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Abstract 

This  dissertation  builds  upon  the  ideas  introduced  by  Liben-Nowell  and  Kleinberg  in  The  Link 

Prediction Problem for Social Networks [42].  Link prediction is the problem of predicting between 

which unconnected nodes in a graph a link will form next, based on the current structure of the graph. 

The following research contributions are made:

• Highlighting the difference between the link prediction and link detection problems, which 

have been  implicitly  regarded  as  identical  in  current  research.   Despite  hidden  links  and 

forming  links  having  very  highly  significant  differing  metric  values,  they  could  not  be 

distinguished from each other by a machine learning system using traditional metrics in an 

initial  experiment.   However,  they  could  be  distinguished  from each  other  in  a  “simple” 

network  (one  where  traditional  metrics  can  be  used  for  prediction  successfully) using  a 

combination of new graph analysis approaches.

• Defining  temporal  metric  statistics  by  combining  traditional  statistical  measures  with 

measures commonly employed in financial analysis and traditional social network analysis. 

These metrics are calculated over time for a sequence of sociograms.  It is shown that some of 

the temporal extensions of traditional metrics increase the accuracy of link prediction.

• Defining  traditional  metrics  using  different  radii  to  those  at  which  they  are  normally 

calculated.  It is shown that this approach can increase the individual prediction accuracy of 

certain metrics, marginally increase the accuracy of a group of metrics, and greatly increase 

metric computation speed without sacrificing information content by computing metrics using 

smaller radii.  It also solves the “distance-three task” (that common neighbour metrics cannot 

predict links between nodes at a distance greater than three).  

• Showing that the combination of local and temporal approaches to link prediction can lead to 

very high prediction accuracies.  Furthermore in “complex” networks (ones where traditional 

metrics cannot be used for prediction successfully) local and temporal metrics become even 

more useful.
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Chapter 1. Introduction

This introductory chapter overviews the research undertaken, summarises the academic contributions 

of the dissertation and describes the structure of the discussion.

1.1. Research overview

This report describes research undertaken that builds upon the ideas introduced by Liben-Nowell and 

Kleinberg  in  The  Link  Prediction  Problem  for  Social  Networks [42]  and  chapter  three  from  An 

Algorithmic Approach to Social Networks, Liben-Nowell's doctoral thesis [41].  Link prediction is the 

problem of predicting between which unconnected nodes in a graph (sociogram or network) a link 

(edge or arc) will form next, based on the current structure of the graph.  Link prediction thus far has 

used simple traditional social network analysis metrics and met with some success.  In this research 

the problem is explored more deeply using a data set obtained from messages exchanged on a dating 

social networking website.  Differences between link detection and link prediction are hypothesised 

and investigated.  Temporal statistical extensions of traditional metrics are proposed and compared 

against traditional metrics for prediction accuracy.  In a further experiment, traditional metrics are 

defined and computed for different radii to ascertain whether increases in computational speed and 

prediction accuracy can be achieved.  Finally, these extensions to metrics are combined and tested for 

increases in accuracy using the data set obtained from an email server's log file.  This approximates 

how an intelligence analyst might use the ideas proposed in this dissertation in the real world.

1.2. Motivation
At the time of writing, link prediction in social networks is a relatively new problem, with the classic 

paper on the problem, [42], being written only in 2003.  Thus there is a lot of scope for improving the 

approaches  to  solving  the  problem.   Temporal  approaches  have  been  completely  ignored  by 

researchers and most research has been performed on a network at a single point in time [40].  These 

networks have also tended to be small, i.e. having few enough nodes to fit into an adjacency matrix in 

memory.   This  leads  to  unrealistic  analysis  approaches  as  most  real  world  analysis  would  be 

performed on massive criminal  intelligence databases,  including large email  logs collected on the 

Internet.  Researchers have also not distinguished between link detection and link prediction and it 

seems to be implicitly assumed that the problems are identical.  No distinction is made between the 

problems  in  nearly  all  of  the  papers  considered.   Only  in  a  few  papers  is  link  detection  even 

mentioned.  Due to these gaps in research the work presented in this dissertation attempts to show 
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how  temporal  statistics  in  social  network  sequences  can  be  found  and  how  they  contribute  to 

prediction,  how metrics can be redefined to be calculated faster and how link prediction and link 

detection differ.  Link prediction is a mathematical and statistical technique that can be applied to 

many  business,  social  and  software  problems.   Link  prediction  has  many  applications.   Some 

examples include:

• Identifying the structure  of  a criminal  network (i.e.  predicting missing links in a criminal 

network using incomplete data) [13].

• Overcoming the data-sparsity problem in recommender systems using collaborative filtering 

[35].

• Accelerating a mutually beneficial professional or academic connection that would have taken 

longer to form serendipitously [20].

• Improving hypertext analysis for information retrieval and search engines [31].

• Monitoring and controlling computer viruses that use email as a vector [43].

• Predicting  which  web pages  users  will  next  visit  in  order  to  improve  the  efficiency  and 

effectiveness of a site's navigation [73].

• Helping  to  predict  the  spread  of  an  entity  through a  network  [71].   Examples  include  a 

disease, such as HIV, or information, such as a clothing fashion or rumour. 

1.3. Contributions of this dissertation

This dissertation contributes to the following unresearched areas:

• Highlighting the difference between the link prediction and link detection problems, which 

have been implicitly regarded as identical in current research.  It is shown through empirical 

testing  that  the  two classes,  hidden  links  and  forming links,  have  very highly significant 

differing metric values and differing surrounding subgraph patterns.  Despite this, they could 

not be distinguished from each other by a machine learning system using traditional metrics in 

an initial experiment.  However, they could be distinguished from each other in a “simple” 

network  (one  where  traditional  metrics  can  be  used  for  prediction  successfully) using  a 

combination of the approaches described below.

• Defining temporal  metric  statistics  through combining traditional  statistical  measures  with 

measures commonly employed in financial analysis and traditional social network analysis. 

These metrics are calculated over time for a sequence of sociograms and the usefulness of 

different types for link prediction (i.e.  information content) are compared and evaluated.  It is 

shown that some of the temporal extensions of traditional metrics increase the accuracy of 

link prediction.

• Defining  traditional  metrics  using  different  radii  to  those  at  which  they  are  normally 
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calculated.  For instance this includes calculating common neighbour-based metrics by using 

not  only  common  neighbours  but  also  neighbours  of  neighbours,  or  calculating  the 

betweenness of a node not using the whole graph but rather using only an egocentric subgraph 

of nodes up to three links away from the node under consideration.   It is  shown that  this 

approach  can  increase  the  individual  prediction  accuracy  of  certain  metrics,  marginally 

increase the accuracy of a group of metrics, and greatly increase metric computation speed 

without  sacrificing  information  content.   It  also  solves  the  “distance-three  task”   (that 

common neighbour  metrics  cannot  predict  links  between nodes  at  a  distance  greater  than 

three) [42].  Such metrics can be quickly calculated even in graphs too large to fit into an 

adjacency matrix and could be distributed over multiple processors using software threads.

1.4. Experimental approach

This section presents  a brief  overview of the way the accuracy of the metrics was computed and 

evaluated.   The  data  sets  used  were  stored  as  tables  of  nodes,  links  and  messages  in  a  MySQL 

database.   The  data  were  accessed  by  a  Java  program written  specifically  for  this  research.   It 

consisted of classes to store sociograms as temporal sequences, display egocentric subgraphs as graph 

diagrams in a user interface, compute the various traditional metrics and newly invented metrics for 

unconnected-,  forming-  and  hidden  links  and  output  these  metrics  and  the  associated  links  to  a 

comma-separated values (csv) file.  These csv files were converted into attribute-relation file format 

(arff) files, which can be used as inputs for Weka, an open source data mining Java suite [70].  Weka 

was then used to perform logistic regressions on the given instances, using the computed metrics as 

attributes  and  the  presence  or  absence  of  a  new link  as  the  variable  to  be  predicted.   Different 

combinations of metrics were tested and various statistics of classification accuracy were recorded. 

Additionally, the metric values for  the classes were analysed in a traditional statistical  hypothesis 

testing manner.  The first data set used was obtained from the Pussokram Internet social networking 

portal.  The second, email, data set used was constructed by stripping a server's log file (created by the 

sendmail UNIX email server program) into the bare essentials, discarding bad data (such as missing or 

unreachable  addresses),  matching  the  sender  and  recipient  of  emails  sent  and  mapping the  email 

addresses used to a unique positive integer to mask them and protect the privacy of individuals prior 

to analysis.

1.5. Evaluation criteria
The objective of this research is not only to present and discuss link prediction, but also to invent and 

implement new prediction techniques that maximise the number of forming links correctly predicted. 
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Since link prediction is a relatively new field there are few studies with which to compare accuracy. 

Furthermore,  these studies  differ  in the data  sets  and prediction techniques  used and the way the 

prediction accuracy is reported statistically.  Thus the accuracy of the new techniques presented in 

this work had to be evaluated in relative isolation, but in a way that could be compared to future work. 

The  traditional  metrics  and  the  new metrics  were  computed  on  the  same data  set  and  used  for 

regression in the same statistical program.  In this way the techniques can be compared to those that 

would have been used by other researchers.  The accuracy of the predictions are also reported as an 

overall percentage of the total number of correct instances, the true positive rates for each class and as 

a kappa value, which compensates for the accuracy of a random prediction and allows for universal 

comparison in future research (these statistics are explained in the research methodology chapter).

1.6. Scope and limitations
The prediction  accuracy of  the  system used  relied  both  on the  usefulness  of  the  metrics  and  the 

statistical  classification  software.   The  statistical  system  used,  Weka,  may  have  influenced  the 

outcome  of  the  experiments  in  unforeseen  ways.   For  instance,  the  learning-  and  classification 

algorithms used by Weka may be superior  or inferior  to  those used by other researchers,  thereby 

affecting the accuracy of these results in a way that is not due to the new ideas presented here.  This  

possibility was mitigated by using the standard logistic regression classifier implemented by Weka. 

Additionally, and more unlikely, Weka may have software bugs that, for the given data, generated 

incorrect results that were in the expected accuracy range, and hence went undetected.  However, no 

inexplicable  or  unexpected  results  appear  to  have been  generated.   The  initial  experiments  were 

performed using only one data set.  It is an established one that has been analysed in previous research 

[32][33], and the positive results obtained might not be repeatable on other data sets.  However, the 

final chapter uses a real world email data set and combines the metrics to reassess the usefulness of 

the ideas  proposed.   Finally,  all  available sources,  including websites,  conference outputs,  journal 

articles and books, were searched to find similar research.  Although none was found, this does not 

preclude the possibility that similar techniques have been used previously.  If this is so, then these 

previous  techniques  would have to be compared to the techniques  presented in this  research in  a 

future study to compare the effectiveness of both.

1.7. Dissertation outline

This report is divided into eight chapters, starting with this short introductory chapter.  Chapter two is 

a literature review of social network analysis and summarises important ideas in the fields, including 

link analysis,  link prediction,  metrics  and applications  of  social  network analysis.   Chapter  three 
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summarises statistical methods used in artificial intelligence for learning and inference and explains 

the statistical methodology used in the experiments presented here, based on the methodologies used 

by previous researchers.  Chapter four is the first of the four experiments discussed.  It presents the 

work done on the differences between link detection and link prediction.  Chapter  five is another 

experimental chapter and presents the work done on the use of temporal metrics in link prediction. 

Chapter six is the third and last experiment to present new ideas and presents the work done on local 

metric computations.  Chapter seven presents the final experiment, which draws together aspects of 

temporal  and local  analysis  using an email  data  set.   Chapter  eight   is  a  short  final  chapter  that 

concludes the discussion.
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Chapter 2. Social network analysis background

This chapter gives a brief introduction to the theory and practice of social network analysis, with an 

emphasis  on link prediction.   It  describes  the  theory and applications  of  social  network analysis, 

describes current link prediction techniques and introduces metrics and other concepts that are used 

later in the discussion.

2.1. Social networks

A  social  network  consists  of  a  group  of  people  and  connections  between  them  [69].   These 

connections can be any type of social link that implies a relationship between two people.  There is an 

existing field of mathematics called graph theory that deals with any structure, like a social network, 

that can be represented by nodes and links [14][18].  The discipline of graph theory has been extended 

by researchers into the field of social network analysis.  This discussion of some of the problems in 

social network analysis begins with an introduction to graph theory.

2.2. Graph theory

A social network is represented by a mathematical structure called a graph.  A graph G is a structure 

consisting of a set of nodes V (also called vertices), and a set of links E (also called arcs or edges). 

Thus  we  can  write G=〈V , E 〉 .   In  this  discussion  nodes  represent  people  and  links  represent  a 

relationship between people.   A link e (where e∈E )  is  a  set  of  two nodes  from the set V .   For 

instance,  we  could  have  that V={v1, v2,v3, v4, v5} and E={e1, e2} . E could  also  be  written  as

E={{v1,v3} ,{v3, v5}} , assuming that e1={v1, v3} and e2={v3,v5} .  In other words, this graph consists of 

five people named v1, v2, v3, v4, and v5.  v1 and v3 know each other and v3 and v5 know each other.  This 

graph can be drawn as a diagram, where nodes are represented by dots and links are represented by 

lines linking nodes:
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These diagrams have been called sociograms by sociologists.   In this  discussion the terms graph, 

network, social network and sociogram are used interchangeably.  The sociogram above may be easier 

to understand if we label the nodes:

These graphs are bidirected1, meaning that we are not concerned about the order of the nodes in a link. 

Either we are assuming two people who are linked know each other equally well or we do not mind 

that  the  relationship  is  one  sided.   With  a  directed  graph  however,  we  are  concerned  about  the 

direction of a link between two nodes.  For instance, if the graph discussed above were directed, it 

would look like this:

1 Also called “undirected” [69], but bidirected is used in this paper to emphasise that messages and emails are 

directed and links go in both directions.
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An example  of  a  one-sided  relationship  or  directed  link  might  be  when one  person  has  emailed 

another but the recipient of the email has not reciprocated.  There exist  other variations and sub-

classifications of graphs that are used in various fields.  One type that is commonly used in social 

network analysis  is  the bimodal  graph [69].   A bimodal  graph is a graph in which the nodes are 

divided into two distinct sets, where each set represents a different type of entity.  For instance, we 

could create a bimodal graph where the two sets of nodes represent researchers and papers published. 

Links  represent  that  a  researcher  was an author  or  co-author  of  a  paper  with  another  researcher. 

Alternatively, such an arrangement can be represented by a bipartite graph, where nodes are all of the 

same type, but are partitioned into two sets [69].  Links may join a node in one set only with a node in 

the other.  A bipartite or bimodal graph is shown below, where the blue nodes could represent papers 

published and the orange nodes could represent authors.

Figure 4. A bimodal or bipartite 

graph

For an introduction to graph theory [66] is recommended.  And for a more comprehensive discussion 

[14], [18], [29], and [59] are recommended.

2.3. Links in social networks

Examples  of  a relationship  between people  studied  in  social  network analysis  include  friendship, 
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having exchanged emails, or belonging to the same social club.  In other disciplines nodes and links 

can be used to represent towns and highways, computers and cabling, or companies and ownership. 

In this  research  the  relationship  we are  considering is  a  single  message sent  from one person  to 

another.  For instance, an email sent from one address to another address names and connects the two 

nodes in a directed link.  To illustrate this, consider that all we know about a certain hypothetical 

group of people is that an email was sent from bill@mail.com to ted@mail.com.  Then for this graph 

V={bill @mail.com ,ted @mail.com} and E={{bill @ mail.com , ted @mail.com }} .   Although there 

are more individuals in this group, we can record only those of which we have evidence.

A sociogram represents a complex system – a human society, or at least part of it.  Complexity theory 

has found that complex systems occur on the edge of chaos [47].  For example, life cannot exist in a 

vacuum (complete order), as there are no environmental forces that cause change and adaptation.  But 

nor can it  exist  in a sun (complete  chaos),  as a system ceases  to function amidst  total  chaos.   A 

compromise of semi-chaos is needed for adaptation and development to flourish [7].  In the same way, 

since social networks are representations of complexity, they are neither totally ordered lattices, nor 

random distributions  of  nodes  and  links,  but  rather  have special  properties  of  their  own.  These 

properties are described in the following subsections.

2.3.1. Small world networks

A small world network is one where on average every pair of nodes can be connected through a short 

path within the network; and where the probability that two nodes are linked is greater if they share a 

neighbour (a high clustering coefficient) [4].  The idea of a small world network was created by the 

American  psychologist,  Stanley  Milgram,  in  the  1960's  [65].   He  found  that  randomly  selected 

individuals  could  send  a  letter  to  a  chosen  recipient  in  another  state  through a  remarkably  short 

(approximately six people) chain of acquaintances.  This led to popular constructions such as “six-

degrees of separation”, six-degrees of Kevin Bacon (actors linked to Kevin Bacon by chains of film 

performances) and the similar Erdös number (the number of scientists removed from co-publishing a 

paper with mathematician Paul Erdös).  Social networks have the small world property.  The Internet 

does  too,  if  we consider  web pages  to  be  nodes  and hypertext  links  to  be  links.   Even artificial 

networks can be small worlds.  An example is the Marvel comic book universe, consisting of 6486 

comic characters (nodes), where links were co-appearances in comics [4].  It is also sometimes useful 

to design networks to be small world.  For instance, Roumeliotis and Mataric experimented with the 

idea of  creating small  world networks  for  robots  to avoid data  traffic  overload  [62].   The robots 

communicated with nearby neighbours only and avoided broadcast messaging to create a small world 

communication system.
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2.3.2. Scale-free networks

Small  world  networks  usually (and almost  always for  large social  networks)  follow a power  law 

distribution [3].  This means that the fraction of nodes with degree d (the number of links a node has) 

is proportional to
1
d c where c is some constant.  In other words, most nodes have the average degree 

and very few have either very high or very low degrees (humanly speaking, most of us are neither 

exceptionally popular  or unpopular).  Such networks are said to be scale-free or power-law graphs. 

Shown below on the left is a graph that is scale-free.  The orange nodes have a far higher proportion 

of links than the blue nodes.  The graph on the right is not scale-free as nearly all the nodes have an 

equal degree.

Figure 5. A scale-free graph           Figure 6. A non scale-free graph

A related  term is  preferential  attachment  –  meaning  that  a  new link  is  likely  to  be  incident  (or 

preferentially attach) to an existing node of high degree [3].  This is a property that social  networks 

share with the Internet.  Preferential attachment leads to the existence of scale-free networks.  Most 

websites have the same small number of incoming and outgoing links, but a few are sites with large 

numbers  of  both  types  of  links.   The  rise  of  blogging  (web-logging)  in  the  past  few  years  has 

accelerated until approximately 80 000 blogs were being created every day in August 2005 [44].  As 

each blog is generally maintained by one individual the community of bloggers forms a classic social 

network.  Other structures can also be modelled as social networks.  For instance, academic papers 

and citations can be considered as nodes and links.  The Gnutella peer to peer networked file sharing 

system is an example of a scale-free network [2].  The properties of such networks have both benefits 

and flaws.  Crucitti, Latora, Marchiori and Rapisarda found that scale-free networks are highly error 

tolerant  but  vulnerable  to intelligent  attack  [17].   When up to two percent  of  nodes are removed 
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randomly network communication will be completely unaffected.  However, a network can be quickly 

crippled by removing only a few highly connected nodes.

2.3.3. Homophily and assortative mixing

Homophily means that people tend to make friends with other people who are similar to themselves, 

in  terms  of  geographic  location,  interests,  culture,  age  and  so  on.   This  psychosocial  principle 

influences the structure of sociograms.  For instance, researchers have found that sociograms exhibit 

assortative mixing, meaning that nodes of high degree tend to have neighbours of high degree  [41]. 

Popular birds of a feather flock together, if you will.  Newman [49] found that social networks (actor 

and academic publication collaboration networks) exhibit  assortative mixing whereas technological 

networks (the Internet and the World Wide Web) and biological networks (protein interactions, food 

webs and neural networks) exhibit disassortative mixing.  Disassortative mixing means that nodes of 

high degree  tend  to  have  neighbours  of  low degree.   In terms of  resilience,  Newman notes  that 

removing  high  degree  nodes  in  a  social  network  (for  instance,  to  vaccinate  against  a  sexually 

transmitted disease) will have little effect as high degree nodes are redundant.  However, removing a 

high degree node in a technological network (such as the failure of an important Internet server) will 

be more likely to have a crippling effect as the node is not redundant.

2.4. Social network analysis 

The study of sociograms, social  network analysis,  mainly involves computing various measures of 

graphs (called metrics), which provide useful sociological information.  Modern researchers combine 

disciplines as diverse as sociology, anthropology, psychology, geography, mathematics, statistics, and 

computer science [46].  There is one standard textbook on social network analysis, [69], cited by the 

large majority of papers in this field.  Although social network analysis has existed for  over fifty 

years, most analysis techniques have been designed for static data.  For example,  [69] contains no 

mention of temporal metrics, even though it was written in 1994 when electronic networks were well 

established.   It  is  difficult  to  collect  social  data  for  numerous  individuals  by  hand using  survey 

techniques.  However, with the increase in the use of computers,  collecting enough data to create 

numerous graphs over fixed time intervals becomes possible.   An example is creating a graph per 

week from email data,  using a server's email log of to,  from, and date fields  [10].  This series of 

graphs can be used to study the evolution of the network and the change over time of various metrics. 

2.4.1. Equivalence

Equivalence is a way of comparing the similarity of two individuals based on the similarity of their 
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position in a graph [30].  There are three types of equivalence: structural, automorphic and regular.  If 

two nodes are structurally equivalent they are equivalent in location, identical or substitutable.  They 

have exactly the same links to exactly the same nodes.  This is a very rare situation in real life as no 

two people are identical.  In the graph shown below the orange nodes are structurally equivalent.  

If two nodes are regularly equivalent they are equivalent in role.  They have the same links to nodes 

that  are  also  regularly  equivalent.   This  is  a  recursive  definition  that  makes  finding  regularly 

equivalent nodes in a graph a non-trivial problem.  However, understanding the concept is far easier. 

Two doctors  in  two different  hospitals  are  not  structurally  equivalent  because  they know totally 

different people.  But they are regularly equivalent as they have similar ties to nurses, administrators 

and patients who are also regularly equivalent.  Mathematically, if x i and x j are equivalent, and x i is 

adjacent to xa , then x j must be adjacent to xb , where xb and xa are equivalent.  In the graph shown 

below the orange nodes are regularly equivalent.  

Figure 8. Regular equivalence
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Automorphic  equivalence  is  not  as  strict  as  structural  equivalence  but  more  strict  than  regular 

equivalence.  It is concerned with finding subgraphs of individuals that can be moved in the network 

to  replace  a  similar  module  somewhere  else.   Two  nodes  in  such  a  substitutable  module  are 

automorphically equivalent.

2.4.2. Web link analysis

Since websites form networks, tools that have been used to analyse the structure of the Web are also 

useful for analysing the relationships between people.  Most of these tools have been developed by 

search engine firms.  In this field, sites with a high in-degree are called authorities, as other sites trust 

them to be the authoritative expert on a certain topic.  Sites with a high out-degree are called hubs, as 

they are like telephone directories that reference a large number of the most authoritative experts on a 

certain topic.  Two algorithms used to discover authorities are HITS and PageRank (used by Google) 

[50].  The importance of hubs and authorities is calculated by looking at the importance of sites to 

which they link.  Thus the definition is recursive and the ranking is not trivial to compute.

2.5. Metrics

A metric  is  a  value calculated from a graph that  describes  the graph in  some way.  This  section 

provides only an overview of metrics that  are used by social  network analysis  researchers.   Their 

precise mathematical definitions are given in chapter three.  Many metrics have been defined, only 

some of which are useful for link prediction.  Out of that subset, only some have been used in this 

research.   Most  traditional  social  network analysis  metrics  are  described  and defined in  [69]  and 

summarised  in  an  online  book  by  Hanneman  [30].   New  metrics  are  invented  occasionally  by 

researchers who wish to concentrate on a particular area of social network analysis.

Two examples of metrics are  degree and  common neighbours [69].  These are monadic and dyadic 

metrics respectively [69].  In other words, degree is a value calculated for a single node and common 

neighbours is a value calculated for a pair of nodes (a dyad).  The degree of a node is the number of 

connections to other nodes that it has.  It therefore represents the popularity or sociability of a node. 

The  number  of  common neighbours  of  a dyad is  the  number  of  mutual  nodes  a dyad shares.   It 

therefore  represents  how  much  overlap  two  nodes'  social  circles  have.   Both  these  metrics  are 

neighbour-based metrics, because they are based on calculations involving the number of neighbours 

of a node.  Other neighbour-based metrics include Jaccard's coefficient, the Adamic\Adar number and 

preferential attachment [35][1].  Another commonly used type of metric is the distance-based metric. 

