Analysis and Evaluation of Service Oriented
Architectures for Digital Libraries

Hussein Suleman

Department of Computer Science, University of Cape Town
Private Bag, Rondebosch, 7701, South Africa
hussein@cs.uct.ac.za

Abstract. The Service Oriented Architecture (SOA) that underlies the
Web Services paradigm of computing is widely regarded as the future
of distributed computing. The applicability of such an architecture for
digital library systems is still uncertain, as evidenced by the fact that vir-
tually none of the large open source projects (e.g., Greenstone, EPrints,
DSpace) have adopted it for internal component structuring. In contrast,
the Open Archives Initiative (OAI) has received much support in the DL
community for its Protocol for Metadata Harvesting, one that in prin-
ciple falls within the scope of SOA. As a natural extension, the Open
Digital Library project carried the principles of the OAI forward into
a set of experimental derived and related protocols to create a testbed
for component-based digital library experiments. This paper discusses a
series of experiments with these components to confirm that SOA and
a service-oriented component architecture is indeed applicable to digital
library systems, by evaluating issues of simplicity and understandability,
reusability, extensibility and performance.

1 Introduction

Service-oriented computing is a relatively new paradigm of computing where
tasks are subdivided and performed by independent and possibly remote compo-
nents that interact using well-defined communications protocols [19]. In particu-
lar, the Service-Oriented Architecture (SOA) refers to a framework built around
XML and XML messaging, with standards for how messages are encoded, how
protocol syntax is specified and where instantiations of services are to be located.
These are exemplified by the SOAP [4], WSDL [2] and UDDI [1] specifications
respectively. It is often argued that SOA can be adopted by an organisation to
increase reuse, modularity and extensibility of code, while promoting a greater
level of interoperability among unrelated network entities.

From a somewhat different perspective, the Open Archives Initiative (OAI)
attempted to address interoperability first and foremost, by designing a proto-
col for the efficient incremental transfer of metadata from one network entity
to another. This Protocol for Metadata Harvesting (PMH) [7] has since been
adopted by many large digital archives and has become the primary mechanism
for digital library interoperability in 2004. The OAI-PMH is very closely related

to SOA as it adopts a Web-distributed view of individual systems, where inde-
pendent components - listed on the OATI website - interact through the medium
of a well-specified protocol and XML-encoded messages. The OAI-PMH differs
significantly from the SOA in that it is more concerned with a specific set of
protocol/encoding semantics while SOA specifies only an underlying transport
mechanism that could be applied to many different protocol suites. In this sense,
a marriage of OAI-PMH and SOA is both possible and probable [3].

In the interim, however, one of the reasons OAI-PMH has not as yet migrated
to SOA is that the technology is not sufficiently well proven. In addition, OAI-
PMH is aimed at interaction among entire systems, viewed as components of a
super-system. SOA, however, is easily applied to a finer granularity, where reuse
and modularity of components are crucial. To bridge this gap, and translate the
core principles of OAI-PMH to fine-grained interaction among small components
of a larger digital library, the Open Digital Library (ODL) project defined a suite
of protocols based on the widely accepted principles of OAI-PMH, but aimed at
the needs of digital library subsystem interaction [13][14].

To maintain thematic consistency, these protocols were designed in an object-
oriented fashion, where each protocol built on a previous one, extending and over-
riding semantics as needed. A set of reference implementations of components
were then created to provide the following services: searching; browsing; track-
ing of new items; recommendation by collaborative filtering; annotation of
items as an independent service; numerical ratings for items in a collection;
merging of sub-collections; and peer review workflow support.

Finally, these components were analysed and evaluated to determine how
applicable a fine-grained component model is to the construction of digital li-
braries, and possibly expose problems and shortcomings to be addressed in future
research. At the same time, the results obtained are generalisable to Web-based
systems and are indicators for the success of SOA as it is applied to digital
library componentisation.

