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High fidelity compression of irregularly sampled height-fields
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ABSTRACT

This paper presents a method to compress irregularly sampled height-fields based on a multi-resolution framework. Unlike
many other height-field compression techniques, no resampling is required so the original height-field data is recovered
(less quantization error). The method decomposes the compression task into two complementary phases: an in-plane
compression scheme for (x,y) coordinate positions, and a separate multi-resolution z compression step. This decoupling
allows subsequent improvements in either phase to be seamlessly integrated and also allows for independent control of
bit-rates in the decoupled dimensions, should this be desired. Results are presented for a number of height-field sample
sets quantized to 12 bits for each of x and y, and 10 bits for z. Total lossless encoded data sizes range from 11 to 24 bits
per point, with z bit-rates lying in the range 2.9 to 8.1 bits per z coordinate. Lossy z bit-rates (we do not lossily encode
z and y) lie in the range 0.7 to 5.9 bits per z coordinate, with a worst-case root-mean-squared (RMS) error of less than
1.7% of the z range. Even with aggressive lossy encoding, at least 40% of the point samples are perfectly reconstructed.

KEYWORDS: height-field, point compression, multi-resolution height encoding, irregular sampling

1 INTRODUCTION

Digital representations of 3D data have become in-
creasingly common as the cost of the hardware re-
quired to gather and present such data has declined.
There has also been a steady growth in data volumes,
since higher sampling rates inevitably lead to more ac-
curate analysis and/or better visualization. To facili-
tate the efficient use of limited data storage resources
in the face of this rapid data growth, one needs to em-
ploy appropriate 3D data compression techniques. A
great many compression algorithms exist, optimized
for a number of different 3D representations.

In the computer graphics domain, for example,
triangle-mesh compression schemes dominate [1, 2, 3,
4]. Such schemes compress the 3D coordinates of a
triangle-mesh, a popular model representation, along
with a description of how to re-connect the mesh ver-
tices. In contrast, in the field of digital image process-
ing, image data are viewed as regularly spaced, dis-
crete samples of an image function I(x,y) — a height-
field. Such a structured 3D data representation can
be compressed very efficiently using transform tech-
niques, such as the Discrete Wavelet Transform [5].

There are, unfortunately, 3D data sets which do
not readily conform to either of these two dominant
paradigms. This paper addresses the compression of
data that exists as a height-field, but one that is irreg-
ularly sampled — perhaps with a very high degree of
irregularity. Examples of such data occur frequently
in the domain of GIS: contour lines, valley /ridge lines,
Triangulated Irregular Networks (TINs) and so on. In
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each case there is no requirement for a regular under-
lying sampling of the z—y plane. Such representations
are not well suited to compression schemes presented
above since they do not exhibit the predictable struc-
ture these techniques are predicated on. Furthermore,
image compression schemes are usually lossy (the data
is not perfectly recovered): in many cases the sample
sites are chosen to optimize certain criteria and allow-
ing the compression algorithm to modify these values
may render the data less useful. However, one would
like the freedom to allow lossy compression in either
the sampling plane or the associated height values,
should this prove desirable. In particular, one may
wish to accommodate some amount of error in the

height-field values.

The central goal of this work is to provide a com-
pression framework which will compress irregularly
sampled height-field data in such a way that the sam-
ple sites are preserved as far as possible, whilst allow-
ing additional compression gains to accrue by loosen-
ing our requirement on lossless compression of the z
values. To achieve these objectives we decouple the
compression of the sample sites (in the z — y plane)
from their associated z values. The sample site values
may be scattered arbitrarily about the image plane
and there is thus little chance of exploiting correla-
tions without some prior knowledge, which we wish
to avoid. Fortunately, there are existing schemes that
are well suited to compressing such data [6]. To com-
press the height-field values, we assume that some un-
derlying surface function is being sampled and that
the function is single-valued at each point. Since
there is usually some degree of correlation in samples
drawn from a surface, even if they are fairly scattered,
we have developed a multi-resolution representation



to represent the height information. While our pri-
mary goal is lossless compression, the technique can
accommodate a degree of lossyness in the z values.
This approach is in marked contrast to general 3D
compression schemes which allow 3D points to drift
through space as different degrees of lossy compression
are applied. An obvious benefit of this decoupling is
that incremental improvements in either compression
phase can be seamlessly integrated without changing
the other component.

Results are presented for several different kinds
of data and demonstrate that consistently good com-
pression performance is obtained with widely varying
sampling strategies.

