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ABSTRACT 
In this paper, we present an application which uses a sketch and 
gesture interface to facilitate the procedural creation of three 
dimensional city environments. City boundaries, roads and 
region allocations are drawn directly onto a 3D terrain, and a 
city is generated using these inputs. Aspects of the city that can 
be modified include the population density, allocation of parks, 
and variances in building height. Once generated, the city is 
rendered in a non-photorealistic sketching style, to correspond 
with the nature of its creation.  

Categories and Subject Descriptors 
I.3.8 [Computer Graphics]: Applications, Methodology and 
Techniques  

General Terms 
Algorithms, Design, Experimentation, Human Factors.  

Keywords 
Sketching Interface, Gesture Recognition, Procedural 
Modelling, Non-Photorealistic Rendering.  

1. INTRODUCTION 
The entertainment industry, particularly in the fields of film and 
computer games, has seen a rapid adoption of increasingly 
complex digital environments. In the case of some films, 
extensive use of entirely virtual environments has been 
employed for scene backgrounds. Needless to say, this is also 
the case for every three-dimensional computer game. There is a 
tendency for these environments to become more and more 
complex with time, in parallel to the rising expectations of 
viewers, and the ever increasing capabilities of modern graphics 
hardware.  

A city is a good example of a complex environment to recreate. 
Even if only a coarse level of detail is required, streets and 
buildings need to be placed realistically in order to achieve a 
believable aesthetic. Road patterns, despite their simplicity when 
examined individually, can display very complicated behaviour 
when forming a larger system. Typically, a large number of 
concept artists, modellers, texture designers and animators are 
needed in order to create such an environment. Thus, the 

resources required for such an undertaking – with regards to 
time, money and human resources – can be exceptionally high.  

For this reason, it becomes beneficial to investigate a new means 
of procedurally modelling city environments. Sketch and 
Gesture interfaces have emerged as an easy to use means of 
easily creating content in a variety of applications. For instance, 
in Teddy by Igarashi et al. [4], a sketch and gesture interface is 
used for the rapid creation of rotund 3D models. Such an 
approach could be used for creating cities.  

We present in this paper such an application for creating city 
environments, by means of a sketch and gesture interface. The 
CitySketch application allows the user to draw the properties of a 
city directly onto a 3-dimensional terrain. For instance, the user 
might sketch out the boundary of the city, as well as a number of 
desired roads. In addition, the application allows for regional 
allocation of properties such as population variances, park areas, 
and changes in building height. The city is then generated, 
complete with a spanning road network, and correctly placed 
buildings.   

The city is rendered using a non-photorealistic “sketching” style 
rendered, to correspond with the nature of its creation. 
Modifications to the city are instantaneous, and the city’s 
creation process is rendered to the user at all times. After the 
city has been generated, it can be modified by removing roads 
and changing the heights of buildings. If desired, more roads can 
be drawn, or additional cities can be drawn on the terrain.  

This paper covers the methods and algorithms behind CitySketch 
as well as all of the features available to the user.  

2. RELATED WORK 
Procedural modeling is employed extensively in the generation 
of natural phenomena, such as plant life. For example, the use of 
Lindenmayer Systems (“L-systems”) in producing natural-
looking plants and trees [6, 12] clearly illustrates an effective 
means of procedurally generating that which would be 
unreasonable to do manually.   

A fair amount of work has been done on the procedural 
generation of cities, but most of this requires little or no input. 
For instance, Lechner et al. generate 2-dimensional cities based 
only on an image map. Such a system could be easily enhanced 



to produce 3D environments, if coupled with a procedural 
building modeler, as done by Martin [8, 9] and Greuter [2].  

Image maps are used widely for generating cities, as they 
provide a very natural way of viewing the various contributions 
to the city’s generation across the city area map. Perhaps the 
best example of this is the work done by Parish and Müller [10].   