2 Experiments: Simplicity and Understandability

The first set of experiments aimed to determine if components with Web-based
interfaces can be composed into complete systems with relative ease by non-
specialists. Three different user communities were introduced to the underlying
principles of OAI and the component architecture devised and were then led
through the procedure of building a simple digital library system using the com-
ponents.

2.1 OSS4LIB

The first group, at an ALA OSS4LIB workshop, provided anecdotal evidence
that the component-connection approach to building DLs was feasible. The ap-
proximately 12 participants were largely technical staff associated with libraries
and therefore had minimal experience with installation of software applications.

They were carefully led through the process of configuring and installing mul-
tiple components and were pleasantly surprised at the ease with which custom
digital libraries can be created from components. This led to a second, more
controlled, experiment as detailed below.

2.2 Installation Test

The second group comprised 56 students studying digital libraries. The aim of
this study was to gauge their level of understanding of OAI and ODL components
and their ability to complete a component composition exercise satisfactorily.
The objective was to install the following components and link them together to
form a simple digital library, as illustrated also in Fig 1:

— XMLFile: a simple file-based OAI archive
— Harvester: an OAI/ODL harvester

— IRDB: an ODL search engine

— IRDB-ui: a simple user interface for IRDB

IRDB
- IRDB
XMLFile| — — user
(4+harvester) .
interface

Fig. 1. Architecture of simple componentised digital library

Students were given an hour-long introduction to OAI and ODL and then
given detailed instructions to perform the component composition exercise. Upon
completion, they were asked to fill out a questionnaire to evaluate the experience
of building this system from components. Table 1 displays a summary of the
responses to the core questions asked of users.

In addition to these questions, typical demographic information was collected
to ascertain skills levels and exposure to the technical elements of the experiment.
The different backgrounds of participants evident from the responses to demo-
graphic questions makes it difficult to analyse these results without taking into
account all of the interaction effects that result from past experience. Since OAI
and ODL utilise various different Web technologies, it is non-trivial to enumerate
all of the pre-requisites and determine their independent effects. It may be pos-
sible to construct an experimental model to minimise the interaction effects, but
this will require finding unique participants, each with a very particular back-
ground and training. This may prove difficult because of the cutting-edge nature
of Web-based technology. Taking these difficulties into account, any analysis of
such an experiment cannot easily determine general trends.

Table 1. Summary of Responses to Component Composition Experiment

Question/Response ‘S. Agree‘Agree‘Neutral Disagree‘S. Disagree‘
Understand concepts of OAI-PMH. 9 38 9

Understand concepts of ODL. 6 36 14

Instructions were understandable. 35 20 1

Installing components was simple. 36 18 2

Configuration was simple. 33 21 2

Connecting Harvester+XMLFile was simple.| 28 25 3

Connecting IRDB+XMLFile was simple. 26 25 5

Understanding of OAI/ODL has improved. 13 25 12 6

I will use ODL and OAI components. 12 33 10 1

Nine respondents who indicated that they did not know how Web Services
worked answered affirmative when asked if they had done Web Services-related
development. This may be because they interpreted the question as referring to
Web-related services other than SOAP, WSDL, and UDDI, or because they had
done development work without understanding the underlying standards and
information model of Web Services. Either of these is consistent with the vague
understanding many people have of Web Services.

Judging from the responses to the first two questions in Table 1, most par-
ticipants appear to have grasped the basic concepts related to OAI and ODL.
The fact that some participants were unsure indicates that an hour and 15 min-
utes may not be enough for a person building a digital library to learn enough
about OAI and ODL. This raises the question of just how much training a
person needs before being able to effectively use OAI and ODL technology (or
any Web-service-related technology). Also, more of the participants were able to
understand OAI rather than ODL; this is expected since ODL builds on OAI

Most participants agreed (or strongly agreed) that the instructions were un-
derstandable. The instructions were very detailed so that even if participants
did not understand one section of the exercise, they were still able to complete
the rest of the steps.

