Analysis and Evaluation of Service Oriented
Architectures for Digital Libraries

Hussein Suleman

Department of Computer Science, University of Cape Town
Private Bag, Rondebosch, 7701, South Africa
hussein@cs.uct.ac.za

Abstract. The Service Oriented Architecture (SOA) that underlies the Web Ser-
vices paradigm of computing is widely regarded as the future of distributed com-
puting. The applicability of such an architecture for digital library systems is still
uncertain, as evidenced by the fact that virtually none of the large open source
projects (e.g., Greenstone, EPrints, DSpace) have adopted it for internal com-
ponent structuring. In contrast, the Open Archives Initiative (OAl) has received
much support in the DL community for its Protocol for Metadata Harvesting,
one that in principle falls within the scope of SOA. As a natural extension, the
Open Digital Library project carried the principles of the OAI forward into a set

of experimental derived and related protocols to create a testbed for component-
based digital library experiments. This paper discusses a series of experiments
with these components to confirm that SOA and a service-oriented component
architecture is indeed applicable to building flexible, effective and efficient digital
library systems, by evaluating issues of simplicity and understandability, reusabil-
ity, extensibility and performance.

1 Introduction

Service-oriented computing is a relatively new paradigm of computing where tasks are
subdivided and performed by independent and possibly remote components that interact
using well-defined communications protocols [24]. In particular, the Service-Oriented
Architecture (SOA) refers to a framework built around XML and XML messaging, with
standards for how messages are encoded, how protocol syntax is specified and where
instantiations of services are to be located. These are exemplified by the SOAP [7],
WSDL [3] and UDDI [9] specifications respectively. It is often argued that SOA can
be adopted by an organisation to increase reuse, modularity and extensibility of code,
while promoting a greater level of interoperability among unrelated network entities.
From a somewhat different perspective, the Open Archives Initiative (OAl) attempted
to address interoperability first and foremost, by designing a protocol for the efficient
incremental transfer of metadata from one network entity to another. This Protocol for
Metadata Harvesting (PMH) [11] has since been adopted by many large digital archives
and has become the primary mechanism for digital library interoperability in 2004. The
OAI-PMH is very closely related to SOA as it adopts a Web-distributed view of indi-
vidual systems, where independent components - listed on the OAl website - interact
through the medium of a well-specified request/response protocol and XML-encoded

2 H. Suleman

messages. The OAI-PMH differs significantly from the SOA in that it is more concerned
with a specific set of protocol and encoding semantics while SOA specifies only an un-
derlying transport mechanism that could be applied to many different protocol suites.
In this sense, a marriage of OAI-PMH and SOA is both possible and probable - initial
experiments to verify the feasibility of this and expose possible areas of concern were
carried out by Congia et al. [4].

In the interim, however, one of the reasons OAI-PMH has not as yet migrated to
SOA is that the technology is not sufficiently well proven. In addition, OAI-PMH is
aimed at interaction among entire systems, viewed as components of a super-system.
SOA, however, is easily applied to a finer granularity, where reuse and modularity of
components are crucial. To bridge this gap, and translate the core principles of OAl-
PMH to fine-grained interaction among small components of a larger digital library, the
Open Digital Library (ODL) project defined a suite of protocols based on the widely
accepted principles of OAI-PMH, but aimed at the needs of digital library subsystem in-
teraction [21][19]. There are some similar projects such as Dienst [10], which uses older
technology, and OpenDLib [2], for which tools and reference implementations were not
available for experimentation. These are discussed in detail in prior publications.

To maintain thematic consistency, the ODL protocols were designed in an object-
oriented fashion, where each protocol built on a previous one, extending and overriding
semantics as needed. A set of reference implementations of components were then cre-
ated to provide the following servicesearching browsing; tracking ofnew items
recommendation by collaborative filtering;annotation of items as an independent
service; numericafatings for items in a collectionmerging of sub-collections; and
peer reviewworkflow support.

A typical URL GET request to the search component, according to the ODL-Search
protocol that is defined by ODL, is listed below:

http://www.someserver.org/cgi-bin/Search/instancel/search.pl?
verb=ListRecords&metadataPrefix=0ai_dc&
set=odlsearchl/computer science/1/10

This request is for records 1-10 that match the query string “computer science”.
The response is in a format very similar to that of the OAI-PMH, with records ranked
according to probable relevance and one additional field to indicate the estimated total
number of hits. This is the crux of the ODL-Search protocol, as implemented by the
IRDB component. Other protocols and their associated component implementations
use similar syntax and semantics.

The primary aim of the ODL project was to develop simple semantics for building
experimental digital libraries - ODL was not meant for large scale production systems
and there is no intention to standardise the protocols that were developed. Some users
have noted that ODL protocols do not use SOAP/WSDL - this is largely because of their
relationship to OAI-PMH and the fact that SOAP was not considered to be a W3C rec-
ommendation until mid-2003. However, the operation of ODL protocols is very much
in keeping with the spirit of the SOA community and a move to SOAP/WSDL would
involve only minor syntactic changes of negligible impact.