This paper is arranged as follows: Section 2 cov-
ers necessary background to place the scheme in con-
text and also examines related prior work. The com-
pression framework is presented in Section 3. Section
4 evaluates the technique and provides results which
quantify both lossy and lossless performance. Section
5 concludes the paper and discuss some possible areas
for future work.

2 BACKGROUND AND RELATED WORK

Data compression is an enormous field and spans
many disciplines. This section will focus on the
areas most relevant to this research: the compres-
sion of images (which may be viewed as regularly
sampled height-fields) and (3D) surface compres-
sion/approximation schemes.

Image compression has a long history, but came
into its own with the advent of linear transform tech-
niques such as the Karhunen-Loeve transform, Dis-
crete Cosine Transform and more recently, the wavelet
transform [7]. The JPEG image standards provide for
both lossy and lossless encoding, depending on the ap-
plication. An image is a simple height-field in which
z samples are regularly spaced in the z — y plane. As
such it is amenable to clever schemes such as Wavelet
Zero-Tree coding [5], which implicitly encodes the po-
sition of important wavelet coefficients. This provides
a huge saving in terms of coding efficiency. While some
heighfield data, such as digital elevation maps, are well
suited to such techniques, other height data, such as
contour samples or ridge-line data completely breaks
the regularity of the sample sites. Transform image
compression techniques are likely to perform poorly
on such sparse data since the underlying transforma-
tions are designed to exploit the natural intensity cor-
relations of neighbouring pixels across an image. In-
troducing sharp deltas in intensity will damage image
compressibility. Furthermore, sampling the z—y coor-
dinates at the required resolution (typically 2K X 2K
or more) will require the compression of large images,
consisting mostly of useless information.

These objections suggest the use of a 3D point
compression scheme, which can directly encode the
positions of points in space. Spatial decompositions
such as those based on the kd-tree representation
[8] implicitly encode empty spatial regions and, for
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sparsely scattered points, reduce the amount of infor-
mation required to represent the point set. A recent
advance in this area [6] improves on the performance
of kd-tree representations by effectively discarding the
ordering information of a point-set sequence. This
scheme has been used for the compression of point
sets in 2D and 3D [9] and produces results which are
competitive with the standard geometry encoders used
to compress triangle mesh geometry. Unfortunately,
it treats point locations as offset values in a cuboid
volume and this does not allow for effective use of the
underlying height-field structure. Another class of 3D
point compressors, exemplified by [10] and [11], build
a 3D graph structure and use simple prediction tech-
niques to encode point coodinates. Such techniques
perform badly when the underlying point distribu-
tion is unpredictable, making them a particularly poor
choice for irregular point set compression.

An alternative approach to 3D point compression
is to generate a proxy triangulation and apply one of
the many compression techniques that exist for trian-
gle meshes. In this case one assume that the 3D points
are sampled from some underlying surface and are not
arbitrarily scattered throughout the 3D volume. This
is not a problem for height-field encoding: the sam-
ple sites have a single associated z value. Unfortu-
nately, the schemes commonly employed to perform
such compression [1, 4] use the connectivity to help
reconstruct the geometry, and this extra information
needs to be stored in addition to the compressed point
scheme. There is also no obvious mechanism to con-
trol the accuracy of the z reconstruction value while
leaving the sample sites untouched. For some schemes
[2], the addition of a boundary for the proxy surface
also requires additional storage, further reducing the
benefit. Finally, the geometry encoding is usually ac-
complished by means of local predictor schemes (see
for example [1]) which make assumptions about the
distribution of points in space. For data which has pe-
culiar sample sites (such as contour data), the proxy
triangulation will contain an undesirable mix of tri-
angle slivers and mismatched triangle sizes which will
significantly degrade geometry predictor performance.

A class of mesh compressors which bear special
mention are those based on the wavelet transform.
The wavelet transform defined over a mesh exhibits
the same desirable properties as its 2D counterpart.
Unfortunately, such schemes are problematic for our
application. The most general wavelet mesh compres-
sors (see, for example, [12]) require costly topological
information to encode connectivity changes across lev-
els in the wavelet hierarchy. Alternatively, one may
opt for schemes which require “subdivision connectiv-
ity” [13] or a predictable pattern to refine/decimate
sample sites [14]. Both of these methods effectively
resample the underlying mesh approximation and are
thus unsuitable for our purposes. Approaching the
compression problem in a somewhat more piece-meal
fashion, [15] decompose the input mesh into a set of
height-fields which are then wavelet encoded. Unfor-
tunately, a fundamental component of this technique,
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which enables incredibly low bit rates, is the regular
resampling of mesh patches onto rectangular image
regions. Since our goal is to preserve the location of
the sample sites, any scheme which perturbs this site
data is unacceptable.

