1
1
0
5
9

1
9
6
3

2
.2

4
4

2
.7

1
7

2
.8

3
4

2
.7

5
8

1
8
2
1
1

9
1
7
0

3
.0

5
7

3
.0

5
0

3
.2

7
8

5
.2

2
5

1
5
7
9

1
0
2
2

2
.2

2
6

2
.6

9
9

2
.7

8
4

2
.4

3
9

1
8
2
1
1

8
2
1
1

3
.0

5
3

3
.0

4
6

3
.2

4
7

4
.8

9
1

1
3
4
0

5
3
7

2
.2

2
0

2
.6

9
0

2
.7

4
4

2
.2

9
0

1
8
2
1
1

8
2
1
1

3
.0

5
1

3
.0

4
6

3
.2

4
5

4
.8

9
3

1
2
1
7

2
7
9

2
.2

1
3

2
.6

8
3

2
.7

3
9

2
.2

0
5

1
8
2
1
1

8
2
1
1

3
.0

5
9

3
.0

4
7

3
.2

4
7

4
.8

9
1

1
1
2
8

1
3
2

2
.2

0
9

2
.6

8
1

2
.7

2
9

2
.1

9
8

1
8
2
1
1

8
2
1
1

3
.0

5
7

3
.0

5
0

3
.2

4
5

4
.8

9
1

1
0
0

1
7
6
4
0
0

3
7
6
5
0
0

1
3

.7
0
1

1
1

.1
1
1

2
1

.9
2
7

1
3
6

.5
8
3

1
0
0

8
2
1
1
0
0

1
8
3
7
3
0
0

1
0
6

.0
7
8

1
0
0

.4
3
8

7
4

.1
5
7

6
0
7

.7
3
8

1
0
0

1
0
5
9
0
0

1
9
6
3
0
0

7
.7

6
6

7
.0

9
8

2
1

.8
4
9

6
4

.2
1
8

1
0
0

8
2
1
1
0
0

9
1
7
0
0
0

6
3

.5
0
2

6
3

.3
2
1

6
3

.9
8
9

3
1
1

.1
9
6

1
0
0

5
7
9
0
0

1
0
2
2
0
0

4
.7

2
9

5
.0

6
0

2
1

.9
9
0

3
2

.6
2
6

1
0
0

8
2
1
1
0
0

8
2
1
1
0
0

5
7

.4
0
3

5
6

.1
6
5

6
0

.8
8
1

2
7
7

.7
0
5

1
0
0

3
4
0
0
0

5
3
7
0
0

3
.5

8
4

4
.0

9
4

2
2

.1
2
0

1
7

.7
2
6

1
0
0

8
2
1
1
0
0

8
2
1
1
0
0

5
7

.1
8
7

5
5

.9
8
9

6
0

.8
7
7

2
7
7

.6
9
6

1
0
0

2
1
7
0
0

2
7
9
0
0

3
.1

0
9

3
.6

0
4

2
1

.8
5
9

9
.3

2
8

1
0
0

8
2
1
1
0
0

8
2
1
1
0
0

5
7

.0
2
4

5
5

.6
4
5

6
0

.8
7
8

2
7
7

.6
8
5

1
0
0

1
2
8
0
0

1
3
2
0
0

2
.7

9
7

3
.2

7
7

2
1

.8
5
6

5
.3

1
4

1
0
0

8
2
1
1
0
0

8
2
1
1
0
0

5
6

.6
1
9

5
6

.3
7
1

6
0

.8
7
8

2
7
7

.6
9
9

1
1
7
6
4

3
7
6
5

2
.2

7
7

2
.7

5
2

2
.3

8
0

3
.3

9
7

1
3
0
2
5

4
6
9
9

2
.7

9
7

2
.7

9
9

2
.9

6
3

3
.5

2
5

1
1
7
6
4

1
9
0
0

2
.2

7
6

2
.7

5
1

2
.3

8
5

2
.7

6
9

1
2
2
2
0

2
4
5
2

2
.7

6
0

2
.7

6
2

2
.8

8
4

2
.8

5
5

1
1
7
6
4

1
7
6
4

2
.2

7
9

2
.7

5
1

2
.3

7
3

2
.7

2
3

1
1
3
2
1

1
3
5
7

2
.7

2
4

2
.7

2
5

2
.8

4
3

2
.5

1
3

1
1
7
6
4

1
7
6
4

2
.2

7
6

2
.7

5
2

2
.3

7
7

2
.7

2
3

1
8
0
1

8
0
5

2
.7

0
2

2
.7

0
3

2
.8

0
4

2
.3

4
6

1
1
7
6
4

1
7
6
4

2
.2

7
6

2
.7

5
3

2
.3

7
3

2
.7

2
2

1
4
9
1

4
9
1

2
.6

9
7

2
.6

9
6

2
.7

6
0

2
.2

4
4

1
1
7
6
4

1
7
6
4

2
.2

9
2

2
.7

5
1

2
.3

7
7

