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Figure 1: Examples of scenes rated by users using our system. One user described these scenes using our rating system as:
(a) -0.5 wet, 0.5 sparse, 0.7 tropical, 0.0 cloudy, 0.9 light, 0.1 mountainous and 0.9 undulating; (b) 0.3 wet, 0.3 sparse, 0.1
tropical, 0.5 cloudy, -0.8 light, 0.7 mountainous and 0.7 undulating; (c) -0.9 wet, 0.7 sparse, 0.8 tropical, -1.0 cloudy, 1.0 light,
-0.3 mountainous and 0.1 undulating

Abstract

A new technique for generating virtual environments is pro-
posed, whereby the user describes the environment that they
wish to create using adjectives. An entire scene is then pro-
cedurally generated, based on the mapping of these adjec-
tives to the parameter space of the procedural models used.
This mapping is determined through a pre-process, during
which the user is presented with a number of scenes and
asked to describe them using adjectives. With such a tech-
nique, the ability to create complex virtual environments
is extended to users with little or no technical knowledge,
and additionally provides a means for experienced users to
quickly generate a large, complex environment which can
then be modified by hand.

CR Categories: G.1 [Mathematics of comput-
ing]: Numerical analysis— [G.1.2]: Numerical analysis—
Approximation[Approximation of surfaces and contours]
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1 Introduction

With processor and graphics hardware performance increas-
ing at such a rapid rate, the modern desktop machine is
more capable of interactively displaying ever larger and more
complex virtual environments (VEs). Such environments are
particularly useful in the entertainment and education1 sec-
tors, and as a result of this increase in performance there is
a demand for these sectors to make use of larger and more
complex VEs.

Sadly, human “hardware” is not as capable of keeping up,
which has a two-fold impact:

1. Creators of VEs are put under immense pressure by
having to produce larger and more complex scenes.

2. Users with little or no technical knowledge but who
may have considerable artistic talent are even less able
to create compelling VEs. This aspect has a particu-
lar impact both in in the education sector and in the
developing world.

1The reference to the education sector refers to the use of sim-
ulations for training purposes.



With regard to designing VEs, the majority of the tools
available require that the user has a fairly sophisticated tech-
nical training not only in using the tools, but also in un-
derstanding other technical concepts related to the field of
VEs, physics, and computer graphics in general. Experi-
enced users are able to readily and rapidly use such tools,
but most novice or non-technical users are typically at a
complete loss. More generally, the interface to VE design
prohibits such users from being able to design VEs.

With these thoughts in mind, an ideal technique that ad-
dresses these problems should provide the following features:

1. Allow large and complex VEs to be created quickly.

2. Provide an interface that supports non-technical users.

We present a new technique intended to solve these prob-
lems, after which we provide preliminary results on the use
of this technique and outline details on how the technique
could be improved. The work presented is still in progress,
and more conclusive testing and improvements are planned.

2 Related work

Part of the overall problem has been addressed through the
use of procedural modelling techniques. Such techniques take
a set of simple inputs and, by applying a set of procedural
steps, produce more complex output. The inputs to the
techniques can take a variety of forms, including:

• Scalar values: some techniques such as Perlin noise
[Ebert et al. 1994] require a few simple scalar parame-
ters to control the scale, stretch and number of fractal
levels in the generated noise. Most techniques use scalar
values in conjunction with other more complex inputs.

• Sets of rules: these are used by L-systems which
were first conceived by Lindenmayer [1968], and later
used for computer graphics by Lindenmayer and
Prusinkiewicz [1990]. An L-system is a parallel string
rewriting technique that iteratively modifies a string
based on the rules that are passed as input, and the
string is later interpreted to produce graphical output.
Such systems are used extensively for modelling plants.

• Image maps: Parish and Muller use image maps to
control elevation, land and vegetation types, population
density, street patterns and other parts of their proce-
dural city generator [2001]. Image maps have also been
used by Deussen et al. to specify terrain and plant
distribution in their modeling and rendering of plant
ecosystems [1998].

• Photographs: Shlyakhter et al. make use of pho-
tographs for reconstructing tree models [2001], whilst
Debevec et. al. use photographs in order to model and
render architechture [1996].

• Freehand sketches: Ijiri et al. [2005] and Okabe &
Igarashi [2003] make use of freehand sketches to guide
the modelling of flowers and trees respectively.