This involves calculating the shortest path (or many shortest paths) between two nodes.  Variations of 
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the shortest  path  metric  include  the  Katz measure  (where  paths  of  different  lengths  are  weighted 

differently) [41] and betweenness [69].  Betweenness is a type of centrality metric.  These metrics are 

an indication of how popular or prestigious a node is, i.e. how many paths between other nodes pass 

through it, or how close it is to other nodes.  It is one of the most commonly used social network 

analysis tools.

2.6. Link prediction

The nodes in a sociogram are linked in a complex web of relationships that change over time.  These 

relationships emerge, strengthen and decay as a result of individuals' positions in the network, their 

behaviour and the influence of the environment.  Predicting changes to a social network is called the 

link prediction problem.  Liben-Nowell and Kleinberg [42] explain it as: 

Given a snapshot of a social network at time t, we seek to accurately predict the edges that will be 

added to the network during the interval from time t to a given future time t'.

The problem is illustrated in the graphs below, where a link is forming between the orange nodes.

Figure 9. A graph at time step t where a 

new link is forming               

Figure 10. A graph at time step t+1 

where a new link has formed

Link prediction is generally approached in two separate (but complementary) ways: relational analysis 

(or topological analysis) and feature analysis.  The first way examines a sociogram for unbalanced 

social structures that should tend towards a state of equilibrium (e.g. two people who have a lot of 

mutual friends should eventually meet).  The second way does not involve graph theory at all, but 

rather looks at the content of communications between individuals to search for common interests 

(e.g. two people who discuss both fly-fishing and abstract algebra in emails should eventually meet). 

This dissertation concentrates only on the former method – predicting links using graph theory – and 

disregards the content of communications.  This method was chosen so as to concentrate on only one 
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part of the problem and perform detailed research on it alone.  The purely graph theoretical technique 

will  almost  certainly not  be  as  accurate  as  one  that  uses  both  graph theory and content  analysis 

combined, but it means that it is suitable for analysing networks where no content is available (such as 

email  logs,  which  are  numerous  and  easily  accessible  to  intelligence  and  business  analysts). 

Additionally,  a  purely  graph theoretical  approach  to  link prediction  can  later  be  augmented  with 

content analysis.

2.6.1. Existing link prediction techniques 

Existing link prediction techniques can use the values of metrics in a graph instance to determine 

where new links are likely to arise. For instance, it is more likely that a new link will be incident to a 

node with a high degree than a node with a low degree.  However, though link prediction has been 

used for many applications, there have been very few investigations of link prediction itself.  This 

section lists papers that discuss link prediction per se, and the next section lists papers that discuss its 

use in an application.  In 2003 Popescul and Ungar made citation prediction systems using statistical 

learning that extended inductive logic programming [54].  Their system learnt link prediction patterns 

from queries to a relational database, including joins, selections and aggregations.  Taskar, Abbeel 

and Koller used relational Markov models to learn patterns of cliques and transitivity in web pages 

and hyperlinks [64].  Both these prediction systems included node attributes (e.g. web page text) in 

addition to relational features.  This makes them more powerful than prediction systems using only 

topological  metrics,  but  also  more domain  specific.   In 2004 Popescul  and  Ungar  enhanced  link 

prediction of author\document bipartite networks by using clustering [55].  They clustered documents 

by topic  and authors  by research  community in  order  to  generate  new entities  that  were  used  in 

logistic regression of features and relations.  Their system was tested on data consisting of an equal 

number of positive and negative cases.  They managed to increase accuracy over models not using 

clustering by roughly four percent on average.  Zhou and Scholkopf approached three related graph 

problems (classification,  ranking and  link prediction)  in  a  new way [72].   They defined  discrete 

calculus for graphs and then shifted classical regularization from the continuous case to graph data. 

Though mathematically interesting, their paper did not include empirical testing.

Liben-Nowell  and  Kleinberg  tested  the  predictive  power  of  only  proximity  metrics,  including 

common neighbours, the Katz measure and variants of PageRank [42].  They found some of these 

measures had a predictive accuracy of up to 16% (compared to a random prediction's accuracy of less 

than a percent).  A third of Liben-Nowell's doctoral thesis was a chapter on link prediction in social 

networks [41].  It supersedes his 2003 paper [42].  His hypothesis was that link prediction could be 

performed from topology alone.  This was found to be true since his system outperformed random 
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predictions  by  a  factor  of  50  at  times.   However,  the  collaboration  networks  he  extracted  from 

www.arxiv.org,  the  online  physics  paper  archive,  were quite  small  (between 486 and 1790 nodes 

only).  As such, he would have been able to store all his networks in an adjacency matrix, making 

shortest path calculations and similar computationally expensive metrics quick to calculate.  Medium 

size social networks consisting of fifty thousand nodes or so cannot be stored in adjacency matrices 

because of random access memory size limitations.  This is because an adjacency matrix has to have 

an entry for all  pairs of nodes, making the total memory required quadratically proportional to the 

number of nodes in the  network.  Thus his shortest  path based prediction methods are somewhat 

impractical for  large-scale analysis.   Luckily, he found that common neighbour methods “perform 

surprisingly well”.  Unfortunately by definition common neighbour approaches cannot predict links 

between nodes at a distance greater than three (since nodes with a common neighbour have a distance 

of  at  most  two).   This  is  called “the distance-three  task” [41].   This  difficulty might be partially 

alleviated by comparing shared topological features.   For instance, by the principles of assortative 

mixing and homophily two nodes of unusually high degree are more likely to form a link, despite 

being at a distance of more than three.  

Despite the computational obstacles involved with large networks, they might in fact be more suited 

to link prediction.  Liben-Nowell notes that the more diverse a network is, the easier it is to separate 

nodes into groups of common interest (e.g. research interests in publication networks).  With smaller 

graphs, people are likely to form links more randomly, as all the nodes tend to be similar.  This brings 

up an interesting point about the dating network data used in this research: if we assume a link forms 

mainly between a male and a female then prediction could be improved vastly by separating all the 

nodes into a male group and a female  group.   However,  this  grouping would involve finding the 

regular  equivalence [30] between nodes,  a procedure that  is  computationally expensive and hence 

unusable for large graphs.  It requires a complex algorithm since finding regular equivalence involves 

finding nodes that have similar links with other nodes that in turn have similar links to the original 

nodes and other nodes.  Grouping the data set into males and females would need to use this type of 

approach.  Finding the groups of women in the network would involve finding nodes (women) that 

have similar links with other nodes (men) that in turn have similar links the original nodes (women) 

and other nodes (both men and women).

A few other link prediction papers are summarised in Getoor and Diehl's 2005 survey of link analysis 

[25].

Chapter 2. Social network analysis background 27



2.6.2. Link prediction application papers

Huang,  Li  and  Chen  investigated  the  use  of  link  prediction  to  improve  collaborative  filtering  in 

recommender  systems [35].   They found that  the Katz measure was the most useful,  followed by 

preferential attachment, common neighbours and the Adamic\Adar measure.  These path-based and 

neighbour-based measures outperformed simpler metrics.  They found that the distance between nodes 

was not useful, probably because most node pairs in their set could be linked within a short path. 

Farrell,  Campbell  and  Myagmar  used  link  prediction  to  design  a  system that  recommended  new 

academic links for  researchers  at  a computer  science conference and received feedback through a 

survey  [20].   They  found  that  established  researchers  found  little  use  for  the  system but  newer 

researchers found it useful in recommending potential colleagues and  talks of interest.  Farrell et al 

are proponents of relation-oriented computing and believe that social network systems will be useful 

to help humans cope with the huge number of professional contacts they need to maintain at present. 

Their systems maintain information on contacts and their links by analysing data in bimodal graphs 

(such as papers published and academics, or meetings attended and businessmen).  In his doctoral 

thesis Zhu [73] used link prediction to determine what web page a user was next likely to visit in 

order to improve the navigation and efficiency of a site.  This was done by storing lists of web pages 

visited as a Markov chain.  Normally when predicting links in social networks we assume links are 

independent.  In other words, a person forms new links one at a time, and not in a common sequence 

of new people.  This is clearly different from how Zhu predicts visits to web pages.  This technique 

would be useful only if we could assume that forming a new link to a person A would imply that it 

was probable  the next  link formed would be to person B, which is  not  how links form in social 

networks.

2.6.3. Link completion

Link completion is also a link analysis problem and is almost identical to link prediction [28].  It 

differs in that the problem is to determine the missing node in a pair of nodes defining a link.  In other 

words, if we have a data set with some partial  links we need to determine to which node another 

particular node links.  Thus link completion is subsumed in the harder and more general problem of 

link prediction; instead of trying to determine which pair of nodes are most likely to link next, we are 

trying to determine only to which node another node is trying to link.  The node is already known to 

have a link, we are just not sure to what other node the link is attached.  An example of the problem is 

when a user  buys five  books online  and  the  name of one book is  corrupted  in  transfer.   A link 

completion algorithm could infer the name of the missing book based on the user's name and the other 

books she bought.
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2.7. Anomalous link discovery

In 2005 Rattigan and Jensen [58] presented the anomalous link discovery problem in response to the 

massive  difficulties  of  link  prediction.   They  reasoned  that  link  prediction  has  inherent 

insurmountable  difficulties  because  the  number  of  dyads  that  need  to  be  evaluated  increases 

quadratically in proportion to the number of nodes in a network and social networks are very sparse, 

leading to extremely few positive cases.  This makes it nearly impossible for prediction systems to 

learn significant differences between metrics in positive and negative cases.  There are so few positive 

cases that they are “swallowed up” by the negative cases that have similar metrics.   Rattigan and 

Jensen therefore recommend focussing on anomalous link discovery.  This involves detecting which 

links in a network are surprising - e.g. two linked nodes that had very few common neighbours or 

were a large distance apart in the previous time step.   Examples where anomalous link discovery 

could be used include discovering surprising links arising between individuals  that  could indicate 

criminal collaboration or discovering surprising links between web pages that indicate their content is 

somehow related.  Anomalous link discovery is complementary to link prediction in the sense that 

they both use the same metrics to evaluate which links are surprising and which are expected.  Thus 

research on improving either problem should benefit the other.

2.8. Link detection

Link detection is similar to link prediction, but involves determining where an established link exists 

that is not shown in the sociogram, perhaps because of missing data.  An example is inferring the 

influence (a type of hidden link) of one researcher on another, based on publication networks.  Often 

criminal analysts have only partial network information to analyse, obtained through phone records, 

email records and the observations of human intelligence gathering agents.  Criminals would like all 

their links to others not to be known and might intentionally hide their links as much as possible. 

Similarly, marketers undertaking surveys for use in activities such as viral marketing might wish to 

infer connections between people based on incomplete information.  Link detection would be useful 

in  all  these  circumstances.   Liben-Nowell  [41]  and Taskar  et  al  [63]  mention the  problem as  an 

application of link prediction in the introduction to their research.  Komarek used the link detection 

problem as a test application for his work on fast logistic regression in his 2004 thesis [39].  Similarly, 

Popescul and Ungar used the link detection problem as a test application for their work on structural 

logistic  regression [54].   Link detection in social  networks using topological  metrics  must  not  be 

confused with other types of link detection.  These include story link detection [15],  where news 

articles are compared to determine if they are about  the same event,  and hardware link detection, 

which is involves determining the state of a computer's network card's link to other computers.
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2.9. Dynamic network analysis 

The analysis of the changes in social networks over time is called dynamic network analysis.  It is 

currently a popular avenue of research for law enforcement and intelligence agencies, given the rise in 

the global activities of terrorists and other organised criminal groups [16].  Such groups have been 

labelled dark networks, and their structure and behaviour differs widely from normal social networks. 

For  example,  they  trade  efficiency  for  secrecy  in  structure  and  have  unusual  patterns  of 

communication [21].  Carley is one of the most prolific researchers in the modelling of dark networks 

using  dynamic  techniques.   She has  created  a  dynamic network program,  DyNet,  where  multiple 

agents model the social behaviour of human beings, with access to resources and organisations [12]. 

This  program is  used  to  understand  network  evolution  and  the  best  way  to  destabilise  terrorist 

networks.  These techniques are powerful, but relatively domain specific and complex.  There have 

also been a few purely theoretical studies done on the change of the structure of networks over time. 

Holme's work has focused on this, including studies on the changing metrics of a Swedish Internet 

dating network called Pussokram [32][33].  Differing from this research, Holme's work investigated 

the trends of aggregate graph measures, such as the average path length and average degree.  

2.9.1. Temporal analysis

Leskovec, Kleinberg and Faloutsos [40] state that little work has been done on analysing long-term 

graph trends:
Many studies have discovered patterns in static graphs, identifying properties in a single snapshot 

of a large network, or in a very small number of snapshots; these include heavy tails for in- and 

out-degree distributions, communities, small-world phenomena, and others.  However, given the 

lack of information about network evolution over long periods, it has been hard to convert these 

findings into statements about trends over time.

Their study of trends found that over time graphs increase in density and the average distance between 

nodes decreases.  This was contrary to the existing beliefs that average nodal degree remains constant 

and average distance slowly increases.  They claimed that existing graph generation models are not 

realistic  and  proposed  a  new “forest-fire”  generation  model.   Desikan  and Srivastava studied  the 

change in metrics of a set  of web pages over time for the graph as a whole and for single nodes 

(subgraphs are their  current  research) [19].   They found that temporal metrics,  such as their  Page 

Usage Popularity, “can be effectively used to boost ranks of recently popular pages to those that are 

more obsolete.”  This seems to indicate that temporal metrics are a useful addition to traditional static 

metrics in the study of some networks.
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2.10. Applications of social network analysis

Social network analysis has many real world applications, especially in the fields of marketing and 

crime prevention.  This section discusses some of these applications.

2.10.1. Search in social networks

Adamic, Lukose and Huberman investigated searching in scale-free networks, such as a peer-to-peer 

system or social network [2].  They assumed that searching a node meant that all its neighbours had 

been included in the search.  This idea is similar to how the participants in Milgram's experiment tried 

to pass a message through a social network, knowing only their immediate neighbours.  It was found 

that  a  random-walk  traversal  of  a  scale-free  network  will  cover  a  large  fraction  of  nodes  of  the 

network since an edge is more likely to lead the random walker to a node of high degree, and such 

nodes are linked to many other nodes in a network.  Thus, when searching for a particular node (an 

expert, or a computer with a certain file),  the search request message can be passed from node to 

node, rather than broadcast to an entire network, and still quickly find the required node in most cases.

2.10.2. Dark networks

A dark network is one that operates covertly and illegally.  Examples include suppressed political 

organisations in countries run by dictators, terrorists, smugglers and drug trafficking organisations.  A 

bright  network  is  one  that  operates  overtly  and  legally.   Examples  include  the  police,  military, 

government and most large companies.  Raab and Milward found in their analysis of many instances 

of  dark networks that  the  topologies  of  dark networks  are  as  varied as  those  of  bright  networks. 

Though the networks are each faced with similar problems of operating covertly, they cope in diverse 

ways [57].   Government intelligence analysts  use combinations of link and group prediction,  past 

criminal activities, potential sites of risk and visualisation techniques to predict the details of future 

criminal activities [53].

2.10.3. Content recommendation systems

Huang et al  investigated the use of link prediction in collaborative filtering recommender systems 

[35].   An example  of  a  recommender  system would  be  Amazon.com,  which  recommends  books 

similar to the one someone is buying, which other buyers of the book have enjoyed.  Amazon.com is 

also  an  example  of  collaborative  filtering,  because  by  their  purchases  users  are  collaboratively 

changing the preference rankings of books in the system.  Collaborative filtering first clusters users 

into similar groups based on their preferences and then recommends to a user items preferred by the 

user's neighbours.  However, the system suffers from two problems.  The bootstrapping problem is 
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that nothing can be recommended when the system is first used as no one has chosen any items.  The 

sparse data problem is that few items can be recommended when only a few users have chosen a few 

items.  This is addressed by Huang by performing link prediction on the graph to predict which items 

users should choose and thereby increase the density of the graph.  Golbeck has also investigated 

content recommendation [26].  Her system used the trust users assign to each other to enhance film 

recommendations.   She has  also  used  social  networks  to  improve mail  sorting and  classification, 

including collaborative spam filtering [27].

2.10.4. Marketing

Companies from Amazon to Yahoo are trying to figure out ways of advertising to customers that 

include references from a trusted source.  For instance, an advertisement would be displayed on a web 

page that endorses a local restaurant using a review written by someone close by in the reader's social 

network.  This application is rapidly gaining importance as analysts believe advertising will be worth 

about 11 billion dollars in 2009 [44].

2.10.5. Ecology

McMahon,  Miller  and Drake recommend that  biological  ecologists  and social  scientists  could use 

each others' tools to better understand their own discipline [46].  They suggest that ecologists could 

use the concepts of betweenness and distance to better understand the interaction of species and that 

regular equivalence is useful for understanding relationships between groups of predator and prey. 

And  in  return,  social  network  analysis  researchers  can  use  molecule  visualisation  techniques  to 

visualise social  networks and can compare the complexity of social  networks using the biological 

concept of “connectance”.

2.10.6. Specific applications of link prediction 

The  capability  to  predict  changes  in  relationships  before  they  occur  is  highly  beneficial  to  an 

organisation.  Examples of the advantages of such social clairvoyance include: 

• Identifying the structure  of  a criminal  network (i.e.  predicting missing links in a criminal 

network using incomplete data) [13].

• Overcoming the data-sparsity problem in recommender systems using collaborative filtering 

[35].

• Accelerating a mutually beneficial professional or academic connection that would have taken 

longer to form serendipitously [20].

• Improving hypertext analysis for information retrieval and search engines [31].
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• Monitoring and controlling computer viruses that use email as a vector [43].

• Predicting  which  web pages  users  will  next  visit  in  order  to  improve  the  efficiency  and 

effectiveness of a site's navigation [73].

• Helping  to  predict  the  spread  of  an  entity  through a  network  [71].   Examples  include  a 

disease, such as HIV, or information, such as a clothing fashion or rumour. 

Link prediction might also be useful in ecology, though interdisciplinary sharing between these two 

fields is still new [46].

2.11. Social data sources

Most social network analysis is focused on analysing a single graph – static analysis.  This is because 

of  the static  nature  of the  data most researchers  have used.   Traditionally,  social  network data  is 

collected by sociological surveys, analysing historical archives or other time consuming processes that 

lead  to  the  creation  of only one sociogram.  However,  the proliferation of the  Internet  has  made 

collecting far  larger  data  sets,  that  provide many sociograms over  time,  an easy task.   Examples 

include  search  engine  records  of  websites,  social  networking  Internet  communities  (such  as  hi5, 

LinkedIn and  Orkut)  and  email  logs.   These  temporal  sequences  of  sociograms provide  a  richer 

description of the underlying network – showing both structure and behaviour.  However, because of 

the  novelty  of  temporal  networks,  there  has  been  almost  no  adaptation  of  static  techniques  to 

techniques more appropriate for them.  Additionally, the massive increase in volume of data on which 

to  perform calculations  that  is  gleaned  from sequences  of  sociograms,  as  contrasted  to  a  single 

sociogram,  has  implications  for  the  practicality  of  computational  analysis.   Whereas  previously 

researchers could calculate all possible metrics for every node and subgraph in a single sociogram, 

now using many sociograms the same detailed analysis would take unacceptably long (many weeks or 

months).  Thus, for the purposes of link prediction, we need to find metrics that are very quick to 

calculate and that also provide useful information for training whatever prediction system is being 

used.

2.12. Computational complexity of social network analysis

Perhaps the biggest problem when trying to understand a sociogram is the amount of time it takes to 

calculate metrics for a graph, and the amount of space it takes to store them.  Let us consider two 

examples, one requiring a large amount of time to calculate and one requiring a large amount space to 

store.   For the first  example,  a commonly used monadic metric is betweenness, the percentage of 

shortest paths between all nodes that contain a specified node.  The calculation of this metric requires 

the discovery of every shortest path between every pair of nodes in the graph.  The time taken to 
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compute these paths increases exponentially as the number of nodes in the graph increases (i.e. over 

each successive time step, as more people join a network).  The storage of this metric is less intensive, 

requiring one value to be stored per node.  In the second instance, consider the task of storing that a 

link exists  between two nodes.   This  is  normally represented  by an edge table  for  sparse  graphs 

(where each vertex has a list of vertices to which it is linked), or an adjacency matrix for dense graphs 

(where a one at mi , j in the matrix implies node i and node j are linked).  Since nearly all large social 

networks are sparse by nature, an edge table is an efficient storage mechanism.  An adjacency matrix 

is not efficient as it increases quadratically in size in proportion to the number of nodes it contains. 

However,  an  edge  table  is  not  suitable  for  many  statistical  calculations  when  performing  link 

prediction.   A large  number  of  network  computations  that  are  simple  to  implement  using matrix 

operations (such as multiplication to find paths of certain lengths) are far more complex to implement 

using an edge table.   Furthermore,  storing dyadic  metrics  that  we have calculated  requires  space 

quadratically proportional to the number of nodes in the graph.  If there are n nodes in a graph we can 

calculate dyadic metrics for up to n2  of them.  This ultimately means that link prediction using most 

artificial  intelligence techniques  requires  a huge amount of  database  space.   Ulrik Brandes  vastly 

increased  the  computational  speed  of  centrality  calculations  from  O(n3)  to  O(nm),  using  a  new 

algorithm2 in 2001 [9].  He invented a method of recursively computing shortest paths for all nodes 

simultaneously.  This increase in computational speed is a certainly a leap forward.  Unfortunately, 

even  using  this  algorithm,  the  sheer  number  of  nodes  and  edges  in  a  large  graph  means  that 

calculating several metrics using a single processor can take a few hours.  Carpenter, Karakostas and 

Shallcross  note  that  computing betweenness  for  an undirected unweighted 6000 node graph takes 

about fifteen minutes [13].

2.13. Decentralisation (distributed intelligence) theory

A dominant theme in the artificial intelligence community currently is distributed intelligence, or the 

decentralisation of decision making capabilities.  Resnick describes how decentralisation is the only 

way to understand certain complex systems, such as: ant colonies, flocks of birds, traffic, economic 

markets,  evolution and immune systems [60].   He also notes that society is currently increasingly 

adopting the decentralisation paradigm in diverse ways, and especially in the computer modelling of 

systems.  These ways include democracy, free markets, flat company management hierarchies and self 

contained business units, the Internet, object orientated programming, evolutionary programming and 

agent-based design.

A decentralised approach to model any group of objects is usually one in which there is no leader 

2 Where n is the number of nodes, and m is the number of edges.
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object (or central planner and commander), and where every object in the model has some degree of 

simple intelligence and contributes to the operation of the model, which emerges from the interactions 

of all the objects.  The advantages of this approach over a traditional centralised approach often are:

• that the model is more realistic, i.e. a better approximation to real behaviour, as objects in 

reality usually have information only on their immediate surroundings,

• that the algorithm is faster, due to performing a larger number of simpler operations,

• that  the  algorithm is  easier  to  design,  due  to  the  simple  nature  of  the  individual  objects' 

operations, but harder to tune for optimum performance, due to the erratic nature of emergent 

behaviour.

2.14. Dealing with complexity in sociograms

Carpenter et al [13] proposed several ways to overcome the prohibitive computational times discussed 

in  the  previous  sections.   They suggest  that  graphs  should  be  separated  into  components  so  that 

separate shortest paths can be calculated for each component and then recombined into longer shortest 

paths for the graph as a whole.  Alternatively, when working with temporal graphs, computations can 

be done that alter existing metrics only by noting the changes that new vertices and edges in the latest 

time step induce (as opposed to recalculating the metrics from scratch at every time step).  They also 

suggest that it may be more useful to use metrics that calculate localised information from a graph 

(i.e. from a small neighbourhood of nodes, as opposed to the entire graph).  This approach seems 

intuitively sound as people  interact  usually only with their  immediate  social  group,  or one social 

group removed.   Also this  approach  fits  well  into  the   emergence paradigm in complex adaptive 

systems, where localised interactions combine to create sophisticated global patterns [23].

