
Ubiquitous Computing and Cellular Handset Interfaces – are menus
the best way forward?

Gary Marsden a Matt Jones b

a University of Cape Town, South Africa, gaz@cs.uct.ac.za

b University of Waikato, New Zealand, always@acm.org

Abstract: Embedded interactive computer systems, such as those found in cellular handsets, can be hard to use. The
combination of small form factor – limited input and output potential – and an increasing feature set, result in devices which
confuse novice users. Although most of these devices utilise hierarchical menu structures to mediate the interaction between user
and device, we believe that these menus are poorly designed and that other interaction styles may be more appropriate. In this
paper we will investigate how well menu design research has been used by current handset manufacturers. We will also propose
and report on the success of some new interface designs and finally examine how new Internet technologies, like WML, might be
used to further improve the handset’s interface.
Keywords: User interface design, menus, cellular handsets, WAP, WML
Computing Review Categories: G.1, H.1.2

1. Introduction

Pervasive ubiquitous computing is becoming a
reality. By exploiting UMTS, BlueTooth and
other exciting protocols, embedded computers
in our fridges can talk to embedded computers
in our cars, telling us to stop for milk on the
way home. As we evolve towards this new
technology, cellular handsets will play a key
part in how this technology will evolve – with
413 million cellular handsets sold last year
(2000)[1], it is likely that cellular handsets will
serve as an introduction to ubiquitous
computing for most people. A cursory
examination of most current handsets,
however, might give us pause before becoming
too excited about this new era of information
technology.

Ubiquitous computing has been made possible
by the continued success in processor and
hardware design, which now permits powerful
computers to be embedded in devices as small
as a cellular handset. Whilst the functional
capabilities of these handsets have increased,
the way users access their functionality has
remained the same – the hierarchical menu is
still with us.

Although handset manufacturers have
attempted to improve handset menus, as we
shall see in the next section, their attempts
have been largely cosmetic. If we are to
empower the users of ubiquitous computing,
then some new form of interaction must be
developed.

2. Menus

Menus were originally designed to exploit the
fact that humans are better at recognising
commands from a list rather than recalling a
particular command name from memory.
When first introduced, menus provided an
easy-to-use alternative to the more prevalent
command line systems. Certainly, given the
limited keyboard size on cellular handsets,
menus represent a significant advantage over
any command line system. The constraints in
screen size and form factor also favour menu
based dialog over a mouse based graphical
user interface. Consequently, the reasons for
choosing a menu based interaction would seem
sound. Therefore all handsets currently support
some form of hierarchical menu to access the
functionality of the device. All is not well,
however.

Techniques, like menus, translated directly
from desk-top to hand-held, without fully
considering the consequences, can cause
interactional problems. The reduced size of
embedded computer systems means that
interacting with handset menus is more
cumbersome than their desk-top counterparts –
one study[14] reporting users being up to three
times slower when using menus on a small
screen. In the case of cellular handsets, this has
caused frustration and complaint from many
users. Most vocal among these are cellular
service providers who are losing revenue as
they need to staff support lines. Furthermore,
they find it impossible to market vertical
services as potential customers cannot
configure their handsets to use these premium
services.

So what exactly are the problems users of
embedded menu systems encounter?

2.1 Potential problems

To be successful, the interface to the
functionality of the handset will, like most
other systems, need to support both expert and
novice users. Considering the expert users
first, research has shown that this group of user
is able to perform “identity mapping”[2],
whereby the user knows the exact name of the
option they are searching for in the menu
structure. Experts can then quickly scan the
screen, until the exact phrase they are
searching for appears. This type of searching is
very fast and allows experts to rapidly access
the function they desire. Furthermore, experts
will have learnt the structure of a menu and be
able to access a function relatively rapidly in
any location [3]. Experts are therefore unlikely
to encounter problems in using embedded
menu systems. This is not the case for novice
users.