Procedural techniques allow for components of a virtual
environment such as plants, terrain and clouds to be gener-
ated by the computer, subject to a set of parameters. How-
ever, the number of parameters required by these techniques
is, in general, very large — large enough that it is not feasi-
ble for a user to simply manipulate the parameters in order

to obtain a desired output. The mapping of parameters to
perceived results may also not always be intuitive to the
user. Furthermore, it is often necessary for parameters from
different components to interact in order to achieve truly re-
alistic output: this interaction can be complex and difficult
to control when adjusting the parameters by hand.

One possibility for addressing this issue is the use of ge-
netic algorithms [Holland 1995]. The user is shown several
scenes, and chooses which scene is “best” or closest to what
they desire. Merry et al. [2003] investigated this approach
but their study produced a negative result, inferring that
users preferred being able to manually select values for the
parameters controlling the procedural models. They hypoth-
esise that more parameters2 are required before the use of
genetic algorithms will be better than manually specifying
parameters.

Polichroniadis [2001] makes use of a similar technique to
ours for human figurine animation. Adjectives are used to
describe different animations, and then new styles of anima-
tion can be synthesised by choosing several adjectives and
interpolating between their animations.

3 Overview of technique

As was outlined in Section 1, our aim is to provide a tech-
nique that allows for VEs to be created quickly, and which
provides an interface that is usable by non-technical users.
We propose the following components for achieving each of
these goals:

1. Allow large and complex VEs to be created quickly. Pro-
cedural modeling methods (also known as procedural
models) provide a useful and effective means of gener-
ating a large variety of different objects automatically.
That is, procedural models eliminate the typically high
cost of modeling objects for a VE, thus drastically in-
creasing the speed at which a VE can be generated. It
should be noted that procedural models are not without
their own problems: they can be too restrictive, and
determining the correct set of parameters to achieve
a certain “look” can be extremely difficult. The first
issue (that of procedural models being restrictive) is
completely dependent on the modeling techniques used,
and so for our purposes can be ignored (since arbitrar-
ily more parameters and complexity could be added to
improve flexibility). The latter issue (that of determin-
ing the “correct” parameter set for a particular “look”)
will be addressed shortly as part of our technique.

2. Provide an interface that is accessible to non-technical
users. Suppose a user wishes to create a VE: they have
a mental picture of what this VE looks like, but how
can they convey this to the computer? Since our aim is
to provide an interface that is usable by non-technical
users, a better approach would be to leave the computer
out of this question for the moment, and simply phrase
it as “how can they convey this to another entity?”. In
everyday life, a non-technical user would convey their
ideas to another person, which means the core question
being dealt with is “how can they convey this to another
person?”.

When one person wants to convey the idea of a VE to
another person, the natural way that they do this is
to describe important features of the VE, so that the

2They used 21 parameters.



other person can hopefully build as close as possible a
picture of the VE in their mind. The act of describing,
and in particular of describing specific details, involves
interspersing the description with adjectives that qual-
ify certain aspects of the description.

With this in mind, we propose an interface in which
the user can choose from a number of adjectives that
describe the VE they wish to create. Such an interface
should be familiar to the user, as it mimics the way in
which they interact with other people. Associated with
each adjective is a scalar value that can be adjusted
to either enhance or reduce the impact of the adjec-
tive, if desired (in this way, users can quantify abstract
concepts such as the use of the word “very”).

The remaining problem now is to link the two ideas dis-
cussed above: to find some way in which the adjectives in-
put by the user can drive the procedural model generation
by mapping to correct procedural parameter values. Our
proposed solution is now discussed.

3.1 Adjective space and parameter space

Suppose that the user can choose adjectives from a set A
to describe their VE. We define adjective space, A, to be a
subset of |A|-dimensional real values, A = [−1; 1]|A| (where
|A| denotes the number of adjective in the set A). Each
dimension in A thus relates to a unique adjective in A, and
the value x in any dimension of A is a real value in the range
[−1; 1] which is the scalar value associated with the relevant
adjective (as discussed in point 2 above). Hence an element
of A describes a specific set of scalar values associated with
the adjectives in A, and A represents the set of all possible
descriptions that a user could make.

Suppose that P represents the set of available procedural
models, and that P m is the set of parameters controlling
procedural model m, m ∈ P . Let

Q =
[

m∈P

P m

be the set of all parameters controlling all the available pro-
cedural models.

