
The Implications of an Operating System Level DRM
Controller

Duncan Bennett, Marlon Paulse, Alapan Arnab and Andrew Hutchison

DATA NETWORKS ARCHITECTURE GROUP
Department of Computer Science,

University of Cape Town,
Rondebosch 7701, South Africa

{aarnab, dbennett, hutch, mpaulse}@cs.uct.ac.za

ABSTRACT
Digital Rights Management (DRM) is the persistent access
control of digital content. This paper examines the impli-
cations of enforcing access control rules at the operating
system kernel level. We describe our design for a prototype,
operating system kernel level DRM Controller. Initial per-
formance benchmarks measuring access time have yielded
promising results. Only negligible overhead was measured
unprotected data, while the overhead incurred for protected
data is unnoticeable to a human user. Lastly, we discuss
implications of operating system level DRM.

1. INTRODUCTION
Traditional security mechanisms, such as encryption, op-
erating system file access permissions, database access con-
trols and firewalls are widely used to protect confidential and
sensitive data from unauthorised use. These security mech-
anisms offer sufficient levels of security and access control to
the data. However, effective protection can only be guaran-
teed as long as the data reside within a secure environment,
such the content creator’s own computer system. Once the
data are taken out of the secure environment, the protection
offered by firewalls and data access controls are completely
lost. Also, if an end-user obtains access to an encrypted file
and knows how to decrypt it, there is nothing stopping that
end-user from passing the data in its decrypted form onto a
malicious end-user.

In contrast, digital rights management (DRM) provides per-
sistent access control. It allows creators of digital content
to specify exactly which end-users are allowed to access the
content, how they may access it, and under which circum-
stances it may be accessed. Even if the data is transported
to another computer in an insecure computing environment,
DRM protection will prevent any malicious user from using
the data in an unauthorised manner. DRM provides mech-

anisms to manage and enforce rights to digital content, and
thus, ensures the persistent access control of digital con-
tent [5].

Arnab and Hutchison [2] defined a specification for a DRM
framework, consisting of a set of distributed components
that create, administer and distribute DRM protected con-
tent. We implemented a prototype operating system level
DRM controller for this framework, that enforces digital
rights specified in DRM use licenses and offers DRM pro-
tection for any file format. Our aim was to evaluate the
performance of this DRM controller in order to assess the
viability of DRM at the operating system. Additionally, we
wished to see how effectively digital rights could be enforced.

We defined two hypotheses for our investigation:

1. The prototype DRM controller can enforce a wide range
of digital rights, transparently to any end-user appli-
cations trying to access the DRM protected content.

2. The performance cost imposed on the system by the
prototype DRM controller is negligible.

This paper is structured as follows. In section 2, we present
some background on existing DRM implementations. We
then give an overview of the DRM controller implementation
in section 3. We describe an experiment that was conducted
to evaluate the performance of the DRM controller, followed
by a detailed analysis of the results of this experiment The
implications of operating system DRM with respect to the
enforcement of digital rights is discussed in section 5. We
then conclude by assessing the viability of operating system
DRM.

2. BACKGROUND AND MOTIVATION
A DRM controller may be implemented at one of three levels
in a computer:

1. the application-level,

2. the operating system-level, or

3. the hardware-level.



Many existing DRM solutions are application level solutions
often designed to support one file format or product line.
Apple’s iTunes music store provides an example of such a
system. iTunes enables the sale of digital content online
through the use of a proprietary DRM called Fairplay [3].
The strength of the iTunes music store lies in the fact that
Fairplay is able to support many of the users’ rights under
traditional copyright law [1]. At the same time, it is pow-
erful enough to prevent piracy and effectively enforce the
rights of the copyright holder [1]. Without balance between
the rights of the copyright holder and the end-user, iTune’s
would arguably have experienced less success with their on-
line music sales.

While Fairplay represents a significant advance in the pro-
tection and distribution of digital media, it has some asso-
ciated problems. Firstly, Fairplay is proprietary and Apple
will not license the DRM [3]. This creates artificial incom-
patibilities between applications because without a license,
it is not legal for another company to support Fairplay [3].
A major concern here is fair trade: if no other company can
support Fairplay in their software or hardware, this may
limit their ability to compete with iTunes. This ultimately
inconveniences the end-user who gets locked into a single
software solution.

