
Applying SOAP to OAI-PMH

Sergio Congia, Michael Gaylord, Bhavik Merchant, and Hussein Suleman

Department of Computer Science, University of Cape Town
Private Bag, Rondebosch, 7701, South Africa

{scongia, mgaylord, bmerchan, hussein}@cs.uct.ac.za

Abstract. The Web Services paradigm for distributed computing promises
to provide a breakthrough in interoperability by defining standardised
mechanisms for inter-process communication. The SOAP standard, in
particular, is widely discussed but not as widely adopted by standards
bodies. The OAI is one such organisation that has been criticised for not
adopting SOAP. Since the OAI-PMH is driven by semantics and SOAP
describes syntax, a merger of the two technologies seems natural and in-
evitable. This paper discusses an attempt to remodel and repackage the
OAI-PMH as a layer over SOAP and implement an end-to-end solution
based on this experimental protocol. The project highlighted important
concerns, such as the relative efficiency of layering in structured textual
data and the problem of moving standards. The results show that few
compromises are needed for a move to SOAP provided that protocol de-
sign is appropriately abstracted, and this has far reaching implications
for the adoption of SOAP and Web Services within the DL community
and OAI in particular.

1 Preamble

It must be noted at the very outset that the OAI protocol (OAI-PMH v2.0 [12])
is a fixed standard that is implemented in a consistent manner in a growing
community of users. This work was simply an experiment, in consultation with
members of the OAI, rather than an attempt to suggest a new alternative stan-
dard. Based on the results of this experimental work, it is hoped that the OAI
and other organisations will more seriously consider an informed adoption of
Web Services standards as an underlying layer for future interoperability efforts.

2 Background

2.1 OAI-PMH

The Open Archives Initiative (OAI) was formed to drive the process of de-
veloping low-barrier solutions to the problem of interoperability among digital
library systems [11]. The primary product of experimentation and standards de-
velopment was the Protocol for Metadata Harvesting (PMH) [12], a high level
application layer network protocol that defines how to synchronise a source of



metadata with a remote copy, or user of the data. From the early stages of devel-
opment in 1999, it was agreed that the protocol would adopt current standards
such as XML Schema [4] and Dublin Core so that it would additionally serve as
an implicit testbed and reinforcement for those standardisation activities. The
OAI-PMH has since established itself as an important standard for information
exchange among a large and varied group of digital archives [3].

Technically, OAI-PMH is a client-server protocol layered over HTTP, with
requests specified using URL-encoded parameters and responses delivered in
strictly validifiable XML. Specifically, there are 6 request/response pairs: Iden-
tify, ListMetadataFormats and ListSets return administrative information about
the archive; ListIdentifiers, GetRecord and ListRecords facilitate the transfer of
metadata from a source archive on demand. Some of these requests have optional
and/or mandatory parameters to restrict the list of results to a subset of the full
set, for example, the response for ListIdentifiers can be restricted by specifying a
particular set of the archive to list identifiers for, as opposed to the full contents
of the archive.

A typical request and response is shown in Fig 1.

Request

http://abc.org/OAI?verb=Identify

Response
<OAI-PMH>

<responseDate>2004-02-02T12:00:00Z</responseDate>

<request verb="Identify"/>http://abc.org/OAI</request>

<Identify>

<repositoryName>Somewhere</repositoryName>

<baseURL>http://abc.org/OAI</baseURL>

<protocolVersion>2.0</protocolVersion>

<earliestDatestamp>2001-01-01T01:00:00Z</earliestDatestamp>

<deletedRecord>no</deletedRecord>

<granularity>YYYY-MM-DD</granularity>

</Identify>

</OAI-PMH>

Fig. 1. Typical OAI-PMH v2.0 request and response (namespace and schema attributes
are not depicted)

2.2 SOAP

SOAP [8] is a standard for encoding messages in a distributed computing en-
vironment. It originated from industrial efforts to leverage XML technology for



standardised messaging and has tracked best practices as they emerged. SOAP is
part of a larger framework to specify external interfaces to network-accessible ser-
vices: SOAP specifies the syntactic encoding of messages, the Web Services De-
scription Language (WSDL) [2] is a formal specification of a network-accessible
API to a service and the Universal Description, Discovery and Integration of Web
Services (UDDI) registries list public interfaces. Together these specifications are
at the core of the Web Services paradigm of computing, where applications are
sequences and aggregations of independent service-oriented components [17].