Novice users engage in a slower form of
searching called “class-inclusion”. In this
instance, users must make decisions about the
higher level menu categories to decide if their
target function is contained within a particular
sub-menu. For example, users must decide if
the function to alter the ringing volume to be
found in the “Settings” menu, or the “Tones”
menu? Clearly this type of categorisation by
the designer (who understands the handset’s
functionality) can prove problematic to a naive
user. When it is not possible for the user to see
all the available options (due to reduced screen
size) determining the correct class becomes
even more difficult – there is extra cognitive
load in remembering the previous (currently
invisible) classifications.

Assuming the user has navigated to the leaf
nodes of the tree, they must perform an
“equivalence” search. In this instance the user
knows what needs to be done, but does not
know the exact phrase used to represent that
option. Again, altering the volume of the ring
could be described as “Ring Volume”,
“Volume of Ring”, “Tone Amplitude” etc. and
requires the user to match their concept with
the options presented. Once more, the
cognitive load is increased through being
forced to recall invisible options rather than
compare them directly on the screen.

Another problem for novice users is that of
discovering what functionality the device

offers. On a handset employing hierarchical
menus, this will require the user to perform a
complete search of the tree. On a typical
handset (say the Nokia 5110, which has 74
functions) this would require the user to make
110 key presses! This figure assumes that the
user (a novice) makes no keying or logical
mistakes. In our previous experiments[4], we
discovered that novice users often pressed the
wrong key and could become caught in a sub-
menu from which they could not escape.

An interface for novice users must therefore
better support comparisons and provide an
easier way to discover a handset’s
functionality.

3. Improving Life

How then might searching be improved for
novice users? One response might be to ignore
novice users completely. However, the demand
for cellular services is still growing and it is
safe to assume that there will be many
thousands of people each day learning to use a
cellular handset for the first time. Not only
cellular handsets, but as computing becomes
more ubiquitous, we need to develop an
interaction technique that will work across a
variety of devices. If we are to empower these
users, we must find some way to improve the
situation for them. We shall investigate a
number of ways to improve access for novice
handset users.

3.1 Classifications

One way to improve search time would be to
improve the categorisations used in the menu
classification; perhaps using novices to classify
items in a way they feel is appropriate.
Although no research specific to cellular
handset menus has been conducted, this
approach has been attempted in other menu
based systems with little success[5]. Even
when great care was taken in choosing
meaningful classification, users of systems
mis-categorised options between 39% and 50%
of the time. The evidence from these
experiments leads us to believe that it is
impossible to produce an ideal classification
system for all users.

Another question to ask, then, is how many
classifications are appropriate? This question
has been asked before in terms of breadth vs.
depth trade-offs – is it better to provide a wide
range of classifications for comparison at the
root, or provide few initial classifications to

limit user choice? So far, the majority of
research conducted in this area has assumed
that the user has access to a full screen and is
therefore simultaneously aware of each choice
at a given level in the menu structure. With
cellular handsets, it is not possible to view
options simultaneously, which can have a
profound impact on usability.

Research [6] was carried out to consider the
impact of reducing the size of the display to a
menu system. The smaller the display the
fewer options that were presented, with users
having to scroll the list to see any options not
shown initially. Although users’ performance
in terms of time to select an option increased
as the display size dropped the impact was not
dramatic. Real problems occurred, however,
when the display was so small that only one
option could be displayed at a time – error
rates increased dramatically and there was a
significant reduction in time taken to access
functions. So, handsets which display more
than one option at a time (ideally three or
more) have similar performance characteristics
to desktop systems. A device which only
displays one option at a time will be
disproportionately more difficult to use.

It would seem that cellular handset designers
are unaware of this research as they persist in
producing handsets which display only one
option at a time. Whilst some handsets are so
small that they only support a single line
screen (e.g. Ericsson T28) others have a large
screen capable of displaying multiple options,
yet choose not to do so (any current Nokia or
Motorola). To improve interaction, Ericsson
has now adopted a menu system which
displays three options simultaneously on the
screen as seen in Figure 1. We would advocate
that designers of future systems display more
than one option at a time.