Another problem with an application level DRM such as
Fairplay is that it is format and application specific. For
instance, Fairplay only protects a particular music format.
This lack of generality at the application level often leads to
multiple, incompatible DRM implementations [1]. There is
thus no single, stable DRM standard, representing a more
significant problem for organisations attempting to maintain
large archives or work. DRM enforced at the application
level is also less secure since operating system commands
such as Print Screen cannot be disabled [1].

Microsoft Right Management Services (RMS) is an exam-
ple of an operating system level DRM. Implementing DRM
at this level provides better security since operating system
commands can be intercepted. An operating system level
DRM such as RMS can also support a wider range of media
since it is not geared toward a particular type of applica-
tion. However, RMS is not transparent at the application
level. Support for RMS must be built into applications re-
quiring DRM support using a software development kit for
RMS. This allows the application to interact with a client
side DRM controller and a server module. The controller
module is responsible for ensuring that only legal transac-
tions take place while the server module is responsible for
administering DRM enabled content. This has been dis-
cussed in a paper by Arnab and Hutchison’s [1]. Since any
content format that is RMS enabled can be read using an
appropriate application, RMS achieves many of the bene-
fits of an operating system level DRM. Nonetheless, it does
not free the application level from having to deal with the
underlying DRM.

Operating system level implementations may degrade the
overall performance of a system. Rosenblatt [4] stated that,
since an operating system level DRM controller must inter-
cept system call requests to enforce digital rights, it would
need to intercept all such requests. It does not discriminate

between system call requests that need protection and those
that do not need protection. This unnecessary interception
of system call requests can impose a large overhead on the
system.

Another alternative is to implement DRM at the hardware
level. Rosenblatt [4] believes that a hardware controller is
ultimately the best choice for a DRM implementation. How-
ever, if the underlying hardware implementation is insecure,
a breach of security is harder to address. An example of
this problem is the rights protection build into DVD’s. In
this case, a flawed encryption algorithm resulted in a secu-
rity breach [1]. Because the DRM was built into hardware,
which could not be upgraded, it was not possible to fix the
problem. At the present time, there are a number of prob-
lems that must be addressed before DRM can be properly
implemented in hardware.

To summarise, a DRM controller at the application-level
is relatively easy to implement, but offers the least security.
The DRM protection can easily be bypassed by simply mod-
ifying the executable application code. A hardware-level
implementation, on the other hand, offers the best security.
However, this could lead to increased computer hardware
costs, and may be expensive and difficult to upgrade. A
DRM controller at the operating system level thus seems
like a good balance between monetary expense and level of
security. However, Rosenblatt’s concerns about system per-
formance may be valid. It is therefore to necessary investi-
gate such performance issues in order to determine whether
operating system DRM is indeed a viable option.

3. SYSTEM DESIGN AND IMPLEMENTA-
TION

3.1 System Overview
The prototype DRM controller was developed on 2.6 Linux-
based operating system. It consists of two core modules: an
operating system kernel module and a user-space daemon
module. The daemon module is responsible for the manage-
ment and retrieval of DRM use licenses from the DRM con-
tent distributors’ remote license servers, while kernel mod-
ule enforces the access control rules specified in these use
licenses.

Figure 1 gives an overall view of the DRM system architec-
ture. The following steps describe the interaction between
the kernel module and the daemon:

Step A: The application receives as input a DRM protected
file.

Step B: The application requests access to the file. The
kernel module intercepts this request.

Step C: The kernel module sends a request for license de-
tails to the daemon.

Step D: The daemon checks the license store for a license.
If a license exists, the daemon proceeds to step G.
Otherwise, it proceeds to step E.

Step E: The daemon connects to a license server enabling
the negotiation of a license download.



Figure 1: Figure 1. The DRM Controller Architec-
ture and Communications

Step F: If a license is successfully negotiated, the daemon
proceeds to step G. Otherwise, a message is sent to the
kernel module to deny file access.