Kempe and McSherry investigated a decentralised distributed algorithm for spectral analysis in graphs 

[37].  This algorithm treats each node as a computational entity – i.e. assuming hundreds of thousands 

of multiprocessors (such as computers on the Internet).  Thus it cannot be used for social network 

analysis  performed  using  a  single  processor,  or  even  a  dozen  processors,  due  to  the  massive 

multiprocessor  requirement.   Their  paper  was  related  to  recent  work  that  tries  to  infer  global 

properties  from local  analysis,  such  as  Benjamini  and  Lovasz,  where  certain  global  topological 

properties of a graph were determined from random walks [8].  Kleinberg noted that it is surprising 

that people in Milgram's experiment were able to construct short paths to the target based only on 

local information [38].  He proposed a decentralised algorithm to find short paths based only on local 

knowledge  but  found  it  works  only  in  graphs  with  certain  properties.   These  techniques  are  not 

directly applicable to link prediction but show that local analysis can be a useful tool for analysing 

graphs.   In  an  unpublished  draft  Pattison  and  Robins  propose  neighbourhood-based  models  for 
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understanding social networks [52].  They consider Markovian neighbourhoods and variations as a 

way to understand the structure of social networks.  A pair of possible ties belong to a Markovian 

neighbourhood (and so are conditionally dependent) whenever they have a node in common. 

This is a rare instance of research into local neighbourhoods in the field of social network analysis. 

Though their work is unrelated to link prediction and computational problems it could prove useful if 

applied.

2.15. Conclusions

This chapter  presented a broad overview of social  network analysis.   It introduced the concept  of 

metrics, which are used by researchers to obtain useful sociological information about individuals, 

dyads and groups of people.  The problem of link prediction and various solutions were described. 

Finally, some of the inherent challenges of link prediction and social network analysis were presented. 

These challenges and the deficit in temporal research discussed in this chapter are addressed in the 

rest  of  this  dissertation.   The  next  chapter  describes  the  previous  statistical  and  research 

methodologies that have been used by other researchers, the methodology used in this research and 

the software system used to conduct the research.
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Chapter 3. Research methodology

This  chapter  explains  the  research  methodology  common  to  the  experiments  presented  in  the 

following four chapters.  It presents an overview of the statistical analysis and data mining tools used 

and describes the Java software system created to analyse the data and calculate variations of metrics 

defined by past researchers.  The first part of the chapter reviews common practice in the field of 

social  network  analysis  and  statistics.   The  discussion  is  structured  in  the  same way data  flows 

through a program: starting with raw data, proceeding to metric calculations, input transformations 

and  computations,  and  ending  with  statistical  analysis  techniques.   This  first  half  of  the  chapter 

compares various methodological options.  The second part of the chapter builds on this review to 

describe the exact methodology used in this research.  Also included is an overview of the software 

system designed to store and analyse sequences of social networks.

3.1. Data format

Social network data is simple to store and understand.  At the most basic level all that is needed is the 

names  of  the  nodes  involved  in  a  link  or  message.   This  research  also  made  use  of  temporal 

information, which was obtained from the date on which the message was sent.  An example of a 

social network data set is shown below.  It was taken from the Pussokram data set message file:

34215;8936;2001-2-13 13:54:00
34215;8936;2001-2-13 14:01:00
123154;34215;2001-2-13 16:58:00
34215;42183;2001-2-13 17:07:00
8560;42172;2001-2-13 17:35:00

The columns of the data set are separated by semicolons and the rows are separated by line breaks. 

The first  column names the node that sent the message.  The second column names the node that 

received the message.  The last column specifies the date and time the message was sent.  This data 

was used by Holme in [32] and [33].  Another source of social network data is the log files created by 

email servers.  An example extract from a logfile created by the sendmail program is shown below. 

Fictional addresses have been used to protect privacy.

Dec 30 00:00:00 mail newsyslog[30554]: logfile turned over

Dec 30 00:01:57 mail sendmail[30563]: jBTM1qA30563: 
from=<kaauqeffjtnfy@yahoo.com>, size=20548, class=0, nrcpts=1, 
msgid=<200512292201.jBTM1qA30563@mail.audiobiz.co.za>, proto=SMTP, daemon=MTA, 
relay=213-235-66-135.web.star.ps [223.235.66.135]

Dec 30 00:02:01 mail sendmail[30565]: jBTM1qA30563: 
to=<lindy@jamesonediting.co.za>, delay=00:00:08, xdelay=00:00:00, 
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mailer=local, pri=50231, relay=local, dsn=2.0.0, stat=Sent

Dec 30 00:05:21 mail sendmail[30577]: jBTM5LA30577: 
<jerry@gooseelectric.co.za>... User unknown

Dec 30 00:05:21 mail sendmail[30577]: jBTM5LA30577: lost input channel from 
server.garten.com [88.51.253.17] to MTA after rcpt

Dec 30 00:05:21 mail sendmail[30577]: jBTM5LA30577: from=<>, size=0, class=0, 
nrcpts=0, proto=SMTP, daemon=MTA, relay=server.garten.com [86.70.250.16]

The extract above illustrates some of the challenges in using logs to generate social data.  Firstly, the 

receiving and forwarding of an email  by a server  are  two separate  actions  completed at  different 

times.  Thus we need to match every email that contains “from=<”, with emails that contain “to=<”, 

where all the emails have the same unique message identifier.  Furthermore, bad information as shown 

in the extract, such as empty addresses, unknown users, lost input channels and other errors, must be 

discarded.

3.2. Metric calculation

The  social  network  data  described  in  the  previous  section  forms  the  base  on  which  researchers 

perform metric calculations.  These metrics are typically stored in csv files, where commas separate 

attributes and rows separate instances.  An instance is a set of related metric values (usually a set of 

metrics relating to one or a pair of nodes).  An attribute is usually a metric.  The words instance and 

attribute are general terms that are used in machine learning [70].  There is social network analysis 

software available on the Internet that will perform standard metric calculations.  Researchers that are 

testing  new metrics  have  to  program their  own  metric  computations.   These  metrics  are  in  turn 

statistically analysed for patterns.  In the following subsections the precise definitions of metrics are 

given.

3.2.1. Basic terminology

Before the metrics themselves can be defined, a few basic graph theory definitions must be given. 

The following list of mathematical definitions used in this research provide the basic elements that 

will be used to define metrics in the next section.  The time step, written in subscript, of a set of 

nodes, links or other elements can be omitted if it is implicit or irrelevant.  For the sake of brevity 

most of the definitions and metrics are defined only for  bidirected graphs (i.e.  using the set U n ). 

However, many can trivially be changed to apply to directed graphs (i.e. using the set En ).  In fact, 

metrics can generally be defined in four ways: 

• for bidirected links, 

• for links leaving a node, 
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• for links coming into a node, 

• and for links either leaving a node or coming into it (in which case a bidirected link would be 

counted twice).  

Note that the first and last type of links are not the same.  For instance, the concept of degree (i.e.  

bidirected degree) can be expanded to in-degree, out-degree and inout-degree for each of the four 

ways given above, respectively.  If a node has two bidirected links and one non-reciprocated outgoing 

link its bidirected degree would be two, its out-degree would be three, its in-degree would be two and 

its inout-degree would be five.  This is illustrated for the orange node in the graph below.

Metric definitions that can be used in either of these four ways include strength, recency, distance and 

the set of all shortest paths.  This applies to many of the metrics defined in tables 2, 3 and 4, as well as 

strength and recency, defined in table 1.  Nodes can link to themselves.  Finally, nodes are never 

removed over time, and links never decrease in strength.  This was a simplifying assumption adopted 

in this research.
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Table 1. Basic mathematical definitions used in metric definitions

Name Description
Gn=〈V , E〉 A graph of nodes and links at a given time step n (a point in time).

V n The set of nodes of the social network at time step n.  A node in this set is notated 

as vi . V n contains all nodes from previous time steps (e.g. vi∈V 2⇒vi∈V 49 ).

En The set of links of the social network at time step n.  A link between nodes vi and

v j is notated as ei , j .  Note that this link is directed and is a link from vi to v j . En  

contains all links from previous time steps. 
U n The set of bidirected links of the social network at time step n.  A bidirected link 

between nodes vi and v j is notated as ui , j and u j , i .  Note that this link exists if and 

only if ei , j∈En and e j , i∈En . U n contains all bidirected links from previous time 

steps.  Any node contained in a link in a given time step will also be contained in 

the set of nodes for that time step.
# The number of elements in a set.  E.g. # V n=6 , if the set V n contains six nodes. 

max The maximum element in a set.  E.g. max {2, 4,1, 3}=4 .
min The minimum element in a set.  E.g. min{2, 4,1, 3}=1 . 
mean The mean of a set.  E.g. mean{2, 4,1, 3}=10

4
=2.5 .  

f m ,nvi Given a function f , f m ,nvi is the sequential set of all values of f t vi over the 

time step variable t , ranging from m to n.  E.g.

degree1,365v3={degree1v3 ,degree2v3 , ,degree364v3 ,degree365v3} .

vi The set of neighbours of vi ,i.e.  the set {v j : ui , j∈U } .

str ei , j The strength of a link from node i to node j.  Strength is defined as the number of 

messages sent between the two nodes.
rec ei , j The recency of a link from node i to node j.  Recency is defined as the number of 

time steps that have elapsed since the last message was sent or received.  If a 

message was sent in the last time step the recency of the link would be 1.
rec vi The recency of  node i.  Recency is defined as the number of time steps that have 

elapsed since the last message was sent to or received by any other node.  If a 

message was sent in the last time step the recency of the node would be 1.
dist v i , v j The distance between nodes vi and v j .  In other words the path length (number of 

links) in the shortest path between vi and v j .  If v j is unreachable from vi then

dist v i , v j=0 .  The distance from a node to itself is undefined.
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Name Description
Pvi ,v j The set of all shortest paths from vi to v j .  The elements of Pvi ,v j are sequences 

of nodes, beginning at vi and proceeding along the path to v j .  If p∈Pvi , v j  then 

the distance from vi to v j is #  p =dist v i , v j1 . 

Pvi ,v j , vx The set of all shortest paths from vi to v j that pass through node v x .

3.2.2. Metric definitions

Metrics can be generally be separated into three categories:

• Monadic metrics: calculated for a single node, e.g. degree.

• Dyadic metrics: calculated for a pair of nodes, e.g. number of common neighbours.

• Graph metrics: calculated for an entire graph, e.g. graph size.

These  are  the  categories  into  which  the  metrics  listed  in  the  tables  below have  been  separated. 

Metrics  can  also  be  calculated  on  groups  of  nodes.   These  metrics  are  simply  graph  metrics  as 

computed on a given subgraph and do not warrant their own category.  Note that the word “mean” in 

the name of a metric does not imply that it is a temporal metric, but rather that it is a metric for that 

time step as a whole.  For instance, mean number of messages received is the mean calculated over all 

nodes in the graph in one time step, not the average number of messages received of a given node over 

several time steps.  Some of the metrics listed below are complex to calculate and their algorithm is 

not given if they are not used in this research.  The interested reader can refer to the reference given 

after the metric name for a complete discussion.  The monadic metrics below are defined for the node 

of focus vi at time step n and the dyadic metrics are defined for the pair of nodes vi and v j . 
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Table 2. Monadic metric definitions

Name Definition Description
Degree # {ui , j : ui , j∈U n}

or

# vi

The number of links from vi to 

any node at time step n.

Normalised 

degree [69]

# vi
# V −1

A standardised degree that 

ranges from 0 to 1.  A 

normalised metric is one where 

the metric definition has been 

altered to ensure that the values 

fall within a standard range.
Recency Defined in terminology section The  number  of  time  steps 

elapsed  since  the  node  last 

communicated.

Eccentricity 

[30]

max {dist vi ,v j : v j∈V } The length of the shortest path 

to the node furthest away.

Jordan 

centrality 

[69]

{1 if eccentricity vi=min{eccentricity v j: v j∈V n}
0 otherwise

Has a value of 1 if vi is a 

central node (node of minimum 

eccentricity) in the graph, 

otherwise 0. 
Closeness 

[69]

1
∑

v j∈V n ,v j≠vi

dist vi , v j 
How close the node is to all 

other nodes.  This ranges from 0 

(far away) to 1
# V −1 (very 

central).
Betweenness 

[69]             
∑
v j∈V

∑
v k∈V ,v k≠v j

# P v j , vk ,v i
# P v j , vk

The sum of all shortest paths 

between all nodes that contain
v i as a percentage of all shortest 

paths between all nodes.  It 

ranges from 0 to

# V −1# V −2
2 .
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Name Definition Description
PageRank 

[56]

The fixed point of the following recursive 

definition:

PageRank vi= ∑
v j∈V ,u i , j∈U

PageRank v j
# {u j ,k : u j ,k∈U }

 

This is a very basic definition of 

the web page ranking algorithm 

used by Google.  Intuitively, a 

node has a high importance if 

other nodes of high importance 

link to it.

Table 3. Dyadic metric definitions

Name Definition Description
Distance Defined in table 1 The distance between the two nodes.

Link 

strength

Defined in table 1 The strength (number of messages sent) of 

the link between the two nodes.

Recency Defined in table 1 The  number  of  time  steps  elapsed  since 

the link was last used.

Common 

neighbours 

[35]

# {vk :u i, k∈U n ,uk , j∈U n}

or

# {vi∩v j}

The number of nodes linked to both focus 

nodes (i.e. mutual friends).

Jaccard's 

coefficient 

[35]

# {vi∩ v j}
# {vi∪ v j}

The  number  of  neighbours  of  the  focus 

nodes divided by the number of nodes that 

are neighbours of either focus node.

Adamic\ 

Adar 

similarity 

[1]

General case: 

∑
z :a shared feature

1
log frequency  z

Common neighbours 

case:               ∑
vz∈v i∩ v j

1
log# { v z}

The  number  of  features  shared  by  the 

nodes, divided by the log of the frequency 

of  the  features.   This  metric  rates  rarer 

features more heavily.

Preferential 

attachment

[35]

# {vk : ui, k∈U n}⋅# {v k :u j ,k∈U n}

or

# {vi}⋅# { v j }

The  product  of  the  number  of  edges 

incident to the two nodes.

Katz 

measure 

[41]

∑
l=1

∞

l⋅# {paths 〈l 〉
vi , v j

} , where paths 〈 l 〉
vi , v j

is 

the set of all paths of length l from vi to v j

The sum of  all  paths  between the  nodes 

exponentially damped by length to weight 

short paths more heavily. 01 .

Hitting time 

[41]

The expected number of steps it would take 

for a random walk to reach v j from vi

An asymmetric distance measure.
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Name Definition Description
Commute 

time [41]

hitting time( v j , vi ) + hitting time( vi , v j ) A symmetric version of hitting time.

Rooted 

PageRank 

[41]

The  stationary  distribution  of v j in  a 

random walk from vi ,where on every step 

there is a probability α that we return to the 

root, vi .

A  version  of  hitting  time  that  weights 

closer nodes far more heavily.

SimRank 

[41]

The fixed point of the following recursive 

definition:
SimRank  vi , v j=

{
1 if v i=v j

⋅ ∑
va∈v i

∑
vb∈v j

SimRank va , vb

# { v i}⋅# { v j}
otherwise

Two nodes are  similar  in  the extent  that 

they are joined to similar neighbours.

Table 4. Graph metric definitions

Name Definition Description
Density [69] ∑

v j∈V
degree v j

# V # V −1

How complete a graph is.  Ranges from 

0 (each node is isolated) to 1 (a 

complete graph).  It is equal to the 

average standardised degree and 

computed as such.

Diameter 

[30]

max {eccentricity vi: vi∈V } The length of the longest shortest path 

in the graph.

Size # V n The number of nodes in the graph.

Number of 

edges

# U n The number of edges in the graph.

Degree 

centralisation 

[69]

∑
v j∈V

[degreevx−degreev j ]

# V −1 # V −2
, where v x has 

the maximum degree value in V.

How distributed the degree values are. 

Has a value of 0 in a circle graph 

(equal degree for all nodes) and a value 

of 1 in a star graph (completely 

unequal).
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Name Definition Description
Betweenness 

centralisation 

[69]

∑
v j∈V

[betweenness v x−betweenness v j]

# V −1
, 

where v x has the maximum betweenness 

value in V.

How between on average all nodes are 

to each other.  Has a value of 0 in a 

circle graph (equal betweenness for all 

nodes) and a value of 1 in a star graph 

(completely unequal).

Closeness 

centralisation 

[69]

∑
v j∈V

[closeness v x−closeness v j ]

2# V −1# V −2/# V −3
, where

v x has the maximum closeness value in V.

How close on average all nodes are to 

each other.  Has a value of 0 in a circle 

graph and a value of 1 in a star graph.

3.2.3. Derived metrics

In addition to the metrics listed above, we can derive other metrics related to these.  We can create 

graph  metrics  by taking the  mean,  median,  mode,  etcetera,  of  a  group of  monadic  metrics.   For 

example, mean{indegree vi:v i∈V 4} (the  mean in-degree  per  node  at  time  step  four)  is  a  graph 

metric.  This is also an internodal but intratemporal graph metric – meaning that it is calculated over 

many  different  nodes  but  within  a  single  time  step.   This  is  in  contrast  to  a  metric  such  as

mean ∪
n∈[1..40 ]

indegree v61: v61∈V n , the temporal mean of the in-degree of node 61 in the time range 

from time step one to time step forty, which is an intertemporal metric.  Finally, do not forget that 

most of the metrics defined in the tables can be calculated for any of the four types of links (in, out, bi 

and inout) and can use weighted or unweighted links.

3.2.4. Metrics useful for link prediction

The most useful of metrics for link prediction of those given in section 3.2.2 are dyadic metrics.  This 

is because they usually represent the connective strength of a potential link, either by the distance 

between the nodes, or by their structural similarity.  The next most useful set of metrics are monadic 

metrics.   Though they do not take into account similarities between nodes, they generally give an 

indication of how important  or prestigious an individual  node is.   By the principle of preferential 

attachment new links are likely to be formed incident to nodes of high degree.  Graph and subgraph 

metrics  are generally not  useful  for  link prediction.   This is  because they provide no information 

pertaining to individual nodes and hence provide no information on potential links.  At most these 

metrics can indicate when a graph or subgraph is ready for a new link to occur (for instance, when the 

ratio of nodes to links becomes unusually high), after which monadic and dyadic links could be used 
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to find where the link would occur.  This might be useful in sequences of specialised networks  in 

which links arise very seldom.  However, many links arose in each time step in the data set used in 

this research.  Finally, we recall from the previous chapter that Huang et al [35] found that the Katz 

measure  was  the  most  useful,  followed  by  preferential  attachment,  common  neighbours  and  the 

Adamic\Adar measure. 

3.3. Input transformations

Input  transformations  are  operations  performed on the  metric  input  data  that  prepare  it  for  being 

learnt.  Attribute selection is one example.  Attributes in a learning model that have no predictive 

value  cause  the  performance  of  most  models  to  deteriorate  [70].   We can  therefore  improve  the 

performance of a model by selecting only relevant variables to be part of a data set and removing 

others.  Removing attributes that seem irrelevant based on our knowledge of the concept in question is 

called the filter method.  Removing attributes that would confound a specific learning model that has 

been chosen is called the wrapper method.  Generally, attribute selection aims to remove redundant 

attributes (those that are highly correlated to other attributes), and irrelevant attributes (those that do 

not contribute much to prediction).  Techniques used to achieve this include forward selection (where 

attributes are added one at a time to an empty set and then evaluated), backward elimination, beam 

searches and the use of genetic algorithms.  These processes are all computationally expensive as they 

require performing multiple tests on each attribute multiple times.  Other common transformations 

that were not necessary for this research include discretisation of numeric attributes, filtering noisy 

instances and creating synthetic attributes from existing attributes that better suit the chosen model.

3.4. Data modelling

Data  modelling  involves  analysing attributes  to  find  statistically  significant  relationships  between 

them.   For  link  prediction  specifically,  it  involves  finding  relationships  between  the  y-variable 

(whether two nodes are forming a new link) and all the other monadic and dyadic metrics (attributes) 

of the nodes.  In other words, we are trying to find quantitative rules that classify dyads into two 

classes, or groups, based only on the values of their attributes.  Fitting models to a data set is called 

data  mining,  part  of  the  broader  field  of  statistics  [70].   There  are  many  techniques  that  can 

accomplish  this,  including  linear  regression,  logistic  regression,  Bayesian  networks  [51]  and 

clustering.   These  techniques  all  consist  of  two phases:  learning (or  training)  a model  and using 

(testing) the model for prediction on new data.
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3.5. False positives and instance weighting

Once a model has been learnt it can be used for prediction on new data.  Given an instance to classify 

either  positively  or  negatively  (for  a  new  link  forming  or  not,  respectively),  four  outcomes  are 

possible.  The instance can be classed as positive, and actually be a link forming.  This is called a true 

positive, “TP”.  The instance can be classed as positive, but not be a link forming.  This is called a 

false positive, “FP”.  In statistics this is called a type I error, i.e. rejecting a null hypothesis when it is 

true [67].  The instance can be classed as negative, and not be a link forming.  This is called a true 

negative, “TN”.  The instance can be classed as negative, but actually be a link forming.  This is 

called a false negative, “FN”.  In statistics this is called a type II error, i.e. accepting a null hypothesis 

when it is false [67].  If this seems counter-intuitive, remember that accepting a link prediction null 

hypothesis usually would mean accepting that a dyad is normal, negative, or not forming a new link. 

For the link prediction problem we are less concerned with false positives than false negatives.  In 

other words, we are interested in any potential new links being predicted by a model even if they have 

a very low probability.  We would be upset to miss any new links that form.  This is because social 

networks are incredibly sparse.  There are extremely fewer new links forming in a time step than the 

number of possible links that could form, which are quadratically proportional to the number of nodes 

in the graph.  Thus an analyst studying a network would like to have any potential links highlighted by 

an artificial intelligence program.  He or she can then examine the two nodes suggested in more detail 

manually.  This would be true in crime, business or marketing analysis.  However, because the ratio of 

forming links to  potential  forming links is  so incredibly small  almost  no forming links would be 

predicted using a system trained on a random sample of social network instances.  Instead we have to 

perform instance weighting.  This means that the number of positive instances in the training set is not 

representative of the number of positive instances we would find in the whole social network.  Rather, 

we increase the number of positive instances to be equal to the number of negative instances.  This 

50\50 split of classes that was chosen for this research is different from that used in most previous 

research methodologies.  This is because the networks mentioned in the previous chapter were very 

small compared the networks used in this research.  Thus most of the researchers mentioned in the 

previous  chapter  were  able  to use  their  entire  network as training data,  including all  the  positive 

instances.  This is not possible using networks consisting of many thousands of nodes.  Although 

finding true positives is important, the number of false positives cannot be allowed to become too 

large or the system will become useless.  This is discussed later in the section on model evaluation.

3.6. Regression

Regression analysis  is a statistical technique used to find an equation that describes a quantitative 

relationship between a dependent variable, y, and its causes, x1, x2, etcetera [67].  It is one of the many 
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possible learning techniques a machine learning system can use.  Linear regression is discussed first 

to introduce the concept simply.  Logistic regression is then discussed.  It is a specialised form of 

regression that is not normally taught in basic statistics courses and is appropriate for link prediction.

3.6.1. Linear regression

Linear regression is a commonly used form of regression that assumes the relationship between the 

variables can be described by the equation of a straight line: y=b0b1 x .  We can extend this model 

to include a series of x variables by using multiple regression.  The regression equation then describes 

a plane in many dimensions.  Linear multiple regression can be implemented simply by using matrix 

algebra [68].  This is described in the following paragraphs:

Let Y=[ y1

y2

⋮
yn
] be the vector containing the y-values (what we are trying to predict) in n observations of 

the variables.

Let B=[b1

b2

⋮
bn
] be the vector containing the coefficients of the x-variables (metrics) that we are trying to 

learn.

Let X=[11⋮1
x11

x21

⋮
xn1

x12

x22

⋮
xn2

⋯
⋯
⋮
⋯

x1p

x2p

⋮
xnp
] be  the  n  by  p+1  matrix  containing  the  values  of  the  x-variables  in  the 

observation set.  The first column consists only of ones to allow for the calculation of the constant 

coefficient,  b0.   We  want Y=X B to  be  a  reasonable  approximation  for  the  actual  relationship 

between x and y.  Thus the values of B are found by minimising the residuals (difference between the 

predicted values of y given x, and the actual values of y in the sample observations) using the least 

squares method.  This is called the maximum likelihood approach.  The equation that gives a best 

fitting line for the coefficients is: B=X ' X −1 X 'Y , where ' indicates the transpose of a matrix (in 

some texts the ' is replaced by T) and -1 indicates the inverse of a matrix.  If X ' X does not have full 

rank and an inverse cannot be calculated for it, any generalised inverse will suffice [45].
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3.6.2. Updating linear regression

There are times when one might wish to update a regression equation when new evidence becomes 

available, without recomputing the equation using all the original data.  This might be the case when 

there is simply too much data to store in memory at one time and invert, or when a model changes 

over time and the coefficients of an equation must be altered to reflect this new situation.  Both these 

cases are true when working with a sequence of sociograms: there are literally billions of possible 

combinations nodes to use as evidence points and the network changes as each time step passes.  It is 

relatively trivial to separate the regression process into separate parts and store temporary values that 

are updated when new data becomes available.  All that has to be stored to update an equation is the 

small matrix X ' X , though the values it contains will become quite large as they are sums of squares. 