Assuming that manufacturers eventually move
to displaying more than one option
simultaneously1, we return again to the
problem of how to make classifications and
providing wide and shallow, or, narrow and
deep menu trees. Initial research conducted by
Miller[7] and Lee [8] show that wide and
shallow trees are more desirable than the
narrow and deep variety. More recent
research[15] refines this notion to show that
concave structures are actually better – i.e. it is
important to have a wide choice at the root and

1 This seems probable as most manufacturers
are producing prototypes with larger touch
screens.

at the leaves, but intermediate choices should
be restricted. The handsets we investigated do
indeed follow this concave structure.

3.3 Reducing key presses

We have already noted how many key presses
are required to access every option in a cellular
handset menu. Staying with the Nokia 5110 as
our example, we can calculate that the average
number of key presses to access a function is
8.2, with a maximum of 14. To improve this
count, Nokia introduced wrapped menus (see
Figure 2), so than when the user moves beyond
the end of the menu, they are automatically
shown the first option in the menu. In user
experiments we have conducted [4], this
feature caused problems with novice users,
who would become stuck in a lengthy menu
and loop through the options until they gave up
in despair. Further research is required to
determine if this problem could be eliminated
by displaying more than one option at a time,
or reducing the maximum number of options to
seven (in an attempt to exploit human short
term memory [7]). Certainly, looping menus as
they exist currently, cause huge problems for
novice users.

3.4 Visualisation

The benefits of visualisation of state in
interfaces is well understood. Therefore, one
way to improve usage of menus, and help
avoid the type of problem found with looping
menus, is to give the user visual feedback
about where in the menu structure they are.
There are several ways in which this may be
attempted:

3.4.1 Icons
In the devices examined as part of this work,
icons were found to exist in two formats:

• Isolated icons
• Context icons

Figure1 – Display from
Ericsson R320 showing menu

title and 3 options

Isolated icons are those used to augment
understanding of a particular menu items. For
instance, the Nokia menu systems, since the
5110 model, have displayed an icon beside
each of the root level menu options (see Figure
3). It is not at all obvious what purpose these
icons serve, as they are not used in any other
context and cannot be manipulated in the same
way as icons in a WIMP environment. More
recent releases of Nokia handsets include
animated versions of these icons. Research
conducted on animated icons for desktop
systems suggest that they are most useful to
explain some action or verb [9]. However, of
the root level options which have animated
icons, only one option is a verb – Call Divert.
Even with this option, the animation adds little
to understanding the role of the menu as it
shows an arrow ricocheting off a small picture
of the handset. From our analysis, we can only
conclude that isolated icons serve as a
marketing feature and add little (if anything) to
the usability of the handset.

Context icons are used to highlight a particular
choice from a set of alternatives. Rather than
showing a single menu option per screen,
context icons can be used to display the full set
of alternative choices on a single line – the
compact icons can be fitted on the screen
where the larger text representations cannot
(see Figure 4). This type of icon has been used
in a curious way in the current range of
Ericsson handsets. Rather than exploit these
icons to reduce the amount of screen real-
estate required, the icons are used in
conjunction with the text description of each
menu option. Whilst redundant information is
helpful to users, the screen space could,
perhaps, have been used in more helpful ways:

to provide an extra menu option or a scrolling
help line, for example. When a sub-option is
selected, the icon disappears, meaning that the
longer text name is used at the top of the
screen to describe the sub-menu. Retaining the
icon would be of particular use for providing
context in sub-sub menus.

3.4.2 Context information
For novices using a menu, it is essential that
they are provided with some form of feedback
about where they are within the structure in
order to navigate successfully. The limited
screen resources of the cellular handset make
this a much more difficult task than with
desktop based menu systems. Given that some
of the handsets we examined nested menus up
to four levels deep, the problem of navigation
becomes all the more complicated.