Ultimately, the purpose of the ODL framework was to serve as a testbed for ex-
perimental work. Many, if not all, of the experiments that were conducted have tested

Analysis and Evaluation of Service Oriented Architectures for Digital Libraries 3

features of the SOA model applied to digital libraries. The components were analysed
and evaluated to determine how applicable a fine-grained component model is to the
construction of digital libraries, and possibly expose problems and shortcomings to be
addressed in future research. While the results of these experiments are generalisable
to SOA, they are also indicators for the success of componentised Web-based systems
in general, thereby blurring the already fuzzy line between Web-based information sys-
tems and digital libraries.

2 Experiments: Simplicity and Understandability

The first set of experiments aimed to determine if components with Web-based inter-
faces can be composed into complete systems with relative ease by non-specialists.
Three different user communities were introduced to the underlying principles of OAI
and the component architecture devised and were then led through the procedure of
building a simple digital library system using the components.

2.1 OSS4LIB

The first group, at an ALA OSS4LIB workshop, provided anecdotal evidence that the
component-connection approach to building DLs was feasible. The approximately 12
participants were largely technical staff associated with libraries and therefore had min-
imal experience with installation of software applications. They were carefully led
through the process of configuring and installing multiple components and were pleas-
antly surprised at the ease with which custom digital libraries can be created from com-
ponents. This led to a second, more controlled, experiment as detailed below.

2.2 Installation Test

The second group comprised 56 students studying digital libraries. The aim of this
study was to gauge their level of understanding of OAlI and ODL components and their
ability to complete a component composition exercise satisfactorily. The objective was
to install the following components and link them together to form a simple digital
library, as illustrated also in Fig 1:

— XMLFile: a simple file-based OAI archive
— Harvester: an OAI/ODL harvester

— IRDB: an ODL search engine

— IRDB-ui: a simple user interface for IRDB

Students were given an hour-long introduction to OAI and ODL and then given
detailed instructions to perform the component composition exercise. Upon completion,
they were asked to fill out a questionnaire to evaluate the experience of building this
system from components. Table 1 displays a summary of the responses to the core
questions asked of users.

In addition to these questions, typical demographic information was collected to
ascertain skills levels and exposure to the technical elements of the experiment. The

H. Suleman

IRDB
- IRDB
XMLFile — — user
(+harvester) .
interface

Fig. 1. Architecture of simple componentised digital library

Table 1. Summary of Responses to Component Composition Experiment

Question/Response ‘S. Agre#Agre%Neutra‘Disagre%S. Disagre%
Understand concepts of OAI-PMH. 9 38 9

Understand concepts of ODL. 6 36 14

Instructions were understandable. 35 20 1

Installing components was simple. 36 18 2

Configuration was simple. 33 21 2

Connecting Harvester+XMLFile was simple. 28 25 3

Connecting IRDB+XMLFile was simple. 26 25 5

Understanding of OAI/ODL has improved| 13 25 12 6

| will use ODL and OAI components. 12 33 10 1

Analysis and Evaluation of Service Oriented Architectures for Digital Libraries 5

different backgrounds of participants evident from the responses to demographic ques-
tions makes it difficult to analyse these results without taking into account all of the
interaction effects that result from past experience. Since OAl and ODL utilise various
different Web technologies, it is non-trivial to enumerate all of the pre-requisites and
determine their independent effects. It may be possible to construct an experimental
model to minimise the interaction effects, but this will require finding unique partic-
ipants, each with a very particular background and training. This may prove difficult
because of the cutting-edge nature of Web-based technology. Taking these difficulties
into account, any analysis of such an experiment cannot easily determine general trends.

Nine respondents who indicated that they did not know how Web Services worked
answered affirmative when asked if they had done Web Services-related development.
This may be because they interpreted the question as referring to Web-related services
other than SOAP, WSDL, and UDDI, or because they had done development work
without understanding the underlying standards and information model of Web Ser-
vices. Either of these is consistent with the vague understanding many people have of
Web Services.

Judging from the responses to the first two questions in Table 1, most participants
appear to have grasped the basic concepts related to OAI and ODL. The fact that some
participants were unsure indicates that an hour and 15 minutes may not be enough for
a person building a digital library to learn enough about OAl and ODL. This raises the
question of just how much training a person needs before being able to effectively use
OAl and ODL technology (or any Web-service-related technology). Also, more of the
participants were able to understand OAI rather than ODL,; this is expected since ODL
builds on OAI.

Most participants agreed (or strongly agreed) that the instructions were understand-
able. The instructions were very detailed so that even if participants did not understand
one section of the exercise, they were still able to complete the rest of the steps.

Installation and configuration of individual components as well as interconnecting
different components was deemed to be simple. As these are two basic concepts under-
lying ODL (that all services can be independent components and that systems are built
by interconnecting service components), it supports the hypothesis of this experiment
that ODL is simple to understand and adopt - which commutes to Web Services.