For these reasons we have rejected mesh compres-
sion schemes and instead focused on a scheme which
considers only the sample sites and their associated z
values.

3 MULTI-RESOLUTION HEIGHT-FIELD EN-
CODING

The approach presented below is a synthesis of a num-
ber of existing techniques. The algorithm preserves
sample site locations, but can accommodate slight de-
viations in the height values attached to each sample.

3.1 Encoding the z — y site data

Rather than assume a known sample site distribu-
tion, or otherwise restrict the generality of the algo-
rithm, we have chosen a spatial decomposition scheme
well suited to representing scattered points. This ap-
proach uses a kd-tree type decomposition to partition
space into a number of disjoint rectangular cells each
of which contains a single point. The location of each
point is encoded using log, (z.y) bits by means of arith-
metic coding [16], where z is the width and y the
height of the cell. The reader is referred to [6] for
details. It should be noted, however, that any 2D
point encoding scheme can be used — there is nothing
in the z encoding component that requires the use of
a specific site encoding scheme. Although this work
emphasizes lossless encoding of the x — y site data,
a lossy technique could also be employed if the site
locations were deemed no less important than the z
information.

3.2 Encoding the z data

Since the z values will, in general, be correlated across
the base plane, the algorithm can exploit this fact to
facilitate a more compact encoding. We have devel-
oped a multi-resolution (MR) scheme which progres-
sively coarsens the input point set and generates a se-
quence of scalar height offsets which contain the detail
necessary to reconstruct the original point set. While
this bears superficial resemblance to schemes such as
[14], we do not create new and arbitrary sample sites
while decomposing or reconstructing the point set.
Each sample site exists in the 2D encoded site infor-
mation and one thus recovers data only at the original
points.

To coarsen the mesh, a 2D proxy (Delaunay) tri-
angulation is constructed: this enables one to get some
sense of the sample-site distribution. The proxy trian-
gulation is then used to build a Maximal Independent
Set (MIS) [17] to select a scattered set of ‘in between’
points. This generally selects points which do not
share a common edge in the triangulation, and can
be implemented efficiently. The MIS typically only

Xc = compress2D(X)
repeat J times
D={}
T(X) = triangulate2D(X)
Y = MIS(T) // construct an 2D MIS of T
PO =Y and P1 = X \ Y // partition points
S = Interpolate(P1)
for each point (Px,Py,Pz) in PO
dz = Pz - S(Px, Py)
D = {D, dz}
arithmetic code D
X =P1
arithmetic code z values of P1

Table 1: Compression algorithm.

// decode 2D vertices
X = {(Px, Py, 0)} = decode2D(Xc)
// build decimation hierarchy
H={}
repeat J times
T = triangulate2D(X)
Y = MIS(T) // build MIS based on T
PO =Y and P1 = X \ Y // partition points
H = {P0, H}
X =P1
// decompress z values
decode || X || (approx) values from bit-stream
fori=1toJ
S = Interpolate(X)
PO = HJi] // the ith subset of H
DZ = decode || PO|| values from bit-stream
for k = 1 to || PO||
dz = DZ[K]
(PO[k])z = S( (POK])x, (PO[k])y) + dz
X = {X, P0} // yields z values for X & PO

Table 2: Decompression algorithm.

discards th of the points in an input set [17], which
is much less than the % reduction that the prototypi-
cal 2D wavelet image schemes exhibit. Nonetheless, it
provides a means of reducing the sample set in manner
that ensures a good point spread across the sample
domain. Other point decimation schemes exist (for
example [18]) but these are generally more complex
to implement and consequently may be less robust.
The MR algorithm is independent of the precise dec-
imation algorithm employed, requiring only that the
selected points are scattered throughout the 2D plane.

The points that remain after sample point reduc-
tion (‘decimation’) are used to construct an interpo-
lated ‘approximation surface’. This is accomplished
by the use of a Thin Plate Spline [19] interpolant.
The interpolant provides a predictor for the z values
at discarded sample sites, and allows us to calculate
the z deltas required to recover the discarded z values.
This is similar to the approach used in [14], but does
not introduce arbitrary sample sites and uses a global
interpolant (see Section 4). The algorithm is applied
iteratively until only a small set of sample sites and
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associated z values remain (the ‘approximation set’),
along with a sequence of z deltas which show a gen-
erally increasing trend. Together with the retained z
samples, the interpolated surface, and knowledge of
the 2D sample sites, this information is sufficient to
recover the input point set. The user specifies a pa-
rameter, J, which determines the number of decom-
position steps to be performed.

