Parallelising Harvesting

Hussein Suleman

Department of Computer Science, University of Cape Town
Private Bag, Rondebosch, 7701, South Africa

hussein@cs.uct.ac.za

Abstract. Metadata harvesting has become a common technique to
transfer a stream of data from one metadata repository or digital library
system to another. As collections of metadata, and their associated dig-
ital objects, grow in size, the ingest of these items at the destination
archive can take a significant amount of time, depending on the type
of indexing or post-processing that is required. This paper discusses an
approach to parallelise the post-processing of data in a small cluster
of machines or a multi-processor environment, while not increasing the
burden on the source data provider. Performance tests have been carried
out on varying architectures and the results indicate that this technique
is indeed promising for some scenarios and can be extended to more
computationally-intensive ingest procedures. In general, the technique
presents a new approach for the construction of harvest-based distributed
or component-based digital libraries, with better scalability than before.

1 Introduction

Digital library (DL) systems are rapidly growing in popularity as the technology
matures and also because of the advocacy of groups such as the Open Access and
Electronic Thesis and Dissertation communities. The effect of this popularity is
that there are now more accessible collections, growing at relatively high rates -
Lyman and Varian [10] estimated 5 exabytes of new digital information in 2002
alone!

There is a need for tools to manage these large and growing collections and
meta-collections and make them accessible to the relevant audiences. However,
these tools are not readily available and popular DL systems do not always
scale appropriately [7] [6]. While much research has gone into the scalability
of Web-delivered DL content (see, for example, [1]), access to services is only
one dimension of the management tasks, which typically also include internal
data processing for classification, preservation-related manipulation and ingest
procedures.

At the same time, digital library tools need to be accessible to users and
managers of collections of varying sizes. Keeping this in mind, this study has
looked at how the current nature of harvesting of metadata, a popular first step
in ingest mechanisms, can be recast to better scale with changes in underlying
machine architectures. While harvesting is only one small part of a larger DL

architecture, its operation can be parallelised with immediate benefits, with-
out any changes to the data flow that may be needed when other services are
parallelised.

2 Background

2.1 Metadata Harvesting

The Open Archives Initiative Protocol (OAI) created the Protocol for Metadata
Harvesting (PMH) as a low barrier mechanism for computer systems to exchange
metadata on a periodic basis [8] [9].

Metadata is encoded in XML and the exchanges happen as a layer over the
HTTP protocol. The owner of the metadata is referred to as the data provider
and the provider of services based on this data is referred to as the service
provider. The act of transferring metadata from the data provider to the service
provider is referred to as harvesting - thus the service provider operates a software
tool called a harvester in order to initiate and control the process of harvesting
metadata from the data provider.

Harvesting works as follows:

— The service provider executes its harvester to harvest metadata from a data
provider. If metadata has not been harvested before, the harvester requests
all metadata in a specified format.

— The data provider returns as much metadata as it can reasonably handle
and sends back an opaque token, called a resumptionToken, to the harvester
as a placeholder for more records.

— The harvester passes the records on to the service provider for ingest into
the service provider’s system.

— If the harvester encounters a resumptionToken at the end of the record
stream, it sends a subsequent request to the data provider with this token
as a parameter.

— The data provider sends back an additional chunk of records and a new
token if necessary. This process continues in a cycle until all records have
been transferred.

— When all records have been transferred, the harvester terminates its activi-
ties.

— At regular intervals afterwards, the service provider invokes the harvester
to obtain records that have changed since the previous harvesting operation
(by specifying the date of that operation). Every harvesting operation uses
tokens as before to break up the responses into manageable pieces.

While this algorithm is partly sequential, some of the steps can clearly be
carried out in parallel. Before the algorithm can be recast as a parallel one, it
is necessary to investigate popular machine architectures that can support such
parallelisation.