There was not much agreement about the ability of the exercise to improve the par-
ticipants understanding of OAl and ODL. This can be attributed to the sheer volume of
new concepts covered during the presentation and exercise. Given that approximately
half of the participants had never created a CGl-based Web application before, the learn-
ing curve was quite steep. In practice, those who adopt OAI and ODL technology are
usually digital library practitioners who already have experience with the construction
of dynamic Web-based information systems.

In spite of all these factors, two-thirds of the participants indicated an interest in
using similar components if they have a need for such services. Thus, even without a
thorough understanding of the technology and other available options, the simple and
reusable nature of the components seemed to appeal to participants.

6 H. Suleman

Thirteen participants provided optional feedback in the survey, and these ranged
from positive to somewhat skeptical. Eight of the reactions were positive, including the
following comments:

— “I' think the idea is very good and the approaches to build digital libraries is easy.”
— “They provide a way to get up and running very quickly with a Web application.”

Some participants were not sure about the workflow as indicated by the comment:
— “We have high level idea but detailed explanation will be great.”

One comment in reference to the questions on simplicity of installation and configura-
tion included:

— “I dont know; custom config might not be simple.”

This summarises the notion that components should be simple enough to bootstrap a
development process but still powerful enough to support a wide range of functionality.
In particular, the above comment refers to the XMLFile component that is simple to
install and use in its default configuration, but can be non-trivial to configure if the
records are not already OAl-compatible. In such a situation, XSL transformations can
be used to translate the records into acceptable formats. However, irrespective of the
complexity of configuration for a particular instance, the OAI/ODL interface to such
components always is the same.

Some questions raised during the lab sessions revealed very important issues that
need to be addressed in future development of ODL or related Web-based standards:

— Confusion over baseURLs

e Some participants were confused regarding which baseURL to use in which
instance. Since all URLs were similar, it was not obvious — this ought not to
happen in practice with any system built on OAI, ODL or Web Services tech-
nology.

e Entering URLs by hand resulted in many typographical errors. Ideally, such
links must be made using a high-level user interface that masks complex details
like URLs from the developers.

e The user interface was sometimes connected to the wrong component. While it
is possible for a user interface to Identify the service component before using
it, this will be inefficient. As an alternative, user interfaces can themselves be
components, with associated sanity tests applied during configuration.

— Failures during harvesting

e Harvesting will fail if the baseURL is incorrect, but there are no obvious grace-
ful recovery techniques. The components used in the experiment assume a
catastrophic error and stop harvesting from the questionable archive pending
user intervention. Better algorithms can be devised to implement exponential
back-off and/or to trigger notification of the appropriate systems administrator.

Analysis and Evaluation of Service Oriented Architectures for Digital Libraries 7

2.3 Comparison Test

Finally, a third experiment was conducted to contrast the component approach to system
building with the traditional monolithic system approach. 28 students in digital libraries
were asked to install a system similar to the one in the previous experiment as well
as a version of the Greenstone [23] system, and compare and contrast them from the
perspectives of ease of use and installation.

The responses highlighted both positive and negative aspects of both systems. The
majority of respondents indicated that Greenstone was easier to install, being a single
cohesive package. However, it was also agreed by almost all respondents that the com-
ponent approach was more flexible and powerful, and therefore applicable to a larger
set of problem domains than the monolithic equivalent. There was tension between the
higher degree of architectural control possible with ODL and the increase in complex-
ity it introduced for those not wanting such control. The service-oriented approach was
also preferred for its scalability, genericity and support for standards, which was not
as evident in the monolithic approach. A number of respondents were undecided as to
an outright preference, given that each solution had its advantages and disadvantages -
leading to the conclusion that an ideal solution would capitulate on the strengths of both
approaches, somehow giving end users the advantages of component-based customisa-
tion and flexibility as well as the advantages of cohesion and simplicity inherent in the
non-component approach.

3 Experiments: Reusability and Extensibility

To test for reusability and extensibility, the suite of components was made available

to colleagues for integration into new and existing systems. A number of digital library
systems have since made use of the components, either directly, or composed/aggregated
into other components. The following are a discussion of how some projects have inte-
grated service-oriented components and protocols into their architectures.

3.1 AmericanSouth.org

AmericanSouth.org [8] is a collaborative project led by Emory University to build a
central portal for scholarly resources related to the history and culture of the American
South. The project was initiated as a proof-of-concept test of the metadata harvesting
methodology promoted by the OAI. Thus, in order to obtain data from remote data
sources, the project relies mainly on the OAI-PMH.

The requirements for a central user portal include common services such as search-
ing and browsing. AmericanSouth.org used ODL components to assist in building a
prototype of such a system. The DBUnion, IRDB and DBBrowse components were
used in addition to XMLFile and other custom-written OAIl data provider interfaces.
Many questions about protocol syntax and component logic were raised and answered
during the prototyping phase, suggesting that more documentation is needed. Alterna-
tively, pre-configured networks of components can be assembled to avoid configuration
of individual components. Both of these approaches are being investigated in the DL-
in-a-Box project [14].