Their implementation uses multiple image maps as input (maps 
for population, water/parks, road patterns, terrain) and generates 
a fully 3-dimensional city environment based on these inputs. 
Image maps, however, are tedious to edit, and it is particularly 
hard to maintain consistency between the maps when altering 
them.  

In the field of sketch and gesture interfaces, Teddy [4] has 
already been mentioned as an effective use of a sketch/gesture 
interface for 3D modeling. Another example of a 3D modeling 
application by means of sketches is “SKETCH”, by Zeleznik et 
al. [15].  

Other approaches to modeling which utilize sketch interfaces are 
Hughes’ [3] method of interpolating 3D models from user 
created sketches of a number of cross sections of the model, and 
the system used by Cherlin et al. [1], which makes use of two 
phases: a constructive phase, where sketches determine the 
actual geometry, and a progressive editing phase, where strokes 
allow subtle changes to be made to the geometry.  

A very good framework for the development of gesture 
recognition systems is provided by Rubine [13]. For instance, 
Landay and Myers [5] have described a means of extending any 
user interface to utilise gestures, as implemented by Rubine. A 
similar approach based on feature recognition was developed by 
Lipscomb [7].  

Praun et al [11] present a method for a convincing hatching 
solution that runs in real-time. One of the core ideas presented in 
their paper is that of “tonal art maps”. These are a series of 
hatching textures that can be blended across a surface to give the 
impression of shading. An appropriate combination of these 
textures is dynamically blended onto geometry according to 
surface tone.   

Each texture level is a subset of the more densely-hatched 
textures, meaning that the textures smoothly blend from one 
level to the next.  

In real-world non-photorealistic renderings, artists typically 
draw the strokes in a scene at a consistent size, regardless of 
their distance from the viewpoint: Praun et al. leverage texture-
mapping hardware by using mip-maps to scale distant strokes 
appropriately. In order to achieve this effect, custom mip-map 
textures are created; these textures consist of strokes of the same 
size as those in the original texture.    

 

Figure 1: "Tonal art maps" from  Praun et al. [11]  

Rusinkiewicz et al [14] present a technique for achieving 
exaggerated shading over terrain surfaces. Their technique 
involves the use of a “soft toon” shader in order to emphasise 
sloped (as opposed to horizontal) surfaces. They also create 
several levels of normals for the terrain surface; these are used to 
emphasise local detail, regardless of large-scale surface 
orientation.  

3. METHOD 

3.1 Sketching Interface 
The sketching interface allows the user to draw directly onto the 
terrain whenever the left mouse button is held down (the right 
and middle mouse buttons are used for adjusting the view). To 
ensure that the users’ intentions are interpreted correctly, the 
system needs to keep constant track of what is expected next.  

Specifically, there are two main states. The first state is when 
the system is expecting the user to draw a region or road. A road 
is simply any drawn stroke which has its endpoint sufficiently 
far from its starting point.   

By contrast, a region is any drawn stroke for which the end point 
is close to the start point. In addition, regions and roads can not 
self-intersect. If a road is drawn, the system does not change 
state – another region or road is expected next. However, if a 
region is drawn, the system moves to the second state.  

The second state is when the system is waiting for the user to 
draw what is termed a region gesture. These are gestures which 
are used to indicate the purpose of a drawn region. They are the 
up and down arrow, for increasing and decreasing population in 
a region, the tree gesture, for allocating a park area, and the 
building heights gesture. This gesture requires three buildings to 
be drawn, which determine the mean heights and variability of 
buildings in that region.  

Once a region has been drawn, and its property allocated, it is 
rendered to a texture and used to modify the system’s internal 
image maps, as according to its property. For example, a region 
followed by the up arrow gesture increases the population in that 
region on the internal population density image map.   



 

Figure 1. The available region gestures. From left to right: 
Population increase, population decrease, park allocation, 

building height. Dots indicate starting points of each gesture.  

The other type of gesture is the command gesture, of which 
there are two types. The spiral gesture commands the system to 
generate the city based on the current roads and regions, while 
the undo gesture reverses the most recent action.  