Step G: The validity of the license is checked against a
revocation list. If a license is invalid, the daemon may
return to step E to negotiate a new license.

Step H: The daemon returns the license to the kernel mod-
ule in a simplified (non-XML), common format. This
will contain all relevant information form the original
license.

Step I: The kernel module performs a final check on the
access request. The end-user and the request are ref-
erenced against the relevant fields in the use license. If
these details are valid, the application is granted access
to the requested file.

3.2 The Daemon
The daemon module implements several components. The
responsibilities of the daemon module are described below.

3.2.1 Management of a License Store
In order to retrieve DRM use licenses for the Kernel Module,
the Daemon stores licenses in a local license store. The
daemon manages these licenses, having full rights to add,
revoke or modify license content.

3.2.2 Negotiate Licenses with a License Server
If a license is not available in the license store, the dae-
mon initiates a negotiation for a new license with a content
distributor’s license server. The daemon activates a user in-
terface, and a child process is started to await a response
from the user interface. This frees the main daemon process
to continue communicating with the kernel. Once the nego-
tiation is complete, a message is sent to the child process.
If the message contains a license, the license is added to the
license store.

3.3 The Kernel Module
The kernel module contains two components: the Access
Enforcement Component (AEC) and the Access Decision
Component (ADC). Together these two components act as
a reference monitor. All access requests to DRM protected

content must pass through these two components. The ADC
makes decisions on whether to allow access to the DRM
content or not, while the AEC is responsible for enforcing
the decisions made by the ADC.

In order to enforce digital rights, the AEC defines a set
system calls which replace the some of the original system
calls in the kernel. Whenever a request is made, the AEC’s
system calls are called instead of the original system calls.
Within each of its own system calls, the AEC, checks with
the ADC if access can be granted, and depending on the
response from the ADC, access is either granted or denied.
In order to deny access, the AEC simply returns an error
message to the application requesting access. In order to
grant access, the AEC calls the original system call to serve
the access request.

4. PERFORMANCE ANALYSIS
This section describes the experiment that was conducted
to determine the performance cost imposed on the system
by the DRM controller. The aim in this experiment was to
prove that hypothesis 2, discussed in section 1, is correct.

4.1 Experiment
4.1.1 Method
The following two system calls were used during this exper-
iment:

1. read(), and

2. rename().

These system calls correspond to the DRM use license per-
missions, DISPLAY and MOVE, respectively. They were
chosen for this experiment because they represent the two
types of access operations which can be performed by the
file system of an operating system on the data stored on the
disk. The read() system call performs sequential accesses on
each byte of the data, whereas the rename() system call only
operates on the entire chunk of data - a file - as a whole.

The experiment involved the following three tests.

1. First, we measured the duration of the read() and re-
name() system calls in a standard Linux kernel when
accessing non-DRM protected files of various sizes.

2. We then determined the system call overhead of the
two system calls when the DRM controller kernel mod-
ule was enabled. As in test 1, all the files used in this
test were non-DRM protected.

3. Finally, we repeated test 2, but this time, we used files
which were DRM protected.

Two sets of files, both consisting of six files each, were used.
The files in the one set were DRM protected, while those in
the other set were regular non-DRM protected files. Each
set was comprised of the files with the following file sizes:

1. 1KB,



2. 32KB,

3. 128KB,

4. 1MB,

5. 32MB, and

6. 128MB.

For each test-run, the system calls were invoked 10 times per
file. The duration of the system call was then determined by
taking the average of the 10 measurements. These results
were tabulated and are presented in tables 1 and 2.

4.1.2 Test Environment
The experiment was conducted on an Intel Celeron desktop
computer with a 1.7GHz CPU clock speed and 512 MB of
RAM. We used a standard 2.6.13.4 Linux kernel compiled
with preemptive support.

4.2 Results
Tables 1 and 2 show the results of the three tests for the
read() and rename() system calls respectively. In each table,
the performance costs incurred by the DRM controller are
shown.



S
td

k
er

n
el

S
td

k
er

n
el

+
D

R
M

ct
l.