8 H. Suleman

The production system for AmericanSouth.org still uses multiple instantiations of
XMLFile but the ODL components have been replaced with the ARC search engine
[13] largely because of concerns over execution speed of the IRDB search engine com-
ponent. This in itself indicates the ease with which service-oriented components can be
replaced in a system whose requirements change over time.

3.2 CITIDEL

CITIDEL - the Computing and Information Technology Interactive Digital Education
Library [6] - is the computing segment of NSF's NSDL - the National Science, Tech-
nology, Engineering and Mathematics Digital Library [12]. CITIDEL is building a user
portal to provide access to computing-related resources garnered from various sources
using metadata harvesting wherever possible. This user portal is intended to support
typical resource discovery services, such as searching and category-based browsing, as
well as tools specific to composing educational resources, such as lesson plan editors.

From the initial stages, CITIDEL was envisioned as a componentised system, with
an architecture that evolves as the requirements are refined. The initial system was de-
signed to include multiple sources of disparate metadata and multiple services that op-
erate over this data, where each data source and service is independent.

CITIDEL uses components from various sources. In terms of ODL, this includes the
IRDB and Thread components to implement simple searching and threaded annotations,
respectively. The IRDB component was modified to make more efficient use of the
underlying database, but the interface was unchanged.

3.3 BICTEL/e

The BICTEL/e project, led by the Universite Catholique de Louvain, is building a dis-
tributed digital library of dissertations and e-prints within the nine French-speaking uni-
versities in Belgium. The project adopted use of OAl and ODL components to support
dissertations and e-prints collections at each university and at a central site, alongside
some non-ODL components.

3.4 Sub-classing

Some component implementations were created by sub-classing existing components.
All of the component modules were written in object-oriented Perl, which allows for
single inheritance, so this was exploited when possible. Since the DBRate and DBRe-
view components also store the original transaction records submitted to them, they
were derived from the Box component. In each case, some of the methods were over-
ridden to provide the necessary additional functionality.

3.5 Layering: VIDI

The VIDI project [22] developed a standard interface, as an extension of the OAI pro-
tocol, to connect visualisation systems to digital libraries. A prototype of the VIDI ref-
erence implementation links into the search engine of the ETD Union Catalog [20] to

Analysis and Evaluation of Service Oriented Architectures for Digital Libraries 9

obtain search results. The search engine used in the ETD Union Catalog understands the
ODL-Search protocol. Thus, additional services are provided as a layer over an ODL
component, without any reciprocal awareness necessary in the ODL system.

3.6 Layering: MAIDL

MAIDL, Mobile Agents In Digital Libraries [17], is a federated search system con-
necting together heterogeneous Web-accessible digital libraries. The project uses the
“odlsearchl” syntax, as specified in the ODL-Search protocol, in order to submit queries
to its search system. Further communication among the mobile agents and data providers
transparently utilize the XOAI-PMH protocol [19].

4 Experiments: Performance

A number of performance tests were conducted to determine the effect of Web-based
inter-component communication. The aim of these experiments was to demonstrate that
the use of an SOA model would not have a significant adverse impact on systems in
terms of performance. In addition, these experiments highlighted techniques that could
be applied to ameliorate the effects that were noticed.

Measurements were taken for heavily loaded systems, systems that rely on multiple
components to respond to requests (e.g., portals) as well as the contribution made to
system latency by different layers in the architecture.

4.1 Application/Protocol Layering

The most critical of measurements looked at the effect of additional Web-application
layering on the execution times of individual components of a larger system. The IRDB
search engine component was used for this test because search operations take a non-
trivial (and therefore measurable) amount of time and the pre-packaged component in-
cludes a direct interface to the search engine that allows bypassing of the ODL protocol
layer.

For test data, a mirror of the ETD Union Archive was created and this then was har-
vested and indexed by an instance of the IRDB component. 7163 items were contained
in this collection, each with metadata in the Dublin Core format.

The test was to execute a search for a given query. Three queries were used: “com-
puter science testing”, “machine learning”, and “experiments”. At most the first 1000
results were requested in each case. Each query was executed 100 times by a script to
minimise the effect of the script on the overall performance. The first run of each ex-
periment was discarded to minimise disk access penalties, and an average of the next 5
runs was taken in each case.

Six runs were made for each query:

1. Executing lynx to submit a Listldentifiers query through the Web server interface.

2. Executing wget to submit a Listldentifiers query through the Web server interface.

3. Using custom-written HTTP socket code to submit a Listldentifiers query through
the Web server interface.

10 H. Suleman

4. Executing the search script directly from the command-line, thereby bypassing the
Web server.

5. Executing testsearch.pl to bypass both the Web server and the ODL layer.

6. Using direct API calls to the IR engine, without spawning a copy of testsearch.pl
in each iteration.

The time was measured as the “wall-clock time” reported by the bash utility pro-
gram “time” from the time a run started to the time it ended. The script that ran the
experiment controlled the number of iterations (100, in this case) and executed the ap-
propriate code in each of the 6 cases above. In each case, the output was completely
collected and then immediately discarded - thus, each iteration contributed the com-
plete time between submitting a request and obtaining the last byte of the associated
response, hereafter referred to as the execution time.