2
.7

2
2

1
4
2
0

4
2
0

2
.6

9
1

2
.6

8
8

2
.7

4
8

2
.2

1
6

1
0
0

1
7
6
4
0
0

3
7
6
5
0
0

1
3

.9
4
4

1
1

.3
2
1

2
1

.9
3
5

1
2
8

.3
1
0

1
0
2

3
0
8
5
5
0

4
7
9
2
9
8

2
9

.0
9
8

2
3

.3
2
1

3
3

.1
2
3

1
4
4

.4
8
9

1
0
0

1
7
6
4
0
0

1
9
0
0
0
0

1
0

.2
1
5

1
0

.3
3
8

2
1

.8
1
9

6
5

.5
5
8

1
0
2

2
2
6
4
4
0

2
5
0
1
0
4

2
2

.1
1
4

1
7

.9
1
0

3
1

.6
7
2

7
6

.1
8
5

1
0
0

1
7
6
4
0
0

1
7
6
4
0
0

1
0

.9
7
0

1
0

.3
9
2

2
1

.9
3
3

6
0

.8
4
8

1
0
2

1
3
4
7
4
2

1
3
8
4
1
4

1
6

.5
9
6

1
4

.3
7
0

3
1

.7
8
8

4
1

.0
6
2

1
0
0

1
7
6
4
0
0

1
7
6
4
0
0

1
0

.5
2
3

1
0

.4
0
3

2
1

.9
2
4

6
0

.8
5
8

1
0
2

8
1
7
0
2

8
2
1
1
0

1
3

.7
0
7

1
2

.3
3
5

3
1

.4
9
2

2
4

.7
8
9

1
0
0

1
7
6
4
0
0

1
7
6
4
0
0

1
0

.4
9
9

1
0

.3
9
5

2
1

.8
7
4

6
0

.8
5
3

1
0
2

5
0
0
8
2

5
0
0
8
2

1
1

.9
4
1

1
1

.2
0
3

3
1

.4
6
4

2
4

.9
5
2

1
0
0

1
7
6
4
0
0

1
7
6
4
0
0

1
0

.5
7
9

1
0

.4
0
4

2
1

.9
2
9

6
0

.8
4
6

1
0
2

4
2
8
4
0

4
2
8
4
0

1
1

.2
8
3

1
0

.8
3
5

3
1

.6
6
2

2
4

.8
6
7

1
9
4
9
5

2
4
6
5
0

3
.1

6
6

3
.1

9
6

2
.9

6
3

1
0

.3
7
4

1
3
0
2
5

4
6
9
9

2
.7

9
7

2
.7

9
8

2
.9

5
0

3
.5

1
0

1
4
6
4
8

1
2
8
1
8

2
.8

8
8

2
.8

8
7

2
.6

2
8

6
.3

5
6

1
3
0
2
5

3
0
2
5

2
.7

9
3

2
.7

9
3

2
.9

1
3

3
.0

0
7

1
2
5
3
2

6
7
8
0

2
.7

8
1

2
.7

8
2

2
.4

6
3

4
.2

7
9

1
3
0
2
5

3
0
2
5

2
.7

9
5

2
.7

9
5

2
.9

1
2

3
.0

0
6

1
1
5
1
7

3
6
0
3

2
.7

3
6

2
.7

3
5

2
.3

7
9

3
.2

1
4

1
3
0
2
5

3
0
2
5

2
.7

9
3

2
.7

9
6

2
.9

1
2

3
.0

0
7

1
9
5
9

1
9
6
2

2
.7

1
2

2
.7

1
1

2
.3

6
3

2
.6

9
3

1
3
0
2
5

3
0
2
5

2
.7

9
3

2
.7

9
5

2
.9

1
2

3
.0

0
6

1
6
3
8

1
0
6
6

2
.6

9
9

2
.7

0
0

2
.3

0
6

2
.4

1
9

1
3
0
2
5

3
0
2
5

2
.7

9
4

2
.7

9
6

2
.9

1
3

3
.0

0
6

1
0
0

9
4
9
5
0
0

2
4
6
5
0
0
0

1
2
8

.7
9
2

1
3
0

.3
7
7

7
9

.3
7
1

8
2
6

.4
8
1

1
0
2

3
0
8
5
5
0

4
7
9
2
9
8

2
9

.0
9
1

2
3

.3
7
4

3
2

.1
5
1

1
4
2

.3
8
8

1
0
0

4
6
4
8
0
0

1
2
8
1
8
0
0

6
2

.0
3
2

6
4

.1
8
9

4
5

.7
2
2

4
2
4

.2
2
0

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

2
5

.2
2
6

2
0

.3
3
1

3
1

.4
3
2

9
1

.0
7
9

1
0
0

2
5
3
2
0
0

6
7
8
0
0
0

2
5

.3
0
9

2
0

.9
9
5

2
9

.2
1
9

2
1
6

.4
4