The final height values and deltas are encoded us-
ing adaptive arithmetic coding [16] to ensure that each
level of this multi-resolution structure uses as few bits
as possible. Each level in the MR structure will require
2 parameters for the arithmetic coder: the minimum
and maximum values of the range of symbols. The
number of symbols for each level is inferred from the
input 2D site information. The complete algorithm is
summarised in Table 1.

Note that the deltas and smoothed point set
height values are all integers: the quantized input val-
ues are integers and the interpolant is thus forced to
return integer height values.

Decompression has the same computational com-
plexity, but requires that one first compute the deci-
mation hierarchy. This is the set of point indices which
show the order in which the 2D point set should be
processed to generate the correct z information. The
algorithm is summarised in Table 2.

Compression is lossless (to within initial data
quantization error). Should one wish a small amount
of lossyness in the z values, one can employ a simple
thresholding scheme. This does not involve sophisti-
cated rate-distortion optimizations, but constructs a
simple zero-threshold for each level and seems to work
well in practice. An effective rate-distortion frame-
work is an area of future research.

To generate a threshold, he user specifies a number
r, between 0 and 1, and this is used to generate an
initial threshold of 2~ where L is the number of bits
used to represent height values. This is used as a
direct threshold for the first level of detail: all detail
(delta) values falling below this are set to 0. For each
subsequent level, the threshold is halved and the same
procedure applied. This ad hoc process works well
and produces representations which are quite compact
with little average error.

4 RESULTS AND DISCUSSION

The algorithm described above has been applied a
number of data sets which encapsulate a wide variety
of z sampling strategies. While the data set tested
is small, the compression gains are consistent across
all sample types and we do not expect much variance
in compression ratios should more examples of these
height-fields be used.

To allow for meaningful comparison, a well known
3D point cloud compressor [6] was implemented. This
serves as a base case for all compression results. The
progressivity feature of this approach was not imple-
mented, since this allows no means to accurately con-
trol site placement and changes the number of samples
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in the point set. The authors also allude to a point
distribution model that can help improve results un-
der their scheme. Unfortunately this is not fully de-
scribed, and, in any event, this assumes certain char-
acteristics w.r.t. the sample sites, which amounts to
using a priori knowledge.

Ten levels of decomposition were used for all ex-
periments i.e. J = 10. This generates a single low
resolution point set and ten detail levels which need
to be compressed. In general, higher values of J are
desirable since they allow the MR hierarchy to come
into play. However, if the hierarchy is too deep one
soon reaches a point of diminishing returns due to
compressor overheads and increasingly irregular (un-
correlated) delta values. Other J values may be suit-
able for different kinds of data; however, ten levels of
decomposition provided a good trade-off for our ap-
plication.

Each data set requires two numbers to specify the
arithmetic coder: the minimum and maximum values
for the sequence of numbers. Twelve bits were used
for each signed number, resulting in 12*¥2*10 + 12 =
252 bits (since the coarsest level has an implicit lower
bound of 0). This cost is included in the reported z
bit rates, and results in a negligible contribution to
the total bit-rate in all but the smallest of data sets.
Bit rates are reported in bits per point (bpp).

Results do not include running times for the sys-
tem since this is an proof-of-concept prototype and
is not optimized. The largest time component is at-
tributable to thin-plate spline interpolation. This is
not surprising since a naive thin-plate spline imple-
mentation requires the inversion of a large N x N ma-
trix for NV points. Our implementation does include a
simple modification to the interpolation step to reduce
computational overhead. The initial sample domain is
split into an 2D array of disjoint rectangular regions,
none of which have more than a user-specified number
of points (this upper limit was arbitrarily set at 150).
The interpolant is then solved over these rectangular
regions, and includes points from an overlap zone that
extends 30% into all neighbouring regions. Very little
time was spent experimenting with optimal values for
the overlap size or the maximum number of points in
each patch, but the above values proved satisfactory
for all point set types that were processed. With this
modification, it takes about 125 seconds to process the
18,384 points for the ‘valley’ data set on a 3GHz P4
system with 1GB of memory. About 120 seconds of
this time is spent solving for the interpolant.

The point data sets we used are shown in Figure 1.
The data set includes three contour point sets, two
TINs and one sampled network. An additional very
small network, Sparse, is included in the compression
performance figures for completeness. The network
has too few points to render effectively and was thus
not included in subsequent figures.