Because command gestures can be drawn when the system 
might otherwise expect a road or region, each has a property 
which uniquely determines it. The spiral gesture must be drawn 
in the sky in order to be interpreted correctly, while the undo 
gesture has a self-intersection – a property unacceptable for 
roads or regions.  

 

Figure 2. The available command gestures. The spiral (left) 
generates the city, while the undo (right) reverses the last 

action.  

All strokes are initially recorded as a sequence of points while 
the left mouse button is held down. To be of any use to the 
stroke and gesture parsers, these points need to be converted to 
segments. This is done by generating a new segment when the 
mouse moves beyond a certain distance from the endpoint of the 
last segment. Thus, a connected sequence of segments of 
uniform length is generated as soon as the left mouse button is 
released.  

In the case of strokes (i.e. roads and regions) these segments are 
simply passed to the road generator (to be converted to an L-
system string) or rendered to a texture. For the purposes of 
gesture recognition however, the process is more involved.  

To aid gesture recognition, the sequence of segments is 
converted to a sequence of lines of unequal length. This is 
achieved by grouping segments with similar angles into a single 
line. Thus, the drawn stroke is interpreted as a minimal number 
of lines which represent it.  

      

 
Figure 3. The stroke points are divided into segments, which 

are then grouped by angle similarity into lines.  

A number of features are then determined from the gesture, as 
described by Rubine [13]. Features include properties such as 
the total length of the stroke, the number of lines comprising it, 
the total angle traversed, and the initial angle. In all, twelve 
distinct features, each a floating point value, are determined 
from each stroke.  

These feature values are then compared to pre-computed values 
for each of the defined gestures, and the gesture for which the 
most features correspond is decided as the gesture intended by 
the user. However, a minimum number of features must be 
matched, or else the gesture is rejected and must be redrawn.  

Finally, strokes can also be interpreted as scribbles if they cross 
the central axis of the stroke a sufficient number of times. 
Scribble strokes are used to remove roads which the user deems 
undesirable. This is implemented by checking which road 
segments are intersected by the scribble stroke more than a few 
times, and removing them from the road system.  

3.2 City Generation 
The city generation process takes place in two distinct steps. 
First, the road network is created based on the inputs from the 
sketch interface. The second step, which occurs once the road 
network is complete, is the placement of buildings in the city’s 
street blocks.  

The road generation system is based heavily on Parish and 
Müller’s road system [10]. Their approach uses L-systems in 
order to generate the branching structure of the road network. 
The network is comprised of two types of roads, highways and 
streets, which behave slightly differently.  

Highways rely heavily on the population map in order to 
determine their growth. Each highway projects an arc in front of 
it, and, for each angle in that arc, samples the population density 
at a number of points along a line in front of it. The angle which 
has the highest population density sum is chosen as the angle in 
which the highway continues.  

Thus, there is a tendency for highways to seek out high 
population regions. This results in a concentration of highways 
in more populated areas. This fits the function of highways; to 
provide access to the more frequented areas of the city. 
Highways develop perpendicular branches every five segments, 
and between those branches, street networks generate, on a large 
delay. The delay allows the highway network to generate 
satisfactorily before the street network begins to generate. 



 
The function of streets is therefore to fill in the gaps between the 
highway networks with a semi-regular grid pattern. Thus, streets 
generate outward from their origins, with perpendicular 
branches after every segment. Street networks continue until 
they reach a highway, or the population drops below a threshold.  

To facilitate the road generation, frequent checks are made at 
every iteration. Newly formed roads are checked for 
intersections with existing roads, and shortened to the 
intersection point if one is found. Any road which ends close to 
an existing junction of roads is modified in angle and length to 
meet that junction. Also, roads which enter park or water areas 
are swiveled and/or shortened to keep them valid.  

Roads are also checked against the terrain height map for 
validity. The height of the terrain at a road’s start and end point 
is used to determine the slope of the road, which if too high, 
causes the road to be rejected. Also, highways tend to remain on 
areas of comparable height when heading towards high 
population zones.  