9

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

2
5

.0
0
7

2
0

.2
9
8

3
1

.5
2
6

9
1

.0
9
3

1
0
0

1
5
1
7
0
0

3
6
0
3
0
0

1
6

.3
6
9

1
3

.5
8
2

2
5

.1
5
5

1
1
0

.2
4
0

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

2
4

.9
9
6

2
0

.3
7
3

3
1

.8
5
4

9
1

.0
7
9

1
0
0

9
5
9
0
0

1
9
6
2
0
0

1
1

.2
7
3

9
.6

2
3

2
5

.3
8
3

5
8

.0
1
0

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

2
5

.0
1
4

2
0

.3
2
6

3
1

.5
4
5

9
1

.0
8
3

1
0
0

6
3
8
0
0

1
0
6
6
0
0

8
.3

4
4

7
.3

6
2

2
5

.0
6
6

3
0

.6
2
7

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

2
4

.9
8
5

2
0

.3
3
1

3
1

.6
2
6

9
1

.1
0
7

1
9
4
9
5

2
4
6
5
0

3
.1

7
4

3
.1

5
3

2
.9

8
3

1
0

.3
7
3

1
4
6
5
6
9

1
1
1
3
9
9

5
.7

5
5

7
.2

7
0

5
.9

5
5

—
1

9
4
9
5

1
2
4
0
4

3
.1

6
2

3
.1

2
4

2
.8

2
7

6
.2

8
5

1
3
1
5
8
1

5
6
7
0
3

3
.7

0
9

4
.2

1
5

4
.5

6
7

—
1

9
4
9
5

9
4
9
5

3
.1

2
4

3
.1

0
9

2
.7

9
1

5
.3

4
7

1
1
6
5
0
3

2
9
2
0
4

3
.4

7
2

2
.4

6
1

3
.4

7
9

—
1

9
4
9
5

9
4
9
5

3
.1

2
8

3
.1

0
8

2
.7

9
1

5
.3

4
8

1
9
2
8
7

1
5
2
2
1

3
.1

2
8

2
.6

0
6

2
.9

2
8

—
1

9
4
9
5

9
4
9
5

3
.1

2
5

3
.1

1
0

2
.7

9
1

5
.3

4
7

1
5
5
8
8

8
1
2
9

2
.9

0
3

2
.9

0
1

3
.1

7
6

—
1

9
4
9
5

9
4
9
5

3
.1

2
7

3
.1

0
7

2
.7

9
1

5
.3

4
9

1
3
4
9
8

4
4
7
4

2
.8

0
9

2
.8

0
9

2
.9

7
0

—
1
0
0

9
4
9
5
0
0

2
4
6
5
0
0
0

1
2
7

.2
2
7

1
3
0

.9
0
4

8
0

.9
8
6

8
2
5

.8
2
7

1
0
0

4
6
5
6
9
0
0

1
1
1
3
9
9
0
0

6
4
9

.6
4
0

8
4
4

.0
6
1

4
0
7

.8
5
6

—
1
0
0

9
4
9
5
0
0

1
2
4
0
4
0
0

8
6

.8
2
4

8
2

.2
2
4

6
5

.7
5
9

4
1
7

.3
0
5

1
0
0

3
1
5
8
1
0
0

5
6
7
0
3
0
0

3
8
9

.8
1
4

4
7
4

.2
6
5

2
4
3

.2
2
8

—
1
0
0

9
4
9
5
0
0

9
4
9
5
0
0

7
5

.6
7
0

7
0

.2
4
5

6
1

.9
7
8

3
2
3

.4
1
2

1
0
0

1
6
5
0
3
0
0

2
9
2
0
4
0
0

1
9
9

.1
2
3

2
1
9

.8
7
7

1
3
6

.7
5
7

—
1
0
0

9
4
9
5
0
0

9
4
9
5
0
0

7
6

.7
8
0

6
9

.4
8
0

6
1

.9
8
0

3
2
3

.4
0
9

1
0
0

9
2
8
7
0
0

1
5
2
2
1
0
0

1
2
7

.9
8
3

1
2
7

.0
1
1

9
2

.0
4
1

—
1
0
0

9
4
9
5
0
0

9
4
9
5
0
0

7
5

.5
8
1

6
9

.8
3
1

6
8

.7
4
9

3
2
3

.4
1
2

1
0
0

5
5
8
8
0
0

8
1
2
9
0
0

7
3

.5
0
9

7
3

.8
6
1

6
5

.1
8
9

—
1
0
0

9
4
9
5
0
0

9
4
9
5
0
0

7
6

.1
5
7