2.2 High Performance Computing

The following approaches to high performance (parallel) computing were con-
sidered for this work:

— Grid computing: refers to collaborative use of computers in a WAN or on
the Internet to solve large problems. The EU-based DILIGENT project is
investigating the adoption of grids for DL systems [4].

— Multi-processor/core machines: refers to single machines with multiple CPUs
and/or multiple processing cores in each CPU. This is an ideal architecture
for data-intensive operations such as indexing [1], but arbitrary scaling of
the number of processors is usually not possible or prohibitively expensive.

— Beowulf cluster [3]: refers to a collection of machines all in the same location,
connected to a high-speed LAN.

During the experimental phase, tests were conducted on a Beowulf cluster
and a dual-CPU machine. Grid computing was not considered because of the
requirement of a sufficiently fast underlying network, which is not available in
the country where this research was conducted (and by extrapolation in some
other countries where DL systems are used).

For the cluster it was also necessary to select an appropriate system software
layer. openMosix [2] was chosen because it transparently makes a cluster appear
as one large system, with no special programming or use of libraries. openMosix
is a set of operating system tools that transparently migrate processes to balance
the load across all nodes. It allows the use of standard System V IPC mechanisms
(message queues, UNIX domain pairs, etc.) for synchronisation, therefore there
would be no differences in the software that runs on openMosix, a multi-processor
or a uniprocessor machine. In order to make best use of openMosix, however,
software applications should be designed as a collaborating set of smaller pro-
cesses (thus enabling migration of some of them). This technique is similarly an
enabler for multi-CPU machines.

3 Parallel Harvesting

3.1 Basic Technique

Most data providers are production-mode digital library systems, with OAI-
PMH support as an auxiliary service so processing multiple requests in parallel
may be disallowed. Even if possible, there is no mechanism in OAI-PMH to re-
quest evenly-sized chunks of records - dates and sets may both be non-uniformly
distributed within a collection. The only way to split a stream of records into
reasonably-sized chunks is to rely on the data provider to do this by means of
its resumptionToken mechanism.

In a parallel harvester, each process requests a chunk of records and passes
the resumptionToken to an idle peer so it can get its own data and repeat the
process until there are no more resumptionTokens.

A lightweight job scheduler serves not only to distribute harvesting jobs but
also to intersperse those with post-harvesting data processing activities, wherever
those can be parallelised as well, e.g., merging of sub-indices for a parallel-index-
serial-query search engine.

Figure 1 illustrates the process of parallel harvesting and shows the vari-
ous actors as described. In the illustration each process is depicted as being
passed the token in sequence but in practice the scheduler will give the token to
whichever node is currently idle (or randomly choose from among the idle nodes
if more than one).

[OAI data provider]

harvester .
' node 1 \

harvester
node 1

harvester
node 1

token2
tokent

tokent

harvester
/
scheduler

Fig. 1. Parallel harvester components and interaction

3.2 Distribution and Synchronisation

When harvesting begins, multiple processes are spawned (using fork). These pro-
cesses are distributed as necessary to the various CPUs or cluster nodes (worker
nodes) by the operating system, in a best effort to balance the load without
application-specific information. Processes were chosen over threads because
threads cannot be easily migrated in some parallel architectures.

The scheduler uses a work pool and processor farm approach to manage jobs
[11]. The work pool is initialised to contain the usual first harvesting operation
to obtain all records that have been changed since the date of the last harvest.
The scheduler also maintains a set of flags to indicate which worker processes
are busy. When there is at least one idle worker process and at least one job in
the pool, the job is dispatched to the worker process (using a unix socket for
communication). The worker process will then harvest the next chunk of data

from the data provider and send the resumptionToken back to the scheduler as
soon as it is obtained. The worker continues to process the data (e.g., create
indices or reformat for ingestion) and sends a message to the scheduler when
it is done with the job. The scheduler, in the meanwhile, could have signalled
another worker process to deal with the new job that is in its pool. Thus, if
the post-processing of data is time-consuming, the scheduler ensures that this is
done in parallel, while the harvesting operations do not themselves overlap.
Figure 2 shows the overlapping of harvesting and processing operations in a
parallel harvester, as compared to the traditional sequential harvester. Jobs with
significant time spent on post-processing fare better in the parallel scenario.