The initial string which is passed to the L-system is based 
entirely on the road strokes which are drawn by the user. For a 
given feature road stroke, the middle segments are passed to the 
L-system as “final” roads, while the end segments are passed as 
developing roads. Thus, all feature roads develop at their end 
points. In addition, developing roads are placed perpendicular to 
the feature road along its length.  

For the purposes of intersection checking, a secondary data 
structure – a quadtree – is used to store the road segment data 
while the road system is generating. This prevents having to 
check every road in the system; rather, only the roads that are 
close to a specific road need be checked, by using the quadtree 
to check closeness.  

The road generation continues until all roads are final (when the 
road network has more or less filled the city boundary). At this 
point, the road segment data is converted to a connected graph 
of edges and vertices; each vertex has a list of attached edges, 
and each edge’s end-points are indices into the vertex array.  

  

Figure 4: A road network graph generated on a height image 
map. The white area is a water feature.   

Building generation is achieved through two steps: lot 
allocation, and building placement.  

In order to determine the lots in which buildings can be placed, 
we find the smallest polygons in the graph. The centroids of 
these polygons are then calculated (see Figure 4), and each lot is 
scaled down towards its centroid.  

 

Figure 5. Centroids of lots.  

After we have determined the lots, we place the buildings that 
populate these areas. Our approach in this problem differs from 
Parish and Müller’s.   

We place buildings along each edge, performing checks at each 
placement to avoid collisions between buildings. These checks 
are accelerated through the use of a quad-tree structure.  

Building width and depth are randomised slightly at each step, 
and building height is a function of the image map defined 
through the sketching interface. This results in a collection of 
buildings that appear to follow the road structure while still 
maintaining an organic, humanised appearance.  

3.3 Renderer 
In order to render our scene in a non-photorealistic style, we 
primarily follow Praun et al.’s [11] cross-hatching approach.  

To calculate the shading at each point in the scene – and 
therefore the combination of crosshatch textures – we use an 
exaggerated shading model as described in Rusinkiewicz et al. 
[14]. This method emphasises the non-photorealism of the scene 
by accentuating sloped terrain, and complements Praun et al.’s 
crosshatching technique.  

We used this combination of non-photorealistic methods to 
render the terrain, which is a 512x512 heightmap. Frustum 
culling and a simple level-of-detail scheme are used to facilitate 
interactive frame-rates.  

In order to visualise the buildings that make up the city, we 
render instances of a cube model for each building. Affine 
transformations are applied to each instance in order to position, 
scale and rotate the cube appropriately.  

We found that the most effective approach for accentuating 
building outlines was to simply apply an “outline texture”: one 



which has a light interior and dark borders. This approach 
yielded faster frame-rates than other methods, and provided 
acceptable results (see Figure 6).  

 

Figure 6. Buildings rendered with “outline textures”.  

The roads in our scenes are represented as textured 3D 
geometry. To achieve this, we create quadrilaterals from line 
segments. These quadrilaterals are formed by extending line 
segments in a direction perpendicular to their direction and the 
Y-axis vector.  

 

Figure 7. Line segments are extended perpendicular to their 
direction and the Y-axis vector. (Realistic rendering mode 

depicted.)  

In order to enable comparison, we have also implemented a 
realistic mode and a toon-shaded mode.  

For the realistic rendering mode, three pre-made images are used 
to texture the terrain. These textures are blended smoothly based 
on a “coverage map”, which is a hand-made RGB texture. The 
three channels of the coverage map specify how much of a 
contribution the first, second and third texture make to the final 
pixel colour.  

Several additional elements were built into the realistic mode, 
such as water with reflection and refraction and a skybox.  

The toon-shaded mode simply shades the terrain using standard 
lighting methods, and then reduces the tonal range; this results 
in an aesthetic that is typical of cartoon drawings.  