6
9

.9
9
0

6
8

.7
4
8

3
2
3

.4
0
9

1
0
0

3
4
9
8
0
0

4
4
7
4
0
0

5
7

.0
8
3

4
8

.1
9
6

5
6

.8
0
7

—
1

8
2
1
1

1
8
3
7
3

3
.1

0
6

3
.0

8
7

3
.3

9
3

8
.1

6
8

1
4
6
5
6
9

1
1
1
3
9
9

5
.4

1
1

7
.3

0
6

6
.9

0
0

—
1

4
4
6
7

9
7
2
7

2
.8

7
8

2
.8

7
7

3
.1

0
1

5
.2

6
8

1
4
6
5
6
9

5
5
8
3
9

4
.8

9
8

5
.1

7
0

5
.2

8
4

—
1

2
7
1
5

5
1
1
1

2
.7

8
6

2
.7

8
4

2
.9

4
3

3
.7

2
8

1
4
6
5
6
9

4
6
5
6
9

4
.6

5
2

5
.0

3
0

5
.0

6
2

—
1

1
6
7
7

2
6
7
6

2
.7

4
2

2
.7

4
2

2
.8

6
8

2
.9

4
4

1
4
6
5
6
9

4
6
5
6
9

4
.7

1
3

5
.0

1
1

5
.8

8
1

—
1

1
0
6
8

1
4
3
0

2
.7

1
7

2
.7

1
4

2
.8

3
0

2
.5

5
9

1
4
6
5
6
9

4
6
5
6
9

4
.6

3
6

5
.9

4
9

5
.8

7
9

—
1

6
9
5

8
0
2

2
.7

0
1

2
.7

0
0

2
.8

0
0

2
.3

6
9

1
4
6
5
6
9

4
6
5
6
9

4
.7

5
4

4
.9

2
0

5
.8

7
9

—
1
0
0

8
2
1
1
0
0

1
8
3
7
3
0
0

1
0
4

.3
0
2

9
9

.1
9
4

7
5

.8
0
5

6
0
5

.9
4
5

1
0
0

4
6
5
6
9
0
0

1
1
1
3
9
9
0
0

6
5
7

.4
1
1

8
4
5

.4
0
7

3
8
3

.0
7
7

—
1
0
0

4
4
6
7
0
0

9
7
2
7
0
0

4
1

.5
5
9

4
0

.6
9
4

4
6

.3
6
4

3
1
5

.6
1
3

1
0
0

4
6
5
6
9
0
0

5
5
8
3
9
0
0

4
7
8

.5
5
5

6
2
7

.3
2
9

3
4
9

.7
2
9

—
1
0
0

2
7
1
5
0
0

5
1
1
1
0
0

2
3

.4
2
9

1
8

.3
8
7

3
0

.5
2
1

1
6
1

.7
8
5

1
0
0

4
6
5
6
9
0
0

4
6
5
6
9
0
0

4
5
9

.4
8
7

5
9
8

.9
4
7

3
2
8

.2
4
2

—
1
0
0

1
6
7
7
0
0

2
6
7
6
0
0

1
4

.9
8
0

1
2

.3
0
8

2
5

.2
2
0

8
3

.2
0
9

1
0
0

4
6
5
6
9
0
0

4
6
5
6
9
0
0

4
5
3

.3
6
7

5
8
7

.8
7
0

3
2
7

.0
9
1

—
1
0
0

1
0
6
8
0
0

1
4
3
0
0
0

1
0

.5
5
9

8
.8

1
7

2
5

.4
7
1

4
4

.7
2
1

1
0
0

4
6
5
6
9
0
0

4
6
5
6
9
0
0

4
6
0

.8
5
0

5
9
7

.5
8
2

2
9
2

.4
0
2

—
1
0
0

6
9
5
0
0

8
0
2
0
0

8
.1

8
8

7
.1

6
8

2
5

.1
6
5

2
5

.7
1
8

1
0
0

4
6
5
6
9
0
0

4
6
5
6
9
0
0

4
5
4

.5
8
2

6
0
4

.3
3
5

2
9
3

.0
9
5

—

156

APPENDIX D. RAW EXPERIMENT DATA

T
ab

le
D

.6
:

R
aw

d
at

a
fo

r
ve

rt
ex

tr
an

sf
or

m
at

io
n

p
er

fo
rm

an
ce

on
a

G
eF

or
ce

88
00

G
T

X
.
T

h
e

ti
m

es
re

p
or

te
d

fo
r

ea
ch

of
th

e
fo

u
r

m
et

h
o
d
s

ar
e

th
e

av
er

ag
e

n
u
m

b
er

of
m

il
li
se

co
n
d
s

p
er

fr
am

e.
T

h
e

li
n
ea

r
m

o
d
el

s
co

m
p
u
te

d
fr

om
th

es
e

d
at

a
ar

e
sh

ow
n

in
T
ab

le
8.

8
.