It was noticable from the measured times that execution time increases as more
layers are introduced into the component. This increase is not always a large proportion
of the total time, but the difference between Test-1 and Test-6 is significant. The time
differences between pairs of consecutive tests is indicated in Table 2.

Table 2. Time differences between pairs of consecutive tests

[Query |Test1-3Test2-3Test3-4Test4-5Test5-6
“computer science testing’4.52 | 1.04 | 0.67 | 0.33 | 8.57
“machine learning” 3.72 | 0.63 | 0.58 | 0.22 | 10.62
“experiments” 426 | 0.94 | 0.35 | 0.66 | 8.53

Test-1, Test-2 and Test-3 illustrate the differences in times due to the use of different
HTTP clients. In Test-1, the fully-featured text-mode Web browser lynx was used. In
Test-2, wget was used instead, and the performance improved because wget is a smaller
application that just downloads files. Test-3 avoided the overhead of spawning an ex-
ternal client application altogether by using custom-written network socket routines to
connect to the server and retrieve responses to requests. The differences are only slight
but there is a consistent decrease for all queries.

The difference between Test-3 and Test-4 is due to the effect of requests and re-
sponses passing through the HTTP client and the Web server. While no processes were
spawned at the client side in Test-3, a process was still spawned by the Web server to
handle each request at the back-end. This script was run directly in Test-4, so the dif-
ference in time is due solely to the request being routed through the Web server. This
difference is small, so it suggests that the Web server does not itself contribute much to
the total execution time.

The difference between Test-4 and Test-5 is due to the ODL-Search software layer
that handles the marshalling and unmarshalling of CGI parameters and the generation
of XML responses from the raw list of identifiers returned by the IR engine. This dif-

Analysis and Evaluation of Service Oriented Architectures for Digital Libraries 11

ference is also small, indicating that the additional work done by the ODL layer does
not contribute much to the total time of execution.

The difference between Test-5 and Test-6 is due to the spawning of a new process
each time the IRDB component is used. This difference is substantial and indicates that
process startup is a major component of the total execution time.

In general, the execution times for the IRDB component (as representative of ODL
components in general) were much higher than the execution times for direct API calls.
However, this difference in execution time is due largely to the spawning of new pro-
cesses for each request. The ODL layer and the Web server contribute only a small
amount to the total increase in execution time.

4.2 Nested Requests and Persistence

In order to avoid duplication of metadata entries, some of the ODL components (such
as IRDB) do not store redundant copies - instead, every time a record is needed, it is
fetched from the source archive by means of further internally-generated requests to the
Web-based ODL interface. This procedure is hereafter referred to as a nested request.

An initial experiment compared nested requests that invoked Web-based services
10 times for each query processed with requests that avoided the use of Web-based
services in favour of internal APIs. This experiment did not make use of any perfor-
mance optimisation technology. The results confirmed that the response time is roughly
proportional to the number of nested requests and that process startup time is the most
significant contributor to the delays.

To deal with the process startup time, the SpeedyCGl package [1] was installed and
components were configured to use it instead of regular CGI. The effect of this change
was then tested and compared against the case where no optimisations are used. Speedy-
CGl is a tool that speeds up access to Perl scripts without modification of the script or
the Web server. Instead of running Perl with each invokation of a script, the scriptis run
by a relatively small SpeedCGl front-end program that connects to a memory-resident
Perl back-end, creating the back-end process if necessary. Thus, the process startup time
is determined by the execution speed of the front-end script rather than the Perl inter-
preter. The objectives of this study were to calculate the response times for single and
nested requests, both with and without using SpeedyCGl, and to compare SpeedyCGl
usage with the fastest approach thus far, that of directly utilising a programming API.

The IRDB search engine component was used for this test. The test was performed
in the same experimental environment as for the Layering experiment. The test was to
execute a search for a given query. Three queries were used: “computer science testing”,
“machine learning” and “experiments”. The first run of each experiment was discarded
and an average of the next 5 runs was taken in each case. For the first part of the ex-
periment, all requests were submitted by executing wget, thus involving the Web server
and the ODL interface in generation of the response. At most the first 10 results were
requested in each case. Each query was executed 10 times by a script. Four runs were
made for each query as follows:

1. By submitting Listldentifiers (LI).
2. By submitting ListRecords (LR).

12 H. Suleman

3. By submitting Listldentifiers, where the components use SpeedyCGl (LIS).
4. By submitting ListRecords, where the components use SpeedyCGlI (LRS).

Table 3 displays the comparisons from the first part of the experiment using Speedy-
CGl and not, for both Listldentifiers and ListRecords requests submitted to IRDB.

Table 3.Regular CGl vs. SpeedyCGlI speed comparisons (seconds)

[Query | LI [LR [LIS]LRS]
“computer science testingl'.67/16.500.442.22
“machine learning” 1.57/16.340.332.04
“experiments” 1.5516.350.312.06

For the second part of the experiment, at most 1000 results were requested and each
query was executed 100 times. The requests were submitted by executing wget, thus
involving the Web server and the ODL interface in generation of the response. A single
Listldentifiers run was conducted for each query, and this was contrasted with the data
obtained during the direct APl measurements taken in the Layering experiment.