Installation and configuration of individual components as well as intercon-
necting different components was deemed to be simple. As these are two basic
concepts underlying ODL (that all services can be independent components and
that systems are built by interconnecting service components), it supports the
hypothesis of this experiment that ODL is simple to understand and adopt -
which commutes to Web Services.

There was not much agreement about the ability of the exercise to improve
the participants understanding of OAI and ODL. This can be attributed to the
sheer volume of new concepts covered during the presentation and exercise. Given
that approximately half of the participants had never created a CGI-based Web
application before, the learning curve was quite steep. In practice, those who
adopt OAI and ODL technology are usually digital library practitioners who al-
ready have experience with the construction of dynamic Web-based information
systems.

In spite of all these factors, two-thirds of the participants indicated an in-
terest in using similar components if they have a need for such services. Thus,
even without a thorough understanding of the technology and other available
options, the simple and reusable nature of the components seemed to appeal to
participants.

Thirteen participants provided optional feedback in the survey, and these
ranged from positive to somewhat skeptical. Eight of the reactions were positive,
including the following comments:

— “I think the idea is very good and the approaches to build digital libraries
is easy.”

— “They provide a way to get up and running very quickly with a Web appli-
cation.”

Some participants were not sure about the workflow as indicated by the com-
ment:

— “We have high level idea but detailed explanation will be great.”

One comment in reference to the questions on simplicity of installation and
configuration included:

— “I dont know; custom config might not be simple.”

This summarises the notion that components should be simple enough to
bootstrap a development process but still powerful enough to support a wide
range of functionality. In particular, the above comment refers to the XMLFile
component that is simple to install and use in its default configuration, but can
be non-trivial to configure if the records are not already OAI-compatible. In
such a situation, XSL transformations can be used to translate the records into
acceptable formats. However, irrespective of the complexity of configuration for
a particular instance, the OAI/ODL interface to such components always is the
same.

Some questions raised during the lab sessions revealed very important issues
that need to be addressed in future development of ODL or related Web-based
standards:

— Confusion over baseURLs
e Some participants were confused regarding which baseURL to use in
which instance. Since all URLs were similar, it was not obvious — this
ought not to happen in practice with any system built on OAI, ODL or
Web Services technology.

e Entering URLs by hand resulted in many typographical errors. Ideally,
such links must be made using a high-level user interface that masks
complex details like URLs from the developers.

e The user interface was sometimes connected to the wrong component.
While it is possible for a user interface to Identify the service component
before using it, this will be inefficient. As an alternative, user interfaces
can themselves be components, with associated sanity tests applied dur-
ing configuration.

— Failures during harvesting

e Harvesting will fail if the baseURL is incorrect, but there are no obvious
graceful recovery techniques. The components used in the experiment
assume a catastrophic error and stop harvesting from the questionable
archive pending user intervention. Better algorithms can be devised to
implement exponential back-off and/or to trigger notification of the ap-
propriate systems administrator.

2.3 Comparison Test

Finally, a third experiment was conducted to contrast the component approach
to system building with the traditional monolithic system approach. 28 students
in digital libraries were asked to install a system similar to the one in the previous
experiment as well as a version of the Greenstone [18] system, and compare and
contrast them from the perspectives of ease of use and installation.

The responses highlighted both positive and negative aspects of both sys-
tems. The majority of respondents indicated that Greenstone was easier to in-
stall, being a single cohesive package. However, it was also agreed by almost
all respondents that the component approach was more flexible and powerful,
and therefore applicable to a larger set of problem domains than the monolithic
equivalent. There was tension between the higher degree of architectural control
possible with ODL and the increase in complexity it introduced for those not
wanting such control. The service-oriented approach was also preferred for its
scalability, genericity and support for standards, which was not as evident in the
monolithic approach. A number of respondents were undecided as to an outright
preference, given that each solution had its advantages and disadvantages - lead-
ing to the conclusion that an ideal solution would capitulate on the strengths of
both approaches, somehow giving end users the advantages of component-based
customisation and flexibility as well as the advantages of cohesion and simplicity
inherent in the non-component approach.