A
lt

e
r
n
a
t
e

F
r
a
g
m

e
n
t

V
e
r
t
e
x

A
lt

e
r
n
a
t
e

F
r
a
g
m

e
n
t

V
e
r
t
e
x

O
b
j
e
c
t
s

V
e
r
t
ic

e
s

I
n
fl
u
e
n
c
e
s

C
P
U

C
P
U

P
r
o
g
r
a
m

T
e
x
t
u
r
e
s

O
b
j
e
c
t
s

V
e
r
t
ic

e
s

I
n
fl
u
e
n
c
e
s

C
P
U

C
P
U

P
r
o
g
r
a
m

T
e
x
t
u
r
e
s

1
1
7
6
4

3
7
6
5

0
.1

0
8

0
.1

2
2

0
.1

6
6

0
.0

8
7

1
8
2
1
1

1
8
3
7
3

0
.2

8
0

0
.2

4
5

0
.2

2
1

0
.1

4
2

1
1
0
5
9

1
9
6
3

0
.1

0
0

0
.1

1
0

0
.1

3
0

0
.0

8
0

1
8
2
1
1

9
1
7
0

0
.2

0
1

0
.1

9
5

0
.2

1
9

0
.1

1
3

1
5
7
9

1
0
2
2

0
.0

9
5

0
.1

0
9

0
.1

2
9

0
.0

7
8

1
8
2
1
1

8
2
1
1

0
.1

8
8

0
.1

9
5

0
.2

1
6

0
.1

1
0

1
3
4
0

5
3
7

0
.0

9
2

0
.1

0
9

0
.1

2
9

0
.0

7
8

1
8
2
1
1

8
2
1
1

0
.2

2
0

0
.1

9
5

0
.2

1
6

0
.1

1
0

1
2
1
7

2
7
9

0
.0

9
1

0
.1

0
9

0
.1

2
9

0
.0

7
7

1
8
2
1
1

8
2
1
1

0
.1

8
8

0
.1

9
5

0
.2

1
6

0
.1

1
0

1
1
2
8

1
3
2

0
.0

9
1

0
.1

0
9

0
.1

2
9

0
.0

7
6

1
8
2
1
1

8
2
1
1

0
.2

1
8

0
.1

9
5

0
.2

1
6

0
.1

1
0

1
0
0

1
7
6
4
0
0

3
7
6
5
0
0

5
.6

7
1

4
.7

8
8

9
.4

6
9

1
.5

4
5

1
0
0

8
2
1
1
0
0

1
8
3
7
3
0
0

2
5

.8
7
1

2
0

.8
5
4

1
4

.3
7
8

6
.6

5
2

1
0
0

1
0
5
9
0
0

1
9
6
3
0
0

3
.5

8
4

2
.9

9
3

9
.4

3
5

1
.5

6
1

1
0
0

8
2
1
1
0
0

9
1
7
0
0
0

1
7

.6
6
4

1
3

.8
3
2

1
4

.1
9
4

4
.7

6
0

1
0
0

5
7
9
0
0

1
0
2
2
0
0

2
.2

6
9

1
.9

7
7

9
.4

3
9

1
.5

4
8

1
0
0

8
2
1
1
0
0

8
2
1
1
0
0

1
6

.5
3
9

1
2

.9
9
4

1
3

.8
9
0

4
.7

0
5

1
0
0

3
4
0
0
0

5
3
7
0
0

1
.7

2
2

1
.4

6
0

9
.4

8
7

1
.5

6
8

1
0
0

8
2
1
1
0
0

8
2
1
1
0
0

1
6

.3
4
3

1
2

.9
8
4

1
3

.8
9
2

4
.7

0
5

1
0
0

2
1
7
0
0

2
7
9
0
0

1
.4

2
3

1
.2

2
4

9
.5

4
1

1
.5

6
3

1
0
0

8
2
1
1
0
0

8
2
1
1
0
0

1
6

.3
8
1

1
2

.9
7
1

1
3

.8
8
0

4
.7

0
5

1
0
0

1
2
8
0
0

1
3
2
0
0

1
.1

4
4

1
.1

2
3

9
.4

5
5

1
.5

4
4

1
0
0

8
2
1
1
0
0

8
2
1
1
0
0

1
6

.3
2
2

1
2

.9
5
5

1
3

.8
7
9

4
.7

0
5

1
1
7
6
4

3
7
6
5

0
.1

0
8

0
.1

2
1

0
.1

3
8

0
.0

8
7

1
3
0
2
5

4
6
9
9

0
.1

2
8

0
.1

3
5

0
.1

5
8

0
.0

9
3

1
1
7
6
4

1
9
0
0

0
.1

0
8

0
.1

2
1

0
.1

3
8

0
.0

8
1

1
2
2
2
0

2
4
5
2

0
.1

3
3

0
.1

2
2

0
.1

5
8

0
.0

9
0

1
1
7
6
4

1
7
6
4

0
.1

0
8

0
.1

2
2

0
.1

3
7

0
.0

8
1

1
1
3
2
1

1
3
5
7

0
.1

1
3

0
.1

1
4

0
.1

5
8

0
.0

8
9

1
1
7
6
4

1
7
6
4

0
.1

0
7

0
.1

2
2

0
.1

3
7

0
.0

8
0

1
8
0
1

8
0
5

0
.0

9
7

0
.1

1
0

0
.1

5
8

0
.1

2
3

1
1
7
6
4

1
7
6
4

0
.1

0
8

0
.1

2
1

0
.1

3
7

0
.0

8
1

1
4
9
1

4
9
1

0
.0

9
4

0
.1

1
0

0
.1

5
9

0
.0

9
0

1
1
7
6
4

1
7
6
4

0
.1

0
9

0
.1

2
1

0
.1

3
7

0
.0

8
1

1
4
2
0

4
2
0

0
.0

9
3

0
.1

0
9

0
.1

5
8

0
.1

1
7

1
0
0

1
7
6
4
0
0

3
7
6
5
0
0

5
.6

0
8

4
.8

4
1

9
.4

7
6

1
.5

7
6

1
0
2

3
0
8
5
5
0

4
7
9
2
9
8

1
1

.7
8
3

9
.7

5
0

1
3

.9
2
1

7
.3

5
8

1
0
0

1
7
6
4
0
0

1
9
0
0
0
0