Table 4 displays the comparisons from the second part of the experiment using
SpeedyCGI and comparing this to the previous measurements for the case with direct
APl use.

Table 4. SpeedyCGl vs. direct API speed comparisons

[Query SpeedyCGJ AP!I |
“computer science testing” 40.27 |39.7Q
“machine learning” 16.61 |15.81
“experiments” 32.39 [32.78

Results from the first part of the experiment indicate that there is a significant im-
provement in execution speeds for both Listldentifiers (single requests) and ListRecords
(nested requests) when SpeedyCGil is used. This is largely due to the elimination of the
need to spawn new processes to handle each request to the Web server. The second set
of results indicate that there is very little difference in execution times between using
direct API calls and using a fully layered IRDB component when SpeedyCGl is used.

This is a significant result for the applicability of SOA in situations where perfor-
mance is an issue. Generalising, these experiments confirm that there is little cause for
concern, performance-wise, if Web technology is chosen wisely — for example, using
persistent Web applications such as servlets for Java applications or SpeedyCGl for Perl

Analysis and Evaluation of Service Oriented Architectures for Digital Libraries 13

applications. Other technologies exist for these and other languages and some of these
have been evaluated in the ODL [18] and X-Switch [15] projects.

4.3 System Load

Under real-world conditions, response times can be drastically different as situations
vary. The aim of this experiment was to assess the ability of a component to perform
acceptably under high loads. To assess this, a server was artificially loaded and then the
response times of typical requests were measured under different load conditions.

The Box component was used for this test because it has very little component
logic and therefore provides lower bounds for execution speed that are indicative of
the ODL component architecture and not the component logic. The component was
installed in the same server environment used in the Layering experiment. A second
identical machine was used to simulate client machines by running multiple processes,
each of which submitted ListRecords requests to the server in a continuous loop. The
server was primed with 100 dummy records for this purpose. The test was to submit
GetRecord and PutRecord requests to the local server. The first run of each experiment
was discarded and an average of the next 5 runs was taken in each case. The experiment
was then repeated using SpeedyCGl for the Box component.

Table 5 lists the average execution times for GetRecord and PutRecord operations
under load conditions generated by 5, 10 and 50 simultaneous processes.

Table 5. Average execution times under different load conditions

Operation[5 client§10 client$50 clients

PutRecord 1.04 2.39 9.31
GetRecord 1.39 2.06 11.27

Table 6 lists the average execution times for GetRecord and PutRecord operations
under load conditions generated by 5, 10 and 50 simultaneous processes, when the Box
component uses SpeedyCGl.

Table 6. Average execution times when using SpeedyCGl

Operation[5 client§10 client50 clients

PutRecord 0.691 | 0.702 | 2.146
GetRecord 0.449 | 0.316 1.801

There is variability in execution time because of the non-deterministic nature of
client-server synchronisation and process startup. It is apparent, however, that the time

14 H. Suleman

taken to respond to a request increases as the load on the server increases. Using the
persistent script mechanism of SpeedyCGl results in a reduction of the execution time
as compared to the case without SpeedyCGil, but there is still an increase with increasing
load, as expected.

In both cases, a high load on the server causes an increase in execution time for
component interaction. The SpeedyCGI module, as representative of persistent script
tools, helps to minimise this effect. Ultimately, however, ODL components are Web
applications and the only way to get better performance for a heavily loaded Web server
is to use more and/or faster servers. This suggests that a server farm or component farm
based on cluster computing or grid technologies might be one possible solution for
digital libraries that require a lot of processing power for computations in either the
pre-processing (e.g., indexing), maintenance (e.g., reharvesting) or dissemination of
data (e.g., online querying) phases.

4.4 User Interfaces

While inter-component communication speeds are important to system designers, it is
the speed of the user interface that matters the most to users. To test this, requests were
submitted to a mirror of CSTC (Computer Science Teaching Centre), based completely
on ODL components, to determine its effectiveness. The objective was to submit re-
quests to the CSTC interface, simulating typical user behavior, and then measure the
response time.

The client machine was a 2Ghz Pentium 4 PC with 1GB of RAM running a pre-
installed version of Red Hat Linux v7.3. The server used was a non-dedicated 600MHz
Pentium 3 with 256MB RAM running Red Hat v6.2. The Web server was Apache
v1.3.12 and data for all components was stored in a mySQL v3.23.39 database. All
components used the SpeedyCGl tool to remain persistent in memory.

The first test involved simulating a browse operation. The second test involved sim-
ulating the viewing of metadata for a single resource. In both instances, the test was
repeated 10 times per invocation of the test script. The test script was executed 5 times
and the average of these was computed.

Table 7 displays the user interface execution times for the operations tested.