In the handsets we examined, Nokia provided
the most information about location in a menu
structure – not only depth choices, but
feedback on the current level. The least
information was provided by the Ericsson
handsets, which only showed the most recent
category choice. This is curious as Ericsson go
to extra lengths to provide smooth scrolling
when changing menu levels to provide users
with as much contextual and spatial
information as possible.

One vital piece of information which is
missing from these visualisations is feedback
about which options in the menus are branch
nodes (the selection of which will display
another menu) or leaf nodes (the selection of
which will access a function). From desktop
menus we already have an ellipses (or triangle)
convention to denote the difference – leaf
nodes have no ellipses beside the name. This
type of information is important to novice
users exploring a menu structure – they will be
more likely to explore the structure if they
know their exploration will not affect the
handset.

3.4.3 Manuals
Manuals for cellular handsets are really of
limited usage due to the fact that the manual is
usually larger than the device itself. As the
point of cellular communication is mobility, it

Figure 3 – Image
of Nokia root level

icon

Figure 4 – Icons showing context. From left to right:
Phone book, Messages, Information, Settings, Extras,
WAP, Shortcuts. Phone book is currently selected.
(Taken from an Ericsson 320)

is unlikely that users will carry the manual
with the device. Furthermore, research by
Youngs[10] shows us that for younger users
(under 35), they are less likely to complete a
task if they use the manual.

On-line manuals, however, can be much more
successful. Here, if a user scrolls to a menu
option and does not select it, a scrolling
description of that option appears on the
screen. For example, Lee et al [5] found that
adding extra information to menu options
could reduce errors by up to 82%. On-line help
was applied in a seemingly random fashion for
the handsets we examined – help was provided
on a per-model basis and was not consistent to
a particular manufacturer.

3.4.4 Summary
From our investigation we have seen that there
are problems in using hierarchical menus to
support users of embedded interactive systems.
Hierarchical menus rely on the user
understanding the designer’s classification of
functions, something that is certain to cause
problems. Menus are weak in supporting
novices’ exploration of a handset’s features –
they require too many key presses.
Furthermore, the poor visualisation does not
always support exploration of the menu.
Manufacturers also seem to concentrate their
developments on the aesthetic of the menus,
rather than improving usability. It is time that
an alternative design was found!

4. Alternative designs

A data structure which requires an average of
8.2 key presses to access a given function
seems somewhat sub-optimal. Treating this as
a computing science problem, one way to
improve the menu tree is to re-structure it as a
balanced binary tree. Users searching for a
menu item would navigate on the alphabetic
order of the function name they were searching
for. At each node in the tree, users would
either select the function name at that node, or

choose to navigate down the node’s left or
right branch. By classifying functions by name
we are removing the problems of assessing
class inclusion, but other problems remain.

For a given handset (again, as an example we
use the Nokia 5110 with 74 functions) a binary
tree solution would reduce the average cost of
selection from 8.2 key presses to 5.4 key
presses. Furthermore, the worst case search
path is reduced from 14 presses to 7 presses.
However, by maintaining the hierarchical tree
structure, the task of visiting every node in the
structure is still daunting, requiring the user to
make 148 key presses. This scheme also has
the problem of only supporting identity
searching, further increasing the problems for
novices.

Of course, to remove the navigational
difficulties of a tree structure, we could flatten
the structure to a linear list. This would allow
users to visit every function with only 74 key
presses; what is more, the key being pressed
would be the same every time. However, with
a list, the average search time is 37.5 key
presses and the worst case search requires 74
key presses. So whilst the list can support
exploratory behaviour, it is poor at directed
searching.

The best solution would seem to lie in a
synthesis of the two approaches.