4
.2

2
4

3
.5

5
5

9
.4

7
3

1
.5

7
7

1
0
2

2
2
6
4
4
0

2
5
0
1
0
4

8
.7

2
9

7
.5

2
3

1
3

.9
5
0

7
.3

2
8

1
0
0

1
7
6
4
0
0

1
7
6
4
0
0

4
.0

2
9

3
.3

0
9

9
.4

0
4

1
.5

7
0

1
0
2

1
3
4
7
4
2

1
3
8
4
1
4

6
.6

3
7

6
.0

9
2

1
3

.8
3
6

7
.3

8
5

1
0
0

1
7
6
4
0
0

1
7
6
4
0
0

4
.0

3
7

3
.2

9
6

9
.5

4
3

1
.5

4
2

1
0
2

8
1
7
0
2

8
2
1
1
0

5
.5

4
5

5
.2

9
3

1
3

.9
0
7

7
.2

9
8

1
0
0

1
7
6
4
0
0

1
7
6
4
0
0

4
.0

2
9

3
.3

0
2

9
.4

2
9

1
.5

4
1

1
0
2

5
0
0
8
2

5
0
0
8
2

4
.9

0
5

4
.8

0
1

1
3

.9
3
4

7
.3

4
0

1
0
0

1
7
6
4
0
0

1
7
6
4
0
0

4
.0

4
0

3
.3

0
3

9
.4

7
2

1
.5

5
4

1
0
2

4
2
8
4
0

4
2
8
4
0

4
.6

8
9

4
.6

4
0

1
3

.8
8
2

7
.3

4
2

1
9
4
9
5

2
4
6
5
0

0
.3

3
9

0
.3

0
1

0
.2

4
4

0
.1

7
9

1
3
0
2
5

4
6
9
9

0
.1

2
7

0
.1

3
4

0
.1

5
7

0
.0

9
3

1
4
6
4
8

1
2
8
1
8

0
.2

3
3

0
.1

8
2

0
.1

8
4

0
.1

2
9

1
3
0
2
5

3
0
2
5

0
.1

4
1

0
.1

3
4

0
.1

5
8

0
.0

8
9

1
2
5
3
2

6
7
8
0

0
.1

2
8

0
.1

2
5

0
.1

5
3

0
.1

0
0

1
3
0
2
5

3
0
2
5

0
.1

4
1

0
.1

3
4

0
.1

5
8

0
.1

1
9

1
1
5
1
7

3
6
0
3

0
.1

0
4

0
.1

1
6

0
.1

4
0

0
.0

8
5

1
3
0
2
5

3
0
2
5

0
.1

2
0

0
.1

3
4

0
.1

5
7

0
.0

9
1

1
9
5
9

1
9
6
2

0
.0

9
9

0
.1

1
1

0
.1

4
0

0
.0

8
0

1
3
0
2
5

3
0
2
5

0
.1

2
0

0
.1

3
4

0
.1

5
7

0
.0

9
0

1
6
3
8

1
0
6
6

0
.0

9
5

0
.1

0
9

0
.1

3
9

0
.0

7
8

1
3
0
2
5

3
0
2
5

0
.1

2
0

0
.1

3
4

0
.1

5
8

0
.0

9
3

1
0
0

9
4
9
5
0
0

2
4
6
5
0
0
0

3
1

.8
6
5

2
6

.4
8
9

1
6

.7
0
5

1
0

.1
8
3

1
0
2

3
0
8
5
5
0

4
7
9
2
9
8

1
1

.8
3
1

9
.6

3
0

1
3

.9
1
2

7
.4

0
3

1
0
0

4
6
4
8
0
0

1
2
8
1
8
0
0

1
7

.6
3
9

1
4

.5
0
0

1
0

.7
5
9

5
.0

9
4

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

9
.5

4
8

8
.3

5
7

1
3

.8
6
8

7
.3

3
3

1
0
0

2
5
3
2
0
0

6
7
8
0
0
0

1
0

.3
0
4

8
.3

4
1

1
0

.5
8
8

3
.1

3
1

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

9
.5

3
7

8
.3

3
8

1
3

.8
8
6

7
.3

4
1

1
0
0

1
5
1
7
0
0

3
6
0
3
0
0

6
.5

7
7

5
.3

4
4

1
0

.5
9
8

3
.1

4
0

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

9
.5

8
8

8
.3

9
5

1
3

.9
0
2

7
.5

9
0

1
0
0

9
5
9
0
0

1
9
6
2
0
0

4
.4

6
6

3
.7

5
7

1
0

.6
2
0

3
.1

6
0

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

9
.5

2
5

8
.3

6
9

1
3

.9
4
5

7
.3

9
0

1
0
0

6
3
8
0
0

1
0
6
6
0
0

3
.3

1
4

2
.7

9
9

1
0

.5
9
7

3
.1

3
6

1
0
2

3
0
8
5
5
0

3
0
8
5
5
0

9
.5

2
4

8
.4

3
0

1
3

.9
6
8

7
.3

3
8

1
9
4
9
5

2
4
6
5
0

0
.3

4
2

0
.3

0
1

0
.2

4
5

0
.1

7
5

1
4
6
5
6
9

1
1
1
3
9
9

1
.6

0
3

1
.6

9
6

0
.7

3
0

0
.6

5
8

1
9
4
9
5

1
2
4
0
4

0
.2

4
1

0
.2

2
1

0
.2

3
4

0
.1

2
1

1
3
1
5
8
1

5
6
7
0
3

0
.8

7
2

0
.8

6
0

0
.5

4
4

0
.3

8
1

1
9
4
9
5

9
4
9
5

0
.2

1
1

0
.2

0
7

0
.2

3
0

0
.1

1
9

1
1
6
5
0
3

2
9
2
0
4

0
.4

8
6

0
.4

1
3

0
.3

4
5

0