Table 7.Execution times for user interface actions

Action |t (Time taken for 10 requesis) 10|
Browse first screen of items 9.28 0.93
Display metadata for first item 9.81 0.98

The browsing operation required 1 request that was submitted to the DBBrowse
component, as well as 5 nested requests sent to the DBUnion component in order to
fetch the metadata, resulting in a total of 6 requests. The display operation required

Analysis and Evaluation of Service Oriented Architectures for Digital Libraries 15

1 request for the metadata, 1 for the rating, 4 for the recommendation and 3 for the
feedback mechanism - resulting in a total of 9 requests. The time taken is not simply
proportional to these request counts because different components contribute varying
amounts to the total execution time. However, as indicated in Table 7, the total response
time in both instances is less than 1 second for data transfer.

In general, the time taken to generate user interface pages is reasonably small for the
new CSTC system, running on a production server. In combination with a higher load
(as tested in the previous experiment), it can be expected that the response time will
increase further and this is additional motivation for a generic SOA-based component
grid/cluster where services/components can be replicated as the needs of the system
change over time.

5 Conclusions

The Service Oriented Architecture is still a fairly new concept in DL systems, with
most systems supporting one or two external interfaces, for example OAI-PMH. This
work has investigated the applicability of SOA as a fundamental architecture within
the system, an analysis of which has demonstrated its feasibility according to multiple
criteria, while exposing issues that need to be considered in future designs. In summary,
this works provides evidence in support of the following assertions:

— From a programmer’s perspective, SOA is simple to understand, adopt and use.

— Components in an SOA can easily be integrated into or built upon by external sys-
tems.

— Performance penalties from additional layering can be managed.

— Performance issues do not have to permeate the architectural model - these can be
handled as external optimisations.

— There are no inherent architectural restrictions that prevent the modelling of specific
digital library systems.

6 Future Work

The most important aspect highlighted by past experiments was the need for better
and simpler management of components, so that the complexity of deconstructing a
monolithic system into service-oriented components did not fundamentally increase
the complexity of overall system management. To this end, the ongoing “Flexible Dig-
ital Libraries” project is investigating how external interfaces can be defined for remote
management of components, thus enabling automatic aggregration and configuration
of components by installation managers and real-time component management sys-
tems. The first of such systems to be built, BLOX [16], allows a user to build a system
visually using instances of Web-accessible components residing on remote machines.
Experiments conducted with BLOX by Eyambe [5] have demonstrated that users gen-
erally prefer high level programming of digital library systems by assembling building
blocks visually as opposed to the traditional low-level programming API approach.

16 H. Suleman

In addition, there is an ongoing project looking into how components designed with
well-defined administrative interfaces can be packaged and redeployed, thus bridging
the gap between components and monolithic systems from a system installation per-
spective. Ideally, a future digital library or online information system will be designed
on a canvas and a package will be generated for distribution based on a concise specifi-
cation of the system. Then distribution and installation will be as simple as possible for
the ordinary user; but the administrator wishing to customise the system can still mod-
ify the specification of the system at a later date to upgrade or modify the components
in use.

At the same time, some effort needs to go into how services are orchestrated and
composed/aggregrated at a higher level to perform useful functions needed by users.
The WS-Flow and WS-Choreography activities are useful starting points but more in-
vestigation is needed into their suitability as integration mechanisms between “front-
end” and “back-end” systems.

User interface components are being developed in a related project, to address the
common perception that information management components are usually only part of
“back-end” systems. Initial experiments with the BLOX system have demonstrated that
a user interface can be plugged into the system as easily as any other component.

Current directions for this research include extension of the core architecture to
allow migration and replication of components to support “component farms” as a re-
placement for “server farms”, adopting notions from the cluster and grid computing
paradigms, where services are needs-based and location-independent. Thus, the com-
ponent approach to building digital libraries will demonstrate scalability in addition to
flexibility.

Eventually, it is hoped that SOA will form an integral part of an architecture for
flexible online information management systems, with all the advantages of monolithic
systems as well as component-based systems, and with the ability to meet the needs
of both the resource-constrained trivially-small system and the scalability requirements
of large-scale public knowledge bases - an architecture that can be easily and readily
adopted by future generations of systems such as DSpace, EPrints and Greenstone.

References

1. SpeedyCGil, 2005. Websit¢tp://daemoninc.com/speedycgi/

2. Donatella Castelli and Pasquale Pagano. OpenDLib: A Digital Library Service System. In
Research and Advanced Technology for Digital Libraries, Proceedings of the 6th European
Conferencenumber 2458 in Lecture Notes in Computer Science, pages 292—-308, Rome,
Italy, September 2002.

3. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. Technical report, W3C, 2001. Available
http://www.w3.org/TR/wsdl

4. Sergio Congia, Michael Gaylord, Bhavik Merchant, and Hussein Suleman. Applying SOAP
to OAI-PMH. In R. Heery and L. Lyon, editorf}esearch and Advanced Technology for
Digital Libraries, Proceedings of the 8th European Conferenadume 3232 oflecture
Notes in Computer Scienggages 411-420, Bath, UK, September 2004.

oo

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

Analysis and Evaluation of Service Oriented Architectures for Digital Libraries 17

. Linda K. Eyambe and Hussein Suleman. A Digital Library Component Assembly Environ-

ment. In G. Marsden, P. Kotz, and A. Adesina-Ojo, editBr®ceedings of SAICSIT 2004
pages 15-22, Stellenbosch, South Africa, October 2004.