3 Experiments: Reusability and Extensibility

To test for reusability and extensibility, the suite of components was made avail-
able to colleagues for integration into new and existing systems. A number of
digital library systems have since made use of the components, either directly,
or composed/aggregated into other components. The following are a discussion

of how some projects have integrated service-oriented components and protocols
into their architectures.

3.1 AmericanSouth.org

AmericanSouth.org [6] is a collaborative project led by Emory University to
build a central portal for scholarly resources related to the history and culture
of the American South. The project was initiated as a proof-of-concept test of
the metadata harvesting methodology promoted by the OAI. Thus, in order to
obtain data from remote data sources, the project relies mainly on the OAI-
PMH.

The requirements for a central user portal include common services such as
searching and browsing. AmericanSouth.org used ODL components to assist in
building a prototype of such a system. The DBUnion, IRDB and DBBrowse
components were used in addition to XMLFile and other custom-written OAI
data provider interfaces. Many questions about protocol syntax and component
logic were raised and answered during the prototyping phase, suggesting that
more documentation is needed. Alternatively, pre-configured networks of com-
ponents can be assembled to avoid configuration of individual components. Both
of these approaches are being investigated in the DL-in-a-Box project [10].

The production system for AmericanSouth.org still uses multiple instantia-
tions of XMLFile but the ODL components have been replaced with the ARC
search engine [9] largely because of concerns over execution speed of the IRDB
search engine component. This in itself indicates the ease with which service-
oriented components can be replaced in a system whose requirements change
over time.

3.2 CITIDEL

CITIDEL - the Computing and Information Technology Interactive Digital Ed-
ucation Library [5] - is the computing segment of NSF’s NSDL - the National
Science, Technology, Engineering and Mathematics Digital Library [8]. CITIDEL
is building a user portal to provide access to computing-related resources gar-
nered from various sources using metadata harvesting wherever possible. This
user portal is intended to support typical resource discovery services, such as
searching and category-based browsing, as well as tools specific to composing
educational resources, such as lesson plan editors.

From the initial stages, CITIDEL was envisioned as a componentised system,
with an architecture that evolves as the requirements are refined. The initial sys-
tem was designed to include multiple sources of disparate metadata and multiple
services that operate over this data, where each data source and service is inde-
pendent.

CITIDEL uses components from various sources. In terms of ODL, this in-
cludes the IRDB and Thread components to implement simple searching and
threaded annotations, respectively. The IRDB component was modified to make
more efficient use of the underlying database, but the interface was unchanged.

3.3 BICTEL/e

The BICTEL /e project, led by the Universite Catholique de Louvain, is building
a distributed digital library of dissertations and e-prints within the nine French-
speaking universities in Belgium. The project adopted use of OAI and ODL
components to support dissertations and e-prints collections at each university
and at a central site, alongside some non-ODL components.

3.4 Sub-classing

Some component implementations were created by sub-classing existing com-
ponents. All of the component modules were written in object-oriented Perl,
which allows for single inheritance, so this was exploited when possible. Since the
DBRate and DBReview components also store the original transaction records
submitted to them, they were derived from the Box component. In each case,
some of the methods were overridden to provide the necessary additional func-
tionality.

3.5 Layering: VIDI

The VIDI project [17] developed a standard interface, as an extension of the OAI
protocol, to connect visualisation systems to digital libraries. A prototype of the
VIDI reference implementation links into the search engine of the ETD Union
Catalog [15] to obtain search results. The search engine used in the ETD Union
Catalog understands the ODL-Search protocol. Thus, additional services are
provided as a layer over an ODL component, without any reciprocal awareness
necessary in the ODL system.