.2

4
7

1
9
4
9
5

9
4
9
5

0
.2

1
1

0
.2

0
8

0
.2

3
0

0
.1

1
9

1
9
2
8
7

1
5
2
2
1

0
.2

9
3

0
.2

5
0

0
.2

4
4

0
.1

9
4

1
9
4
9
5

9
4
9
5

0
.2

1
1

0
.2

0
7

0
.2

3
0

0
.1

1
9

1
5
5
8
8

8
1
2
9

0
.1

9
4

0
.1

7
2

0
.1

9
2

0
.1

4
8

1
9
4
9
5

9
4
9
5

0
.2

1
0

0
.2

0
9

0
.2

3
0

0
.1

1
9

1
3
4
9
8

4
4
7
4

0
.1

4
0

0
.1

4
1

0
.1

7
2

0
.1

3
1

1
0
0

9
4
9
5
0
0

2
4
6
5
0
0
0

3
2

.1
6
0

2
6

.5
1
2

1
6

.7
5
3

1
0

.1
0
7

1
0
0

4
6
5
6
9
0
0

1
1
1
3
9
9
0
0

1
6
5

.5
3
2

1
4
7

.6
2
3

6
5

.6
6
8

5
5

.3
5
6

1
0
0

9
4
9
5
0
0

1
2
4
0
4
0
0

2
1

.5
0
4

1
7

.0
4
9

1
5

.6
8
7

5
.5

7
6

1
0
0

3
1
5
8
1
0
0

5
6
7
0
3
0
0

8
8

.4
3
3

7
2

.1
2
3

4
6

.7
8
8

2
8

.1
1
9

1
0
0

9
4
9
5
0
0

9
4
9
5
0
0

1
8

.6
6
8

1
4

.8
2
2

1
5

.3
1
8

5
.4

3
9

1
0
0

1
6
5
0
3
0
0

2
9
2
0
4
0
0

4
8

.7
5
9

3
9

.2
8
1

2
7

.1
0
6

1
4

.8
0
3

1
0
0

9
4
9
5
0
0

9
4
9
5
0
0

1
8

.6
4
6

1
4

.7
9
5

1
5

.3
0
7

5
.4

3
9

1
0
0

9
2
8
7
0
0

1
5
2
2
1
0
0

2
9

.2
0
1

2
3

.7
4
8

1
7

.0
7
9

1
0

.6
8
6

1
0
0

9
4
9
5
0
0

9
4
9
5
0
0

1
8

.6
9
6

1
4

.7
9
5

1
5

.2
9
5

5
.4

3
9

1
0
0

5
5
8
8
0
0

8
1
2
9
0
0

1
9

.1
5
2

1
5

.6
4
2

1
6

.0
3
6

1
0

.6
1
3

1
0
0

9
4
9
5
0
0

9
4
9
5
0
0

1
8

.6
9
6

1
4

.8
1
7

1
5

.3
1
6

5
.4

3
9

1
0
0

3
4
9
8
0
0

4
4
7
4
0
0

1
3

.6
3
3

1
1

.6
3
3

1
6

.0
4
5

1
0

.6
5
9

1
8
2
1
1

1
8
3
7
3

0
.2

7
9

0
.2

4
5

0
.2

2
1

0
.1

4
2

1
4
6
5
6
9

1
1
1
3
9
9

1
.5

8
0

1
.3

4
8

0
.7

3
7

0
.6

5
0

1
4
4
6
7

9
7
2
7

0
.1

7
7

0
.1

5
5

0
.1

7
8

0
.1

1
1

1
4
6
5
6
9

5
5
8
3
9

1
.1

0
5

0
.8

8
4

0
.7

1
3

0
.3

9
0

1
2
7
1
5

5
1
1
1

0
.1

2
1

0
.1

3
2

0
.1

5
2

0
.0

9
0

1
4
6
5
6
9

4
6
5
6
9

1
.0

1
2

0
.7

9
9

0
.6

9
4

0
.3

6
0

1
1
6
7
7

2
6
7
6

0
.1

0
6

0
.1

2
2

0
.1

4
0

0
.0

8
2

1
4
6
5
6
9

4
6
5
6
9

0
.9

9
5

0
.7

7
8

0
.6

9
4

0
.3

6
0

1
1
0
6
8

1
4
3
0

0
.1

0
0

0
.1

1
0

0
.1

4
0

0
.0

7
9

1
4
6
5
6
9

4
6
5
6
9

1
.0

2
1

0
.7

8
6

0
.6

9
4

0
.3

6
0

1
6
9
5

8
0
2

0
.0

9
6

0
.1

0
9

0
.1

4
0

0
.0

7
8

1
4
6
5
6
9

4
6
5
6
9

1
.0

2
9

0
.8

2
2

0
.6

9
4

0
.3

6
0

1
0
0

8
2
1
1
0
0

1
8
3
7
3
0
0

2
5

.7
9
3

2
0

.8
8
8

1
4

.4
1
4

6
.6

6
2

1
0
0

4
6
5
6
9
0
0

1
1
1
3
9
9
0
0

1
6
4

.5
9
9

1
4
8

.6
8
5

6
6

.2
8
8

5
5

.0
8
4

1
0
0

4
4
6
7
0
0

9
7
2
7
0
0

1
5

.2
8
4

1
1

.9
1
4

1
0

.6
5
1

3
.6

3
9

1
0
0

4
6
5
6
9
0
0

5
5
8
3
9
0
0

1
0
1

.8
5
0

8
4

.7
5
9

6
3

.7
5
5

2
9

.5
3
3

1
0
0

2
7
1
5
0
0

5
1
1
1
0
0

9
.6

8
2

7
.2

4
7

1
0

.7
0
5

3
.2

1
4

1
0
0

4
6
5
6
9
0
0

4
6
5
6
9
0
0

9
1

.2
6
4

7
5

.6
8
0

6
1

.9
2
5

2
6

.3
6
4

1
0
0

1
6
7
7
0
0

2
6
7
6
0
0

6
.2

0
3

4
.8

7
3

1
0

.6
8
5

3
.2

3
3

1
0
0

4
6
5
6
9
0
0

4
6
5
6
9
0
0

9
2

.8
8
9

7
6

.5
3
1

6
1

.9
2
2

2
6

.3
6
5

1
0
0

1
0
6
8
0
0

1
4
3
0
0
0

4