We can separate the equation B=X ' X −1 X 'Y into matrices for different ranges of n (observation 

sets or instances).  This equation given for different values of n is obtained by simply chopping the 

original matrices off at a given row and putting the chopped off part in a new matrix.  We now have

Bn=X 1 ' X 1X 2 ' X 2X n ' X n 
−1X 1 'Y 1X 2 'Y 2X n 'Y n .   So if we compute an 

equation at time n-1, we need to store only X n−1 ' X n−1 and X n−1 'Y n−1 .  Then the coefficients at 

time n can be calculated using Bn=X n−1 ' X n−1X n ' X n
−1X n−1 ' Y n−1X n' Y n  [24].

3.6.3. Logistic regression

Linear regression is the most commonly used form of regression but it is not suitable for the purposes 

of link prediction.  This is because the range of y using a linear equation is −∞ ;∞ , but we are 

trying to predict a binary or dichotomous variable, i.e. one or zero, whether a link will arise or it will 

not.  Hosmer and Lemeshow recommend logistic regression as the suitable method for binary data 

[34].  It is a standard social network analysis technique and has been used by many researchers in the 

past, including [39][36][52][28][54] and [64].  Instead of basing our predictions of y on the equation

y=b0b1 x1b2 x2bn xn ,  logistic  regression  is  based  on  the  equation 

y=x= eb0b1 x1b2 x2bn xn

1eb0b1 x1b2 x2bn xn
.  The advantages of this technique is that the range of y is [0 ;1]

and that  it  uses  similar  principles  to  linear  regression.   Linear  regression  uses  the  least  squares 

approach to minimise residuals.   This is  simply a specific application of the maximum likelihood 

approach.   The  maximum  likelihood  approach  can  be  used  with  logistic  regression  but  a  new 

maximum likelihood  function  must  be  defined  to  suit  logarithms.   The  derivation  of  a  suitable 

function is given on page nine of [34].  It is proposed that a likelihood function for the vector of 
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coefficients,  B, of an equation should be  l B=∏
i=1

n

xi ,  where x i=xi
y i [1−x i]

1− y i . 

Because logistic regression is non-linear the coefficient calculation process is not a simple matrix 

combination, but rather an iterative process in which the coefficients are gradually converged upon. 

This makes it more complex and far slower than linear regression.

3.7. Model evaluation

A link prediction model is evaluated based on how accurate its predictions are, given a sample of test 

data.  It is common practice to separate a large data set into two parts: one for training a model and 

one for  testing the  trained  model  [70].   The  quality  of  a  model  can  be found by calculating the 

percentage of test  data  instances  classed correctly,  using only the  given test  metrics.   This  is  the 

success rate of the model, which we are aiming to get as close to 100% as possible.  The accuracy of a 

model depends on the statistical system chosen and the variables that are chosen to train it.  In the 

same way a linear model would not be suitable for quadratic data, if a model is chosen with metrics 

that have no correlation with the class types, the accuracy of the model will be low.  As mentioned in 

the previous section on true positives, we are more interested in finding all true positives, even if a 

number of false positive are included in our predicted results.  The true positive rate is defined as

TP
TPFN and is given as a percentage.  The numerator represents all the forming links we correctly 

predicted.  The denominator is the sum of these links, as well as the links we did not predict.  In other  

words the denominator represents the total number of new links that formed in a time step.  Thus the 

TP rate is the percentage of all links we discovered.  The aim of link prediction is to maximise the TP 

rate, rather than the overall success rate, which is defined as
TPTN

TPTNFPFN .  However, we 

would like to minimise the number of false positives we find, to make a human analyst's job easier, 

but this is not as important as maximising the TP rate.  In other words we would like to minimise the 

number of false positives, as a percentage of all the positive classifications the system makes.  We 

would like to minimise
FP

TPFP , the percentage of predicted forming links that are incorrect.  This 

is different from the standard data mining definition of the false positive rate, defined as
FP

FPTN , 

which  represents  the  number  of  negatives  we  predicted  as  positives  as  a  percentage  of  all  the 

negatives in the set.  It is in fact the true positive rate for the negative class.  In other words we are 

trying to find the true positive rates of both classes, forming links and unconnected links.  
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Another  way  to  evaluate  the  accuracy  of  a  model  is  to  use  the  kappa  statistic,  defined  as 

P A−PE
1−P E  , where P(A) is the total percentage accuracy of instances predicted by the learning 

system and P(E) is the total percentage accuracy of instances predicted by random guessing [11].  If 

an equal number of positive and negative instance are used P(E) = 0.5 and 1 – P(E) = 0.5.  The kappa 

statistic ranges from -100% to 100% and tells us how much more useful a model is, compared to a 

random guess [22].  However, it does not take the increased value of true positives into account, and 

weights true positives and true negatives as equally desired [70].  Values higher than 40% are said to 

indicate “good agreement beyond chance” [22].   This statistic  has not been widely used in social 

network analysis, but is extremely useful as it allows researchers working on data sets with different 

numbers of new links forming to compare their predictive accuracy.  This cannot be done with the 

simple percentage total accuracy statistic, as it does not take into account the number of positive and 

negative instances.

3.8. The methodology used in this research

This section discusses the exact methodology used in this research.  The methodology is placed in the 

theory framework created by previous researchers.

3.8.1. Data source

The  data  set  used  for  this  research  is  the  Pussokram Internet  dating  site  message  exchange  log. 

Pussokram is a Swedish dating site that translates roughly to “hug and kiss” in English.  Users must be 

registered with the site  to exchange messages.  It was studied by Petter Holme for his studies on 

temporal trends [32][33].  It consists of 500 time steps starting with a graph consisting of 24 nodes, 21 

directed links and 6 bidirected links.  By the final time step the graph consists of 21541 nodes, 20003 

directed links and 6863 bidirected links.  The time range used in this research was from time step 50 

to time step 150.  The respective nodes, directed links and bidirected links are 5736, 5286 and 1713 

for time step 50 and 12265, 11328 and 3813 for time step 150.  The total number of new links formed 

over  this  time  range  is  9939.   This  gives  an  average  of  99  forming  links  per  time  step.   The 

experiments were conducted using the specified time range for two reasons.  Firstly, by starting at 

time step 50 the metrics are calculated on a graph that is already sizeable and therefore realistic and 

interesting.  Secondly, computing metrics for one hundred time steps instead of the available 450 time 

steps saves time (as metric calculations  can take several  days) without  affecting the worth of  the 

results.
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The final experimental chapter uses the Netcash email log data set in addition to the Pussokram data 

set.  The performance of the Netcash data set is compared to that of the Pussokram data set to see if 

the classification system used performed equally well on a real-world email database.  The Netcash 

data were extracted by this researcher from an email log consisting of email records collected over a 

period  of ten months  during 2005 and 2006.   It  consists  of  268 time steps  starting with a graph 

consisting of 840 nodes, 174 directed links and 16 bidirected links.  By the final time step the graph 

consists of 40756 nodes, 1180 directed links and 252 bidirected links.  The time range used in this 

research was from time step 50 to time step 150.  The respective nodes, directed links and bidirected 

links are 14287, 595 and 131 for time step 50 and 26654, 906 and 227 for time step 150.  The total  

number of new links formed over this time range is 4765.  This gives an average of 48 forming links 

per time step.  The ratio of nodes to links in the Netcash data set is vastly greater than the ratio in the  

Pussokram data set because email can have multiple recipients.  We could say that in time step 150 

there is a core set of only 227 nodes.  The other email recipients have very weak one-sided ties to the 

other users.

3.8.2. System overview

This section gives an overview of the system, Tesa (a contraction of the words “temporal sociogram 

analysis”), programmed for this research in Java to analyse sociogram sequences.  As this research 

focusses on the mathematics of link prediction only a brief description of the system is given.  A 

diagram of the most important classes is shown below.
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The system consists of the following classes:

• GUI and Experimenter, which allow the user to interact with the system,

• NetworkConverter,  Sociogram and MetricGenerator,  which  perform the  mathematical  and 

graph theoretic computations and conversions, and

• Database, which stores and retrieves sociogram sequences from the MySQL database.

The system uses two external Java packages, Jung and Weka.  Jung (Java Universal Network\Graph 

framework) is  used by GUI to display graphs on the screen.   Weka is  used to perform statistical 

analysis on the data files generated by Experimenter.  Each class is now discussed in turn.  

The GUI was used to display the graphs in the data set at various time steps.  A screen shot is shown 

below.
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The graph is shown in panel at the top right of the screen.  Since sociograms are generally very large 

it is practically impossible to show an entire graph at one time.  Instead, in keeping with the local 

analysis  focus  of  this  research,  only  egocentric  subgraphs  were  shown  at  any  given  time.   An 

egocentric graph is one that is centred around a single individual.  For instance, when researchers 

speak  of  constructing an  egocentric  graph  they mean that  they  asked  only a  single  individual  to 

describe his social network.  For example, in the figure above the black node at the top of the screen is 

the node of focus.  Its neighbours are shown in blue, its neighbours' neighbours are shown in green, its 

neighbours' neighbours' neighbours are shown in yellow and its neighbours' neighbours' neighbours' 

neighbours are shown in pink.  There is an exponential increase in the number of nodes shown in a 

subgraph as we increase the radius from the node of focus.  Thus it becomes slow and impractical to 

show subgraphs at a radius greater than five for popular nodes.  Different colours were used at each 

radius to clearly highlight  the structure of the subgraph.   The nodes and the strength of the links 

(number of messages exchanged between nodes) could be labelled on the graph.  Finally the number 

of sides of the polygon illustrating the node was proportional to the degree of the node.  Thus nodes 
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with a degree of three or less are shown as triangles, nodes of degree four are shown as squares and so 

on, up to nodes with a degree of twenty, where after  the shape is indistinguishable from a circle. 

From a system perspective, GUI stored graphs as Sociograms, which were in turn loaded into memory 

using the Database class to access the actual database stored on disk.

The  Experimenter  class  was  used  to  perform  the  various  experiments  discussed  in  subsequent 

chapters.  It loaded Sociograms into memory for a given time range, selected random instances of 

unconnected- and forming links and had the MetricGenerator class calculate various metrics for these 

instances.   The  instances  and  their  associated  metrics  were  saved  to  csv  files.   Experimenter 

performed  higher  level  functions  than  the  MetricGenerator  class.   For  instance,  Experimenter 

aggregated and then calculated temporal statistics from all the metrics calculated by MetricGenerator 

at various individual time steps.

NetworkConverter  is  a  seldom used  class  that  converts  graphs  from one  form  to  another.   For 

instance, the data set stored by Pussokram in one specific format was converted to a format usable by 

the Database class so that it could be stored in the database.  Additionally NetworkConverter is able to 

output Sociograms as Pajek (a popular social network analysis program) files and convert email logs 

into Sociograms.

Sociogram  represented  social  networks  and  stored  information  in  Node  and  Link  classes. 

Specifically, Java  TreeMaps were used to ensure an access time of constant order.  Directed links 

were stored from the origin node to the destination node and from the destination node to the origin 

node.  This made certain calculations that involve finding common neighbours extremely fast, as links 

both  to  and  from a  node  are  immediately  available.   Bidirected  links  were  stored  in  a  separate 

TreeMap.

The MetricGenerator class computed the various metrics described in the experiments.  This class 

implemented the standard metric definitions that were altered to allow for computation at any given 

radius  for  the  local  subgraph  of  a  given  node.   It  implemented  Brandes'  algorithm [9]  for  fast 

computation of betweenness  (also altered to accommodate  local  subgraphs).   Metrics  can also be 

calculated for any given link type.  E.g. the common neighbours or distance of two nodes can be 

calculated using only links pointing towards the given nodes, pointing out from them, or pointing in 

both directions.

The Database class has almost  no noteworthy elements and is simply a way to interface with the 

MySQL database holding the social data sets.  Its only other use is to calculate the metric  recency. 
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Monadic recency is the number of time steps that have elapsed since a node last sent or received a 

message.  It was calculated by the Database class rather than the MetricGenerator class, as might be 

expected.  This is because calculating recency using MetricGenerator would require loading many 

Sociograms into  memory,  which  is  relatively slow.   Instead,  the  process  was accomplished  more 

quickly by using Database to search for recent links using SQL queries on individual nodes in the 

database itself.

3.8.3. Metric computations

One general  computational  methodology was used for  the  experiments  described in  the  following 

chapters.  One experiment is described per chapter, but they all use the same data set and similar 

computations.  They differ slightly and these differences are described in the chapters themselves. 

The general methodology is simple and described now.  A y-variable was chosen for a pair of nodes, 

for instance whether a new link is forming in the next time step, and an equal number of positive and 

negative cases were chosen for one hundred time steps.  Dyadic and monadic metrics were calculated 

for each dyad instance in each time step.  All these values were written to a csv text file.  An example 

extract of such a file is shown below, where columns are lined up neatly and the commas separating 

the values in each row into columns have been removed.

Table 5. Example csv file

TS From To CF NDegreeF NDegreeT Size2F Size2T CN JC AA
50 101033 33161 0 0 3.49E-004 68 12 0 0 0
50 104447 123807 0 5.23E-004 3.49E-004 11 4 1 0.33 2.1
50 106156 125313 0 1.74E-004 3.49E-004 2 2 0 0 0

Each column stores  an attribute.   The  first  row of  the  file  contains  the  attribute  names  (column 

headings).   Every subsequent row in the file  represents an instance.  Relational  data,  such as that 

found in the relationships between people in social networks, needs to be converted from attributes 

contained in a single instance for each person to a single instance for a relation between two people. 

Converting  this  information  into  a  flat  file  format,  such  as  the  one  shown  above,  is  called 

denormalisation.  These values were then analysed by Weka, a set of artificial intelligence learning 

models [70].  Liben-Nowell observed that we cannot possibly hope to predict links arising incident to 

new nodes in the current time step [41].  Thus in this research, similar to his methodology, we exclude 

all links in the next time step that form incident to nodes that are not in the graph in the current time 

step from our set of positive cases.  The metrics used in the following experiments were chosen as 

they were the metrics having the highest usefulness for prediction, according to Huang et al  [35]. 

Their standard metrics definitions were used, as given in [1], [35], [41], [69] and [30].  Some original 

Chapter 3. Research methodology 56



metrics were invented for this research and are listed in the metric definitions tables in this chapter. 

Differing trivially from previous research, the distance from one node to another was attempted to be 

found only up to a distance of thirty nodes.  A review of the data used revealed that  it  is highly 

unlikely any nodes will be connected at a distance greater than twenty; thus searching beyond this 

distance is unhelpful.  Previous researchers searched the entire graph to find distance because their 

graphs were small enough to make this feasible, or because they were using only one time step.

This paragraph describes the general procedure that was used to calculate a set of metrics.  For every 

time step the node set was searched to find 100 dyads where a link is forming.  This requires checking 

that the nodes are unconnected in the current time step and connected in the next time step.  In certain 

time  steps,  less  than  100  forming  links  were  available.   Thus  the  sample  size  of  most  of  the 

experiments is 9939 instances per class, rather than 10000.  After the forming links were chosen an 

equal number of unconnected dyads (or dyads with a hidden link as the case may be) were chosen. 

Metrics were calculated for each instance and immediately written to an output file.  The exception to 

this procedure is the temporal statistics experiment.  In this case metrics had to be computed for up to 

twenty time steps at a time in order to calculate temporal values over all the time steps.

3.8.4. Statistical analysis

This research follows the standard practice discussed earlier, separating the dyad instances using a 

70\30 split.  70% of the data is used for training and the remaining 30% of instances are used to test 

the model after training.  A statistical learning system was used to classify positive and negative cases 

according to their metrics.  The accuracy of the system was given, both as an overall percentage, true 

positive rates for both classes and as a kappa value.  Additionally, the difference in the metric means 

of the positive and negative cases was evaluated for traditional statistical significance.  The statistical 

evaluation of the results used in this research is similar to the standard approach used in most related 

studies (e.g. [54]).  Taskar et al [64] used an eight-fold train-test split and Popescul and Ungar [54] 

used a ten-fold split, which was not necessary in this research due to the abundance of data.  Popescul 

and Ungar used an equal number of positive and negative cases, the same method as used in this 

research.  Since there is an equal number of positive and negative instances in the data set a random 

prediction would have an accuracy of 50%.  Thus any trained model has to have an accuracy of above 

50% to be of any worth at all.  In 2003 Liben-Nowell and Kleinberg's study of link prediction used 

two years worth of training data and test data from the subsequent two years [42].  They evaluated the 

accuracy  of  their  method  using  the  true  positive  rate  only,  but  gave  the  accuracy  as  a  factor 

improvement  over  random accuracy.   This  makes  it  difficult  to  compare  their  results  with  other 

studies,  which  may use  different  quantities  of  positive  and  negative  cases.   Additionally,  Liben-
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Nowell took his predictions to be the dyads scoring highest on certain metrics (common neighbours, 

Katz, etc) and did not use a separate data mining system, as was done in this research.

The individual predictive accuracy of each metric was evaluated, as well as the combined accuracy of 

sets of multiple metrics.  An attribute selection method in Weka was used to discover the most useful 

combinations  of metrics  to use in each experiment.   Weka allows a user  to combine a variety of 

attribute evaluators and search methods to discover useful sets.  Specifically, the ClassifierSubsetEval  

attribute evaluator was used to evaluate the usefulness of each attribute when using logistic regression 

as the classification scheme.  Two different search methods were used to generate sets, the BestFirst 

and  GeneticSearch methods.   BestFirst starts  with  an  empty  set  and  adds  nodes  with  a  high 

classification ranking until the usefulness of the set starts to decline.  Then the algorithm backtracks 

and tries to include different nodes in the set to see if the accuracy can be increased.  GeneticSearch 

uses  a  simple  genetic  algorithm  to  create  random  attribute  sets,  evaluate  them,  and  breed  new 

generations of more accurate sets.  Additionally, standard statistical hypothesis testing was performed 

to  test  the  difference  between  the  mean metric  values  for  each  class  (e.g.  links  that  are  hidden, 

forming or unconnected dyads).  The test statistic used was a normal distribution two sided difference 

of means test.   The standard formula for this  test statistic is
z=

X 1− X 2

1
2

n1

2

2

n2

,  where X is the mean 

metric value, 2 is the variance of the metric, n is the sample size, the subscript 1 denotes a value 

related to the negative cases and the subscript 2 denotes a value related to the positive cases [67]. 

Although nodes in social networks are not normally distributed (it was discussed how nodes and links 

obey a power law relationship in chapter two) the central limit theorem of statistics allows us to use 

this  simple statistical  test  of  normal distribution to determine the significance of the  results  [67]. 

Simply put, the central limit theorem states that if we have a very large number of instances for which 

we are calculating means, it does not matter what the underlying distribution was and we can treat it 

as if it is were a normal distribution.

3.8.5. Comparing these results to others

Liben-Nowell's sociograms were a lot smaller than the ones used in this research [41].  Thus he was 

able  to work with all  arising links when performing prediction.   Because of the  huge size of  the 

networks used in this research all possible links could not be investigated.  Instead, a sample of all 

possible  links had to be used.   For every positive case  (a link arising in the  next  time step) one 
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negative case (a pair of nodes where a new link does not arise in the next time step) was randomly 

selected from the graph.   This  gives a random prediction an accuracy of 50%,  in  contrast  to  the 

random predictions in Liben-Nowell's networks, which had an accuracy of roughly 0.2%.  His best 

predictor  in  his  best  data  set  was  correct  on  only  16.1% of  predictions.   This  leaves  us  with  a 

statistical comparison problem since most link prediction research presents accuracy in terms of factor 

improvements over random predictions.  An improvement over random predictions in a sparse graph 

where perhaps only 0.2% of cases are positive will be much higher than using test data where there is 

a 50% split between positive and negative cases.  However, even though using factor improvements as 

a  benchmark  will  be  unhelpful  in  this  case,  Liben-Nowell's  figure  of  16.1%  can  be  used  for 

comparison.

3.9. Conclusions

This chapter described the previous statistical and research methodologies that were used by other 

researchers,  the  methodology used  in  this  research  and  the  software  system used  to  conduct  the 

research.   It  explained  how the  metrics  computed  from social  networks  are  used  in  data  mining 

experiments.   A  general  experimental  methodology  was  presented  that  forms  the  basis  for  the 

experiments  described  in  the  following  chapters.   Each  of  the  experiments  has  peculiarities  that 

slightly deviate from or augment the general methodology.  These differences are discussed in the 

experiment chapters.  The next chapter begins the experimental section of the discussion.  We start 

with an investigation into link prediction and link detection.
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Chapter 4. Link prediction versus link detection

This chapter  addresses the differences between link prediction and link detection.  It defines each 

problem, suggests intuitively how the graph structure surrounding new links might differ from the 

structure surrounding hidden, but existing, links and describes the experiment undertaken to verify 

these intuitions.  It uses definitions and concepts discussed in detail in the earlier background chapters 

on  social  network  analysis,  including  link  prediction  and  link  detection.   Only methodology and 

motivations peculiar to this experiment are given in this chapter; the general statistical methodology 

and motivation in terms of previous research for the methodology used in this experiment is given in 

the previous background chapter on statistical methodology. 

4.1. A definition of link prediction and link detection

Link prediction is defined as determining whether a link will arise in the next time step between two 

nodes that are unlinked in the current time step [42].  In other words, if and only if two nodes are not 

adjacent in the current time step but are adjacent in the next time step, we say there is a link forming 

in the current time step.  For computational purposes we create a binary variable called LinkForming, 

representing the state of this possible new link.  For example, LinkForming893, 110 equals one if 

nodes 93 and 110 are not adjacent at time step 8, but are adjacent at time step 9.  This variable would 

equal 0 if either nodes 93 and 110 are adjacent at time step 8, or if they are not adjacent at time step 9. 

We now define  the  related  problem of  link  detection.   Link  detection  is  defined  as  determining 

whether a link exists between two nodes in the current time step, without a link between the nodes 

being present in the graph.  This would occur when graph data is incomplete and a link between two 

nodes  has  been  hidden  intentionally  or  through   negligence.   This  idea  has  received  hardly  any 

individual attention, though it has been used or mentioned in [41][39][54] and [63].  To simulate this 

in a graph we need to choose a connected dyad and then remove its link to create an unconnected 

dyad.  This acts as a hidden link, while the surrounding graph structure remains untouched.

4.2. Motivation for the investigation

Until now no research has been conducted into whether detection is similar to prediction and whether 

identical techniques can be used to solve the problems.  Link detection should be as useful a problem 

to solve as link prediction, espcially for criminal analysis.  This problem is similar to link prediction 

in that it attempts to find missing links, but differs in that the links are hidden in the current time step, 

either through missing data or intentional subterfuge, and may have existed for long periods of time. 
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It has to be assumed that researchers believe the two problems of detection and prediction are similar, 

and that techniques that work on prediction can be used for detection.  In other words, researchers 

have implicitly assumed that the values of metrics indicating that a link is forming in the current time 

step will be the same as the values of metrics indicating that a link is hidden in the current time step. 

This may be true,  but intuitively it  seems as though there might be a difference between the two 

situations.  One would think that the graph structure surrounding two individuals who have known 

each other for a long time would be different from that surrounding two individuals who are about to 

meet.  For instance, two connected nodes might have more mutual friends than unconnected nodes, 

they might have fewer non-mutual friends, and their neighbours at a distance of two links away might 

themselves  be  at  a  closer  distance  and  might  have  more  mutual  friends.   This  leads  to  three 

possibilities: that the metric values of connected links and forming links are identical, that the values 

are similar and differ only in magnitude, or that the values are significantly different in structurally 

important ways.  These possibilities are illustrated below.  In the following sets of figures, the orange 

link in the diagram on the left represents a hidden link between the two orange nodes (a link detection 

problem) and the orange link in the diagram on the right represents a link that will form in the next 

time step (a link prediction problem).