One solution we developed, exploited the fact
that most mobile telephone keypads have up to
three alphabetic letters associated with each
key. So, on key ‘1’ you can find the letters ‘A
B C’,‘2’ has ‘D E F’ and so on. (Some phones
vary in their key allocation, but this is not
relevant to our approach.) Users simply had to
‘spell-out’ the function they wished to access
by pressing the appropriate numeric keys.
Normally, when words are spelt out, the user
will press key 1 once to get A, twice to get B
or three times to get C. In our approach, the
key is only ever pressed once, and it is allowed

Shows the user they are three levels deep:
Menu one, sub-section 7, sub-sub-section 2.

“Bump” at the bottom shows the user they
have reached the end of the options in this
menu. Sadly “bump” size is not proportional.

Figure 5 – Feedback from Nokia handset on user location within the menu structure

to mean A or B or C. Thus there is some initial
ambiguity as the user starts to press keys to
spell a function name. With each new key
press, using a standard computer science
technique known as hashing, the system
displayed the best set of function name
matches.

For example, if the user wished to access ‘Call
Divert’ they would begin by pressing ‘1’
followed by ‘1’ (meaning ‘C’, ‘A’ the first two
letters of the function name) and the system
would display a scrollable list containing
choices such as ‘Call Divert’, ‘Call
Identification’ and ‘Call Barring.’ If any other
combination of the keys — in this case ABC
followed by ABC — also started function
names (‘Battery Condition’?), they would also
be displayed. As soon as the required function
appeared in the best match list it could be
selected directly by the user without any
further input: the user did not have to spell out
the entire function name! To overcome the
equivalence search problem, we allowed the
words of the function name to be entered in
any order: so, for example, Call Divert and
Divert Call were both permitted, and the user
would probably prefer Divert, since it is
unambiguous.

Besides using the numeric keypad to access the
functions, users could also scroll the list using
the scroll keys. Providing access in this way
supported exploratory behaviour as efficiently
as possible. In effect, this final solution is
similar to a B+Tree. This type of tree supports
both sequential searching of leaf nodes (in our
case this is provided using the scroll keys) and
direct searching via an index (in our case, the
hashing supported by the numeric key pad).

Analysis of our solution showed that average
search time was reduced from 8.9 to 3.1 key
presses. This theoretical result was also backed
up by user experiments, which showed that
there was a statistically significant reduction in
key presses between users of our system
compared to users of a standard handset[4]
(mean reduction of 5 key presses).

So, by restructuring the menus in more
fundamental ways than in current commercial
handsets, we can decrease the number of key
presses required to access a function and
facilitate exploration for novice users.
However, these solutions ignore the wider
question of “Do we need a user interface at
all?”

It has been argued that the whole notion of a
“User Interface” is fundamentally flawed – the
user should enjoy seamless interaction without
being aware of any intermediate layer. This is,
of course, not always possible and is
particularly exacerbated for embedded
computer systems which are constrained by
reduced form factor. However, recent
developments in mobile computing allow us to
investigate another possibility – replacing the
menu system with WML Web pages.

5. Graphs, not hierarchies

Once again we re-visit the fundamental
problem with hierarchical menus –
classification. The example we gave earlier
was for the location in a menu system of the
function to alter ringing volume: should it be
in “Phone Settings” or “Tones”?2 What if we
placed that option in both locations? By doing
that, we start to move away from the 1-to-
many relationship of hierarchical menus to a
many-to-many graph. So are graphs better than
menus?

In his paper[11], Alexander argues that
humans cannot work with imposed hierarchies.
Certainly, the error rates from the menu
classification experiments[5] would confirm
this argument. Furthermore, it is the attempt to
break free from this type of hierarchical
thinking which motivated Tim Berners-Lee to
develop the World Wide Web. He
attributes[18] the success of the WWW to its
ability to allow information to be joined
according to a user’s perception. Furthermore,
the simplicity of HTML allowed users to
restructure any collection of information as
they saw fit.

In fact, the success of the WWW has meant
that, in Windows at least, the traditional
desktop metaphor is being eroded to be
replaced by a browser. Other research[16] has
shown how the interface for desktop computers
can be completely replaced with browser
technology. If the browser works for the
desktop computer, then what about embedded
computers?