Without loss of generality, assume that each parameter is
represented by a single, scalar, real value. This assumption
is well founded since we can establish mappings for other
parameter types (such as boolean, integer and enumerant
parameters) to and from real values3. We then define param-

eter space, P, to be the |Q|-dimensional reals, viz. P = R
|Q|.

Hence an element of P describes a specific set of real values
associated with the parameters in Q, and P represents the
set of all possible scenes that could be generated by the pro-
cedural models in P .

Recall that our aim was to establish a means for mapping
the user’s description into numerical parameters that can be
evaluated by the computer. With the definitions of adjective
space and parameter space above, this is mathematically
expressed as the need to find a function

f : A → P

3For example, to convert from a real to an integer value, one
could simply round the real value to the nearest integer; to convert
a real into a boolean, one could simply divide the reals into two
subsets and say that a real value less than 0 corresponds to the
boolean value false, whilst a real value greater than or equal to 0
corresponds to the boolean value true.

However, determining f is a non-trivial task, and more-
over different users will express themselves differently mean-
ing that if f accurately models one user’s descriptions, it
is unlikely to accurately model the descriptions of another
user.

Our solution to these problems is for the system to “learn”
f for each user through a training process. A number of
quasirandom4 elements are chosen from P, and for each the
corresponding VE is generated. The user is able to explore
the VE, after which they describe the VE by choosing adjec-
tives and associated scalar values, giving an element of A.
The challenge now is to determine f — that is, to find the
relationship between A and P — by using the data acquired.
This can be approached using several classes of techniques,
including scattered data interpolation, scattered data approx-
imation and supervised learning.

3.2 Function approximation

A widely adopted technique for scattered data interpolation
and supervised learning is the use of radial basis function
networks [Orr 1996; Wendland 2005]. A traditional radial
basis function network (RBFN) is a special case of the more
general neural network, with the following defining charac-
teristics:

• An RBFN has exactly one hidden layer.

• Each unit hj in the hidden layer is modelled by a radial
basis function (RBF), and all components of the input
vector ~x are fed forward into every unit in the hidden
layer.

• The outputs from the hidden layer are linearly com-
bined with weights to form the function’s output.

A graphical illustration of an RBFN is shown in Figure 2.

If p training pairs (xi; yi) are used to train a RBFN with
m RBFs, then using a modified least squares derivation the
weights wj are solved for as

~w = A
−1

H
>

~y

where H, the design matrix, is

H =

2

6

6

6

4
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and A−1, the variance matrix, is

A
−1 = (H>

H + Λ)−1

The elements of Λ are all zero except along the diagonal,
which is filled by regularisation parameters associated with
the RBFs. This solution minimises the mean-squared error
between f(xi) and yi over all the training pairs (xi; yi).

More details on the underlying mathematical and algo-
rithmic details of RBFNs and their applications can be found
in the work of Orr [1996].

4By quasirandom, we simply mean elements are chosen in such
a way as to adequately sample the space covered by P. The exact
method that would be used to accomplish this has not yet been
determined.
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Figure 2: A traditional RBFN accepts input from an
n-dimensional vector, ~x, which is fed forward to the m hid-
den units hj (j ∈ 1 . . . m). The outputs from the hidden
units are then each weighted by wj and summed to give the
result, f(~x).

4 Implementation

We have completed a simple implementation that success-
fully demonstrates a complete system, from acquiring user
descriptions to using these as training data for function ap-
proximation, and then allowing the user to specify adjectives
and generate new scenes using the resulting function.

The scenes generated are presently being controlled by 16
parameters that depict the following procedural elements:

• Landscape: by using Perlin noise and a number of
pseudo-randomly placed Gaussian functions with vary-
ing properties, an island is created that can mimic flat
beaches, rolling hills, rocky cliffs, or even combinations
of these.

• Trees: an implementation [Diestel 2003] of the
techique of Weber and Penn [1995] for generating real-
istic trees is used. For speed (both of scene generation
and of rendering) we currently use pre-generated mod-
els of 3 different types of tree (palm, cactus and fir), and
these are placed pseudo-randomly over the landscape
according to the landscape type (for example: palms
on beach areas, cactii on desert and firs on grassland).

• Sky: based on the time of day, the sky changes using
the scattering properties described by Preetham [1999].

• Clouds and rain: Perlin noise is used to generate a
cloud texture, and parameter thresholds control rain
that is rendered using a particle simulation.