3.6 Layering: MAIDL

MAIDL, Mobile Agents In Digital Libraries [12], is a federated search system
connecting together heterogeneous Web-accessible digital libraries. The project
uses the “odlsearchl” syntax, as specified in the ODL-Search protocol, in order
to submit queries to its search system. Further communication among the mobile
agents and data providers transparently utilize the XOAI-PMH protocol [14].

4 Experiments: Performance

Lastly, performance tests were conducted to determine the effect of Web-based
inter-component communication. Measurements were taken for heavily loaded
systems, systems that rely on multiple components to respond to requests (e.g.,
portals) as well as the contribution made to system latency by different layers
in the architecture.

The most critical of measurements looked at the effect of additional Web-
application layering on the execution times of individual components of a larger

system. The IRDB search engine component was used for this test because search
operations take a non-trivial (and therefore measurable) amount of time and the
pre-packaged component includes a direct interface to the search engine that
allows bypassing of the ODL protocol layer.

For test data, a mirror of the ETD Union Archive was created and this then
was harvested and indexed by an instance of the IRDB component. 7163 items
were contained in this collection, each with metadata in the Dublin Core format.

The test was to execute a search for a given query. Three queries were used:
“computer science testing”, “machine learning”, and “experiments”. At most
the first 1000 results were requested in each case. Fach query was executed 100
times by a script to minimise the effect of the script on the overall performance.
The first run of each experiment was discarded to minimise disk access penalties,
and an average of the next 5 runs was taken in each case.

Six runs were made for each query:

1. Executing lynx to submit a Listldentifiers query through the Web server
interface.

2. Executing wget to submit a ListIdentifiers query through the Web server
interface.

3. Using custom-written HTTP socket code to submit a ListIdentifiers query
through the Web server interface.

4. Executing the search script directly from the command-line, thereby bypass-
ing the Web server.

5. Executing testsearch.pl to bypass both the Web server and the ODL layer.

6. Using direct API calls to the IR engine, without spawning a copy of test-
search.pl in each iteration.

The time was measured as the “wall-clock time” reported by the bash utility
program “time” from the time a run started to the time it ended. The script
that ran the experiment controlled the number of iterations (100, in this case)
and executed the appropriate code in each of the 6 cases above. In each case,
the output was completely collected and then immediately discarded - thus,
each iteration contributed the complete time between submitting a request and
obtaining the last byte of the associated response, hereafter referred to as the
execution time.

It was noticable from the measured times that execution time increases as
more layers are introduced into the component. This increase is not always a
large proportion of the total time, but the difference between Test-1 and Test-6
is significant. The time differences between pairs of consecutive tests is indicated
in Table 2.

Test-1, Test-2 and Test-3 illustrate the differences in times due to the use
of different HTTP clients. In Test-1, the fully-featured text-mode Web browser
lynx was used. In Test-2, wget was used instead, and the performance improved
because wget is a smaller application that just downloads files. Test-3 avoided the
overhead of spawning an external client application altogether by using custom-
written network socket routines to connect to the server and retrieve responses

Table 2. Time differences between pairs of consecutive tests

[Query | Test 1-2] Test2-3| Test3-4] Test4-5] Test5-6]
“computer science testing”| 4.52 1.04 | 0.67 | 0.33 8.57
“machine learning” 3.72 0.63 0.58 0.22 | 10.62
“experiments” 4.26 0.94 0.35 0.66 8.53

to requests. The differences are only slight but there is a consistent decrease for
all queries.

The difference between Test-3 and Test-4 is due to the effect of requests
and responses passing through the HTTP client and the Web server. While no
processes were spawned at the client side in Test-3, a process was still spawned
by the Web server to handle each request at the back-end. This script was run
directly in Test-4, so the difference in time is due solely to the request being
routed through the Web server. This difference is small, so it suggests that the
Web server does not itself contribute much to the total execution time.