S
td

k
er

n
el

+
D

R
M

ct
l.

F
il
e

si
ze

N
o
n
-D

R
M

d
a
ta

a
cc

es
s

ti
m

e
N

o
n
-D

R
M

d
a
ta

a
cc

es
s

ti
m

e
D

R
M

d
a
ta

a
cc

es
s

ti
m

e
N

o
n
-D

R
M

d
a
ta

ov
er

h
ea

d
D

R
M

d
a
ta

ov
er

h
ea

d
(K

B
)

(µ
s)

(µ
s)

(µ
s)

(%
)

(%
)

1
3
9
.2

3
7

4
7
.9

0
2

4
9
3
9
.4

7
4

2
2
.0

8
4

1
2
4
8
8
.8

1
7

3
2

8
0
.4

3
7

8
6
.2

5
7

6
5
5
7
.2

9
1

7
.2

3
5

8
0
5
2
.0

8
3

1
2
8

2
4
5
.1

3
2

2
4
8
.6

4
9

5
1
1
3
.2

0
5

1
.4

3
5

1
9
8
5
.8

9
9

1
0
2
4

1
6
0
2
.5

7
0

1
5
8
1
.5

9
1

6
5
8
7
.4

9
1

1
.3

0
9

3
1
1
.0

5
8

3
2
7
6
8

4
7
3
6
6
.8

0
8

4
6
7
2
5
.5

1
3

5
7
3
0
6
.8

7
0

1
.3

5
4

2
0
.9

8
5

1
3
1
0
7
2

1
8
8
0
2
6
.2

0
5

1
8
5
9
6
9
.2

3
2

2
1
4
4
3
4
.0

3
2

1
.0

9
4

1
4
.0

4
5

T
a
b
le

1
:

C
o
m

p
a
ri

n
g

th
e

d
u
ra

ti
o
n

o
f

th
e

re
a
d
()

sy
st

e
m

c
a
ll

w
h
e
n

h
a
n
d
li
n
g

D
R

M
p
ro

te
c
te

d
a
n
d

n
o
n
-D

R
M

p
ro

te
c
te

d
d
a
ta

o
n

a
D

R
M

-e
n
a
b
le

d
a
n
d

D
R

M
-f
re

e
sy

st
e
m

.

S
td

k
er

n
el

S
td

k
er

n
el

+
D

R
M

ct
l.

S
td

k
er

n
el

+
D

R
M

ct
l.

F
il
e

si
ze

N
o
n
-D

R
M

d
a
ta

a
cc

es
s

ti
m

e
N

o
n
-D

R
M

d
a
ta

a
cc

es
s

ti
m

e
D

R
M

d
a
ta

a
cc

es
s

ti
m

e
N

o
n
-D

R
M

d
a
ta

ov
er

h
ea

d
D

R
M

d
a
ta

ov
er

h
ea

d
(K

B
)

(µ
s)

(µ
s)

(µ
s)

(%
)

(%
)

1
1
5
.0

4
2
5

2
5
.3

3
7

6
8
0
4
.7

1
0

6
8
.4

3
6

4
5
1
3
6
.5

6
3

3
2

1
2
.8

6
8

2
2
.0

6
6

6
2
7
2
.5

1
4

7
1
.4

8
0

4
8
6
4
5
.0

5
8

1
2
8

1
1
.3

0
1

1
9
.8

0
2

6
5
6
1
.9

4
0

7
5
.2

2
3

5
7
9
6
5
.1

2
7

1
0
2
4

1
1
.2

3
8

2
1
.2

2
8

6
4
8
6
.3

5
0

8
8
.8

9
5

5
7
6
1
8
.0

1
0

3
2
7
6
8

1
1
.0

3
1

2
1
.3

9
2

7
0
5
2
.7

6
9

9
3
.9

2
6

6
3
8
3
5
.8

9
9

1
3
1
0
7
2

1
1
.1

1
5

2
3
.9

1
2

7
4
2
2
.1

0
6

1
1
5
.1

3
3

6
6
6
7
5
.5

8
3

T
a
b
le

2
:

C
o
m

p
a
ri

n
g

th
e

d
u
ra

ti
o
n

o
f
th

e
re

n
a
m

e
()

sy
st

e
m

c
a
ll

w
h
e
n

h
a
n
d
li
n
g

D
R

M
p
ro

te
c
te

d
a
n
d

n
o
n
-D

R
M

p
ro

te
c
te

d
d
a
ta

o
n

a
D

R
M

-e
n
a
b
le

d
a
n
d

D
R

M
-f
re

e
sy

st
e
m

.



