
A Sketching Interface for Procedural City
Generation

Matthew de Villiers
University of Cape Town

mat@mallardexpress.co.uk

Neilan Naicker
University of Cape Town

+27 72 191 2754
darric@gmail.com

ABSTRACT
In this paper, we present an application which uses a sketch and
gesture interface to facilitate the procedural creation of three
dimensional city environments. City boundaries, roads and
region allocations are drawn directly onto a 3D terrain, and a
city is generated using these inputs. Aspects of the city that can
be modified include the population density, allocation of parks,
and variances in building height. Once generated, the city is
rendered in a non-photorealistic sketching style, to correspond
with the nature of its creation.

Categories and Subject Descriptors
I.3.8 [Computer Graphics]: Applications, Methodology and
Techniques

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
Sketching Interface, Gesture Recognition, Procedural
Modelling, Non-Photorealistic Rendering.

1. INTRODUCTION
The entertainment industry, particularly in the fields of film and
computer games, has seen a rapid adoption of increasingly
complex digital environments. In the case of some films,
extensive use of entirely virtual environments has been
employed for scene backgrounds. Needless to say, this is also
the case for every three-dimensional computer game. There is a
tendency for these environments to become more and more
complex with time, in parallel to the rising expectations of
viewers, and the ever increasing capabilities of modern graphics
hardware.

A city is a good example of a complex environment to recreate.
Even if only a coarse level of detail is required, streets and
buildings need to be placed realistically in order to achieve a
believable aesthetic. Road patterns, despite their simplicity when
examined individually, can display very complicated behaviour
when forming a larger system. Typically, a large number of
concept artists, modellers, texture designers and animators are
needed in order to create such an environment. Thus, the

resources required for such an undertaking – with regards to
time, money and human resources – can be exceptionally high.

For this reason, it becomes beneficial to investigate a new means
of procedurally modelling city environments. Sketch and
Gesture interfaces have emerged as an easy to use means of
easily creating content in a variety of applications. For instance,
in Teddy by Igarashi et al. [4], a sketch and gesture interface is
used for the rapid creation of rotund 3D models. Such an
approach could be used for creating cities.

We present in this paper such an application for creating city
environments, by means of a sketch and gesture interface. The
CitySketch application allows the user to draw the properties of a
city directly onto a 3-dimensional terrain. For instance, the user
might sketch out the boundary of the city, as well as a number of
desired roads. In addition, the application allows for regional
allocation of properties such as population variances, park areas,
and changes in building height. The city is then generated,
complete with a spanning road network, and correctly placed
buildings.

The city is rendered using a non-photorealistic “sketching” style
rendered, to correspond with the nature of its creation.
Modifications to the city are instantaneous, and the city’s
creation process is rendered to the user at all times. After the
city has been generated, it can be modified by removing roads
and changing the heights of buildings. If desired, more roads can
be drawn, or additional cities can be drawn on the terrain.

This paper covers the methods and algorithms behind CitySketch
as well as all of the features available to the user.

2. RELATED WORK
Procedural modeling is employed extensively in the generation
of natural phenomena, such as plant life. For example, the use of
Lindenmayer Systems (“L-systems”) in producing natural-
looking plants and trees [6, 12] clearly illustrates an effective
means of procedurally generating that which would be
unreasonable to do manually.

A fair amount of work has been done on the procedural
generation of cities, but most of this requires little or no input.
For instance, Lechner et al. generate 2-dimensional cities based
only on an image map. Such a system could be easily enhanced

to produce 3D environments, if coupled with a procedural
building modeler, as done by Martin [8, 9] and Greuter [2].

Image maps are used widely for generating cities, as they
provide a very natural way of viewing the various contributions
to the city’s generation across the city area map. Perhaps the
best example of this is the work done by Parish and Müller [10].

Their implementation uses multiple image maps as input (maps
for population, water/parks, road patterns, terrain) and generates
a fully 3-dimensional city environment based on these inputs.
Image maps, however, are tedious to edit, and it is particularly
hard to maintain consistency between the maps when altering
them.

In the field of sketch and gesture interfaces, Teddy [4] has
already been mentioned as an effective use of a sketch/gesture
interface for 3D modeling. Another example of a 3D modeling
application by means of sketches is “SKETCH”, by Zeleznik et
al. [15].