4. RESULTS 
A city generation application by means of a sketch and gesture 
interface was successfully implemented with the following 
features:  

Drawing city boundaries on the terrain 
Drawing regions in which to increase/decrease 
populations 
Drawing regions in which to allocate parks 
Allocating building height means and variance in a 
region 
Drawing feature roads from which the city road 
network generates 
Modification of the city by erasing roads  

The application is rendered using a non-photorealistic sketching 
style renderer. Using a combination of existing techniques for 
real-time non-photorealistic rendering, it effectively displays 
scenes at over 30 frames per second and provides great visual 
clarity of the created environment. Figure 8, below, is a 
screenshot of a generated city in the application.   

 

Figure 8. A generated city rendered in a non-
photorealistic style in the CitySketch application  

Our alternative to Parish and Müllers’ [10] method for building 
placement provides acceptable results and is not 
computationally expensive.  

In order to test the application, and compare it to the approach 
by which cities are created by editing image maps (as employed 
by Parish and Müller), an experiment was conducted with two 
groups of users. Each user was presented with two sets of 
images of cities to recreate.  

The control group edited image maps in an image editor, which 
were then provided as inputs to the city generation system. The 
experiment group used CitySketch to recreate the cities. Their 
attempts were timed and assessed based on accuracy to the 
target cities.  

It was found that the experiment group, using CitySketch, were 
able to more closely create the target cities, and did so in less 



time. In addition, the users expressed a greater sense of control 
over the city’s creation when using CitySketch (as assessed by 
questionnaire).  

5. CONCLUSION 
The aim of creating a 3D city-sketching application has been 
achieved, and the results are promising for future work in this 
area.  

We found city generation to be very CPU-intensive. When using 
the NPR renderer, the frame-rate only dropped below our target 
minimum for very large cities; however, in order to generate the 
cities within a reasonable time, we had to keep them small and 
simple. Therefore, we found that the generation time would 
exceed our target maximum long before the cities became too 
complex to render at interactive rates.  

Not all of the proposed features could be implemented, but the 
core functionality of the system was finished on time and works 
as required. Additionally, the renderer was extended to include 
some of our proposed “future work” by adding a realistic mode 
and several additional features, such as the graphical indications 
when gestures are recognised and the ability to draw gestures 
outside of the terrain area.  

We have found the combination of systems to work very well: 
city generation is a particularly appropriate application for a 
sketching interface, combining the freeform nature of sketching 
with the level of detail only feasible through procedural 
methods. Additionally, the use of non-photorealistic rendering in 
order to represent a scene is a powerful method of immersing a 
user in a sketching experience.  

Finally, the experiment showed that the sketch and gesture 
approach is more efficient and easier to use than an approach 
based on manually editing image maps. In addition users 
reported a greater sense of control with the sketch and gesture 
interface, and typically learnt the system in less than 15 minutes.  

6. FUTURE WORK 
There are numerous additions that could still be implemented in 
our solution.  

At present, all buildings are represented solely by single 
rectangular blocks. More detailed building structures could be 
introduced, similar to the Parish & Müller method by means of 
L-systems [10].  

In order to create more variation across the city, additional 
zoning properties could be introduced, for instance, commercial, 
residential and industrial areas. Each would have different 
building styles and sizes.  

More complex road types could be introduced, such as 
highways, bridges and tunneled roads. In addition, the way in 

which the road network is inferred by drawn strokes could be 
improved.  

To better allow for correction of errors, the ability to modify 
regions by scribbling, in the same way roads are scribbled out, 
could be introduced. Also, multiple levels of undo could be 
implemented rather than only a single step.  

Similarly, to allow the user to make minor modifications to the 
city after it has been generated, a means of cutting or extending 
individual buildings could be introduced.  

It would be interesting to know which of our rendering modes is 
more conducive to creative sketching of cities. This could be 
analysed by restricting test users to a single rendering option, 
asking them to create a specific city, and measuring the resulting 
cities with a closeness metric.  
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