.3

0
0

3
.4

3
4

1
0

.7
2
6

3
.2

4
2

1
0
0

4
6
5
6
9
0
0

4
6
5
6
9
0
0

9
1

.4
8
1

7
5

.6
9
5

6
1

.9
2
5

2
6

.3
3
4

1
0
0

6
9
5
0
0

8
0
2
0
0

3
.1

6
9

2
.7

3
6

1
0

.6
6
4

3
.2

2
1

1
0
0

4
6
5
6
9
0
0

4
6
5
6
9
0
0

9
1

.4
1
4

7
5

.6
4
2

6
1

.9
2
4

2
6

.3
3
0

157

	Acknowledgements
	Notation
	1 Introduction
	2 Background
	2.1 Notation for skeletal animation
	2.2 Skeletal subspace deformation
	2.2.1 The SSD equation
	2.2.2 Limitations of SSD

	2.3 Improvements to SSD
	2.3.1 Example-based techniques
	2.3.2 Extra bones
	2.3.3 Non-linear transformation blending
	2.3.4 Extra weights
	2.3.5 Comparison of methods

	2.4 Data acquisition
	2.4.1 Geometry
	2.4.2 Bones
	2.4.3 Weights

	3 Animation space
	3.1 Reformulating SSD
	3.2 Comparison to MWE
	3.3 Distance metrics
	3.3.1 L_2,2 norm
	3.3.2 Inner products
	3.3.3 L_2,inf norm

	3.4 Transforming a model
	3.4.1 Scaling a model
	3.4.2 Rotating and translating a model

	3.5 Transformation of normals
	3.6 Summary

	4 Model creation
	4.1 Fitting models
	4.1.1 Influence sets
	4.1.2 Regularisation
	4.1.3 Homogeneous weight
	4.1.4 Skeleton fitting

	4.2 Subdivision surfaces
	4.3 Tangent planes
	4.3.1 Fitting tangent planes to geometry
	4.3.2 Fitting tangent planes to SSD normals

	4.4 Summary

	5 Parametrisation
	5.1 Background
	5.1.1 Segmentation into charts
	5.1.2 Flattening charts
	5.1.3 Packing charts into an atlas

	5.2 Segmentation
	5.2.1 Metric
	5.2.2 Optimisation process
	5.2.3 Edge straightening

	5.3 Flattening
	5.3.1 Stretch optimisation

	5.4 Packing
	5.5 Summary

	6 Level-of-detail
	6.1 Background
	6.1.1 LOD and animation

	6.2 Appearance-preserving simplification
	6.2.1 Review of APS
	6.2.2 APS in animation space

	6.3 Influence simplification
	6.3.1 Combination with mesh simplification

	6.4 Summary

	7 Rendering
	7.1 Target environment
	7.2 Frustum culling
	7.3 Level-of-detail
	7.4 Vertex transformation
	7.4.1 CPU transformation
	7.4.2 Fragment program
	7.4.3 Vertex texturing

	7.5 Normals and lighting
	7.5.1 Rendering tangent maps

	7.6 Summary

	8 Results and discussion
	8.1 Test setup
	8.2 Models and fitting
	8.3 Comparison to SSD and MWE
	8.3.1 Error metrics
	8.3.2 User testing

	8.4 Parametrisation
	8.4.1 Segmentation
	8.4.2 Flattening
	8.4.3 Edge straightening
	8.4.4 Packing

	8.5 Level of detail
	8.5.1 User testing

	8.6 Rendering
	8.6.1 Vertex transformation
	8.6.2 Normal transformation

	8.7 Summary

	9 Conclusions and future work
	9.1 Modelling
	9.2 Applications
	9.3 Rendering
	9.4 Future work

	References
	A Algorithms
	A.1 Fitting a plane
	A.1.1 Basic algorithm
	A.1.2 Accounting for probabilities
	A.1.3 Other measures of distance

	A.2 Constrained least squares
	A.2.1 Unweighted case
	A.2.2 Positive weights
	A.2.3 Non-negative weights
	A.2.4 Matrix weight

	B Proofs
	B.1 Incremental constraints
	B.2 Expected value of E[RˆTMR]
	B.3 Under-determined coordinates

	C Shader code
	D Raw experiment data