Examining Table 3, one can see that lossless com-
pression gains are heavily dependent on the underlying
sampling pattern. The contour data sets seem to be
best suited to this compression scheme, although this
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River Crater

Valey MtStHelens

M ountainous Terrain

Figure 1: Data: point set models used for compression experiments.
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Figure 2: Z Reconstruction error histograms (A): The x-axis corresponds directly to absolute Z error; the counts (y-axis)
are the number of points with the corresponding error. The left column shows a higher fidelity reconstruction, while the
right column shows the result for a more aggressive threshold (the numbers are provided in the accompanying table).
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Figure 3: Z Reconstruction error histograms(B): The x-axis corresponds directly to absolute Z error; the counts (y-axis)
are the number of points with the corresponding error. The left column shows a higher fidelity reconstruction, while the
right column shows the result for a more aggressive threshold (the numbers are provided in the accompanying table).
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Figure 4: Reconstruction Error — largest error contributions: the greyscale values encode height on an increasing scale
from black to white. The larger white points show the locations of the largest reconstruction error (in this case 50% of
the error range).
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Name #points Type D3D X-y z  Total gain gain  gain

z x-y total
Valley 18384 Contour 14.54 9.99 2.89 12.88 1% 53% 62%
Mountainous 3098 Contour 21.50 14.35 6.60  20.95 34% 40%  38%
MtStHelens 12014 Contour 13.18 9.53 151  11.04 85% 60% 67%
River 6226 TIN 21.10 12.90 7.41 20.31 26% 46%  40%
Crater 5080 TIN 20.95 13.58 7.03 20.61 30% 43%  39%
Terrain 1673 Network 23.53 15.02 808 23.10 19.2% 37.4% 32%
Sparse 519 Network 25.34 16.63 7.63* 24.18* 23.7% 30.7% 29%

Table 3: Lossless encoding: The point sets were all quantized using the same parameters: 12 bits each for z and y, and 10
bits for z. D3D represents the bit-rate obtained by the reference scheme. = — y is the bit-rate for the 2D compressor we
used, and z is the bit-rate for the height sample encoding. Total is the total bit rate for our scheme. The gains represent
the % improvements over the input data size (24 and 10 bits per point for z — y and z, resp.) * Note that for the Sparse
network we have discounted 252 bits required for the z header due to the small number of points.

Name lossless lossy CR RMS Error % Max Error %  z perfect (%)
Valley 2.89 1.34 75 0.15% 1.37% 66.1%
095 105 0.27% 1.95% 41.4%
Mountainous  6.60 455 220 0.562% 2.83% 54.3%
350 2.86 0.91% 5.57% 39.7%
MtStHelens 1.51 095 10.5 0.073% 1.37% 79.1%
0.67 149 0.16% 1.76% 54.6%
River 7.41 5.53 1.8 0.711% 3.42% 60.8%
466 2.15 1.13% 6.15% 47.4%
Crater 7.03 4.98 2.0 0.61% 2.83% 56.5%
424 236 0.90% 5.76% 44.1%
Terrain 8.08 587 1.70 0.80% 4.49% 52.1%
501 1.99 1.35% 8.68% 39.3%
Sparse 7.63 6.61 1.51 0.90% 4.10% 63.2%
592 1.68 1.67% 8.20% 46.1%

Table 4: Lossy z encoding: When the z value is permitted a degree of error we can achieve significant improvements in z
compression, with little loss of reconstruction fidelity. Compression error is measured as the square root of the average of
the sum of squared differences (RMS) between the uncompressed and compressed z values at the sample sites. The error
is expressed as a percentage of the z quantizer range (1024 in our experiments). The maximum error (as a percentage
of the z quantizer range) is also reported, along with the number of sample sites at which perfect reconstruction (the
correct bin value) is still achieved. CR is the overall z compression ratio of compressed to input data (10 bits per sample).

Compression results are in bits per point.

is affected by the underlying coherence of the contour
samples. For example, the ‘mountainous’ data set is
a very coarsely sampled contour, and the lack of sam-
ple coherence makes it hard to interpolate the sudden
changes in neighbouring z values. The smooth con-
tours also show larger x — y compression gains when
compared to the z compression gains. While z values
are correlated, the decimation strategy pays no atten-
tion to this 2D structure, and will discard sample sites
arbitrarily. Of course, if one uses a priori knowledge
then this could be improved. Doing so would, how-
ever, restrict the utility of the z compressor. Both
TINs and network data (which are generally unstruc-
tured) require large amounts of data for both =z — y
and z components. Again, the scattered nature of the
data means that one can expect little else. Final data
rates lie in the range 21-24 bpp, which is still a notable
improvement over the 34 bpp required for each quan-

tized input sample. These data sets, in particular, can
benefit from some degree of lossy compression.