The difference between Test-4 and Test-5 is due to the ODL-Search software
layer that handles the marshalling and unmarshalling of CGI parameters and
the generation of XML responses from the raw list of identifiers returned by the
IR engine. This difference is also small, indicating that the additional work done
by the ODL layer does not contribute much to the total time of execution.

The difference between Test-5 and Test-6 is due to the spawning of a new
process each time the IRDB component is used. This difference is substantial
and indicates that process startup is a major component of the total execution
time.

In general, the execution times for the IRDB component (as representative
of ODL components in general) were much higher than the execution times for
direct API calls. However, this difference in execution time is due largely to
the spawning of new processes for each request. The ODL layer and the Web
server contribute only a small amount to the total increase in execution time.
As a follow-on experiment, different Web application acceleration technologies
were used to verify that no substantial execution speed penalty need be incurred
when adopting a service-oriented component approach to system development
(details of this experiment can be found in [16]). This illustrated, in particular,
that there is not a significant difference between using direct API calls and
invoking a Web service. Ultimately, these experiments confirm that there is little
cause for concern, performance-wise, if Web technology is chosen wisely — for
example, using persistent Web applications such as servlets for Java applications
or SpeedyCGI for Perl applications.

5 Conclusions

The Service Oriented Architecture is still a fairly new concept in DL systems,
with most systems supporting one or two external interfaces, for example OAI-
PMH. This work has investigated the applicability of SOA as a fundamental
architecture within the system, an analysis of which has demonstrated its fea-
sibility according to multiple criteria, while exposing issues that need to be
considered in future designs.

6 Future Work

The most important aspect highlighted by ongoing experiments was the need
for better and simpler management of components, so that the complexity of
deconstructing a monolithic system into service-oriented components did not
fundamentally increase the complexity of overall system management. To this
end, the ongoing “Flexible Digital Libraries” project is investigating how ex-
ternal interfaces can be defined for remote management of components, thus
enabling automatic aggregration and configuration of components by installa-
tion managers and real-time component management systems. The first of such
systems to be built, BLOX [11], allows a user to build a system visually using
instances of Web-accessible components residing on remote machines. Ongoing
work is looking into how systems built with such an interface can be packaged
and redeployed, thus bridging the gap between components and monolithic sys-
tems from a system installation perspective.

This work naturally lends itself to a future architecture that allows migration
and replication of components to support “component farms” as a replacement
of “server farms”, as well as peer-to-peer and grid computing paradigms, where
services are needs-based and location-independent.

At the same time, some effort needs to go into how services are orches-
trated and composed/aggregrated at a higher level to perform useful functions
needed by users. The WS-Flow and WS-Choreography activities are useful start-
ing points but more investigation is needed into their suitability for integration
with user interface and workflow design as a front-end to the component farms
envisioned as the back-end of future Web-based information applications.

References

1. Ariba, Inc., IBM and Microsoft (2000), UDDI Technical White Paper, 6 September
2000. Available http://www.uddi.org/pubs/Iru_UDDI_Technical -White_Paper.pdf

2. Christensen, E., F. Curbera, G. Meredith and S. Weerawarana (2001), Web Services
Description Language (WSDL) 1.1, W3C. Available http://www.w3.org/TR/wsdl

3. Congia, Sergio, Michael Gaylord, Bhavik Merchant and Hussein Suleman (2004),
“Applying SOAP to OAI-PMH”, to appear in Proceedings of ECDL2004, Bath,
UK, 12-17 September 2004.