traditional sequential harvesting
node ‘ obtain data | process data ‘ obtain data ‘ process data | obtain data | process data

parallel harvesting
nodet ‘ obtain data | process data ‘
node2 obtain data| process data ‘
node3 obtain data‘ process data

Fig. 2. Timing of sequential and parallel harvesting

4 Evaluation

In order to evaluate the efficiency of parallel harvesting, the platform was varied
and tests were conducted for varying numbers of worker processes. Since the
aim of this work was to support parallel harvesting irrespective of the underly-
ing architecture, the operating system did all task allocation and/or migration
implicitly.

Table 1 lists the different platforms used during testing and how they differed.
The last column refers to whether or not the OAI-PMH data provider was on
the same machine (if there was a single machine). Machine4 is so named because
it is a single machine within the Simba cluster.

4.1 Typical performance

First, each platform was tested with a harvester that performed inverted file
indexing of the metadata, with each metadata chunk kept independent and the
inverted files written to disk after processing. Indices were created for each meta-
data field as well as the whole record, and for individual stemmed and stopped
words as well as the whole contents of each field. This is a typical first operation
performed by the indexing portion of a search engine.

For the Machine4 and Simba platforms, the data was stored remotely using
NFS. All other platforms stored the data locally.

Table 1. List of platforms, and their characteristics, used for experiments

Name Machine Description OS Data

Source
Laptop Centrino 1.5GHz Linux 2.6.12 local
Banzai Local|Dual Pentium 3GHz FreeBSD 6.0 local
Banzai Dual Pentium 3GHz FreeBSD 6.0 remote
Machine4 Pentium 3GHz Linux 2.4.26 remote
Simba 8x Pentium 3GHz, connected with|Linux4openMosix |remote

Gigabit Ethernet 2.4.26

Figure 3 shows the time taken for harvesting and indexing for each of the
different platforms, each tested with 1, 2, 4, 8, 16 and 32 worker processes.

Machine4 and Laptop, as expected, did not perform as well as Banzai because
of the number of CPUs. These single CPU machines, however still register an im-
provement in performance when multiple processes are executed simultaneously,
presumably because of the overlapping of IO with computation.

Banzai and Local Banzai take approximately half the time of their single
CPU counterparts. When the number of processes increases drastically, Banzai
performs better, probably due once again to Local Banzai having to serve its
own data provider in addition to its harvesting and indexing operations.

Having 8 CPUs, it could be expected that Simba will provide the best per-
formance at all times. However, the data communication when processes are
migrated to other nodes takes its toll, especially when there are few processes
and the load is not high. For a very small number of processes, openMosix has
more idle processors than busy ones so spends a lot of time moving processes
around, without taking into account that processes may have substantial data
footprints as well. As the number of processes increases, it is easier for openMosix
to spread the load and maintain this even spread without further migrations.
Thus, for more than 4 processes, Simba outperforms the single CPU platforms
but because of the data communication for process migration, remote disk access
and synchronisation, the multi-CPU machine still outperforms the cluster-based
solution.

4.2 Varying of Workload

The results of the first round of performance trials did not favour the cluster and
it is hypothesised that this is because of a small workload and excessive remote
data access. To test that the workload is in fact the reason why a dual-CPU
machine outperforms an 8-node cluster, the workload was varied and additional
tests were conducted.

Parallel Harvesting

28:48.00

25:12.00

21:36.00

18:00.00 v Laptop
® B Local Banzai
E 14:24.00 m Simba

¢ Machine4

10:48.00 A Banzai

07:12.00+

03:36.00

00:00.00 -

Processes

Fig. 3. Typical performance of different platforms for an indexing task

First, to remove any bias, only those platforms with remote data providers
were considered. Then, the harvesters were set up to perform each of the following
tasks on harvested data:

— index and commit to disk as before;

— index only; and

— index, perform some additional CPU-intensive calculations, and then commit
indices to disk.