5.1 WAP-menus

When introduced, WAP was criticised for
being cumbersome and hard to use[12].

2 In case you are interested, for the Nokia 5110
the choice was “Tones”

Certainly, when compared to desktop Web
surfing, this is certainly the case. More recent
work[17] into the usability of WAP and WML,
however, is shown that a lot of the initial
criticism was based on a poor understanding of
the nature of mobile Web access. If the
application is tailored properly, then WAP can
be an effective way of accessing information.
Statistics from the UK [13] show that by July
2000 7% of the population were accessing the
Internet via WAP, compared to just 1% one
year previously. Given the effort that has
already gone in to supporting Internet access
on cellular handsets, it is likely that all future
handsets will support some level of browser.

If handsets do have a browser installed, then it
would seem sensible to do away with the menu
structure and replace it with a series of WML
decks. By doing this, we free the user from
having to learn two types of interface – the
navigation techniques they learn for the
browser can be transferred to navigating the
functionality of the handset. (If successful, this
would overcome the problems discovered by
Heyler[19], who noted the confusion users
experienced when required to change
navigation techniques between menus and
WAP sites) . To investigate the possibility of
providing a WAP interface, we have built a
number of prototype systems.

5.2 WML prototypes

The simplest way to replace menu systems is
to create WML pages which correspond
directly to existing structures. We have already
built such a system based on the Nokia 5110,
as shown in Figure 6. This prototype presents
the user with a home page providing access to
local information, or a remote site. If the user
selects “local information” they are presented
with the WML pages replacing the menu
system. In this way, the menu becomes just
another site accessible through the browser.
The only interactional benefit of this prototype,
however, is that the navigation keys and
paradigm for the menu system are identical to
those required for a WML browser.

To improve the interaction further, we
modified the WML to present as many options
as possible on the screen at any one time. We
then used indentation to provide the user with
context information about their choices (see
Figure 7). In this way, we have created a
system which exploits the work put in to
improving hierarchical menus and keeps the
navigational benefits of the previous prototype.

Both of the prototypes described above are
based on the structure of current menuing
systems. Re-using the structure in this way
allows current handset users to transfer their
knowledge to the browser based system.
However, as the options are presented as WML
pages, it would be straightforward for handset
manufacturers to provide users with a WML
editor to restructure the menu system any way
they choose. This would allow users to exploit
the benefits of a graph based structure as
discussed in the previous section.

6. Conclusions

Within this paper, we have questioned the
approach of using hierarchical menus to access
the functionality of embedded computer
systems. Whilst menus may have been
appropriate when this functionality was
limited, the increasing power of
microprocessors means that the functionality
of devices has been increasing steadily, but
little work has been done to ensure the
interface has kept pace.

Starting with research into hierarchical menus,
we saw that there was usability research which
manufacturers could use to improve the
interaction between novice users and
hierarchical menus. However, the application
of this research is limited and real
improvements could only be gained through
abandoning the menu structure. Alternative
structures were presented and finally a
structure based loosely on a B+Tree was
proposed which had significant advantages
when conducting directed searches and
exploratory searches.

Finally, we investigated the use of WAP as a
way of removing the interface altogether. Once
users have learnt to navigate with the WML
browser, they can use it to either modify their
handset settings or to access WML sites on the
Internet. Whilst this solution does not offer the
advantages in reduced key presses that the
B+Tree does, it provides a more familiar
interface and lends itself to alteration by the
user. As handsets increase in functionality and
mobile internet access becomes more common,
we believe that a WML based interface will be
the best way to support users of ubiquitous
computing devices.

7. Acknowledgements

The authors would like to thank the honours
class of 2001 at UCT for helping with the

analysis of handsets and Lindikhaya Ntshinga
for developing the WML prototypes.