For function approximation, we have used a RBFN as de-
scribed in Section 3.2. Our RBFN has the following specific
properties:

• An RBF is placed at each point in adjective space sup-
plied by the user. This is a widely accepted and adopted
approach to placement of the RBFs [Orr 1996].

• All of the RBFs in each network have equal and fixed
radii. In general, it is possible for the RBFs to have
different radii (and even for the individual RBFs to be
different radial functions) but exploring these possibil-
ities is beyond the scope of this paper, and most appli-
cations of RBFNs also employ equal and fixed radii for
their RBFs.

• Associated with each RBF is a regularisation param-
eter. This is used in a local regularisation step [Orr
1996] which seeks to minimise the general cross val-
idation (GCV) criterion. The GCV is an estimated
measurement of how much the RBFN will deviate from
the theoretically perfect function on other future un-
known inputs. The resulting regularisation parameters
are used to better control the weights in the network,
as well as to remove RBFs from the network which are
not required (and which may be causing, for example,
over-sampling in certain regions).

To simplify implementation, there is an individual RBFN
for each procedural parameter. This is potentially limiting,
as it does not allow for parameters to interact with and affect
each-other: some possibilities for overcoming this limitation
are discussed in Section 6.

5 Testing and results

Thus far, some explorative testing has been conducted by se-
lecting 15 elements of P and obtaining descriptions of these
from 8 different users. 7 adjectives were chosen before the
testing that reflected some obvious differences in the gener-
ated scenes: the adjectives chosen were wet, sparse, tropical,
cloudy, light, mountainous and undulating. In practice, more
adjectives could be useful and the possibility of allowing a
user to specify their own adjectives needs to be explored:
these issues are given more thought in Section 6.

Using the collected data, RBFNs are constructed for each
user, which then allows the user to describe a desired scene
and have the RBFNs determine the corresponding values in
parameter space, which are used to generate the scene.

In general, the results of this technique are quite mixed:
in some instances, the generated scene does indeed match
the user’s expectations, but in others the result is not at
all what the user had in mind. We have found that the
best results are achieved when a user chooses an element of
A which lies within the “effective radius” of several RBFs
(that is, the contribution from each of these RBFs is not very
close to 0, and so they all have an effect on the output of the
RBFN for that element). Conversely, when a user chooses
an element that happens to lie within the effective radius
of only 1 RBF or, worse, does not lie within the effective
radius of any RBFs, then the output is biased towards one
element of P and so the output is not as expected. This
could be corrected by increasing the radii of all RBFs —
and hence increasing their effective radii — but this makes
overfitting more likely, meaning that the function will fit the
training data extremely well but will not generalise to other
data. Additionally, trying to control this by insisting on an
even sampling in the function’s domain, A, is also impossible
since the points in A are provided by the user, and so we
have no control over these.



6 Conclusions and future work

For regularly sampled descriptions in A, the technique pro-
posed produces good results and the resulting scenes meet
the users’ expectations. More conclusive testing needs to
still be done to ascertain whether users prefer our technique
to that of manually choosing values for the procedural pa-
rameters. There are also still several issues that need to be
addressed before the system could be considered practical
and usable, and areas for future research include the follow-
ing:

• An alternative approach to having equal radii for all
RBFs is to allow the RBFs to have different radii, ac-
cording to the change of density in training data over
A. In doing this, one would need to ensure that all of A
is covered by some minimum number of RBFs, as well
as avoiding overfitting in denser areas.

• RBFNs were used because they are the most widely ac-
cepted form of scattered data interpolation; however,
there are many other techniques available, which may
produce better results and so should be considered. It
could also be argued that, since we rely on data col-
lected from users, the data we are interpolating is in-
herently noisy, and so techniques for scattered data ap-
proximation would be much more appropriate.

• The issue of adjective selection needs to be addressed in
more detail, as certain users may feel more comfortable
with their own adjectives rather than predetermined
ones.

• Presently, the user must assign a value to every adjec-
tive when they wish to generate a scene. In practice,
a user may wish to omit some adjective, when they do
not mind what value the adjective takes on. Means for
dealing with this situation would be desirable.

• Currently, each procedural parameter is assigned its
own RBFN and so there is no interaction between the
parameters. Several ways of approaching this are possi-
ble and should be explored, such as a separate function
which takes as input all the outputs from the RBFNs
and produces new output parameters, or possibly by
passing the procedural parameters as inputs to the
RBFNs and then repeatedly re-evaluating the RBFNs
(and updating their inputs with the most recent RBFN
outputs) until the system stabilises.
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