The results from these tests are shown in Figure 4. In the case of Indexing,
Simba and Banzai perform equally well because the computational load is not
high. With Indexing+Committing, Banzai outperforms Simba because of local
disk access, as before. However, as the computional load is increased in the Index-
ing+Committing+Computing test, Simba begins to perform better than Banzai.
This result shows that while disk-intensive operations may be better suited to a
multi-CPU system, as the load of computational operations increases, a cluster
of machines may offer a reasonable solution. From a digital library perspective,
a cluster of machines may offer cost-effective possibilities for processing data
for indexing, classification, automatic extraction, pattern detection and similar
tasks.

Now, consider the data from this experiment depicted from the perspective
of each machine rather than the tasks performed (see Figure 5). It is clear that

Indexing Indexing+Committing
28:48.00 -
03:36.00
03:14.40 | 25:12.00 4
025280 13600
023120 o
18:00.00 -
02:09.60 °
g ba £ 14:24.00
S o ©
01:26.40 - o Banzai 1048.00 -
0104807 07:12.00 |
004320 3
03:36.00
002160 .
00:00.00 +—————— 00:0000 44—

1 4 16
Processes Processes

Indexing+Committing+Computing
32:24.00 o
28:48.00 4
25:12.00
21:36.00 4
18:00.00 4

Time

14:24.00

10:48.00 o
07:12.00

03:36.00 ° —

000000 +————
1 4 16

Processes

Fig. 4. Per-platform analysis of harvesting times, for each workload

a cluster of machines (Simba) has the advantage that for a sufficient number
of processes, a higher computational load does not significantly increase the
wallclock time. For the single processor and dual-processor machines, a higher
computational load still results in a much higher processing time.

5 Conclusions

This work has begun to look at how existing digital library architectures can be
made more scalable. The results naturally do not work for all scenarios and the
performance may degrade in systems with large numbers of CPUs, for the given
simple approach to parallelisation.

Nevertheless, the experimental validation shows that storage-intensive ser-
vices can benefit from multi-processor machines, while computation-intensive
services may work adequately on the more cost effective Beowulf clusters. In
addition, the restructuring of OAI-PMH harvesters to include parallel network
access and post-processing yields performance benefits on even single processor
machines! In all cases, these gains were made purely by redesigning the harvester,
without any modifications to the OAI-PMH and without adversely impacting the
data provider. Also, the harvester is architected to work reasonably well on a
single processor machine and easily scale up to make use of additional resources
if they are available.

Simba Machine4

32:24.00 7 15:50.40

28:48.00 A Indexing 14:24.00

4 Indexing
® Indexing+Committ 12:57.60 o

B indexing+Commit
ing

o Indexing+Commit

10:04.80 o ing+Computing

08:38.40

.
07:12.00 o
05:45.60 — °
04:19.20
025280 :\.‘_
01:26.40 —
00:0000 +—— 7
1 4 1 1 4 1

Processes Processes

25:12.00 4
© IndesingsCommit 11:31.20 o

21:36.00 ing+Computing

18:00.00 o

Time
Time

14:24.00 4
10:48.00 o
07:12.00

03:36.00

00:00.00

Banzai

07:12.00

06:28.80 —| 4 Indexing
.