4.3 Analysis
There are three areas in the DRM controller which con-
tribute to a performance overhead:

1. Intercepting the access request and the detecting DRM
protected data.

2. Communicating with the daemon.

3. Parsing the use license and enforcing the rights speci-
fied in the license.

The cost of intercepting the access request and detecting
whether the request applies to DRM protected data occurs
regardless whether the data is DRM protected or not. This
is the stage where the DRM controller distinguishes between
access requests that need DRM protection and access re-
quests that do not. Assuming that the daemon communica-
tions and rights enforcement cost is negligible, this cost will
be the best-case performance cost that will be incurred by
the DRM controller.

Table 1 shows the result of the three tests for the read()
system call. We see that the performance costs imposed
by the DRM controller when accessing non-DRM protected
cost is 22% for a 1K file and decreases until it reaches near
1% performance costs for a 128MB file. This suggests that
the overhead from intercepting access requests and detecting
DRM data is so small compared to the overhead of commu-
nicating with the daemon and enforcing the license rights,
that it is negligible. If we had measured access times for file
sizes beyond 128MB, we are certain that overhead would
decrease even further.

Looking at table 2, we see the access times when non-DRM
protected content in a standard kernel with the DRM con-
troller enabled remain almost the same. This is as expected,
as the rename() system call performs only one access on the
data, regardless on the size of the data. We attribute the
discrepancies in the access times to experimental error and
varying system load. We also notice that performance over-
head increases as the file size increases. However, this is due
to experimental error as well.

When accessing DRM-protected content on a DRM-enabled
system using the read() system call, we observed a similar
trend as in the non-DRM protected case. Although the ac-
cess times increase as the file sizes increase, the performance
overhead decreases. Initially, we find a 12489% increase in
performance cost. This high cost increase is due to the large
overhead involved when communicating the daemon, pars-
ing the license, and traversing the in-memory license struc-
ture to enforce digital rights. As more read requests are
performed this cost becomes less noticeable, and drops to
approximately 14% for a 128 MB file.

Table 2 again shows similar access times when accessing
DRM-protected content, regardless of the size of the file.
This time, the performance cost ranges between 45136.6% to
66675.6%, which is very high, compared to the performance
cost imposed when accessing non-DRM protected data in a
DRM-enabled system. the large overhead remains, even on
large files.

In both the read() and rename() cases, the overhead due to
the daemon communications and the rights enforcement far
outweigh the cost of intercepting access requests. This, of
course, raises questions regarding the infrastructure of the
DRM controller. If a file found to be DRM protected by the
kernel, it must start a expensive communication with the
daemon. This costly process might best be avoided by intro-
ducing a hardware implementation of a license store, instead
of file-system based one which is managed by a user-space
application. If the license store was managed by kernel, the
need to request licenses from the daemon would be removed.
However, there might still be a cost, as the the kernel still
needs to establish communication with the daemon to allow
it to retrieve licenses from remote license servers.

We are also need to consider the frequency at which accesses
to DRM protected content are made. If access to protected
content is relatively infrequent, then the huge cost might
still be judged to be negligible, since the performance cost
is still sufficiently small that a human user would not notice
it. However such a judgement cannot be reached without
further investigation of file access patterns, such as those
created by web servers, or a multi-user system where the
majority of files are protected.