4. Gudgin, M., M. Hadley, N. Mendelsohn, J. Moreau and H. F. Nielson (2003), SOAP
Version 1.2 Part 1: Messaging Framework and Part 2: Adjuncts, W3C, 24 June
2003. Available http://www.w3.org/TR/2003/REC-soapl2-part1-2003-0624/ and
http://www.w3.org/TR /2003 /REC-soap12-part2-2003-0624/

5. Fox, Edward A., Deborah Knox, Lillian Cassel, John A. N. Lee, Manuel Pérez-

Quifiones, John Impagliazzo and C. Lee Giles (2002), CITIDEL: Computing

and Information Technology Interactive Digital Educational Library. Website

http://www.citidel.org

Halbert, M. (2002), AmericanSouth.org. Website http://www.americansouth.org

7. Lagoze, Carl, Herbert Van de Sompel, Michael Nelson and Simeon
Warner (2002), The Open Archives Initiative Protocol for Metadata Har-
vesting Version 2.0, Open Archives Initiative, June 2002. Available
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

8. Lagoze, Carl, Walter Hoehn, David Millman, William Arms, Stoney Gan, Dianne
Hillmann, Christopher Ingram, Dean Krafft, Richard Marisa, Jon Phipps, John
Saylor, Carol Terrizzi, James Allan, Sergio Guzman-Lara and Tom Kalt (2002),
“Core Services in the Architecture of the National Science Digital Library (NSDL)”,
in Proceedings of Second ACM/IEEE-CS Joint Conference on Digital Libraries,
Portland, OR, USA, 14-18 July 2002, pp. 201-209.

9. Liu, Xiaoming, Kurt Maly, Mohammad Zubair and Michael L. Nelson (2001),
“Arc: an OAI service provider for cross-archive searching”, in Proceedings of First
ACM/IEEE-CS Joint Conference on Digital Libraries, Roanoke, VA, USA, 24-28
June 2001, pp. 65-66.

10. Luo, Ming (2002), Digital Libraries in a Box. Website http://dlbox.nudl.org

11. Moore, David, Stephen Emslie and Hussein Suleman (2003), BLOX: Visual Digital
Library Building, Technical Report CS03-20-00, Department of Computer Science,
University of Cape Town. Available http://pubs.cs.uct.ac.za/

12. Nava Mufioz, and Sandra Edith (2002), Federacién de Bibliotecas Digitales uti-
lizando Agentes Méviles (Digital Libraries Federation using Mobile Agents), Mas-
ter’s thesis, Universidad de las Américas Puebla.

13. Suleman, Hussein, and Edward A. Fox (2001), “A Framework for Building Open
Digital Libraries”, in D-Lib Magazine, Vol. 7, No. 12, December 2001. Available
http://www.dlib.org/dlib/december01/suleman/12suleman.html

14. Suleman, H., and E. A. Fox (2002), “Designing Protocols in Support of Digital
Library Componentization”, 6th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL2002), Rome, Italy, 16-18 September 2002.

15. Suleman, H., and E. A. Fox (2002), “Towards Universal Accessibility of ETDs:
Building the NDLTD Union Archive”, Fifth International Symposium on Electronic
Theses and Dissertations (ETD2002), Provo, Utah, USA, 30 May-1 June 2002.Avail-
able http://www.husseinsspace.com/publications/etd_2002_paper_union.pdf

16. Suleman, H. (2002), Open Digital Libraries, Ph.D. dissertation, Virginia Tech.
Available http://scholar.lib.vt.edu/theses/available/etd-11222002-155624/

17. Wang, J. (2002), A Lightweight Protocol Between Visualization Tools and Digital
Libraries, Master’s Thesis, Virginia Polytechnic Institute and State University.

18. Witten, I. H., R. J. McNab, S. J. Boddie and D. Bainbridge (2000), “Greenstone:
A Comprehensive Open-Source Digital Library Software System”, in Proceedings
of Fifth ACM Conference of Digital Libraries, San Antonio, Texas, USA, 2-7 June
2000, pp. 113-121.

19. Yang, J. (2003), “Web Service Componentization”, in Communications of the
ACM, Vol. 46, No. 10, October 2003, ACM Press, pp. 35-40.

e