Lossy compression results are presented in Ta-
ble 4. As explained in the text, a threshold is specified
by the user and this forces small delta values to be
truncated to zero. The table shows two compression
settings which correspond to a lower and higher com-
pression ratio, the latter with correspondingly greater
reconstruction error. Reconstruction errors are re-
ported as RMS, normalised to the z range (1024 bins
(10 bit range) for our examples). All the contour data
sets compress very well when some lossyness is permit-
ted. The highly unstructured data sets show less of an
improvement, but the gains are still noteworthy. The
RMS error generally remains low (less than or around
1%), even in the presence of aggressive thresholding.
The quality of reconstruction is not unduly compro-
mised: the table shows that even in the worst case,
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almost 40% of the z data values are perfectly recon-
structed. The maximum error can grow quite large
(8.7% for the worst case reconstruction), but these
errors are infrequent, as demonstrated by the RMS
figures.

The distribution of reconstruction error is pre-
sented in Figures 2 and 3. These histograms show the
number of data set points associated with each (unit
size) error bin. The bin corresponding to zero recon-
struction error contains the largest number of points
and bins which lie further away from the zero bin,
contain a decreasing number of points. More agres-
sive thresholding (the right-hand column) results in
greater error and has the effect of lengthening the
‘tail’ of the appropriate histogram. The histogram
counts decay in an approximately exponential fash-
ion, which is necessary for good entropy coding/data
reduction. Observe that the histogram counts do not
decay monotonically. This is a consequence of the
crude “rate-control” mechanism — a simple thresh-
old. Nonetheless, the statistical properties of the error
distribution are still well suited to entropy coding, as
illustrated the by compression results.

Qualitative data on error distribution is presented
in Figure 4, which examines the two TIN data sets
(‘river’ and ‘crater’) in greater detail. The height val-
ues are coded on an increasing greyscale ramp (from
black to white), while the errors lying above 50% of
the error range are shown in as larger white points. As
expected, the most significant errors lie along sharp
ridges, such as the crater lip or the sharp sides of a
canyon. There are also other scattered error sites.
Some of these arise because of boundary approxima-
tion problems. Others simply reflect the choice of
threshold in a region where the interpolant cannot
properly match terrain roughness.

The above results show that the errors introduced
by lossy compression allow us to reduce data sizes sig-
nificantly at the cost of only minor z degradation. For
all the test data sets, RMS errors of less than 1% can
be accommodated while achieving perfect reconstruc-
tion at more than half the sample sites in the images.
While the gains are poor for sampled networks, it is
unlikely that generic point schemes could improve on
this without prior information.

5 CONCLUSION AND FUTURE WORK

We have presented a framework for the lossless
and near-lossless compression of irregularly sampled
height-fields. By decomposing the 2.5D compression
problem into two complementary components — a 2D
sample site encoder, and multi-resolution z encoder
— we ensure that the sample sites are accurately pre-
served, even in the presence of lossy compression, and
we are free to substitute any reasonable compression
scheme for either phase should one become available.
For the diverse sampling strategies we tried, the loss-
less compression performance is better than that pro-
vided by the best generic point encoder we could find
[6]. Of course, lossless compression provides limited
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gains, so we can also enable lossy compression of the
z values, without disturbing the sample sites, and this
ensures notable gains with low reconstruction error.

This was a prototype system, designed to test the
feasibility of the algorithm. There are several places
in which additional research time could be profitably
spent.

Interpolant: Thin plate splines are convenient and
intuitive: they require no additional parameters and
fit the data in a sensibly constrained way. However,
they are slow from a computational point of view.
A local interpolation (and thus faster) scheme, per-
haps based on a Fast Radial Basis implementation [20]
could be considered.

Rate-Distortion: A threshold is a crude means of
controlling and quantifying data loss. One could per-
form a rate-distortion optimization to optimally allo-
cate bin widths to each of the detail quantizers.

Better x — y compression: The x — y compressor
we used works well enough, but will becomes less at-
tractive as the sample site density increases. In this
case, even a simple run-length encoding scheme may
provide better compression ratios. An approach which
scales well to any irregular sampling is desirable.
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