The current status of Web Services can be confusing to adopters as there
is much talk about how it will revolutionise computing, but there are few ac-
tual case studies illustrating its use in large-scale interoperable scenarios. This
is partly because of the divergence of standards - Microsoft adopted v1.1 of the
SOAP specification [1] for its Web Services work, while the W3C only recognises
v1.2 [8] as a “recommendation”. Between the release of these two versions, the
XML Schema standard was formalised - thus, while the earlier SOAP specifica-
tion allowed the use of XML Schema but supported its own type system, the
newer v1.2 SOAP specification does not define its own type system to avoid
overlapping with XML Schema functionality. In spite of these issues, some well-
known services, such as Google [7], have been publicly exposed using a version
of the SOAP protocol.

A typical request and response is shown in Fig 2.

Request
<SOAP:Envelope>

<SOAP:Body>

<DigitOfPIRequest>1023</DigitOfPIRequest>

</SOAP:Body>

</SOAP:Envelope>

Response
<SOAP:Envelope>

<SOAP:Body>

<DigitOfPIResponse>6</DigitOfPIResponse>

</SOAP:Body>

</SOAP:Envelope>

Fig. 2. Typical SOAP v1.2 request and response (namespace and schema attributes
are not depicted)

3 Context for OAI-PMH + SOAP

The earliest version of the OAI-PMH (v1.0) was disseminated through many av-
enues, including a paper presented at JCDL 2001 [12]. One of the first questions



posed to the presenter of that paper asked why SOAP was not used. This has led
to much discussion in the OAI community, but it was felt that as long as SOAP
was not a formal standard, it should be avoided. This was largely motivated by
prior experiences with the change in status of the XML Schema specification,
an event that necessitated the release of OAI-PMH v1.1.

In mid-2003, SOAP v1.2 was finally released by the W3C as a “recommenda-
tion”, their equivalent of a standard. At around this point in time, it was decided
to try to use the SOAP specification as the basis of an updated experimental
OAI protocol, to investigate its applicability and tease out any implementation
issues that could inform future standards efforts.

4 Experimental Systems

This investigation involved 4 parts:

– Analysis and design of a new protocol using SOAP as an underlying layer
instead of HTTP, hereafter referred to as SOAP-PMH

– Implementation of a SOAP-PMH-based data provider
– Implementation of a SOAP-PMH-based service provider
– Implementation of a SOAP-PMH-based testing and validation tool

Each of the latter 3 parts was implemented to support both the former exper-
imental protocol as well as the original OAI-PMH, to determine the feasibility
of supporting multiple transports or bindings in a single implementation.

4.1 Protocol Specification

Since SOAP defines only a syntactic framework, the encoding of OAI-PMH re-
quests and responses needed to be modified, keeping the core semantics un-
changed. Unlike standards such as the IMS Metadata Set [10], the protocol
specification for OAI-PMH does not define an abstract information model and
concrete bindings. As a result, it was not possible to define a new binding as
a layer over the abstract semantics. To overcome this, in the context of this
experimental work, a parallel specification was defined by editing a copy of the
original specification.

Requests were encoded in a manner similar to the SOAP Request/Response
use case [9]. Schema for these requests were defined to match the existing OAI-
PMH responses. During the development of OAI-PMH v2.0, XML Schema data
types were explicitly defined for each PMH parameter in preparation for a pos-
sible migration to SOAP. Thus, in SOAP-PMH these data types are imported
directly from the original OAI-PMH schema [16] to maintain a high degree of
data type consistency.

In order to maintain independence from the underlying transport, the re-
sponses were embedded within SOAP envelopes. To some degree, this design
choice goes against SOAP recommendations for error handling, which state that
semantic errors are handled by special cases defined in the SOAP protocol. It



was felt that this yet again mixed syntax and semantics at different layers of
a structured model. Instead, OAI-PMH errors were retained at the OAI-PMH
level, while only SOAP errors were handled at the SOAP protocol level. A typi-
cal example of a SOAP error is a message with non-SOAP tags at the top level of
its body. HTTP errors were yet another case to consider and had to be handled
at the layer below SOAP. In the existing OAI-PMH, errors are specified at the
semantic, encoding and transport levels, thus HTTP errors that should already
have been handled at a SOAP layer still exist at the upper semantic layer. This
was not dealt with in this study, but is an important consideration for future
protocol design activities.