. Edward A. Fox, Deborah Knox, Lillian Cassel, John A. N. Lee, Man@EP-Qui nones,

John Impagliazzo, and C. Lee Giles. CITIDEL: Computing and Information Technology
Interactive Digital Educational Library, 2005. Webdlitep://www.citidel.org

. M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. F. Nielson. SOAP Ver-

sion 1.2 Part 1: Messaging Framework and Part 2: Adjuncts. Technical report, W3C,
June 2003. Availablehttp://www.w3.0rg/TR/2003/REC-soapl12-partl-

2003-0624/ andhttp://www.w3.0rg/TR/2003/REC-soapl2-part2-2003-

0624/ .

. M. Halbert. AmericanSouth.org, 2005. Webditgp://www.americansouth.org .
. Ariba Inc., IBM, and Microsoft. uUDDI Technical White

Paper. Technical report, September 2000. Available
http://www.uddi.org/pubs/Iru _UDDI_Technical _White _Paper.pdf

C. Lagoze and J. R. Davis. Dienst - An Architecture for Distributed Document Libraries.
Communications of the ACN8(4):47, 1995.

Carl Lagoze, Herbert Van de Sompel, Michael Nelson, and Simeon
Warner. The Open Archives Initiative Protocol for Metadata Har-
vesting Version 2.0. Technical report, June 2002. Available
http://www.openarchives.org/OAl/2.0/openarchivesprotocol.htm

Carl Lagoze, Walter Hoehn, David Millman, William Arms, Stoney Gan, Dianne Hlllmann
Christopher Ingram, Dean Krafft, Richard Marisa, Jon Phipps, John Saylor, Carol Terrizzi,
James Allan, Sergio Guzman-Lara, and Tom Kalt. Core Services in the Architecture of the
National Science Digital Library (NSDL). IRroceedings of Second ACM/IEEE-CS Joint
Conference on Digital Librariepages 201-209, Portland, OR, USA, July 2002.

Xiaoming Liu, Kurt Maly, Mohammad Zubair, and Michael L. Nelson. Arc: an OAI service
provider for cross-archive searching. Pmoceedings of First ACM/IEEE-CS Joint Confer-
ence on Digital Librariespages 65-66, Roanoke, VA, USA, June 2001.

Ming Luo. Digital Libraries in a Box, 2005. Websittp://dIbox.nudl.org

Andrew Maunder and Reinhardt van Rooyen. Universal Web Server: The X- SW|tch System.
Technical Report CS04-20-00, Department of Computer Science, University of Cape Town,
2004. Availablenttp://pubs.cs.uct.ac.za/archive/00000157/

David Moore, Stephen Emslie, and Hussein Suleman. BLOX: Visual Dlgltal Library Build-
ing. Technical Report CS03-20-00, Department of Computer Science, University of Cape
Town, 2003. Availabléttp://pubs.cs.uct.ac.za/archive/00000075/

Nava Mu noz and Sandra Edith. Fedebacde Bibliotecas Digitales utilizando Agentes
Moviles (Digital Libraries Federation using Mobile Agents). Master’s thesis, Universidad
de las Angricas, Puebla, Mexico, 2002.

H. Suleman. Open Digital Libraries PhD thesis, Vir-
ginia Tech, Blacksburg, VA, USA, December 2002. Available
http://scholar.lib.vt.edu/theses/available/etd-11222002-

155624/ .

H. Suleman and E. A. Fox. Designing Protocols in Support of Digital Library Componenti-
zation. InResearch and Advanced Technology for Digital Libraries, Proceedings of the 6th
European Confereng@aumber 2458 in Lecture Notes in Computer Science, pages 568-582,
Rome, ltaly, September 2002.

H. Suleman and E. A. Fox. Towards Universal Accessibility of ETDs: Building the NDLTD
Union Archive. InFifth International Symposium on Electronic Theses and Dissertations
(ETD2002) Provo, Utah, USA, May 2002.

18

21.

22.

23.

24,

H. Suleman
Hussein Suleman and Edward A. Fox. A Framework for Building Open
Digital Libraries. D-Lib Magazine 7(12), December 2001. Available

http://www.dlib.org/dlib/december01/suleman/12suleman.html

J. Wang. A Lightweight Protocol Between Visualization Tools and Digital lerarles Mas-
ter’s thesis, Virginia Tech, Blacksburg, VA, USA, 2002.

I. H. Witten, R. J. McNab, S. J. Boddie, and D. Bainbridge. Greenstone: A Comprehensive
Open-Source Digital Library Software System.Rroceedings of Fifth ACM Conference on
Digital Libraries, pages 113-121, San Antonio, Texas, USA, June 2000. ACM Press.

J. Yang. Web Service Componentizati@ommunications of the ACM6(10):35-40, Oc-
tober 2003.