Figure 14. A hidden link between two 

nodes with two common neighbours               

Figure 15. A forming link between two 

nodes with two common neighbours

The diagrams above illustrate the first possibility (identical problems).  The dyad on the left, having 

the hidden link, and the dyad on the right, having the forming link, will have the same metrics.  This is 

because they both have two common neighbours.  This is the view that researchers probably currently 

have of the problems, that they are identical.
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Figure 16. A hidden link between two 

nodes with many common neighbours               

Figure 17. A forming link between two 

nodes with two common neighbours

The diagrams above illustrate the second possibility (difference in magnitude).  The dyad on the left, 

having the hidden link, and the dyad on the right, having the forming link, will have similar but not 

identical metrics.  The dyad on the left has more common neighbours and thus will have higher metric 

values than the dyad on the right.  This might occur since people who have links that are hidden but 

well established might have far more mutual friends than people who about to meet.

 

Figure 18. A hidden link between two 

nodes with few common neighbours at  

small radii               

Figure 19: A forming link between two 

nodes with many common neighbours of  

high degree

The diagrams above illustrate the third possibility (difference in structure).   The dyad on the left, 

having the hidden link, and the dyad on the right, having the forming link, will have very different 

metrics.  The dyad on the left has only one common neighbour whereas the dyad on the right has 
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three.  Furthermore, the dyad on the left has many more paths of distance two and few neighbours of 

high degree.   This  might  occur  if  people  trying to  hide  that  they  know each  other  communicate 

through long chains of acquaintances who do not know each other.  The dyad on the right has many 

common neighbours of high degree.  This might occur when two people who belong to two highly 

connected social groups are about to meet.  Both this third possibility and the preceding one illustrate 

cases where a different classification system will have to be used for hidden and forming links.  In 

other words, though both problems can be solved through analysing the values of the same metrics, 

the metric values themselves might be very different.

4.3. Hypothesis statement

The null hypothesis of this experiment is that link prediction can use the same techniques in the same 

way to predict  links  forming between nodes  as link detection does to  detect  hidden links.   More 

mathematically, the null hypothesis is that the kappa value of a regression performed on hidden and 

forming links will be less than 40%.

4.4. Methodology

This section describes the experiment undertaken to find if there are differences between prediction 

and detection.  It follows the general methodology described in the research methodology chapter. 

Sample metric values were taken for three classes, 19878 instances,  over 100 time steps.   The y-

variable chosen equalled zero if two nodes under consideration were unconnected, equalled one if the 

two nodes had a hidden link and equalled two if  the nodes  had a forming link.  The x-variables 

included the monadic metrics: normalised degree and the neighbourhood size at a radius of two3; and 

the  neighbour-based  dyadic  metrics:  common  neighbours,  Jaccard's  coefficient,  Adamic\Adar 

similarity  and  preferential  attachment.   The  distance  metrics  used  were:  the  simple  unweighted 

distance and the  Katz  measure.   These  metrics  were  defined  in  the  tables  in  chapter  three.   The 

column headings for the data set calculated are:

NDegreeF, NDegreeT, Size2F, Size2T, CN, JC, AA, PA, Dist, Katz.

The metric names are abbreviations or initialisms of the corresponding metric names mentioned in the 

previous paragraph.  The monadic metric names are suffixed with  F (from) and  T (to) to indicate 

which node in the dyad they represent.  Statistics were calculated for each metric for the positive and 

negative cases and are displayed in the results section below.  If there is indeed a structural difference 

in the networks surrounding hidden and forming links then a statistical  system should be able  to 

3 Equivalent to the local metric degree at a radius of two, discussed in the chapter on local metrics.
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correctly classify each type of link by the associated metric.

4.5. Results

This results section presents both the statistics of the metrics calculated and their predictive accuracy 

individually and in sets.  These results are presented in three tables.  The first  table,  6, shows the 

statistical means test for the hidden and forming classes using every metric.   The second table,  7, 

shows detailed results of the accuracy attained by logistic regression using each metric individually. 

The third table,  8, shows the accuracy attained using sets of metrics.  Thereafter two more similar 

tables are presented.  These tables, 9 and 10, hold results for three classes, unconnected links, hidden 

links  and forming links.   This  is  perhaps  a better  simulation  of  reality,  where  we would have to 

distinguish not  only between hidden and forming links,  but  also between them and links that  are 

completely unconnected and will remain that way.

Each row in the following table gives the statistics associated with a certain metric.  The first column 

in the table gives the name of the metric.  The second and third columns give the average of the values 

for the metric for the hidden and forming dyads respectively.  The fourth and fifth columns give the 

standard deviation of the values for the metric for the hidden and forming dyads respectively.  The 

mean difference column shows the value of the hidden mean minus the forming mean.  Thus, it is 

negative when metrics associated with a forming dyad are larger than those associated with an hidden 

dyad.  The test statistic column gives the value of the Normal distribution test statistic,  calculated 

using the mean and standard deviation values as described in the research methodology chapter.  The 

subsequent column gives the significance level associated with the test statistic.  The final column 

shows the kappa statistic for the metric, as given by Weka using logistic regression.  It is not related to 

the standard hypothesis testing statistics given in the previous column.

Table 6. Mean metric values

Metric Hidden mean

Forming 

mean

Hidden 

standard 

deviation

Forming 

standard 

deviation

Mean 

Difference

Test 

statistic

Significance 

level Kappa
NDegreeF 0.0002 0.0009 0.0005 0.0022 -0.0006 -27.6 0.01% 24.30%
NDegreeT 0.0011 0.0008 0.0026 0.0021 0.0003 9.9 0.01% 6.60%
Size2F 19.9522 44.9479 41.9858 93.6341 -24.9957 -24.3 0.01% 17.11%
Size2T 60.4137 41.9855 117.1428 88.4634 18.4282 12.5 0.01% 10.45%
CN 0.0405 0.0231 0.2271 0.1791 0.0174 6.0 0.01% 1.44%
JC 0.0102 0.0044 0.0748 0.0474 0.0059 6.6 0.01% 1.51%
AA 0.0611 0.0329 0.3666 0.2701 0.0283 6.2 0.01% 1.44%
PA 18.5685 33.2047 75.8562 114.0258 -14.6363 -10.7 0.01% 9.30%
Dist 4.8046 5.0648 1.5948 1.5800 -0.2603 -11.6 0.01% -1.80%
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Metric Hidden mean

Forming 

mean

Hidden 

standard 

deviation

Forming 

standard 

deviation

Mean 

Difference

Test 

statistic

Significance 

level Kappa
Katz 0.0323 0.0348 0.0517 0.0467 -0.0025 -3.6 0.05% 7.79%

The  table  below  lists  each  metric  individually  in  separate  rows  and  describes  their  usefulness 

(contribution to accuracy) in a logistic regression.  The first column shows the kappa statistic, which 

is a measure of how much more accurate a prediction is,  compared to a random prediction.  The 

metrics are ranked in descending order of their kappa value.  The total accuracy can be described in 

different  ways.   The  last  column shows the  overall  accuracy of the  regression.   As explained  in 

chapter three, this value can be deceptive and is not as useful as the kappa statistic.  The third and 

fourth columns are important and show the true positive rate for each class.

Table 7. Metric predictive accuracy, ranked by kappa

Metric Kappa Hidden TP rate Forming TP rate Overall accuracy
NDegreeF 24.30% 79.2% 45.1% 62.2736%
Size2F 17.11% 79.7% 37.4% 58.719%
Size2T 10.45% 32% 78.5% 55.0302%
PA 9.30% 81.4% 27.9% 54.8793%
Katz 7.79% 60.8% 47% 53.9571%
NDegreeT 6.60% 22.8% 83.9% 53.0349%
JC 1.51% 3.5% 98.1% 50.3186%
CN 1.44% 3.6% 97.9% 50.285%
AA 1.44% 3.6% 97.7% 50.285%
Dist -1.80% 17% 81.2% 48.7928%

The following table uses the same columns as the one above, but instead of showing the accuracy of 

each metric individually it shows the accuracy of regressions performed with different sets of metrics. 

The metric subset column describes the type of metrics used in italics and then lists all the metrics in 

the set.  Weka's best first search found the same set of metrics as the genetic search (it was stated in 

chapter three that both searches would be used in the experiments).  Thus the regression for those 

metrics is shown only once.

Table 8. Metrics set predictive accuracy
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Metric subset Kappa Hidden TP rate Forming TP rate Overall accuracy
All metrics 27.61% 75.5% 52.0% 63.8833%

Weka's logistic  

subset classifier 

genetic attribute  

selection search:

NDegreeF, 

NDegreeT, 

Size2T, AA, 

PA,Dist

27.5% 75.5% 51.9% 63.833%

The table below has the same format as the second table in this section but lists the results for three 

classes, not just two.  It compares the classification accuracy of a logistic regression for unconnected-, 

hidden- and forming dyads.

Table 9. Metric predictive accuracy, ranked by kappa

Metric Kappa

Unconnected 

TP rate

Hidden TP 

rate Forming TP rate Overall accuracy
NDegreeT 18.15% 80.8% 32.7% 22.7% 45.5064%
Size2T 15.02% 80.2% 36.9% 12.9% 43.4049%
PA 14.88% 87.1% 18.8% 22.9% 43.0807%
NDegreeF 12.76% 70% 11.7% 43.6% 41.9405%
Katz 12.1% 80.3% 5.9% 37.8% 41.5269%
Size2F 9.34% 71.4% 12.1% 35% 39.6714%
CN 1.63% 99.8% 3.5% 0% 34.6188%
AA 1.63% 99.8% 3.5% 0% 34.6188%
JC -1.64% 85.1% 11.7% 0% 32.3944%
Dist -3.31% 17.1% 32.9% 43.5% 31.1424%

Like the previous table,  the following table has a format that has already been described.   It also 

displays three classes rather than two.  Once again Weka's best first  search found the same set of 

metrics as the genetic search.  Thus the regression for those metrics is shown only once.

Table 10. Metrics set predictive accuracy
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Metric subset Kappa Unconnected 

TP rate

Hidden TP 

rate

Forming TP rate Overall accuracy

All metrics: 28.84% 73.9% 44.4% 39.3% 52.5933%

Weka's logistic  

subset classifier 

genetic attribute  

selection search:

NDegreeF, 

NDegreeT, 

Size2T, Size2F, 

Dist, CN

29.4% 75.6% 47.2% 36% 52.9622%

4.6. Conclusions

This section draws conclusions from the data presented in the tables and graphs above.  Firstly, a note 

on interpreting the mean differences: bear in mind that a negative difference means that the forming 

link  metrics  were  larger  than  the  connected  (hidden)  link  metrics,  and  vice  versa  for  positive 

differences.  

We first  examine the table of means,  Table 6.  The mean differences are found to be very highly 

significant.  This should negate the null hypothesis.  However, looking at the individual kappa values 

for these metrics we see that none of them are higher than 40%.  This is the minimum level for “good 

agreement  beyond chance”.   However,  when used  in  combination  these  metrics  may prove more 

useful.   We  examine  that  possibility  later  in  this  section.   Before  that  we  examine  the  metrics 

themselves to see if they indicate any structural differences between hidden and forming links.  The 

normalised degree and size at radius two metrics (the first four rows) indicate the popularity of a node 

and the popularity of the node's neighbours respectively.  We can see that for hidden links (connected 

links) there tends to be a disparity in the from node's and the to node's metric values.  However for 

forming links the values tend to be equal.  The common neighbour-based metrics (CN, JC and AA) all 

have higher values for the hidden links than for the forming links.  They tend to be approximately 

double, indicating that people who know each other have roughly twice as many mutual friends as 

people who are about to meet.  The preferential attachment value is higher for forming links than for 

existing links, again being roughly double.  This indicates that a dyad with a high number of total 

neighbours has more chance of forming a link than a dyad with fewer.  The distance and Katz metrics 

are roughly equal  at  approximately five,  indicating that  distance is  not a distinguishing factor  for 

Chapter 4. Link prediction versus link detection 67



hidden and forming links.  

The  second table,  Table  7,  does  not  give  us  much more information.   It  shows  us  that  a  node's 

popularity and a dyad's preferential attachment are the most useful metrics for classification and that 

common neighbour-based metrics and distance metrics are the least useful.  The third table, Table 8, 

showing predictive accuracy for metrics used in combination, shows equal accuracies for the rows 

displaying all metrics and a selected lesser number.  Both these regressions have total accuracies of 

only 64%, with kappa values of only 28%.  This is barely better than using normalised degree from by 

itself, which had a kappa of 24%.  The last two tables, 9 and 10, contain another class, unconnected 

dyads, in addition to the hidden links and forming links we have been considering.  We can see that 

the metrics that were previously useful now become less so.  Size at radius two becomes far  less 

useful, but preferential attachment and the Katz number have higher kappas than before.  However, 

there is almost no change in the predictive accuracy when using all the metrics together.  Table 10 

shows us that the predictive accuracy of these metrics remains with a kappa of 29%.  This is barely 

one percent  higher than the  prediction using the two classes  by themselves.   Thus it  appears that 

although unconnected-, hidden- and forming dyads have different structural subgraph patterns, these 

patterns cannot be used to accurately distinguish between the dyads and the null hypothesis cannot be 

completely refuted.  Researchers are thus mostly correct in treating the two problems as essentially 

identical.

To summarise, we have found that:

• There is a difference in structure between hidden and forming links: hidden links have twice 

as many common neighbours, half as large a preferential attachment and more disparate nodal 

degrees than forming links.  Distance is not a distinguishing factor.

• Although all metrics differences are very highly significantly different no individual metric is 

useful for regression in accurately classifying the two classes.

• Furthermore  even  when  using  all  the  metrics  together  it  is  not  possible  to  successfully 

distinguish hidden links from forming ones (a kappa of only 29%).
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Chapter 5. Temporal link analysis

This chapter describes an investigation of whether and how temporal analysis techniques can aid link 

prediction.  It explains how current link prediction techniques completely ignore temporal information 

by  using  only  static  metrics,  suggests  statistics  that  would  quantify  temporal  information  and 

describes  the  experiment  undertaken  to  determine  the  usefulness  of  these  statistics.   Only 

methodology peculiar to this experiment is given in this chapter; the general statistical methodology 

is given in the background chapter on research methodology. 

5.1. Deficiencies in static link prediction 

I believe the definition of link prediction by Liben-Nowell and Kleinberg is deficient [42].   Their 

approach to the problem is limited as it attempts to predict the evolution of a complex entity over time 

from a snapshot – the previous time step.  Consider the analogy of trying to predict the position of a 

thrown ball a second from now, given only a photograph of the ball when it was released from the 

thrower's hand.  It is true that the ball's position can be approximately predicted, but it would be better 

to have seen the ball move through the air.  In other words, we need to know the velocity of a social  

network, not just its position – we need to examine more time steps than just the previous one.  To 

continue the analogy, the position of a social network is given by traditional social network analysis 

metrics  calculated  from a  snapshot,  but  velocity  can  be  determined  only by calculating  temporal 

statistics (metrics) using the history of changes to a network (i.e. an  animation  of the network over 

discrete time intervals).  This idea is explained using the diagrams below.  First consider trying to 

predict links from a single graph.  In the diagram below assume that a link that we would like to 

predict is forming between the orange nodes.  We can see that the orange nodes have neither the 

highest degrees, the shortest path lengths or the highest number of common neighbours.  Thus we 

might  guess  a  link  is  forming  between  them,  but  we  would  not  have  much  confidence  in  our 

prediction.
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Figure 20. Prediction from a single 

sociogram

However, now consider the same graph shown as part of a temporal sequence of four time steps.  This 

is illustrated below.

Figure 21. Time step one of four               Figure 22. Time step two of four
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Figure 23. Time step three of four               Figure 24. Time step four of four

These graphs provide far more information than the final time step alone.  It is now apparent that 

orange nodes are highly likely to form a new link.  We can see that these two nodes have been far 

more active over the past three time steps than any of the other nodes.  Their degree has a higher daily 

average increase than any of the other nodes.  The overall increase in degree from the first to the last 

time step has also been far greater than the other nodes.  If we examined how many messages were 

exchanged between various nodes  we might find that  the orange nodes were also far  more active 

communicators  with  existing  neighbours  than  other  nodes.   In  this  chapter  we  describe  ways  of 

measuring these ideas and testing for their actual usefulness in a real world network.  Though these 

ideas seem both simple and powerful it is easy to see how they could be overlooked by researchers to 

date.  Ignoring the temporal information inherent in a sequence of  social networks was due to the lack 

of data availability until recently, as explained in chapter two.  Researchers were not interested in, and 

did not  have available,  large sequences of networks.  This situation has changed and needs to be 

addressed by modern social network analysis practitioners.  The obvious question now is: “How do 

we quantify temporal behaviour and trends into relevant metrics or statistics that can be used for link 

analysis?”  Though there are many possibilities, in this research a few temporal statistics were defined 

that seemed to represent a broad selection of ways to quantify temporal trends.  

Before  the  definitions  are  given,  it  must  be  pointed  out  that  some classification  systems  do  use 

temporal information, but not in the sense we mean it here.  For instance, dynamic Bayesian networks 

include time steps as another set of nodes and links in the graph structure of their classification system 

[48].  This allows the system to mine temporal relationships – but only for the metrics it has been 

given to observe.  Such a network can be used to perform tasks such as predicting links in a certain 

number of future time steps (rather than just the next time step).  However it cannot discern temporal 

information from the sociogram structure other than by temporally analysing traditional (static) social 
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network metrics it has in its given evidence data set.

5.2. Temporal statistics

In order to illustrate how existing temporal statistical ideas can be incorporated into the study of link 

prediction we use finance as an analogy.  Finance is a useful analogy as the study of financial markets 

has  led  to  helpful  ways  of  incorporating  trends  for  prediction.   One  of  the  most  basic  trend 

quantifications is the concept of return.  Return is the percentage increase or decrease of a value over 

a period of time [61].  For instance, if we are considering the degree of node v i from time step one to 

time step fifty, the degree return would be degree50v i−degree1v i
degree1vi

.  Return is used in finance to 

calculate how much a share has increased in value over the time an investor has held it.  In other 

words it can be a measure of profit or loss.  In a social network, return quantifies how the metric value 

of a node, dyad or graph has increased or decreased over time.  For example, it allows us to compare 

the rates of decrease of distance of two dyads over time.  We might expect that the dyad that is getting 

closer faster would be more likely of forming a link first.  Similarly, a node with a very low degree 

return is unlikely to form new links in the present.  

Finance also uses moving averages to extract long-term trends from short term noise [61].  A moving 

average is the average of the values of a metric calculated for every time step surrounding a point. 

For instance, if we are considering the degree of node v i from time step one to time step fifty, the 

degree average would be ∑
t=1

t=50

degreetv i

50

.  

Social network researchers also seemed to have ignored the timing of communications between nodes. 

Although they have defined the concept of strong and weak ties (often representing how many times a 

pair of nodes has communicated), they have not focused much on the frequency of communications. 

Frequency might also be an important indication of trends.  Thus the recency of two nodes is defined 

as one plus the number of time steps that have elapsed since they last communicated (which can be 

defined in any of the four possible combinations of directed and bidirected ways).  Recency can also 

be  defined  for  a  single  node,  and  is  the  number  of  time  steps  elapsed  since  the  node  last 

communicated.  One is added to the number of elapsed time steps so that if the node communicated in 

the current time step (giving an elapsed value of zero) its recency will be one and will have an effect 
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on the statistical process.  These ideas were first proposed in an earlier form in two articles stemming 

from the research described in this dissertation [5][6].

5.3. Hypothesis statement

The null hypothesis of this experiment is that using temporal metrics in addition to static metrics will 

not increase the accuracy of link prediction.   More mathematically, the null hypothesis is that the 

kappa value of a regression performed using temporal and traditional metrics will  be equal to the 

kappa value of a regression performed using traditional metrics.

5.4. Methodology

This section describes the experiment undertaken to find if including temporal information in addition 

to static metric values can enhance link prediction.  It follows the general methodology described in 

the research methodology chapter.  As this is a totally new area of research I was forced to invent 

temporal statistics that may or may not embody useful temporal information.  This implies that  if 

these statistics are found to be useful then temporal analysis warrants further investigation.  However 

if the experiment finds no extra value in the temporal statistics it may simply be because the statistics 

defined were unhelpful, and not that temporal analysis is useless in itself.  The experiment conducted 

using these statistics is explained below.  Sample metric values were taken for 9939 instances per 

class for two classes over 100 time steps.  The y-variable chosen equalled zero if two nodes under 

consideration were unconnected and equalled one if the nodes had a forming link.  Thus the negative 

case is the unconnected class and the positive case is the link forming class.  The x-variables used 

include the  dyadic  metrics  past  research  has  shown to be  best  predictors  of  links.   The  monadic 

metrics used were degree and recency, which were calculated for both nodes in the dyad.  The dyadic 

metrics  used  were:  the  Katz  measure,  preferential  attachment,  common  neighbours  and  the 

Adamic\Adar number.  In addition to these static metrics their temporal variants were also stored as 

metrics in the sample data set.  For every x-variable listed above, the return and the average were 

calculated for the last twenty time steps, the last ten time steps and the last two time steps.  This range 

of time steps was chosen to see if the size of the window of observations makes any difference to the 

usefulness of the temporal statistics.  All metrics were calculated using bidirected links.  If a metric 

could  not  be  calculated  for  a  given  instance  it  was  classed  as  a  missing  value.   This  happens 

frequently when computing temporal metrics as a node is often missing in a previous time step.  This 

occurs when a node is chosen as part of a sample in the current time step but only joined the network 

five time steps ago.  Thus when calculating the temporal average for ten time steps in the past the 

metric will have a value of “NaN (“not a number”in Java).  Missing values can be handled by most 
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learning systems, including Weka.

The column headings for the data set calculated are: 

DegreeF, DegreeT, RecF, RecT, Katz, PA, CN, AA, 

DegreeFR20, DegreeFR10, DegreeFR2, DegreeTR20, DegreeTR10, DegreeTR2, KatzR20, KatzR10,  

KatzR2, PAR20, PAR10, PAR2, CNR20, CNR10, CNR2, AAR20, AAR10, AAR2, RecFR20, RecFR10,  

RecFR2, RecTR20, RecTR10, RecTR2, 

DegreeFA20, DegreeFA10, DegreeFA2, DegreeTA20, DegreeTA10, DegreeTA2, KatzA20, KatzA10,  

KatzA2, PAA20, PAA10, PAA2, CNA20, CNA10, CNA2, AAA20, AAA10, AAA2, RecFA20, RecFA10,  

RecFA2, RecTA20, RecTA10, RecTA2.

The suffix F stands for From (the first node in a dyad), T stands for To (the second node in a dyad), 

R20 stands for return for the past twenty time steps, R10 stands for return for the past ten time steps, 

and R2 stands for return for the past two time steps, A20 stands for average for the past twenty time 

steps,  A10 stands for average for the past ten time steps, and A2 stands for average for the past two 

time steps.  The temporal values for all the metric types were calculated by loading the sociograms for 

the past twenty time steps into memory and calculating the metrics needed for the required nodes. 

These values were stored in an array so that temporal statistics such as average and return could be 

calculated for them.  Thus calculating temporal metrics is approximately twenty times slower than 

calculating static metrics, as the same metrics have to be calculated for twenty time steps rather than 

just one.

5.5. Results

This results section presents both the statistics of the metrics calculated and their predictive accuracy 

individually and in sets.  These results are presented in three tables.  The first table,  11, shows the 

statistical means test for both classes using every metric.  The second table, 12, shows detailed results 

of the accuracy attained by logistic regression using each metric individually.  The third and last table, 

13, shows shows the accuracy attained using sets of metrics.

Each row in the table below gives the statistics associated with a certain metric.  The metrics are 

grouped into all the variations of the base statistics.  The thick black horizontal lines delineate the 

different metric groupings.  The first column in the table gives the name of the metric.  The second 

and third columns give the average of the values for  the metric for the unconnected- and forming 

dyads respectively.  The fourth and fifth columns give the standard deviation of the values for the 

metric for the unconnected- and forming dyads respectively.  The mean difference column shows the 
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value of the unconnected mean minus the forming mean.  Thus, it is negative when metrics associated 

with a forming dyad are larger than those associated with an unconnected dyad.  The test statistic 

column  gives  the  value  of  the  Normal  distribution  test  statistic,  calculated  using  the  mean  and 

standard deviation values as described in the research methodology chapter.  The subsequent column 

gives  the  significance  level  associated  with  the  test  statistic.   The  final  column shows the  kappa 

statistic for the metric, as given by Weka, using logistic regression.  It is not related to the standard 

hypothesis  testing  statistics  given  in  the  previous  column,  but  allows  the  reader  to  compare  the 

general usefulness of each temporal variation of the statistic.