8. References

[1] World cellular stats from cellular.co.za:

http://www.cellular.co.za/4q2000_handset_
market_shares.htm

[2] Paap, K.R. Design of Menus Handbook of

Human-Computer Interaction. Chapter 10,
pp. 205-235. 1988

[3] Card, S.K. User Perceptual Mechanism in

the Search of Computer Command Menus.
Proceedings of Human Factors in Computer
Systems. pp. 190-196. 1982

[4] Marsden, G., Thimbleby, H., Jones, M. &

Gillary, P. Successful User Interface
Design from Efficient Computer
Algorithms. Proc. ACM CHI2000
Extended Abstracts pp. 181–182. 2000

[5] Lee, E., Whalen, T., McEwen, S. &

Lantremouille, S. Optimising the Design of
Menu Pages for Information Retrieval.
Ergonomics, 77 pp. 1051-1069. 1984

[6] Swierenga, S. J. Menuing and scrolling as

alternative information access techniques
for computer systems: interfacing with the
user. Proc. Human Factors Society 34th
Annual Meeting, pp. 356–359. 1990

[7] Miller, D. P. The Depth/Breadth Tradeoff

in Hierarchical Computer Menus.
Proceedings of the Human Factors Society
25th Annual Meeting pp. 296-300. 1981

[8] Lee, E. & MacGregor, J. Minimising User

Search Time in Menu Retrieval Systems.
Human Factors, 27 (2) pp. 157-163. 1985

[9] Baecker, R., Small, I. & Mander, R.

Bringing Icons to Life – Use of Familiar
Things in the Design of Interfaces.
Proceedings of ACM CHI'91 Conference
on Human Factors in Computing Systems
pp. 1-6. 1991

[10] Youngs, E. Evaluating the Impact of
Application, Ergonomic and Process
Design on Handset Success. Proceedings of
User Interface Design for Mobile
Terminals, Section 1. 1998

[11] Alexander, C. A city is not a tree.

DESIGN, 206, pp. 46-55 1965

[12] Nielsen, J WAP backlash (2000) Alertbox

09/07/2000 at
 www.useit.com/alertbox/000907

[13] UK National Statistics Organisation,

quoted in article on BBC Web site:
http://news.bbc.co.uk/hi/english/business/n
ewsid_1245000/1245793.stm

[14] Han, S.H. & Kwahk, J. Design of a Menu

for Small Displays Presenting a Single Item
at a Time. Proceedings of the Human
Factors and Ergonomics Society 38th
Annual Meeting v.1 pp.360-364 1994

[15] Norman, K. L., & Chin, J. P. The effect of

tree structure on search in a hierarchical
menu selection system. Behaviour and
Information Technology, 7, pp. 51-65. 1988

[16] Rice, J., Farquhar, A., Piernot, P. &

Gruber, T. Using the Web Instead of a
Window System. Proceedings of ACM CHI
96 Conference on Human Factors in
Computing Systems pp.103-110. 1996

[17] Jones, M., Buchanan, G., Marsden, G. &

Pazzani, M. Improving Mobile Internet
Usability. Proceedings WWW’10, Hong
Kong. 2001

[18] Berners-Lee, T. Weaving the Web: The

Original Design and Ultimate Destiny of
the World Wide Web. Harper Business.
2000

[19] Heylar, V. Usability Issues and User

Perspectives of a 1st Generation WAP
Service. Proceedings of the Wireless-World
Symposium, Surrey University, UK. 2000

Figure 2
Interface menu hierarchy.
Scrolling right from the third child
returns to the first child. Scrolling
left from the first child moves to
the third child.

Root

Child 1 Child 2 Child 3

Figure 7 – Menu allows several options to be seen simultaneously. Also context information can be used
for navigation as in HTML based Web site

Context information

Hyperlink back to Phone Book

Figure 6 – The handset “home” page above allows local and
menu access. Selecting the “Menu” option will present the user
with the screen on the right which allows the user access to the
normal menu system. (Screenshots taken from WapTor)

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