5. THE EFFECTIVENESS OF ENFORCING
RIGHTS IN AN OPERATING SYSTEM
LEVEL DRM

The current system has been built in order to test the feasi-
bility of an operating system level DRM controller. It does
not seek to provide a complete solution to the problem. It
has been considered sufficient to implement only the core
functionality of the system. There are a number of problems
which have been encountered that fall outside the scope of
the current implementation. This section describes the is-
sues would need to be addressed in a complete system im-
plementation. We conclude this section by re-examining our
first hypothesis, described in section 1.

5.1 Interpreting Rights Expressions
Some rights are harder to enforce since they cannot easily
be identified at the Kernel level. For example, the ODRL
language allows a limitation to be placed upon the number of
pages that an end user may print. Within the Kernel there
is no concept of a page. Pages only exist within applications
such as word processors that need to support such an entity.

5.2 Correct Identification of Accesses
More complex applications may break a single user level
access into several smaller accesses. For example, playing
a music file may require multiple read attempts although
only a single play permission is exercised. The Kernel must
be able to correctly identify the purpose of these calls. If it
does not, a user’s access rights may expire prematurely, Con-
sider the example of a ”play” permission limited by a count
constraint. The count must be decremented only when the
media starts to play and not for each read access.

5.3 Compensating for Application Behaviour
Some applications behave unexpectedly. For instance, mul-
tiple access attempts may be made before an application



determines that a file cannot be accessed. The Daemon
Module must compensate and distinguish genuine requests
from repeat requests. This is to avoid initiating multiple
license negotiations for the same asset.

5.4 General Implications of Operating System
level DRM

Our first hypothesis states that application level transparency
can be achieved. The initial prototype has demonstrated
that a basic mechanism can be put in place to handle access
attempts at the Kernel level. Furthermore, application level
support was not required. However, there are still a num-
ber of problems that must be solved before access control
can be successfully enforced at the Kernel level. Simple file
formats and applications can be supported with relatively
little work. However other applications behave in a more
complex manner. This requires the presence of additional
logic within the Kernel Module.

6. CONCLUSIONS
In this paper, we presented a prototype DRM controller,
which enforces rights to digital content at the operating sys-
tem level of a computer. We defined the following hypothe-
ses in order to assess the viability of such a controller in
terms of performance and how effective it is at enforcing
rights to digital content.

1. The prototype DRM controller can enforce a wide range
of digital rights, transparently to any end-user appli-
cations trying to access the DRM protected content.

2. The performance cost imposed on the system by the
prototype DRM controller is negligible.

With regard to the first hypothesis, the current prototype
does achieve transparent enforcement of access control rules
for multiple file formats. This proves the hypothesis to be
correct. However further work would be required in a full
implementation in order to ensure that all methods of files
access are handled correctly.

With regard to the second hypothesis, we found that DRM
Controller incurred performance costs between 1% and 116%
for unprotected data. On a single-user system where ac-
cesses to DRM content is relatively infrequent, this cost is
sufficiently small for a user not to notice the overhead. How-
ever, it is still too high for multi-user systems with heavy
load. On the other hand, the performance cost incurred
when accessing DRM protected data were sometimes as high
as 12489%. This is far beyond what we consider acceptable.
Therefore, the second hypothesis is incorrect. However, con-
sidering that our prototype was not an optimised implemen-
tation, we do consider these performance measurements as
promising.

7. REFERENCES
[1] A. Arnab and A. Hutchison. Digital Rights

Management - An Overview of Current Challenges and
Solutions. In Proceedings Information Security South
Africa (ISSA), Midrand, South Africa, 2004.

[2] A. Arnab and A. Hutchison. Requirement Analysis of
Enterprise DRM Systems. In Proceedings nformation
Security South Africa (ISSA), 2005.

[3] W. W. Fisher and U. Gasser. iTunes: How Copyright,
Contract and Technology Shape The Business of
Digital Media., 2004.

[4] B. Rosenblatt. DRM for the Enterprise. Jupiter
Webinar, Jupiter Media Corporation, Inc., February
2004.

[5] B. Rosenblatt and G. Dykstra. Integrating content
management with digital rights management -
imperatives and opportunities for digital content
lifecycles. White paper, Giantsteps Media Technology
Strategies, 2003.
URL: http://www.giantstepsmts.com/drm-cm white
paper.htm.