Other approaches to modeling which utilize sketch interfaces are
Hughes’ [3] method of interpolating 3D models from user
created sketches of a number of cross sections of the model, and
the system used by Cherlin et al. [1], which makes use of two
phases: a constructive phase, where sketches determine the
actual geometry, and a progressive editing phase, where strokes
allow subtle changes to be made to the geometry.

A very good framework for the development of gesture
recognition systems is provided by Rubine [13]. For instance,
Landay and Myers [5] have described a means of extending any
user interface to utilise gestures, as implemented by Rubine. A
similar approach based on feature recognition was developed by
Lipscomb [7].

Praun et al [11] present a method for a convincing hatching
solution that runs in real-time. One of the core ideas presented in
their paper is that of “tonal art maps”. These are a series of
hatching textures that can be blended across a surface to give the
impression of shading. An appropriate combination of these
textures is dynamically blended onto geometry according to
surface tone.

Each texture level is a subset of the more densely-hatched
textures, meaning that the textures smoothly blend from one
level to the next.

In real-world non-photorealistic renderings, artists typically
draw the strokes in a scene at a consistent size, regardless of
their distance from the viewpoint: Praun et al. leverage texture-
mapping hardware by using mip-maps to scale distant strokes
appropriately. In order to achieve this effect, custom mip-map
textures are created; these textures consist of strokes of the same
size as those in the original texture.

Figure 1: "Tonal art maps" from Praun et al. [11]

Rusinkiewicz et al [14] present a technique for achieving
exaggerated shading over terrain surfaces. Their technique
involves the use of a “soft toon” shader in order to emphasise
sloped (as opposed to horizontal) surfaces. They also create
several levels of normals for the terrain surface; these are used to
emphasise local detail, regardless of large-scale surface
orientation.

3. METHOD

3.1 Sketching Interface
The sketching interface allows the user to draw directly onto the
terrain whenever the left mouse button is held down (the right
and middle mouse buttons are used for adjusting the view). To
ensure that the users’ intentions are interpreted correctly, the
system needs to keep constant track of what is expected next.

Specifically, there are two main states. The first state is when
the system is expecting the user to draw a region or road. A road
is simply any drawn stroke which has its endpoint sufficiently
far from its starting point.

By contrast, a region is any drawn stroke for which the end point
is close to the start point. In addition, regions and roads can not
self-intersect. If a road is drawn, the system does not change
state – another region or road is expected next. However, if a
region is drawn, the system moves to the second state.

The second state is when the system is waiting for the user to
draw what is termed a region gesture. These are gestures which
are used to indicate the purpose of a drawn region. They are the
up and down arrow, for increasing and decreasing population in
a region, the tree gesture, for allocating a park area, and the
building heights gesture. This gesture requires three buildings to
be drawn, which determine the mean heights and variability of
buildings in that region.

Once a region has been drawn, and its property allocated, it is
rendered to a texture and used to modify the system’s internal
image maps, as according to its property. For example, a region
followed by the up arrow gesture increases the population in that
region on the internal population density image map.

Figure 1. The available region gestures. From left to right:
Population increase, population decrease, park allocation,

building height. Dots indicate starting points of each gesture.

The other type of gesture is the command gesture, of which
there are two types. The spiral gesture commands the system to
generate the city based on the current roads and regions, while
the undo gesture reverses the most recent action.

Because command gestures can be drawn when the system
might otherwise expect a road or region, each has a property
which uniquely determines it. The spiral gesture must be drawn
in the sky in order to be interpreted correctly, while the undo
gesture has a self-intersection – a property unacceptable for
roads or regions.

Figure 2. The available command gestures. The spiral (left)
generates the city, while the undo (right) reverses the last

action.

All strokes are initially recorded as a sequence of points while
the left mouse button is held down. To be of any use to the
stroke and gesture parsers, these points need to be converted to
segments. This is done by generating a new segment when the
mouse moves beyond a certain distance from the endpoint of the
last segment. Thus, a connected sequence of segments of
uniform length is generated as soon as the left mouse button is
released.