Table 11. Metric statistics, grouped by category

Metric

Unconnected 

mean

Forming 

mean

Unconnected 

standard 

deviation

Forming 

standard 

deviation

Mean 

Difference

Test 

statistic

Significance 

level Kappa
DegreeFA20 1.9438 8.6818 3.5317 21.5584 -6.7379 -30.75 0.0001 35.48%
DegreeFA10 1.9152 8.3771 3.5181 22.4411 -6.4618 -28.36 0.0001 35.12%
DegreeFA2 1.8927 7.9833 3.5052 22.1150 -6.0906 -27.12 0.0001 29.85%
DegreeF 1.8876 7.8111 3.5006 21.9536 -5.9235 -26.56 0.0001 27.13%
DegreeFR20 0.1361 0.7550 0.5419 2.2471 -0.6189 -26.69 0.0001 10.26%
DegreeFR10 0.0626 0.4599 0.3011 1.8352 -0.3973 -21.3 0.0001 5.86%
DegreeFR2 0.0089 0.0505 0.0952 0.2291 -0.0417 -16.74 0.0001 -8.33%
DegreeTA20 1.9810 8.0030 3.4860 19.1849 -6.0220 -30.79 0.0001 42.46%
DegreeTA10 1.9606 8.0086 3.5178 20.3095 -6.0480 -29.25 0.0001 41.54%
DegreeTA2 1.9256 7.5180 3.5184 20.7846 -5.5923 -26.45 0.0001 32.30%
DegreeT 1.9223 7.0698 3.5223 20.2884 -5.1475 -24.92 0.0001 26.47%
DegreeTR20 0.1426 0.6271 0.5724 1.6312 -0.4844 -27.94 0.0001 15.68%
DegreeTR10 0.0658 0.4169 0.2848 1.5329 -0.3510 -22.45 0.0001 12.97%
DegreeTR2 0.0066 0.0795 0.0734 0.3285 -0.0729 -21.59 0.0001 -2.55%
KatzA20 0.0111 0.0427 0.0225 0.0473 -0.0316 -60.08 0.0001 41.78%
KatzA10 0.0110 0.0415 0.0229 0.0475 -0.0305 -57.7 0.0001 44.92%
KatzA2 0.0107 0.0373 0.0227 0.0471 -0.0267 -50.8 0.0001 37.32%
Katz 0.0106 0.0348 0.0227 0.0467 -0.0241 -46.31 0.0001 28.17%
KatzR20 0.2177 0.5243 0.6967 1.4813 -0.3065 -18.67 0.0001 -2%
KatzR10 0.1344 0.3634 0.6071 1.2972 -0.2290 -15.94 0.0001 -7%
KatzR2 0.0094 0.0846 0.1194 0.6620 -0.0752 -11.15 0.0001 -23.1%
PAA20 3.8428 38.6423 17.7252 97.9615 -34.7995 -34.85 0.0001 45.46%
PAA10 3.7283 37.9504 17.0146 106.8425 -34.2221 -31.54 0.0001 48.36%
PAA2 3.6188 35.7246 16.5470 117.9152 -32.1059 -26.88 0.0001 41.61%
PA 3.6043 33.2047 16.4837 114.0258 -29.6005 -25.61 0.0001 33.27%
PAR20 0.2813 1.6457 0.8481 4.4977 -1.3645 -29.72 0.0001 5.31%
PAR10 0.1404 1.0239 0.5073 3.2094 -0.8835 -27.11 0.0001 1.36%
PAR2 0.0151 0.1359 0.1213 0.4344 -0.1209 -26.72 0.0001 -10.6%
CNA20 0.0015 0.0306 0.0477 0.2007 -0.0290 -14.02 0.0001 32.2%
CNA10 0.0019 0.0302 0.0507 0.2012 -0.0283 -13.58 0.0001 29.17%
CNA2 0.0019 0.0253 0.0497 0.1865 -0.0234 -12.1 0.0001 12.52%
CN 0.0019 0.0231 0.0501 0.1791 -0.0212 -11.38 0.0001 1.92%
CNR20 0.0000 0.0920 0.0000 0.3282 -0.0920 -27.93 0.0001 -0.87%
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Metric

Unconnected 

mean

Forming 

mean

Unconnected 

standard 

deviation

Forming 

standard 

deviation

Mean 

Difference

Test 

statistic

Significance 

level Kappa
CNR10 0.0000 0.0794 0.0000 0.2639 -0.0794 -29.98 0.0001 -1.18%
CNR2 0.0000 0.0112 0.0000 0.1054 -0.0112 -10.57 0.0001 -0.00%
AAA20 0.0015 0.0442 0.0656 0.3151 -0.0427 -13.22 0.0001 32.2%
AAA10 0.0019 0.0417 0.0656 0.2989 -0.0399 -12.99 0.0001 29.17%
AAA2 0.0017 0.0357 0.0619 0.2785 -0.0340 -11.87 0.0001 12.52%
AA 0.0017 0.0329 0.0615 0.2701 -0.0311 -11.21 0.0001 1.92%
AAR20 -0.0393 -0.0091 0.0481 0.2333 -0.0301 -12.62 0.0001 -0.40%
AAR10 -0.0163 0.0539 0.0376 0.2920 -0.0702 -23.78 0.0001 -1.18%
AAR2 -0.0092 0.0066 0.0346 0.1109 -0.0158 -13.59 0.0001 0.07%
RecFA20 38.1636 12.5866 30.5582 16.1022 25.5771 73.82 0.0001 28.38%
RecFA10 38.2149 11.9455 32.0390 16.3050 26.2694 72.85 0.0001 35.75%
RecFA2 38.7039 11.0723 33.3012 16.5778 27.6316 74.05 0.0001 44.52%
RecF 38.7928 10.8518 33.4656 16.6218 27.9410 74.55 0.0001 46.34%
RecFR20 1.5342 1.4653 3.1617 3.5274 0.0688 1.45 NS -2.92%
RecFR10 0.7021 0.8002 1.5502 1.9719 -0.0981 -3.9 0.0001 1.82%
RecFR2 0.0814 0.1413 0.2480 0.4357 -0.0599 -11.91 0.0001 8.46%
RecTA20 37.3356 15.1974 30.3941 18.7683 22.1382 61.78 0.0001 14.80%
RecTA10 37.5869 14.0277 31.8041 18.7829 23.5592 63.59 0.0001 22.61%
RecTA2 37.7987 11.8050 33.1000 18.2863 25.9937 68.53 0.0001 37.67%
RecT 37.8514 11.1834 33.2870 18.0862 26.6681 70.18 0.0001 42.41%
RecTR20 1.5430 1.5128 3.1033 3.5408 0.0302 0.64 NS 0.00%
RecTR10 0.6878 0.8434 1.5252 2.0300 -0.1556 -6.11 0.0001 8.01%
RecTR2 0.0797 0.1669 0.2564 0.4539 -0.0872 -16.67 0.0001 12.87%

The  table  below  lists  each  metric  individually  in  separate  rows  and  describes  their  usefulness 

(contribution to accuracy) in a logistic regression.  The first column shows the kappa statistic, which 

is a measure of how much more accurate a prediction is, compared to a random prediction.  If the 

value is negative it means that using the given metric gives a prediction model that is even worse than 

guessing randomly.  The metrics  are ranked in descending order  of their  kappa value.   The total 

accuracy can be described in different  ways.  The last  column shows the overall  accuracy of the 

regression.  This value can be deceptive and is not as useful as the kappa statistic.  The third and 

fourth columns are important and show the true positive rate for each class.

Table 12. Metric predictive accuracy, ranked by kappa

Metric Kappa Unconnected TP rate Forming TP rate Overall accuracy
PAA10 48.36% 80.0% 68.3% 74.2119%
RecF 46.34% 73.4% 72.9% 73.1724%
PAA20 45.46% 67.2% 78.3% 72.7029%
KatzA10 44.92% 70.2% 74.7% 72.4514%
RecFA2 44.52% 73.2% 71.4% 72.2669%
DegreeTA20 42.46% 70.7% 71.8% 71.2274%
RecT 42.41% 71.9% 70.5% 71.2106%
KatzA20 41.78% 58.7% 83.2% 70.8249%
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Metric Kappa Unconnected TP rate Forming TP rate Overall accuracy
PAA2 41.61% 89.0% 52.4% 70.9088%
DegreeTA10 41.54% 77.5% 64.0% 70.8082%
RecTA2 37.67% 70.5% 67.2% 68.8464%
KatzA2 37.32% 79.9% 57.3% 68.7290%
RecFA10 35.75% 72.9% 62.8% 67.9074%
DegreeFA20 35.48% 70.6% 64.8% 67.7565%
DegreeFA10 35.12% 77.5% 57.6% 67.6224%
PA 33.27% 90.3% 42.9% 66.7840%
DegreeTA2 32.30% 75.9% 56.3% 66.2140%
AAA20 32.20% 73.2% 58.9% 66.1469%
CNA20 32.20% 73.2% 58.9% 66.1469%
DegreeFA2 29.85% 82.4% 47.3% 65.0402%
CNA10 29.17% 87.2% 41.9% 64.7384%
AAA10 29.17% 87.2% 41.9% 64.7384%
RecFA20 28.38% 75.6% 52.7% 64.2689%
Katz 28.17% 81.1% 47.0% 64.2019%
DegreeF 27.13% 83.1% 44.0% 63.6989%
DegreeT 26.47% 76.5% 49.9% 63.3300%
RecTA10 22.61% 69.6% 53.0% 61.3682%
DegreeTR20 15.68% 45.7% 70.0% 57.7465%
RecTA20 14.80% 71.6% 43.2% 57.5117%
DegreeTR10 12.97% 52.6% 60.4% 56.4554%
RecTR2 12.87% 57.0% 55.8% 56.4386%
CNA2 12.52% 98.5% 13.9% 56.6063%
AAA2 12.52% 98.5% 13.9% 56.6063%
DegreeFR20 10.26% 47.1% 63.1% 55.0637%
RecFR2 8.46% 55.5% 52.9% 54.2421%
RecTR10 8.01% 48.5% 59.5% 53.9571%
DegreeFR10 5.86% 53.4% 52.5% 52.9343%
PAR20 5.31% 23.6% 81.8% 52.3977%
CN 1.92% 99.8% 2.10% 51.4085%
AA 1.92% 99.8% 2.10% 51.4085%
RecFR10 1.82% 44.9% 56.9% 50.8551%
PAR10 1.36% 30.0% 71.4% 50.4863%
AAR2 0.07% 0.0% 99.9% 49.4970%
DegreeTR2 -2.55% 60.8% 36.7% 48.8431%
RecTR20 0.00% 0.0% 100.0% 49.5305%
CNR2 0.00% 0.0% 100.0% 49.5305%
AAR20 -0.400% 0.0% 99.6% 49.3293%
CNR20 -0.87% 0.10% 99.0% 49.0946%
CNR10 -1.18% 0.2% 98.6% 48.9437%
AAR10 -1.18% 0.2% 98.6% 48.9437%
RecFR20 -2.92% 8.9% 88.2% 48.1556%
KatzR20 -7.56% 22.1% 70.3% 45.9759%
KatzR10 -7.56% 22.1% 70.3% 45.9759%
DegreeFR2 -8.33% 59.6% 32.1% 45.9759%
PAR2 -10.61% 35.5% 53.9% 44.6009%
KatzR2 -23.15% 27.5% 49.3% 38.2964%

The graph below shows how the kappa of each metric increases as we take moving averages over 
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different numbers of time steps prior to the current one for the given metric.
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Figure 25. Increase in kappa per time step for average metrics

The table below uses the same columns as the one above, but instead of showing the accuracy of each 

metric individually it shows the accuracy of regressions performed with different sets of metrics.  The 

metric subset column describes the type of metrics used in italics and then lists all the metrics in the 

set.

Table 13. Metrics set predictive accuracy
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Metric subset Kappa Unconnected TP rate Forming TP rate Overall accuracy
Static metrics:

            

DegreeF, 

DegreeT, Katz, 

PA, CN, AA

39.83% 79.8% 59.9% 69.9698%

Static metrics with  

average 10:

DegreeF,

DegreeT,

Katz, PA, CN, 

AA,

DegreeFA10,

DegreeTA10,

KatzA10, PAA10, 

CNA10, AAA10 

51.13% 80.4% 70.1% 75.5869%

Static metrics with  

average 20:

DegreeF,

DegreeT,

Katz, PA, CN, 

AA,

DegreeFA20,

DegreeTA20,

KatzA20, PAA20, 

CNA20, AAA20 

53.62% 80.6% 73.0% 76.8276%
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Metric subset Kappa Unconnected TP rate Forming TP rate Overall accuracy
Static metrics with  

average 10 and 

recency:

DegreeF,

DegreeT,

Katz, PA, CN, 

AA, RecF, RecT, 

DegreeFA10,

DegreeTA10,

KatzA10, PAA10, 

CNA10, AAA10 

63.62% 81.3% 82.4% 81.8075%

Metrics with 

highest individual  

accuracy:

RecF, RecT, 

DegreeFA20, 

DegreeTA20, 

PAA10, KatzA10

63.59% 80.3% 83.3% 81.7907%

Weka's logistic  

subset classifier 

best first  attribute 

selection search:

RecF, RecT, CN, 

AA, DegreeFA20, 

DegreeFA10, 

DegreeTA20, 

DegreeTA2, 

KatzA10, PAA10, 

PAA2, RecFA10

64.02% 81.2% 82.8% 82.0087%

5.6. Conclusions

This section draws conclusions from the results presented in the three tables in the previous section. 

The first table, Table 11, shows that there is a highly significant statistical difference between the two 

classes for all the metrics except for a few of the recency returns.  Some metrics that are significantly 
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different from zero are not useful for distinguishing the two classes.  This can be seen by the low 

kappa values for some of the metrics with high test statistics, such as common neighbours.  However, 

the metrics with better predictive power than their sibling variants do indeed have higher test statistics 

than them.  Thus the kappa statistic is a better indicator of usefulness for these metrics than their test 

statistic.  As expected, we can see that the unconnected means and standard deviations are far lower 

than the forming means and standard deviations.  This is because the metric values of unconnected 

nodes are likely to be very low due to the low number of common neighbours and long distances 

between  the  nodes.   Grouping  metrics  according  to  their  base  type  (e.g.  Katz,  for  metrics  like 

KatzA20, KatzR2, etcetera) allows us to see how useful that type of metric is overall.  It also allows 

us to detect which, if any, temporal variants of a metric are the most useful.  

Firstly, we can see that for all the metrics either their base type or one of their temporal variants had 

kappa values indicating that the metric is useful for prediction.  Huang et al found the Katz measure 

was the most useful, followed by preferential attachment, common neighbours and the Adamic\Adar 

measure [35].  This research is similar, finding that the most useful static metrics are: preferential 

attachment (kappa of 33%), the Katz measure (kappa of 28%), the from degree (kappa of 27%) and 

the  to  degree  (kappa  of  26%).   The  following  metrics  were  found  not  to  be  useful:  common 

neighbours (kappa of 2%) and Adamic\Adar number (kappa of 2%).  The temporal metrics paint a 

slightly  different  picture.   The  most  useful  metrics  overall  (including  all  base  metrics  and  their 

temporal  variants)  are:  the  preferential  attachment  moving average over  ten  time steps  (kappa of 

48%), the from recency (kappa of 46%), the Katz measure moving average over ten time steps (kappa 

of 45%), the to degree moving average over twenty time steps (kappa of 42%), the to recency (kappa 

of  42%),  the  from degree  moving  average  over  twenty  time steps  (kappa  of  35%),  the  common 

neighbours moving average over twenty time steps (kappa of 32%), and the Adamic\Adar measure 

moving average over  twenty time steps  (kappa  of  32%).   It  is  interesting to  see  that  the  simple 

common neighbours metric performs just as well as the more complex Adamic\Adar measure.  

Secondly, we notice that the kappa of a metric can increase tremendously from one variant to another. 

For instance, the common neighbours metric was found to be no better than a random guess (with a 

kappa of only 2%).  However its average over the past twenty time steps was found to have a kappa of 

32%.  There is a pattern that the moving average of a metric is more useful than the metric calculated 

at  a  point.   Furthermore,  the  increase  in  accuracy of  the  moving average of  a  metric  appears  to 

approach zero as the time step span of the average reaches twenty time steps.  We can observe this 

also in the graph of the kappa values over each number of time steps.  This indicates that we need to 

calculate useful moving averages only between ten and twenty time steps prior to the current time 

step.  Thirdly, the return of a metric over any time range was found to decrease the kappa of a metric. 
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This indicates that returns are not useful additions to the link prediction toolbox.  Both the return and 

the average of the recency metric decrease the metric's kappa, indicating that we need never calculate 

temporal variants of the recency metric.  This is unsurprising as the recency metric itself is a temporal 

metric.

The second table, Table 12, shows not only the kappa value of a given metric, but also its contribution 

to the true positive rate of both classes.  All the metrics above preferential attachment are useful (with 

a kappa of at least 35%).  Preferential attachment is the first metric in the list to have a true positive 

rate of less than 50% for either class.  All the useful metrics (those above preferential attachment) 

generally classify over 60% of both classes correctly.

The third table,  Table  13, shows us the predictive power of  groups of metrics.   This is  the  most 

important test of temporal metrics.  Even though temporal metrics may have higher individual kappa 

values than their static counterparts they may not be more useful when used in combination with other 

metrics.  Thus the third table shows us the contribution of temporal metrics to link prediction where it 

matters most: choosing a set of metrics that provides for the highest possible prediction accuracy.  To 

start with we examine the predictive power of the standard  static metrics that would be used by a 

traditional social network analysis practitioner:  DegreeF, DegreeT, Katz, PA, CN and AA.  This set 

has a kappa of 40%, with a true positive rate for forming dyads of only 60%.  If we include the 

moving averages of the metrics the kappa rises to 51%, with both true positive rates above 70%. 

Using the moving average over twenty time steps rather than ten increases the kappa by just over a 

percent.  This minute increase in accuracy, compared to the large increase from using just the static 

metrics (effectively an average over one time step), indicates that taking an average over more than 

twenty time steps would be of little use.  The sets we have discussed so far prove that using temporal 

metrics (both returns and averages) have led to a large improvement in link prediction.   Now we 

address  the  question:  “What  is  the  maximum accuracy  we  can  attain  using  any  combination  of 

metrics?”   Using a set  comprising the six  metric  variants  with the highest  rated kappas from the 

second table we attain a kappa of 64%, with an overall accuracy 82%.  The last metric set used was 

obtained by running an attribute selection process using a subset logistic regression classifier search 

in Weka.  There was a marginal increase in accuracy to an overall accuracy of 82%.  Overall, we can 

say that the null hypothesis  was rejected.

To summarise, it has been found that:

• Static metrics that are not useful for prediction for a given data set, may become more useful 

when converted to a temporal variant of the metric.

• Metrics that are not useful individually may become useful when used in combination with 
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other metrics in a set.

• A metric's moving average is more useful than the static metric alone (except in the case of 

the recency metric).  The increase in accuracy of the moving average of a metric appears to 

approach zero as the time step span of the average reaches twenty time steps.

• The most useful individual metrics (including all base metrics and their temporal metrics) are: 

the preferential  attachment moving average over ten time steps  (kappa of 48%),  the from 

recency (kappa of 46%),  the Katz measure moving average over ten time steps (kappa of 

45%), the to degree moving average over twenty time steps (kappa of 42%), the to recency 

(kappa of 42%), the from degree moving average over twenty time steps (kappa of 35%), the 

common  neighbours  moving  average  over  twenty  time  steps  (kappa  of  32%),  and  the 

Adamic\Adar measure moving average over twenty time steps (kappa of 32%).

• Metric returns are not useful for prediction.

• The recency metric is a useful new contribution to link prediction, but its temporal variants 

are useless and can be ignored.

• Using  temporal  metrics  enhances  link  prediction  significantly.   The  maximum  accuracy 

attained using temporal  metrics  was 82% (compared to the  static metric set's accuracy of 

70%), with true positive rates of 81% and 83%, using the following metrics: RecF, RecT, CN, 

AA,  DegreeFA20,  DegreeFA10,  DegreeTA20,  DegreeTA2,  KatzA10,  PAA10,  PAA2 and 

RecFA10.
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Chapter 6. Local link analysis

This chapter describes an investigation into local metrics – metrics that are calculated in the local 

neighbourhood of a given node.   Traditional  metrics  are  calculated globally,  i.e.  calculated  using 

every node in the graph.  This investigation considers whether local metrics are as useful for link 

prediction as global metrics.  The speeds of the types of metric calculations are also compared.

6.1. Global metrics deficiencies

As discussed in the background chapter, most link prediction research has been conducted on small 

graphs (ones that fit into adjacency matrices in a computer's random access memory).  Similarly, the 

metrics used for prediction (and nearly every other social network application) have been computed 

globally.  For instance, betweenness is computed using shortest paths found between every node in 

the graph.  However, large networks (larger than a few thousand nodes, depending on the computer in 

question)  cannot  fit  into  matrices  in  a  computer's  memory as  the  space  requirement  increases  in 

quadratic proportion to the number of nodes.  Unfortunately, these large networks are the type that are 

most likely to be used for marketing, criminal analysis and epidemiological applications.  They have 

to  be  stored  in  more  efficient  data  structures,  such  as  lists  of  linked  nodes.   The  smaller  space 

requirement for these lists is proportional only to the density of the network stored, since only linked 

nodes are stored and not unlinked pairs.  This type of data structure makes the computation of shortest 

path-based metrics unacceptably slow.  A new way of calculating metrics, or a new type of metric, is 

now required for real-world graphs.  Thus, the introduction of local metrics is now proposed.  A local 

metric is identical to its traditional counterpart, except that it is calculated using only the nodes within 

a  small  radius  of  the  node,  or  nodes,  in  question.   It  is  hoped that  using fewer  nodes  in  metric 

computations  will  be  speed  up  the  process  to  a  level  acceptable  for  real-world  applications. 

Furthermore, computing common neighbour metrics at a radius of more than one might help solve 

what  Liben-Nowell  calls  “the  distance-three  task”[41].   He  states  “...nodes  separated  by a  graph 

distance of  more than two have no neighbors  in common ...and hence this  ...rules out  the use of 

methods based on common neighbors”.  This problem is illustrated in the graphs below.
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Figure 26. A forming link with two 

common neighbours at radius one               

Figure 27. A forming link with no 

common neighbours at radii less than two

Suppose in the graph above on the left a link is forming between the orange nodes.  Since this dyad 

has two common neighbours, i.e. it has a shortest path length of two, we might be able to predict the 

link.  However the dyad in the graph on the right has no common neighbours, thus we would not be 

able  to  predict  this  link using common neighbour-based metrics.   It is  therefore  an example of  a 

distance three task.  Instead of using common neighbours for prediction we would have to use the 

more computationally complex distance-based metrics.

6.2. Definition of local metrics

Before  local  metrics  are  defined  the  concept  of  neighbourhoods  must  first  be  explained.   The 

following diagram is used in this explanation.
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Figure 28. An egocentric subgraph of radius four centred on the orange node

The diagram above is a subgraph of a sociogram.  It is therefore a sociogram in itself.  It is a local 

egocentric sociogram for a radius of four centred on the orange node in the centre of the diagram.  In 

other words it shows the focus node (drawn in orange) along with all nodes that are connected by at 

most four bidirected links.  Nodes at a radius of one are coloured in blue, nodes at radius two are 

coloured in green, nodes at radius three are red and nodes at radius four are purple.  The blue nodes 

therefore represent friends of the orange node, and the green nodes represent friends of friends.  The 

orange  (focus)  node  and  the  blue  nodes  can  be  called  the  orange  node's  neighbourhood.   More 

specifically the nodes are the neighbourhood for a radius of one.  The subgraph formed by the focus 

node, the blue nodes and the green nodes would be the node's neighbourhood at a radius of two.  If the 

radius is not specified, we assume a neighbourhood is for a radius of one.

A local version of a metric has the original definition of its global counterpart, but is calculated as if 

the chosen neighbourhood was the entire graph.  For instance, the radius three betweenness of the 
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node in the previous figure would be its betweenness as calculated for nodes only up to three links 

away from the focus node (i.e. the blue, green and red nodes).  For a dyadic metric the local version is 

defined  in  the  usual  way  except  that  is  calculated  using  only  the  nodes  in  the  neighbourhoods 

surrounding the two nodes in question.  For instance, the radius three common neighbours of two 

nodes is calculated using the nodes within three links from the focus nodes.  Thus if we return to 

figure  27 we can  see  the  common neighbours  value  (at  radius  one)  of  the  orange  dyad  is  zero. 

However, the common neighbours value at radius two is four (the bottom four blue nodes).  Given 

these intuitive examples the local definitions are now formally defined.