Fig 3 depicts the current onion-peel design of OAI-PMH, an onion-peel ver-
sion of SOAP-PMH and an ideal conceptual view of the layers. In this model,
OAI-PMH is built around HTTP, implying that they are not separable. The
SOAP-PMH version is built over SOAP, layered over HTTP – implying that
neither the SOAP nor HTTP encodings are essentially separable from the core
protocol, but that SOAP and HTTP are not necessarily bound together. Con-
ceptually, in the ideal case, the semantics of the protocol should be specified
independently of the encoding mechanism and transport layer. Thus, if the pro-
tocol was written with this in mind, it would have been simpler to retarget it
from the combination of URL encoding and XML responses to SOAP messages.
Similarly, since SOAP does not intrinsically depend on HTTP, upper level pro-
tocols ought not to do so – so that if HTTP was replaced by, say, SMTP, no
changes in the core semantics would be necessary.

OAI-PMH SOAP-PMH Conceptual View

OAI-PMH

HTTP

OAI-PMH

SOAP

HTTP

OAI-PMH

SOAP

HTTP

Fig. 3. Different conceptual views of OAI-PMH as a transport-independent protocol

A typical request and response pair from this experimental SOAP-PMH is
shown in Fig 4. The regular OAI-PMH response is cleanly encapsulated within
the Body of a SOAP Envelope. The SOAP Header is not used since its definition
suggests it is intended for intermediate or non-payload processing and the OAI-
PMH essentially requires end-to-end payload delivery.



Request

(Sent to: http://abc.org/SOAPOAI)

<SOAP:Envelope>

<SOAP:Body>

<OAI-PMH-Req>

<verb>Identify</verb>

</OAI-PMH-Req>

</SOAP:Body>

</SOAP:Envelope>

Response
<SOAP:Envelope>

<SOAP:Body>

<OAI-PMH>

<responseDate>2004-02-02T12:00:00Z</responseDate>

<request verb="Identify"/>http://abc.org/SOAPOAI</request>

<Identify>

<repositoryName>Somewhere</repositoryName>

<baseURL>http://abc.org/SOAPOAI</baseURL>

<protocolVersion>SOAP2.0</protocolVersion>

<earliestDatestamp>2001-01-01T01:00:00Z</earliestDatestamp>

<deletedRecord>no</deletedRecord>

<granularity>YYYY-MM-DD</granularity>

</Identify>

</OAI-PMH>

<SOAP:Body>

</SOAP:Envelope>

Fig. 4. Typical SOAP-PMH request and response (namespaces and schema attributes
are not depicted)



4.2 Data Provider

A database-driven data provider was built to conform to the SOAP-PMH. For
a reasonable level of completeness, this module supported the following optional
features of the OAI-PMH:

– multiple metadata formats
– flow control using resumption tokens
– sets for selective harvesting

The implementation was done in Java, using JDBC for database connectiv-
ity to a MySQL source of data. The Web interfacing was accomplished using
Java servlets. Processing of requests and responses was performed in layers to
avoid duplication of code in supporting different bindings of the core OAI-PMH
semantics.

4.3 Testing Tool

An intemediate-level testing tool was developed to test data provider imple-
mentations of both OAI-PMH and SOAP-PMH. This tool built on typical tests
carried out by the Repository Explorer [15] and OAI Data Provider Registry
[14] by including the following capabilities:

– Users may choose which tests to conduct in a batch, as a subset of the full
suite.

– The testing tool was implemented as a portable Java application, thus en-
abling efficient testing of local data providers, even those behind firewalls or
those that are domain-restricted.

– Exploiting its nature as an application, the human interface was designed
for greater usability e.g., tabbed dialogs where used where this seemed most
natural and progress indicators were used during batch testing.

4.4 Service Provider

From a service provider perspective, a simple search engine was built, based on
the Lucene [6] open source package. A Web-based interface was developed using
Java servlets, both for searching through harvested data and for management of
the harvesting operations. Once again, the harvester was developed such that it
would work with either the regular OAI-PMH or the experimental SOAP-PMH.