In the case of strokes (i.e. roads and regions) these segments are
simply passed to the road generator (to be converted to an L-
system string) or rendered to a texture. For the purposes of
gesture recognition however, the process is more involved.

To aid gesture recognition, the sequence of segments is
converted to a sequence of lines of unequal length. This is
achieved by grouping segments with similar angles into a single
line. Thus, the drawn stroke is interpreted as a minimal number
of lines which represent it.

Figure 3. The stroke points are divided into segments, which

are then grouped by angle similarity into lines.

A number of features are then determined from the gesture, as
described by Rubine [13]. Features include properties such as
the total length of the stroke, the number of lines comprising it,
the total angle traversed, and the initial angle. In all, twelve
distinct features, each a floating point value, are determined
from each stroke.

These feature values are then compared to pre-computed values
for each of the defined gestures, and the gesture for which the
most features correspond is decided as the gesture intended by
the user. However, a minimum number of features must be
matched, or else the gesture is rejected and must be redrawn.

Finally, strokes can also be interpreted as scribbles if they cross
the central axis of the stroke a sufficient number of times.
Scribble strokes are used to remove roads which the user deems
undesirable. This is implemented by checking which road
segments are intersected by the scribble stroke more than a few
times, and removing them from the road system.

3.2 City Generation
The city generation process takes place in two distinct steps.
First, the road network is created based on the inputs from the
sketch interface. The second step, which occurs once the road
network is complete, is the placement of buildings in the city’s
street blocks.

The road generation system is based heavily on Parish and
Müller’s road system [10]. Their approach uses L-systems in
order to generate the branching structure of the road network.
The network is comprised of two types of roads, highways and
streets, which behave slightly differently.

Highways rely heavily on the population map in order to
determine their growth. Each highway projects an arc in front of
it, and, for each angle in that arc, samples the population density
at a number of points along a line in front of it. The angle which
has the highest population density sum is chosen as the angle in
which the highway continues.

Thus, there is a tendency for highways to seek out high
population regions. This results in a concentration of highways
in more populated areas. This fits the function of highways; to
provide access to the more frequented areas of the city.
Highways develop perpendicular branches every five segments,
and between those branches, street networks generate, on a large
delay. The delay allows the highway network to generate
satisfactorily before the street network begins to generate.

The function of streets is therefore to fill in the gaps between the
highway networks with a semi-regular grid pattern. Thus, streets
generate outward from their origins, with perpendicular
branches after every segment. Street networks continue until
they reach a highway, or the population drops below a threshold.

To facilitate the road generation, frequent checks are made at
every iteration. Newly formed roads are checked for
intersections with existing roads, and shortened to the
intersection point if one is found. Any road which ends close to
an existing junction of roads is modified in angle and length to
meet that junction. Also, roads which enter park or water areas
are swiveled and/or shortened to keep them valid.

Roads are also checked against the terrain height map for
validity. The height of the terrain at a road’s start and end point
is used to determine the slope of the road, which if too high,
causes the road to be rejected. Also, highways tend to remain on
areas of comparable height when heading towards high
population zones.

The initial string which is passed to the L-system is based
entirely on the road strokes which are drawn by the user. For a
given feature road stroke, the middle segments are passed to the
L-system as “final” roads, while the end segments are passed as
developing roads. Thus, all feature roads develop at their end
points. In addition, developing roads are placed perpendicular to
the feature road along its length.

For the purposes of intersection checking, a secondary data
structure – a quadtree – is used to store the road segment data
while the road system is generating. This prevents having to
check every road in the system; rather, only the roads that are
close to a specific road need be checked, by using the quadtree
to check closeness.

The road generation continues until all roads are final (when the
road network has more or less filled the city boundary). At this
point, the road segment data is converted to a connected graph
of edges and vertices; each vertex has a list of attached edges,
and each edge’s end-points are indices into the vertex array.

Figure 4: A road network graph generated on a height image
map. The white area is a water feature.

Building generation is achieved through two steps: lot
allocation, and building placement.

In order to determine the lots in which buildings can be placed,
we find the smallest polygons in the graph. The centroids of
these polygons are then calculated (see Figure 4), and each lot is
scaled down towards its centroid.