6.2.1. Distance-based monadic local metric definitions

Given  a  graph Gn=〈V n , En 〉 at  time  step  n  and  a  monadic  metric  applied  to  a  node vi that  is  a 

member  of  the  set  of  nodes  of  the  graph,  we traditionally  calculate  the  metric  using the  formula

Gn
v i .  In other words we calculate the local metric for the node vi using the whole graph at time 

step n.  If we wished to use a local metric at a radius of r instead the metric would be calculated as

〈 {v x:dist vi , v x≤r},{ev m, vn
:vm∈{vx :distv i , vx≤r}∧vn∈{v x:dist vi , v x≤r }}〉vi  .  An equivalent version that might 

be easier to read is 〈 H ,{e vm , vn
:vm∈H∧vn∈H }〉vi , where H={v x: dist vi ,v x≤r} .  Simply put, instead 

of using the entire graph Gn to calculate the metric we are using only the local egocentric subgraph (

H ) surrounding vi up to a radius of r.  In other words, we are using the subgraph formed by the nodes 

(the set { v x }) that have a shortest path to vi of at most length r ( dist v i , v x≤r ,where r is a positive 

integer) and the nodes' incident links ( {ex} ) where one of these links connects two nodes ( {vm , vn} ) 

and  these  nodes  are  in  the  set  of  nodes  at  most  r  links  away  from vi (

v m∈{vx : dist vi ,v x≤r}∧vm∈{v x: dist v i , v x≤r} ).

As an example consider the normal definition of betweenness, ∑
v j∈V

∑
v k∈V ,v k≠v j

# P v j , vk ,v i
# P v j , vk

, for the 

node vi .  If we were to calculate radius six betweenness (betweenness calculated using only the graph 

formed  by  the  nodes  up  to  six  links  away  from  the  focus  node)  we  would  calculate

∑
v j∈{vx :distv i , vx≤6}

∑
vk∈{vx :distv i, vx≤6}, vk≠v j

# P v j , v k , vi
# P v j , v k

.   As  a  graphical  example,  when 

calculating a monadic metric at radius of two for the orange nodes in the graph below we would use 

only the colour nodes in the graph and ignore all the grey ones.
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Figure 29. A local egocentric subgraph of radius two

6.2.2. Dyadic common neighbour-based local metric definitions

Given a graph Gn=〈V n , En 〉 at time step n and a dyadic common neighbour-based metric  applied to 

two nodes vi and v j that are a member of the set of nodes of the graph, we traditionally calculate the 

metric by defining common neighbours using the set of common neighbours, vi∩v j , defined 

as {v x: evi ,vx
∈E }∩{v x: ev j ,v x

∈E } or equivalently

{v x: eva ,v x
∈E∧dist va , vi≤1}∩{vx : ev b ,vx

∈E∧dist v b , v j≤1} .  In other words we calculate the local 

metric for the nodes vi and v j using only common neighbours one link away from each of the focus 

nodes.  If we wished to use a local metric at a radius of r instead, the metric would be calculated using 

the common neighbours set defined as {v x: eva ,v x
∈E∧dist va , vi≤r}∩{v x: evb ,v x

∈E∧dist vb ,v j ≤r } . 

Simply put we are looking at nodes not only immediately adjacent to the focus nodes, but also those 
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that are common to the focus nodes at  distances greater than one.  In other words we are defining

r vi as all the neighbours of vi up to r links away.  Thus the traditionally used common neighbour 

definition, vi∩ v j ,is equivalent to 1 vi∩1v j in this new system.  So instead of calculating

1 vi∩1 v j
vi ,v j (i.e.  calculating  using  common  neighbours  one  link  away)  we  now  calculate

r vi∩r v j
vi ,v j (i.e. calculating  using common neighbours r links away).

As an example consider the normal definition of Jaccard's coefficient,
# {vi∩v j}
# {vi∪v j}

.  If we were 

to calculate to local  metric version of Jaccard's coefficient for a radius of six we would calculate

# {6 vi∩6 v j }
# {6 vi∪6 v j }

.  A graphical example is shown below.  The following three graphs illustrate the 

number of common neighbours (shown in blue) of the focus nodes (shown in orange) at radius one, 

radius two and radius three.
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Figure 30. Radius one common neighbours
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Figure 31. Radius two common neighbours
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Figure 32. Radius three common neighbours

6.3. Computational complexity of local metrics

We now discuss how local metrics might compare to global metrics in terms of speed (computational 

complexity).   Notice  how  the  number  of  nodes  in  each  neighbourhood  of  an  egocentric  graph 

increases exponentially as we consider larger radii.  In general, if the mean degree of a node is d, the 

number of nodes at radius r will be d d−1r−1 and therefore neighbourhood t (all the nodes up to t 

links away from the focus node) will contain d∑
i=0

t−1

d−1i nodes (excluding the focus node itself). 

This formula is for a tree structure – chosen to maximise the number of nodes at each radius and 

therefore consider the worst-case scenario for algorithm running time.  An example of such a tree for 

a radius of two with an average degree of four is shown below.  

Chapter 6. Local link analysis 92



Figure 33. A tree centred on the orange 

node of radius two and average degree 

four

Neighbourhood zero (the nodes at a radius of zero) will always contain one node by definition.  As an 

example, if people in a network usually have ten friends then the number of friends and friends of 

friends an individual has (including himself) will be ( 109091 ).  We know Brande's algorithm 

runs in O(nm) time, where n is the number of nodes in a graph and m is the number of edges.  The 

number of nodes in a neighbourhood is d∑
i=0

t−1

d−1i .   The number of links is also d∑
i=0

t−1

d−1i , 

since  in  a  tree  there  is  one  link  for  every  node  added.   So  nm  is

d∑
i=0

t−1

d−1id∑
i=0

t−1

d−1i=d 2∑
i=0

t−1

d−1i
2

.  d will remain roughly constant for a given graph, 

as it changes only gradually over time, and t is always constant as it is chosen before the calculation 

of a local metric.  This means that the calculation of local betweenness will have a constant order for 

any given node (i.e. O(c)).  Thus the order of the calculation of local betweenness for every node in 

the graph will be O(nc).  It is therefore difficult theoretically to compare the speed of local metric 

calculation with the speed of traditional metric calculation.  The larger a value for t that is chosen, the 

larger c will be in O(nc) and the slower the algorithm will be.  Thus it may be true that local metric 

calculation  is  faster  than  traditional  metric  calculation for  small  values  of  t,  but  slower  for  large 

values.  Also, the more connected a graph is, the closer local metric calculation becomes to global 

metric calculation, since a subgraph will contain almost as many nodes as the whole graph.
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6.4. Expected usefulness of local metrics

It is expected that local metrics will be faster to compute than global metrics under certain conditions. 

However, we have to consider how much information useful for link prediction is being sacrificed for 

speed when discarding many of the nodes in the graph that may hold valuable paths or other structural 

information.  Both the speed and information content of local and global metrics are compared in the 

experiment  presented  in  this  chapter.   But  let  us  first  consider  the  theoretical  implications  of 

computing metrics in a local neighbourhood.  Take for example the closeness centrality of a node. 

The local metric will probably have a far higher value than the global one because the local metric is 

calculated from a subgraph in which the focus node is highly central – it is after all a subgraph of the 

node's friends and their friends.  At a radius of zero the node will be perfectly central.  As the radius is 

successively increased the centrality of the node will begin to drop as more shortest paths are found 

between other nodes that do not include the focus node.  Thus calculating the metric in the graph 

globally will tend to “drown out” the node's centrality amongst the multitude of connections that are 

available.  As we use a larger radius for local calculation more and more connections become part of 

the graph that may bypass the focus node.  Thus we can consider the radius we choose for metric 

calculation to be “tuning” the level of centrality nodes have.  Using a local metric might highlight 

nodes that are highly central in their social neighbourhood – nodes that might have been ignored when 

using traditional metrics.  Secondly, people tend to form new relationships with those socially close to 

them.  In other words people make new friends with those who are friends with their friends (radius 

2),  or  perhaps  even  with friends  of  friends  of  friends  (radius  3).   Thus  for  the  purposes  of  link 

prediction especially (though hopefully not exclusively) it  is likely that local  metrics will  be very 

informative.  

Critics  might  point  out  that  using local  metrics  for  link prediction  ignores  that  people  form new 

relationships  with those  far  outside  of  their  local  neighbourhood who may have similar  interests. 

While this  is  true,  since people with similar interests  tend to form relationships they are likely to 

belong to  their  own interest  subgraph.   Local  metrics  might  therefore  not  predict  a  link forming 

between a man who has just taken up a new sport and another sportsman whom he emails, but after 

the initial email they should be able to predict links between the same man and any other people who 

play the same sport, as they are now part of a local neighbourhood.  This is, after all, the underlying 

assumption  of  all  the  common neighbour-based  metrics,  which have been  found to  be  useful  for 

prediction.  Another fundamental advantage of local metrics is that they can be computed in parallel. 

In other words, if we wish to analyse a graph to predict forming links we can assign each node to a 

separate thread and allow the thread to calculate the given local metric.  This is easier to accomplish 

with local metrics than with global ones as local metrics can be quickly calculated at small radii and 
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need less memory to store small local subgraphs.

6.5. Hypothesis statement

The null hypothesis of this experiment is that local metrics are no more useful for link prediction than 

global  metrics  and  take  an  equal  amount  of  time  to  compute.   More  mathematically,  the  null 

hypothesis is that the kappa value of a regression performed using local metrics will be equal to the 

kappa of a regression performed using global metrics.  We would hope that using local metrics in 

addition to global metrics might yield additional information and hence lead to increased prediction 

accuracy.

6.6. Methodology

This section describes the experiment undertaken to find if calculating local metrics is faster than 

calculating global  metrics,  and whether they are useful  for  link prediction.  It follows the general 

methodology described in the research methodology chapter.  The two types of local metrics that are 

included are common neighbour-based dyadic metrics and monadic metrics.  Two aspects of local and 

global  metrics  are  evaluated,  speed  and  usefulness.   Sample  metric  values  were  taken  for  9939 

instances per class for two classes over 100 time steps.  The y-variable chosen equalled one if the two 

nodes  under  consideration  were  forming  a  new  link  and  equalled  zero  if  the  two  nodes  were 

unconnected.  The monadic distance metric used was betweenness, which was calculated for both 

nodes in the dyad.  The dyadic common neighbour-based metrics used were common neighbours, the 

Adamic\Adar number and Jaccard's coefficient.   All metrics used were calculated in four different 

ways: using the entire graph, using nodes within a radius of one, using nodes within a radius of two 

and using nodes within a radius of three.  The time taken to compute the metrics was recorded.  The 

column headings for the data set calculated are: 

BR1F,  BR2F,  BR3F,  BRF,  BR1T,  BR2T,  BR3T,  BRT,  CNR1,  CNR2,  CNR3,  AAR1,  AAR2,  AAR3, 

JCR1,  JCR2,  JCR3,  BR1FTE,  BR2FTE,  BR3FTE,  BRFTE,  BR1TTE,  BR2TTE,  BR3TTE,  BRTTE,  

CNR1TE, CNR2TE, CNR3TE, AAR1TE, AAR2TE, AAR3TE, JCR1TE, JCR2TE, JCR3TE.

F stands for From (the first node in a dyad), T stands for To (the second node in a dyad), R1 means 

the metric was calculated within a radius of two, R2 means the metric was calculated within a radius 

of two, R3 means the metric was calculated within a radius of three, B stands for betweenness, CN for 

common neighbours,  AA stands for Adamic\Adar and JC stands for Jaccard's coefficient.  The time 

elapsed to calculate each metric individually is recorded in the final columns, named as the metric 

abbreviation suffixed with the letters  TE.  Aggregate statistics were calculated for the computation 
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speeds of each metric type.  The accuracy and speed of each type of metric for link prediction was 

recorded and is compared in the next section.

6.7. Results

This results section presents the statistics of the metrics calculated, their predictive accuracy, and the 

time taken to compute the metrics at  various  radii.   These  results  are presented in the tables  and 

graphs below.   Each row in  the  table  below gives  the  statistics  associated  with a  certain  metric. 

Whereas the metrics in the previous chapter were grouped by the base type of temporal variants, the 

metrics here are grouped by the base type of the radial variants.   The thick black horizontal  lines 

delineate the different metric groupings.  The first column in the table gives the name of the metric. 

The second and third columns give the average of the values for the metric for the unconnected- and 

forming dyads respectively.  The fourth and fifth columns give the standard deviation of the values for 

the metric for the unconnected- and forming dyads respectively.  The mean difference column shows 

the  value  of  the  unconnected  mean minus the  forming mean.   Thus,  it  is  negative  when metrics 

associated with a forming dyad are larger than those associated with an unconnected dyad.  The test 

statistic column gives the value of the Normal distribution test statistic, calculated using the mean and 

standard deviation values as described in the research methodology chapter.  The subsequent column 

gives  the  significance  level  associated  with  the  test  statistic.   The  final  column shows the  kappa 

statistic for the metric, as given by Weka, using logistic regression.  It is not related to the standard 

hypothesis  testing  statistics  given  in  the  previous  column,  but  allows  the  reader  to  compare  the 

general usefulness of each temporal variation of the statistic.

Table 14. Metric statistics, grouped by category

Metric

Unconnected 

mean

Forming 

mean

Unconnected 

standard 

deviation

Forming 

standard 

deviation

Mean 

Difference

Test 

statistic

Significance 

level Kappa
BR1F 0.3340 0.6377 0.4672 0.4758 -0.3037 -45.4 0.01% 30.53%
BR2F 0.1854 0.4224 0.2901 0.3608 -0.2370 -51.03 0.01% 31.60%
BR3F 0.0921 0.1868 0.1671 0.1974 -0.0947 -36.49 0.01% 26.68%
BRF 0.0002 0.0013 0.0005 0.0054 -0.0011 -21.1 0.01% 23.58%
BR1T 0.3311 0.5983 0.4668 0.4862 -0.2672 -39.52 0.01% 27.80%
BR2T 0.1842 0.3846 0.2893 0.3592 -0.2004 -43.31 0.01% 26.55%
BR3T 0.0917 0.1791 0.1685 0.2030 -0.0874 -33.04 0.01% 24.36%
BRT 0.0002 0.0012 0.0007 0.0050 -0.0010 -20.24 0.01% 22.96%
CNR1 0.2160 0.7674 4.6342 5.0327 -0.5514 -8.03 0.01% 15.04%
CNR2 4.2813 20.2140 28.2728 59.4047 -15.9327 -24.14 0.01% 21.36%
CNR3 60.5142 191.382 201.5010 355.1156 -130.8680 -31.95 0.01% 24.21%
AAR1 0.2959 1.0101 6.6808 7.2930 -0.7142 -7.2 0.01% 15.04%
AAR2 5.5188 27.5717 39.3169 83.1699 -22.0529 -23.9 0.01% 20.33%
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Metric

Unconnected 

mean

Forming 

mean

Unconnected 

standard 

deviation

Forming 

standard 

deviation

Mean 

Difference

Test 

statistic

Significance 

level Kappa
AAR3 85.0529 271.402 289.5494 513.1495 -186.3493 -31.53 0.01% 23.77%
JCR1 0.0020 0.0148 0.0442 0.1683 -0.0128 -7.34 0.01% 14.74%
JCR2 0.0097 0.0448 0.0767 0.2767 -0.0351 -12.18 0.01% 21.98%
JCR3 0.0468 0.1403 0.1702 0.3295 -0.0935 -25.13 0.01% 25.49%

The  table  below  lists  each  metric  individually  in  separate  rows  and  describes  their  usefulness 

(contribution to accuracy) in a logistic regression.  The first column shows the kappa statistic, which 

is a measure of how much more accurate a prediction is, compared to a random prediction.  If the 

value is negative it means that using the given metric gives a prediction model which is even worse 

than guessing randomly.  The metrics are ranked in descending order of their kappa value.  The total 

accuracy can be described in different  ways.  The last  column shows the overall  accuracy of the 

regression.  The third and fourth columns are important and show the true positive rate for each class.

Table 15. Metric predictive accuracy, ranked by kappa

Metric Kappa Unconnected TP rate Forming TP rate Overall accuracy
BR1F 30.53% 66.7% 63.8% 65.2750%
BR2F 31.60% 72.7% 58.9% 65.8451%
BR3F 26.68% 76.3% 50.3% 63.4306%
BRF 23.58% 87.1% 36.4% 61.9718%
BR1T 27.80% 66.6% 61.2% 63.9168%
BR2T 26.55% 70.9% 55.6% 63.3300%
BR3T 24.36% 75.4% 48.9% 62.2736%
BRT 22.96% 85.5% 37.3% 61.6533%
CNR1 15.04% 96.1% 18.8% 57.8303%
CNR2 21.36% 92.6% 28.7% 60.9155%
CNR3 24.21% 87.8% 36.3% 62.2904%
AAR1 15.04% 96.1% 18.8% 57.8303%
AAR2 20.33% 92.9% 27.3% 60.4125%
AAR3 23.77% 88.0% 35.6% 62.0724%
JCR1 14.74% 96.1% 18.5% 57.6794%
JCR2 21.98% 89.7% 32.1% 61.2005%
JCR3 25.49% 86.2% 39.1% 62.9108%

The table below uses the same columns as the one above, but instead of showing the accuracy of each 

metric individually it shows the accuracy of regressions performed with different sets of metrics.  The 

metric subset column describes the type of metrics used in italics and then lists all the metrics in the 

set.
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Table 16. Metrics set predictive accuracy

Metric subset Kappa Unconnected TP rate Forming TP rate Overall accuracy
Traditional  

metrics:

            

BRF, BRT, 

CNR1, AAR1, 

JCR1

39.83% 79.8% 59.9% 69.9698%

Radius 1 metrics:

BR1F, BR1T, 

CNR1, AAR1, 

JCR1

31.50% 67.1% 64.4% 65.6712%

Radius 1 

betweenness and 

radius 3 common 

neighbour-based:

BR1F, BR1T, 

CNR3, AAR3, 

JCR3

33.04% 73.8% 59.2% 66.5661%

Traditional and 

radius 2 metrics:

BRF, BRT, 

CNR1, AAR1, 

JCR1, BR2F, 

BR2T, CNR2, 

AAR2, JCR2

41.24% 73.9% 67.3% 70.6405%

The table below shows the mean and standard deviation of the time taken in milliseconds to compute 

a metric for one node (or pair of nodes).

Table 17. Metric computation time

Metric Mean Standard deviation
 BR1FTE 5.14 63.22

 BR2FTE 123.68 925.37

 BR3FTE 3541.26 18454.26
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Metric Mean Standard deviation
 BRFTE 1254975 (134.9 per node) 37.7 per node

 BR1TTE 4.27 51.43

 BR2TTE 112.59 770.25

 BR3TTE 3232.82 16840.54

 BRTTE 1254975 (134.9 per node) 37.7 per node

 CNR1TE 0.16 1.26

 CNR2TE 0.86 2.86

 CNR3TE 4.78 8.7

 AAR1TE 0.14 1.18

 AAR2TE 0.91 2.95

 AAR3TE 5.44 9.43

 JCR1TE 0.13 1.14

 JCR2TE 0.87 2.9

 JCR3TE 4.64 7.95

The following two tables, 18 and 19, and two graphs, Figure 34 and Figure 35, were calculated from a 

new experiment run on the same data set.  Metrics were computed up to a radius of six for common 

neighbour-based metrics only.  The same number of instances were used.  This new experiment was 

run because it was noted in the first experiment that the accuracy of common neighbour-based metrics 

kept increasing as the radius used increased.   This table allows us to see whether the kappa of a 

metrics  keeps  increasing  indefinitely  at  larger  radii,  and  at  what  rate.   This  is  explained  in  the 

conclusions  section.   The table below shows the predictive accuracy of common neighbour-based 

metrics up to a radius of six.

Table 18. Common neighbours metric predictive accuracy, ranked by kappa

Metric Kappa Unconnected TP rate Forming TP rate Overall accuracy
CNR1 14.77% 95.8% 18.8% 57.6962%
CNR2 21.36% 91.6% 29.7% 60.8987%
CNR3 23.69% 86.5% 37.1% 62.0221%
CNR4 24.77% 79.9% 44.8% 62.5084%
CNR5 26.90% 75.3% 51.5% 63.5312%
CNR6 27.45% 71.9% 55.6% 63.7827%
AAR1 14.77% 95.8% 18.8% 57.6962%
AAR2 21.26% 92.4% 28.8% 60.8652%
AAR3 23.65% 87.1% 36.5% 62.0054%
AAR4 24.76% 80.3% 44.4% 62.5084%
AAR5 26.80% 75.2% 51.5% 63.4809%
AAR6 27.56% 71.7% 55.8% 63.8330%
JCR1 0.00% 0.00% 100.0% 49.5305%
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Metric Kappa Unconnected TP rate Forming TP rate Overall accuracy
JCR2 20.96% 89.3% 31.6% 60.6975%
JCR3 24.52% 85.2% 39.2% 62.4245%
JCR4 24.47% 81.6% 42.8% 62.3742%
JCR5 24.12% 82.2% 41.9% 62.2066%
JCR6 23.23% 83.0% 40.1% 61.7706%

The table below shows the mean and standard deviation of the time taken in milliseconds to compute 

a common neighbour-based metric for one node (or pair of nodes) up to a radius of six.

Table 19. Metric computation time up to radius six

Metric Mean Standard deviation
CNR1TE 0.19 2.03

CNR2TE 1.08 4.71

CNR3TE 5.79 13.2

CNR4TE 22.2 31.52

CNR5TE 59.01 62.47

CNR6TE 120.17 107.71

AAR1TE 0.2 2.45

AAR2TE 1.18 5.07

AAR3TE 6.61 14.11

AAR4TE 26.34 37.18

AAR5TE 67.42 71.38

AAR6TE 133.32 121.21

JCR1TE 0.2 1.94

JCR2TE 1.14 5.87

JCR3TE 6.1 14.39

JCR4TE 22.42 31.59

JCR5TE 58.57 62.1

JCR6TE 120.01 108.07

The graph below shows the total accuracy of each of the three common neighbour-based metrics at 

each of the six radii.  Some lines overlap.
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Figure 34. Total predictive accuracy per radius

The  graph  below  shows  the  time  taken  in  milliseconds  to  compute  each  of  the  three  common 

neighbour-based metrics at each of the six radii.  Some lines overlap.

Figure 35. Computational time in milliseconds per radius

Chapter 6. Local link analysis 101

1 2 3 4 5 6
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

Common neighbours
Adamic\Adar
Jaccard's coefficient

1 2 3 4 5 6
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

Common neighbours
Adamic\Adar
Jaccard's coefficient



6.8. Conclusions

Table 14 shows us that, unlike in the previous experiments, for all the metrics at all radii, the forming 

mean  is  greater  than  the  unconnected  mean.   Furthermore  these  differences  are  all  very  highly 

statistically significant.  Table 15 presents a detailed overview of the accuracy of these metrics in a 

logistic regression.  A glance at the kappa and accuracy columns shows us that accuracy increases as 

the radius decreases for betweenness, but that accuracy increases as the radius increases for common 

neighbour metrics.  This relationship is not as simple as it first appears.  If we look at the TP columns 

for betweenness we see that as radius decreases the unconnected TP rate drops while the forming TP 

rate rises.  And if we look at the common neighbour-based metrics TP columns we see that as radius 

increases  the  unconnected  TP rate  drops  while  the  forming TP rate  rises.   However,  the  overall 

accuracy still increases in both cases, meaning that the unconnected TP rate does not drop as much as 

the forming TP rate rises.  In both cases the overall accuracy rises only about 4%.  

Table 16 shows how the metrics perform when used in groups for prediction.  The first row shows the 

traditional metrics that would be used for prediction, common neighbour metrics calculated at a radius 

of one and betweennness calculated for the entire graph.  The overall accuracy is relatively high, at 

70%, with both TP rates above 59%.  The second row shows the accuracy when the betweenness 

metrics used in the first row are replaced by betweenness metrics calculated at a radius of one.  The 

accuracy drops, but down only 4%.  It is surprising that using the betweenness metrics at a lower 

radius in the set would decrease accuracy when individually they have a higher accuracy at lower 

radii.  If we use betweenness calculated at a radius of one and common neighbour metrics at a radius 

of three, the accuracy increases a percent from 66% to 67%.  The highest possible accuracy, 71%, was 

obtained using both the traditional set of metrics and the metrics calculated at a radius of two.  