5 Evaluation

Evaluation of the software was conducted on multiple levels, to confirm that the
testbed was realistic and then to deduce emergent properties that were a result
of using SOAP.



In the first instance, usability testing was conducted on the testing tool and
the service provider. These tests confirmed that non-expert users were able to
successfully harvest data, conduct searches and test data providers.

All three components were then tested for OAI protocol compliance, by inter-
connection and by connection with external components. For example, the test-
ing tool was used to validate existing OAI data providers and the data provider
was validated by the Repository Explorer.

Finally, performance testing was conducted on the data provider to determine
the effect of the intermediate layer on network traffic and necessary processing.
For this purpose, the data provider was primed with a copy of approximately
77000 ETD records, themselves obtained from an OAI data provider. Measure-
ments for a typical ListRecords request formulated to disseminate a subset of
records specified by set, metadataPrefix, from and until parameters are shown
in Table 1. The first column confirms that there is a large increase in the size
of the request, and this is due to the switch from URL encoding to XML. The
response, on the other hand, has a size differential that is due only to the addi-
tional layering and therefore does not have a sizable impact on bytes transferred.
The processing time, similarly, is only minimally affected by SOAP layering.

Protocol Request(bytes) Response (bytes) Processing Time (ms)

SOAP 645 167037 1609.22

HTTP 140 166616 1594.87

Diff 505 421 14.4

Table 1. Performance measurements for SOAP-PMH vs. OAI-PMH for a typical re-
quest/response pair

6 Analysis and Conclusions

The process of developing a protocol and development and testing of initial
implementations conforming to it have revealed a number of issues that could
assist with future protocol design efforts.

Firstly, and most importantly, the migration to SOAP was deemed to be
relatively straight-forward by the developers. The implication of this is that
there need be no additional complexity in software development because of the
use of SOAP. Further, it was possible in all instances to create tools that could
understand multiple bindings of the core protocol.

In most cases, the use of SOAP also resulted in only marginal increases in
bytes transferred and processing time required. During the course of perform-
ing these tests, it was discovered that XML indentation for human-readability



caused a major increase in bytes tranferred (typically 6 bytes per line of XML
embedded in a SOAP Body). This reinforces the notion that XML should be op-
timised for data transfer by removing indentation and linefeeds, and introducing
compression where possible. Such techniques will further reduce the effects of
adding SOAP layers.

While SOAP supports the use of alternative lower layers, the tight integra-
tion of OAI-PMH and HTTP prevents a clean separation at the SOAP layer. In
contrast, the Blox project successfully used SMTP as a SOAP transport because
of less overhead than HTTP [13]. This is not possible in SOAP-PMH because of,
for example, the requirement for a baseURL in the request header tags of all re-
sponses. There is understandably tension between the usefulness of abstractions
and the utilitarian benefit of complete specifications. However, unless a new com-
plete specification is to be released for every underlying transport, abstracting
the semantics of OAI-PMH should be considered.

The SOAP standard is itself not cleanly separated from the semantics it en-
capsulates. By specifying that semantic errors are to returned as SOAP Faults,
it makes tight integration a requirement and this once again introduces compli-
cations, albeit minor, into the protocol design/layering process.

All these issues notwithstanding, the benefits of Web Services as a standard
framework, with integrated support in many modern development tools, coupled
with the verified ease of a migration of OAI-PMH to SOAP, makes it imperative
that this is pursued by the OAI.

7 Future Work

It is hoped that the results of this experimental work will lead to the formation
of a new working group to investigate the migration of OAI-PMH towards a
SOAP-based standard.

This study was initially intended to include investigations into WSDL speci-
fications for the OAI protocol. This was abandoned largely because of the state
of flux of the WSDL protocol, with differences in encoding between the existing
WS-I version and the draft W3C standard (as at mid-2003). By the completion
of the project, WSDL was not yet standardised by W3C - when this happens, a
formal description of the existing and SOAP protocols can be created.