Figure 5. Centroids of lots.

After we have determined the lots, we place the buildings that
populate these areas. Our approach in this problem differs from
Parish and Müller’s.

We place buildings along each edge, performing checks at each
placement to avoid collisions between buildings. These checks
are accelerated through the use of a quad-tree structure.

Building width and depth are randomised slightly at each step,
and building height is a function of the image map defined
through the sketching interface. This results in a collection of
buildings that appear to follow the road structure while still
maintaining an organic, humanised appearance.

3.3 Renderer
In order to render our scene in a non-photorealistic style, we
primarily follow Praun et al.’s [11] cross-hatching approach.

To calculate the shading at each point in the scene – and
therefore the combination of crosshatch textures – we use an
exaggerated shading model as described in Rusinkiewicz et al.
[14]. This method emphasises the non-photorealism of the scene
by accentuating sloped terrain, and complements Praun et al.’s
crosshatching technique.

We used this combination of non-photorealistic methods to
render the terrain, which is a 512x512 heightmap. Frustum
culling and a simple level-of-detail scheme are used to facilitate
interactive frame-rates.

In order to visualise the buildings that make up the city, we
render instances of a cube model for each building. Affine
transformations are applied to each instance in order to position,
scale and rotate the cube appropriately.

We found that the most effective approach for accentuating
building outlines was to simply apply an “outline texture”: one

which has a light interior and dark borders. This approach
yielded faster frame-rates than other methods, and provided
acceptable results (see Figure 6).

Figure 6. Buildings rendered with “outline textures”.

The roads in our scenes are represented as textured 3D
geometry. To achieve this, we create quadrilaterals from line
segments. These quadrilaterals are formed by extending line
segments in a direction perpendicular to their direction and the
Y-axis vector.

Figure 7. Line segments are extended perpendicular to their
direction and the Y-axis vector. (Realistic rendering mode

depicted.)

In order to enable comparison, we have also implemented a
realistic mode and a toon-shaded mode.

For the realistic rendering mode, three pre-made images are used
to texture the terrain. These textures are blended smoothly based
on a “coverage map”, which is a hand-made RGB texture. The
three channels of the coverage map specify how much of a
contribution the first, second and third texture make to the final
pixel colour.

Several additional elements were built into the realistic mode,
such as water with reflection and refraction and a skybox.

The toon-shaded mode simply shades the terrain using standard
lighting methods, and then reduces the tonal range; this results
in an aesthetic that is typical of cartoon drawings.

4. RESULTS
A city generation application by means of a sketch and gesture
interface was successfully implemented with the following
features:

Drawing city boundaries on the terrain
Drawing regions in which to increase/decrease
populations
Drawing regions in which to allocate parks
Allocating building height means and variance in a
region
Drawing feature roads from which the city road
network generates
Modification of the city by erasing roads

The application is rendered using a non-photorealistic sketching
style renderer. Using a combination of existing techniques for
real-time non-photorealistic rendering, it effectively displays
scenes at over 30 frames per second and provides great visual
clarity of the created environment. Figure 8, below, is a
screenshot of a generated city in the application.

Figure 8. A generated city rendered in a non-
photorealistic style in the CitySketch application

Our alternative to Parish and Müllers’ [10] method for building
placement provides acceptable results and is not
computationally expensive.

In order to test the application, and compare it to the approach
by which cities are created by editing image maps (as employed
by Parish and Müller), an experiment was conducted with two
groups of users. Each user was presented with two sets of
images of cities to recreate.

The control group edited image maps in an image editor, which
were then provided as inputs to the city generation system. The
experiment group used CitySketch to recreate the cities. Their
attempts were timed and assessed based on accuracy to the
target cities.

It was found that the experiment group, using CitySketch, were
able to more closely create the target cities, and did so in less

time. In addition, the users expressed a greater sense of control
over the city’s creation when using CitySketch (as assessed by
questionnaire).

5. CONCLUSION
The aim of creating a 3D city-sketching application has been
achieved, and the results are promising for future work in this
area.

We found city generation to be very CPU-intensive. When using
the NPR renderer, the frame-rate only dropped below our target
minimum for very large cities; however, in order to generate the
cities within a reasonable time, we had to keep them small and
simple. Therefore, we found that the generation time would
exceed our target maximum long before the cities became too
complex to render at interactive rates.