These accuracies are not important of themselves, but rather when viewed in light of the time taken to 

compute the metrics used.  This is because one of aims of this chapter was to perform link prediction 

successfully  using metrics  calculated locally  and quickly.   Table  17 lists  the  mean time taken to 

calculate a metric for a given node or pair of nodes at each radius.  We can see that betweenness 

quickly scales up from five milliseconds at a radius of one to around three and a half seconds at a 

radius of three.  This is expected, based on the discussion of the computational complexity of the 

calculation of betweenness given at the beginning of this  chapter.   It takes roughly 21 minutes to 

calculate  the  global  betweenness  for  a  node  in  an  average  time  step in  the  graph  (1254975 

milliseconds).  However, when calculating betweenness using the entire graph we can calculate the 

betweenness value for every node at once.  Therefore the average time per node is 135 milliseconds. 

This is a purely theoretical number since even if we want to calculate the betweenness for only one 
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node it still takes the full 21 minutes using Brandes' algorithm.  The common neighbour-based metric 

computation times also increase exponentially with radius, but remain remarkably small – under six 

milliseconds.  There is little variance in the elapsed times between the different types of common 

neighbour-based metrics as the majority of calculation time is spent finding and counting common 

neighbours, which is common to all the metrics. 

Since betweenness has its highest kappa value at a radius of one, we do not need to investigate it at 

large radii.  However, the common neighbour-based metrics keep on increasing and have their highest 

value at  radius  three.   Thus the experiment was run again for  only the  common neighbour-based 

metrics up to a radius of six.  Table 18 and Table 19 show the results of this second experiment.  We 

can  see  that  the  accuracy  of  the  metrics  keeps  on  increasing  until  a  radius  of  six,  though  at  a 

decreasing rate.  The graph below the tables illustrates how the increase in accuracy appears to level 

off at about a radius of four.  This indicates that taking common neighbours at a higher radius is not of 

much  use.   This  is  especially  true  as  the  time  taken  to  compute  the  metrics  keeps  increasing 

exponentially, reaching a tenth of a second at a radius of six.  The combined meaning of the accuracy 

and computational  time of the metrics is now discussed.  Firstly,  it  has been shown that common 

neighbour-based metrics become more useful for prediction at radii higher than one.  Computing these 

metrics  at  a  radius  higher than one also  effectively solves  the “distance three  task” discussed by 

Liben-Nowell  and  others.   These  metrics  remain  quick  to  calculate,  even  up  to  a  radius  of  six. 

Secondly, it has been shown that distance-based metrics such as betweenness can be calculated at far 

smaller radii than the entire graph and still remain highly useful.  There is a drop in accuracy of only 

3%  when  they  are  used  in  combination  with  other  metrics,  and  they  are  in  fact  more  useful 

individually when computed at a radius of one.  However, this small drop in accuracy is compensated 

by a massive decrease in computational time – from twenty one minutes to between five milliseconds 

and three seconds (radius dependent) for a single node.  Thus the local metric approach has helped us 

solve  the  distance  three  task,  increase  the  accuracy  of  common  neighbour-based  metrics  and 

decreased the computation time of distance-based metrics such as betweenness and closeness.

To summarise, it has been found that:

• The “distance three task” can be solved by using the expanded definition common neighbour-

based metrics that accommodate higher radii.

• Common neighbour-based  metrics  become better  link  predictors  when  calculated  at  radii 

greater than one, levelling off around a radius of four.

• Distance-based  metrics,  such  as  betweenness  and  closeness,  can  be  calculated  extremely 

quickly  using  a  local  definition  and  small  radii  while  still  retaining  nearly  all  of  their 

usefulness.
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Chapter 7. A combined approach

This final experimental chapter describes the effectiveness of combining the techniques discussed in 

the three  previous  experiments.   This  means that  an experiment  was conducted that  attempted  to 

classify  unconnected-,  hidden-  and  forming  links  using  both  local  and  temporal  techniques 

simultaneously.   Furthermore,  this  experiment  used  the  email  data  set  obtained  from Netcash  in 

addition to the Pussokram data set to see how the techniques fared on the type of data set that would 

more commonly be used in reality.

7.1. Hypothesis statement

The null hypothesis of this experiment is that using temporal metrics and local metrics in addition to 

traditional  metrics  will  not  increase  the  accuracy  of  link  detection  and  link  prediction.   More 

mathematically, the null hypothesis is that the kappa value of a regression performed using temporal 

and local metrics in addition to traditional metrics will be equal to the kappa value of a regression 

performed using  traditional  metrics.   As  we have  studied  the  mean values  of  various  metrics  in 

previous chapters they are not included in this chapter.

7.2. Methodology

The  methodology  of  this  experiment  follows  the  general  methodology  described  in  the  research 

methodology chapter and uses parts of all the previous experiments.  From the first experiment we use 

the idea of a three class y-variable.  In other words the y-variable can be one of three different classes:  

unconnected, hidden, or forming.  From the second experiment we take the idea of recency and the 

average  of  a  mean  over  the  ten  previous  time  steps.   We  use  only  ten  time  steps  as  this  was 

recommended  as  a  good  compromise  between  speed  and  accuracy  in  the  second  experiment's 

conclusions.  From the third experiment we use local metrics calculated at a radius of four.  Once 

again, this radius was used as per the recommendations of the third experiment.  Only the most useful 

metrics from each chapter were used.  The metrics chosen were distance, the Katz measure, monadic 

recency, common neighbours, preferential attachment and degree.  Additionally common neighbours, 

preferential attachment and degree were calculated at a radius of four.  Finally the average of all these 

metrics was taken over the ten previous time steps.  Thus the column headings calculated are:

Dist, Katz, RecF, RecT, CN, PA, DegreeF, DegreeT, CNR4, PAR4, DegreeFR4, DegreeTR4, 

DistA10,  KatzA10,  RecFA10,  RecTA10,  CNA10,  PAA10,  DegreeFA10,  DegreeTA10,  CNR4A10,  

PAR4A10, DegreeFR4A10, DegreeTR4A10.
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The suffix F stands for From (the first node in a dyad), T stands for To (the second node in a dyad), 

R4 stands for radius four and indicates the metric was calculated using a local radius of four and A10 

stands for average for the past ten time steps.  The experiment was run on the Pussokram data set for 

time steps 50 to 150 as usual.  Additionally the experiment was run on the Netcash email data set, also 

for time steps 50 to 150.

7.3. Results

This results section presents the predictive accuracy of the metrics calculated individually and in sets. 

The first subsection presents the results of the experiment using the Pussokram data set and second 

subsection  presents  the  results  of  the  experiment  using  the  Netcash  data  set.   These  results  are 

presented in two tables in each section.  The first table shows detailed results of the accuracy attained 

by logistic regression using each metric individually.  The second table shows shows the accuracy 

attained using sets of metrics.

7.3.1. Pussokram results

This subsection presents the classification results of the Pussokram data set.  It is presented in the 

same way as  the  Netcash  results  shown in  the  next  section.   The  table  below lists  each  metric 

individually in separate rows and describes their usefulness (contribution to accuracy) in a logistic 

regression.   The  first  column shows the  kappa  statistic,  which  is  a  measure  of  how much more 

accurate a prediction is,  compared to a random prediction.  The metrics are ranked in descending 

order of their kappa value.

Table 20. Individual metric predictive accuracy, ranked by kappa

Metric Kappa

Unconnected 

TP rate

Hidden TP 

rate Forming TP rate Overall accuracy
RecF 28.67% 35.7% 46% 75.6% 52.448%
DegreeTA10 26.07% 76.4% 28.7% 46.9% 50.7825%
DegreeTR4A10 25.17% 68% 45% 37.3% 50.1341%
DegreeT 17.17% 82.5% 30.1% 21.7% 44.858%
DegreeTR4 15.11% 71% 48.9% 10.3% 43.4161%
PA 15.1% 87.2% 19.2% 23.6% 43.4943%
DegreeFA10 13.42% 34.1% 36.1% 56.5% 42.2647%
DegreeF 12.74% 63% 19% 43.2% 41.8958%
Katz 11.58% 79.3% 6.2% 37.4% 41.1804%
CNR4 11.38% 79.9% 6.2% 36.6% 41.0575%
RecFA10 9.89% 3% 52.6% 64.2% 39.8279%
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Metric Kappa

Unconnected 

TP rate

Hidden TP 

rate Forming TP rate Overall accuracy
PAR4 9.63% 85.3% 8.4% 25.4% 39.8949%
RecT 9.26% 34.9% 14.2% 69.2% 39.5372%
DegreeFR4 8.69% 56.1% 14.2% 46.9% 39.2131%
PAA10 7.98% 77.8% 19.6% 18.3% 38.6877%
DegreeFR4A10 5.91% 0% 70.4% 41.5% 37.1004%
KatzA10 3.66% 67.8% 12.7% 26.5% 35.8149%
CNR4A10 3.27% 69.2% 11.2% 25.9% 35.569%
PAR4A10 2.60% 74.4% 12.3% 18.2% 35.1218%
DistA10 2.43% 17.2% 87.7% 0% 34.6971%
CN 1.66% 99.9% 3.5% 0% 34.6412%
Dist -1.28% 19.7% 33.7% 44.2% 32.495%
CNA10 -1.73% 86.9% 9.5% 0% 32.2714%
RecTA10 -1.97% 32.6% 13.6% 49.6% 32.0143%

The table below uses the same columns as the one above, but instead of showing the accuracy of each 

metric individually it shows the accuracy of regressions performed with sets of metrics.  The metric 

subset column describes the type of metrics used in italics and then lists all the metrics in the set.  The 

last two rows of the table show the results of the predictions performed only using the unconnected- 

and forming classes, without the hidden link class.

Table 21. Metrics set predictive accuracy

Metric subset Kappa Unconnected 

TP rate

Hidden TP 

rate

Forming TP rate Overall accuracy

Traditional metrics:

Dist, Katz, CN, PA, 

DegreeF, DegreeT

27.58% 74.5% 42.9% 37.7% 51.755%

All metrics 40.64% 69.9% 42.8% 68.4% 60.4516%

All metrics except 

Katz

40.62% 69.1% 43.3% 68.7% 60.4404%
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Metric subset Kappa Unconnected 

TP rate

Hidden TP 

rate

Forming TP rate Overall accuracy

Weka's logistic  

subset classifier 

genetic search 

attribute selection 

search:

Dist, Katz, RecF, 

RecT, CN, DegreeF, 

DegreeT, PAR4, 

DegreeFR4, 

DegreeTR4, 

DistA10, KatzA10, 

RecFA10, 

RecTA10, CNA10, 

DegreeTA10, 

CNR4A10, 

PAR4A10, 

DegreeFR4A10, 

DegreeTR4A10

39.98% 69.1% 42.5% 68.2% 60.0156%

Traditional metrics:

Dist, Katz, CN, PA, 

DegreeF, DegreeT

37.7% 80.3% - 57.4% 68.8799%

All metrics 60.53% 80% - 80.5% 80.2649%

7.3.2. Netcash results

This subsection presents the classification results of the Netcash data set.  It is presented in the same 

way as  the  Pussokram results  shown in  the  previous  section.   The  table  below lists  each  metric 

individually in separate rows and describes their usefulness (contribution to accuracy) in a logistic 

regression.   The  first  column shows the  kappa  statistic,  which  is  a  measure  of  how much more 

accurate a prediction is,  compared to a random prediction.  The metrics are ranked in descending 

order of their kappa value.
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Table 22. Individual metric predictive accuracy, ranked by kappa

Metric Kappa

Unconnected 

TP rate

Hidden TP 

rate Forming TP rate Overall accuracy
DegreeT 69% 97.9% 83.3% 57.3% 79.3056%
DegreeTA10 50.46% 94.5% 83.1% 24% 66.875%
RecTA10 45.23% 68.9% 89.8% 32.2% 63.4722%
DegreeTR4 44.87% 97.9% 84.2% 8.6% 63.125%
RecT 44.73% 71.9% 89% 29.2% 63.125%
DegreeTR4A10 43.59% 92.6% 81.7% 13.8% 62.2917%
KatzA10 22.53% 90.3% 33.5% 21.6% 48.125%
CNA10 22.33% 90.3% 32.9% 21.8% 47.9861%
PAA10 21.49% 90.3% 29.2% 23.8% 47.4306%
PAR4A10 21.4% 90.3% 31% 21.8% 47.3611%
CNR4A10 21.3% 90.3% 31% 21.6% 47.2917%
DegreeF 20.6%3 98.1% 30.4% 13.1% 46.8056%
DegreeFR4A10 20.48% 92.8% 31.9% 16.6% 46.7361%
DegreeFA10 19.03% 93% 32.3% 13.1% 45.7639%
RecF 17.94% 57.7% 15.2% 63% 45.3472%
PA 17.16% 100% 30.2% 4.5% 44.4444%
Dist 16.96% 100% 33.8% 0.6% 44.3056%
Katz 16.86% 100% 34.2% 0% 44.2361%
CN 16.66% 100% 33.8% 0% 44.0972%
DistA10 16.15% 100% 32.1% 0.6% 43.75%
PAR4 16.13% 100% 31.7% 0.01% 43.75%
CNR4 16.03% 100% 31.7% 0.8% 43.6806%
DegreeFR4 15.09% 98.1% 32.5% 0% 43.0556%
RecFA10 13.35% 53.5% 16.5% 56.9% 42.2917%

The table below uses the same columns as the one above, but instead of showing the accuracy of each 

metric individually it shows the accuracy of regressions performed with sets of metrics.  The metric 

subset column describes the type of metrics used in italics and then lists all the metrics in the set.  The 

last two rows of the table show the results of the predictions performed only using the unconnected- 

and forming classes, without the hidden link class.

Table 23. Metrics set predictive accuracy

Metric subset Kappa Unconnected 

TP rate

Hidden TP 

rate

Forming TP rate Overall accuracy

Traditional metrics:

Dist, Katz, CN, PA, 

DegreeF, DegreeT

73.36% 97.7% 85% 64.5% 82.2222%

All metrics 76.88% 94.1% 87.5% 72.5% 84.5833%
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Metric subset Kappa Unconnected 

TP rate

Hidden TP 

rate

Forming TP rate Overall accuracy

All metrics except 

Katz

77.09% 94.1% 87.9% 72.5% 84.7222%

Weka's logistic  

subset classifier 

genetic search (and 

best search) 

attribute selection 

search:

Katz, RecT, CN, 

DegreeF, DegreeT, 

DegreeTR4, 

DistA10, KatzA10, 

RecFA10, 

RecTA10, PAA10, 

DegreeFA10, 

DegreeTA10, 

CNR4A10, 

DegreeTR4A10

78.34% 93.2% 87.9% 75.8% 85.5556%

Traditional metrics:

Dist, Katz, CN, PA, 

DegreeF, DegreeT

75.98% 97.2% - 79.4% 87.9167%

All metrics 84.21% 97% - 87.6% 92.0833%

7.4. Conclusions

This section draws conclusions from the results presented in the previous section.  A general overview 

of the results shows us that the kappa values for the Netcash data were consistently higher than those 

for  the  Pussokram data.   As discussed  in  chapter  three,  the  ratio  of  nodes  to  bidirected  links  of 

Netcash was far larger than the ratio of Pussokram.  Since Netcash had relatively few bidirected links 

(between 131 and 227) it might be that the same hidden links were used over and over again in each 

timestep.   This  would  allow  Weka  to  learn  their  associated  metrics  easily,  leading  to  increased 

classification accuracy.  Therefore the experiment was rerun using only five instances of each class 

per timestep (instead of the average of 47) to see if  raising the ratio  of available hidden links to 

forming links would decrease classification accuracy.  The kappa of this experiment (which is not 
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presented here) using all metrics was virtually identical (within a percent) to the kappa of the original 

experiment.  This suggests that the ratio of bidirected links to nodes may not be the cause of Netcash's 

increased prediction accuracy.  Therefore it may be that the prediction is easier for a network that is 

obtained from email records than one obtained from other sources (it was mentioned in chapter three 

that Pussokram is the set of graph sequences obtained from the messages exchanged by registered 

users on a social networking website and Netcash is the set obtained from a business server's email 

records).  Alternatively it may be that prediction was simpler in this data set in particular, and that the 

same results may not be reproducible in other networks.  In other words some data sets may be more 

random than others, i.e. more complex for the purposes of prediction.  We could thus classify the 

Pussokram network as complex and the Netcash network as simple.

We now examine tables  20 and  22, the individual metric regression results for both data sets.  The 

overall  accuracy of the individual  metric regressions ranges from 32% to 52% for Pussokram and 

from 42% to 79% for Netcash.  No Pussokram kappa value is above 40%, although there are several 

above  40%  for  Netcash.   Metrics  that  are  useful  in  both  data  sets  are:  DegreeT,  DegreeTA10, 

DegreeTR4, and DegreeFA10.  Thus the popularity of the target node in a forming link is a reliable 

indicator.  Metrics that are important in one data set but not in the other include: RecT, Katz, PA and 

RecF.   This  indicates  that  different  metrics  may  be  more  applicable  to  different  networks.   A 

prediction system needs to test various different metrics to discover what type work best for a given 

network.  The temporal and local variations of the traditional metrics have kappas of varying size in 

both data sets.  This suggests that local and temporal metrics are useful, though the exact type of 

metric variation required may differ from network to network.

We now consider the combined metric predictive accuracy tables,  21 and 23.  The overall accuracy 

for Pussokram is raised from 52% to 60% when temporal and local metrics are used in addition to 

traditional metrics.  This increase is hardly affected if we do not include the Katz metric, which is 

computationally complex and preferable to avoid if possible.  Additionally, the kappa value increases 

from 28% to above the level of significance, 40%.  The Netcash accuracy is raised only from 82% to 

85% with the inclusion of the new metrics.  However, using a suitable subset of the metrics increases 

accuracy to 86%.  These accuracy increases in both data sets indicate that local and temporal metrics 

are useful additions to the prediction problem.  Furthermore, the highest accuracy of the unconnected- 

and forming classes are above 68% for both data sets and the accuracy of the Netcash hidden link 

class is 88%.  Thus it seems that hidden links do not confound the prediction of forming links in 

complex networks (such as Pussokram).  In addition, it  seems that hidden links can be accurately 

predicted and separated from unconnected- and forming links in simple networks (such as Netcash). 

This stands in contrast to the findings of chapter four (on link prediction versus link detection), where 
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it seemed that hidden links could not be accurately distinguished from forming links.  

The last two rows of tables 21 and 23 show the classification of only the unconnected- and forming 

link classes.  This is the link prediction problem proper, without including the link detection problem. 

The  kappa  value  for  the  Pussokram network  rises  from 38%  to  61%  when  including  local  and 

temporal metrics in addition to traditional metrics and the kappa value rises from 76% to 84% for the 

Netcash network.  This shows that local and temporal  metrics add accuracy to the link prediction 

problem solution in both simple and complex networks, but add greater value to complex networks. 

In other words, local and temporal metrics are of great use in networks that traditional link prediction 

cannot  cope  with,  where  new links  appear  to  be  random.   Furthermore,  these  accuracies  can  be 

obtained from metrics that are fast to compute.  Both common neighbour-based dyadic local metrics 

and small radius shortest path-based monadic local metrics are computationally simple.  Temporal 

metrics take longer to compute, but not so much longer as to be impractical, such as a metrics like 

globally computed betweenness.   However the Pussokram kappa of 61% using both temporal and 

local  metrics  in this  experiment did not  exceed the kappa of 64% using only temporal  metrics in 

chapter  four's experiment.   Thus it  appears  that  local  metrics do not  increase  prediction accuracy 

above the accuracy obtained using temporal metrics and traditional metrics alone.  However, local 

metrics are still very useful in that they are faster to compute than both temporal metrics and many 

traditional metrics.

To summarise, it has been found that:

• Different types of local and temporal metric variations are useful in different networks.  A 

network  should  be  tested  with  several  types  of  metrics  to  find  which  are  most  suited  to 

prediction for that network in particular.  However, variations of FromDegree and ToDegree 

seem to be consistently useful.

• Local  and  temporal  metrics  are  helpful  additions  to  the  solution  of  the  link  prediction 

problem, but come to the fore in “complex” networks, where traditional metrics cannot give 

accurate predictions in a seemingly random network.

• High link prediction accuracies (kappas of 61% and 84%) can be attained using combinations 

of traditional, local and temporal metrics in both complex and simple networks.  Furthermore, 

these accuracies can be obtained from metrics that are fast to compute.

• Local metrics do not increase prediction accuracy above the accuracy obtained using temporal 

metrics and traditional metrics alone.  However, local metrics are still very useful in that they 

are faster to compute than both temporal metrics and many traditional metrics.

• Hidden links can be accurately predicted and separated from unconnected- and forming links 

in “simple” networks (such as Netcash).  This stands in contrast to the findings of chapter 
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four (on link prediction versus link detection), where it seemed that hidden links could not be 

accurately distinguished from forming links.
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Chapter 8. Conclusion

This chapter concludes this dissertation.  It summarises the work described in all the previous chapters 

and the significant conclusions from each.

8.1. Summary of the work undertaken

This dissertation presented an investigation into various  aspects  of  the  link prediction problem in 

social networks.  It described experiments conducted to distinguish between link prediction and link 

detection and to test  the usefulness of temporal metrics and local  metrics in link prediction.  The 

original  aim was to improve the accuracy of link prediction in sequences of large networks using 

metrics that were fast to compute and would be usable in reality. 

8.2. Experimental findings

The experiment conducted to discover whether there was a difference between link prediction and 

link detection found that there is a difference in structure between hidden and forming links.  Hidden 

links  have  twice  as  many common neighbours,  half  as  large  a  preferential  attachment  and  more 

disparate nodal  degrees than forming links.  Distance is not a distinguishing factor.   Although all 

metrics  differences  are very highly significantly different  no individual  metric  alone is  useful  for 

regression in accurately classifying the two classes.  Furthermore, even when using all the metrics in 

combination it was not possible to successfully distinguish hidden links from forming ones.  However, 

the final experiment showed that it was possible to distinguish hidden and forming links when using 

local and temporal metrics on relatively “simple” networks.  

The experiments conducted to discover whether local and temporal metrics could aid link prediction 

found that these new metric definitions were indeed useful.   In particular  it  was found that  static 

metrics  that  are  not  useful  for  prediction  for  a  given  data  set,  may  become  more  useful  when 

converted to a temporal variant of the metric.  Metrics that are not useful individually may become 

useful when used in combination with other metrics in a set.   A metric's moving average is more 

useful than the static metric alone (except in the case of the recency metric).  The recency metric is a 

useful new contribution to link prediction, but its temporal variants are useless and can be ignored. 

Using temporal metrics enhances link prediction significantly.  This enhancement cannot be bettered 

by including local metrics – however local metrics are still quicker to compute than temporal metrics 

and many traditional metrics, and can be used in their place.  Dyadic common neighbour-based local 
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metrics can also be used to solve the “distance three task”.  Additionally, distance-based metrics, such 

as betweenness and closeness, can be calculated extremely quickly using a local definition at small 

radii while still retaining nearly all of their usefulness.  

The final experiment found that different types of local and temporal metric variations are useful in 

different networks.  Thus a network should be tested with several types of metrics to find which are 

most suited to prediction for  that  network in particular.   However, variations of  FromDegree and 

ToDegree seem to be consistently useful.  Finally it seems that local and temporal metrics are helpful 

additions to the solution of the link prediction problem, but come to the fore in “complex” networks, 

where traditional metrics cannot give accurate predictions in a seemingly random network.

8.3. Future work 

The experiments conducted in this work were all investigations into new and original graph analysis 

techniques.  There is thus a lot of scope for other researchers to verify and extend these ideas.  Some 

possibilities for future work include:

• Inventing  and  testing  new types  of  temporal  and  local  metrics.   Only  a  few ideas  were 

presented in this work and an imaginative analyst should be able to design several more.

• Verifying the results of this work on other data sets.  It would be interesting to see how well 

local and temporal metrics perform on different types of networks.

• Investigating to what extent using different link types in metric definitions affect the accuracy 

of  predictions.   For  instance,  degree  can  be  defined  as  in-degree,  out-degree,  bidirected-

degree or inout-degree.  Only bidirected links were used in this research.

• Including  link strength  (e.g.  number  of  emails  exchanged between  two nodes)  in  metrics 

calculations to investigate its effect on the accuracy of predictions.  This also includes the 

possibility of links decreasing in strength over time (i.e. friendships fading away).

• Combining local  and temporal  metrics  with other data  mining systems more sophisticated 

than  logistic  regression,  in  order  to  further  increase  prediction  accuracy.   This  includes 

systems that use content analysis.

The work presented in this dissertation is a valuable contribution to the problem of link prediction, 

leading to significantly increased prediction accuracies and presenting two original new approaches to 

analysing graphs.  It is hoped that other researchers and intelligence analysts will use these techniques 

in real world endeavours and extend the ideas presented in this  discussion in new and interesting 

ways.
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