05:45.60 | ::gexmg»cummm
05:02.40 © Indexing+Committ
ing+Computing

04:19.20

03:36.00 -4
.
02:52.80 |
02:09.60 |
01:26.40 J\‘“‘
00:43.20 |
000000 +——)
1 4 16

Time

Processes

Fig. 5. Per-workload analysis of harvesting times, for each platform

6 Future Work

For distributed digital library systems, these experiments have shown that there
is benefit in paralleling even the most basic harvesting operation. The next step
is to parallelise the various processing operations that take place within a digital
library system, including indexing and querying. Early work with the paral-
lel harvesting framework has shown that the scheduler can be used to manage
multiple types of jobs simultaneously - thus some nodes could be harvesting
and post-processing while others could be merging indices. For systems where
multiple services require different processing operations, it is possible to use a
computational pipeline, with each stage performing a particular operation.
There were some problems with data and process movement in openMosix.
In looking at alternatives, the distribution of processes and data will depend
on the specific data flow patterns of a digital library system. Dongarra et al.
[5] emphasise that parallelism is only a part of the solution and that data flow
must be considered. Further work is therefore needed to determine what the
data flow patterns are and how best to optimise the distribution of processes,
communication among processes and disk access patterns for typical DL services.
Eventually, in order to scale digital library systems arbitrarily, it may be
necessary to rethink the fundamental nature of data storage, movement and
processing in digital library systems. The OAI-PMH data provider enforces a
notion of ownership or stewardship of data, but quickly becomes a bottleneck in
large scale collections. Data ownership may need to be redefined in its relation-

ship to data storage and locality so that scalable services have optimal access to
data when needed.

7 Acknowledgements

This project was made possible by funding from University of Cape Town, NRF
(Grant number: FA2005041200001), NRF-THRIP, Telkom and Siemens.

References

1. Andresen, Daniel, Tao Yang, Omar Egecioglu, Oscar H. Ibarra, and Terence R.
Smith (1996), “Scalability Issues for High Performance Digital Libraries on the
World Wide Web”, Technical Report 1996-03, Department of Computer Science,
University of California Santa Barbara, March 1996.

2. Bar, Moshe (2003), “openMosix, a Linux Kernel Extension for Single System Image
Clustering”, in Proceedings of Linux Kongress: 10th International Linux System
Technology Conference, 15-16 October, Saarbriicken, Germany.

3. Brown, Robert G. (2004) Engineering a Beowulf-style Com-
pute Cluster, Duke University Physics Department. Available
http://www.phy.duke.edu/ rgb/Beowulf/beowulf_book/beowulf_book/index.html

4. Diligent (2006) A Digital Library Infrastructure on Grid Enabled Technology. Web-
site http://www.diligentproject.org/

5. Dongarra, Jack, Ken Kennedy and Andy White (2003) “Introduction”, in Jack Don-
garra, lan Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, Andy
White (eds): Sourcebook of Parallel Computing, Morgan Kaufman, Amsterdam.

6. Haedstrom, Margaret (2003), “Research Challenges in Digital Archiving and Long-
term Preservation”, NSF Post Digital Library Futures Workshop, 15-17 June 2003,
Cape Cod. Available http://www.sis.pitt.edu/ dlwkshop/paper_hedstrom.html

7. Imafouo, Amlie (2006), “A Scalability Survey in IR and DL”,
TCDL Bulletin, Volume 2, Issue 2. Available http://www.ieece-
tedlorg/Bulletin/v2n2 /imafouo/imafouo.html

8. Lagoze, Carl, and Herbert Van de Sompel (2001), “The Open Archives Initiative:
Building a low-barrier interoperability framework”, in Proceedings of the ACM-
TIEEE Joint Conference on Digital Libraries, Roanoke, VA, USA, 24-28 June 2001,
pp. 54-62.

9. Lagoze, Carl, Herbert Van de Sompel, Michael Nelson and Simeon Warner (2002),
The Open Archives Initiative Protocol for Metadata Harvesting — Version 2.0, Open
Archives Initiative, June 2002. Available http://www.openarchives.org/OAI/2.0/
openarchivesprotocol.htm

10. Lyman, Peter, and Hal R. Varian (2003) How Much Information 20037, Univer-
sity of California. Available http://www2.sims.berkeley.edu/research/projects/how-
much-info-2003 /index.htm

11. Wilkinson, Barry, and Michael Allen (1999) Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers, Prentice Hall,
New Jersey.