Not all of the proposed features could be implemented, but the
core functionality of the system was finished on time and works
as required. Additionally, the renderer was extended to include
some of our proposed “future work” by adding a realistic mode
and several additional features, such as the graphical indications
when gestures are recognised and the ability to draw gestures
outside of the terrain area.

We have found the combination of systems to work very well:
city generation is a particularly appropriate application for a
sketching interface, combining the freeform nature of sketching
with the level of detail only feasible through procedural
methods. Additionally, the use of non-photorealistic rendering in
order to represent a scene is a powerful method of immersing a
user in a sketching experience.

Finally, the experiment showed that the sketch and gesture
approach is more efficient and easier to use than an approach
based on manually editing image maps. In addition users
reported a greater sense of control with the sketch and gesture
interface, and typically learnt the system in less than 15 minutes.

6. FUTURE WORK
There are numerous additions that could still be implemented in
our solution.

At present, all buildings are represented solely by single
rectangular blocks. More detailed building structures could be
introduced, similar to the Parish & Müller method by means of
L-systems [10].

In order to create more variation across the city, additional
zoning properties could be introduced, for instance, commercial,
residential and industrial areas. Each would have different
building styles and sizes.

More complex road types could be introduced, such as
highways, bridges and tunneled roads. In addition, the way in

which the road network is inferred by drawn strokes could be
improved.

To better allow for correction of errors, the ability to modify
regions by scribbling, in the same way roads are scribbled out,
could be introduced. Also, multiple levels of undo could be
implemented rather than only a single step.

Similarly, to allow the user to make minor modifications to the
city after it has been generated, a means of cutting or extending
individual buildings could be introduced.

It would be interesting to know which of our rendering modes is
more conducive to creative sketching of cities. This could be
analysed by restricting test users to a single rendering option,
asking them to create a specific city, and measuring the resulting
cities with a closeness metric.

7. REFERENCES
[1] – Cherlin, J., Samavati, F., Sousa, M., Jorge, J. Sketch-based
Modeling with Few Strokes. 21st Spring Conference on
Computer Graphics, 2005
[2] – Greuter, S., Parker, J., Stewart, N., Leach, G. Real-time
Procedural Generation of `Pseudo Infinite' Cities. Computer
Graphics and Interactive Techniques (GRAPHITE), 2003
[3] – Hughes, D., 3D Model Creation by Sketching Cross-
sections. Yale University, 2005
[4] – Igarashi, T., Matsuoka, S., Tanaka, H. Teddy: a sketching
interface for 3D freeform design. SIGGRAPH, 1999
[5] – Landay, J., Myers, B. Extending an Existing User Interface
to Support Gesture Recognition. INTERCHI’93: Human Factors
in Computing Systems, p. 91-92, 1993.
[6] – Lindenmayer A., Prusinkiewicz, P. The Algorithmic Beauty
of Plants. Springer-Verlag, 1990
[7] – Lipscomb, J. A trainable gesture recognizer. Pattern
Recognition, 24(9):895-907, 1991
[8] – Martin, J. Procedural House Generation. Symposium on
Interactive 3D Graphics and Games, 2006
[9] – Martin, J. The Algorithmic Beauty of Building: Methods for
Procedural Building Generation. Honours Thesis, Trinity
University, 2004
[10] – Parish, Y., Müller, P. Procedural Modeling of Cities.
SIGGRAPH, 2001
[11] – Praun, E., Hoppe, H., Webb, M., Finkelstein, A, Real-
time Hatching, 2001
[12] – Prusinkiewicz, P., James, M., Mech, R. Synthetic Topiary.
SIGGRAPH, 1994
[13] – Rubine, D. Specifying Gestures by Example. SIGGRAPH,
1991
[14] – Rusinkiewicz, S., Burns, M., DeCarlo, D., Exaggerated
shading for depicting shape and detail. ACM Transactions on
Graphics, 2006
[15] – Zeleznik, R., Herndon, K., Hughes J. SKETCH: An
Interface for Sketching 3D Scenes. SIGGRAPH, 1996

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