New formalisms such as REST (REpresentational State Transfer) [5] also
need to be taken into account. Where SOAP’s request/response message pat-
tern suggests that requests be encoded as XML messages, REST recommends
that if no state is changing, requests should be encoded as HTTP GETs. These
sometimes conflicting notions must be reconciled so that Web Service interfaces
are indeed standardised. XML messages have the advantage of standardised data
encoding while services such as ERRoLs have the advantage that they can be
completely referred to by a simple URL. More work is needed to investigate how
to bridge the gap from RESTful URLs to possibly RESTful SOAP communica-
tions.



References

1. Box, Don, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendel-
sohn, Henrik Frystyk Nielsen, Satish Thatte and Dave Winer (2000), Sim-
ple Object Access Protocol (SOAP) v1.1, W3C, 8 May 2000. Available
http://www.w3.org/TR/SOAP/

2. Christensen, E., F. Curbera, G. Meredith and S. Weerawarana (2001), Web Services
Description Language (WSDL) 1.1, W3C. Available http://www.w3.org/TR/wsdl

3. Dobratz, Susanne, and Birgit Matthaei (2003), “Open Archives Activi-
ties and Experiences in Europe: An Overview by the Open Archives
Forum”, in D-Lib Magazine, Vol. 9, No. 1, January 2003. Available
http://www.dlib.org/dlib/january03/dobratz/01dobratz.html

4. Fallside, David C. (editor) (2001), XML Schema Part 1: Structures and Part 2:
Datatypes, W3C, 2 May 2001. Available http://www.w3.org/TR/xmlschema-1/
and http://www.w3.org/TR/xmlschema-1/

5. Fielding, Roy, T. and Richard N. Taylor (2002), “Principled design of the modern
Web architecture”, in Transactions on Internet Technology, Vol. 2, No. 2, ACM
Press, pp. 115-150.

6. Goetz, Brian (2000), The Lucene search engine: Powerful, flexible and free, in
JavaWorld. Available http://www.javaworld.com/javaworld/jw-09-2000/jw-0915-
lucene.html

7. Google (2004), Google Web APIs. Website http://www.google.com/apis/
8. Gudgin, M., M. Hadley, N. Mendelsohn, J. Moreau and H. F. Nielson (2003), SOAP

Version 1.2 Part 1: Messaging Framework and Part 2: Adjuncts, W3C, 24 June
2003. Available http://www.w3.org/TR/2003/REC-soap12-part1-2003-0624/ and
http://www.w3.org/TR/2003/REC-soap12-part2-2003-0624/

9. Ibbotson, J. (2002), SOAP Version 1.2 Usage Scenarios, W3C, 26 June 2003. Avail-
able http://www.w3.org/TR/2002/WD-xmlp-scenarios-20020626/

10. IMS Global Learning Consortium, Inc. (2001), IMS Learning Re-
source Meta-data Information Model, IMS, 28 September 2001. Available
http://www.imsglobal.org/metadata/imsmdv1p2p1/imsmd infov1p2p1.html

11. Lagoze, Carl and Herbert Van de Sompel (2001), “The Open Archives Initiative:
Building a low-barrier interoperability framework”, in Proceedings of JCDL 2001,
Roanoke, VA, USA, June 2001, ACM Press, pp. 54-62.

12. Lagoze, Carl, Herbert Van de Sompel, Michael Nelson, and Simeon
Warner (2002), The Open Archives Initiative Protocol for Metadata Har-
vesting Version 2.0, Open Archives Initiative, June 2002. Available
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

13. Moore, David, Stephen Emslie and Hussein Suleman (2003). BLOX: Visual Digital
Library Building, Technical Report CS03-20-00, Department of Computer Science,
University of Cape Town. Available http://pubs.cs.uct.ac.za/

14. Open Archives Initiative (2004), Open Archives Initiative Data Provider Registry.
Website http://www.openarchives.org/data/registerasprovider.html

15. Suleman, Hussein (2001), “Enforcing Interoperability with the Open Archives Ini-
tiative Repository Explorer”, in Proceedings of the ACM-IEEE Joint Conference
on Digital Libraries, Roanoke, VA, USA, 24-28 June 2001, pp. 63-64.

16. Van de Sompel, H. and S. Warner (2004), XML Schema which can be used
to validate replies to all OAI-PMH v2.0 requests, 29 March 2004. Available
http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd

17. Yang, J. (2003), “Web Service Componentization”, in Communications of the
ACM, Vol. 46, No. 10, October 2003, ACM Press, pp. 35-40.


