
Distributed Office Applications for Linux PDA
Stephen Asherson sasherso@cs.uct.ac.za

Trishan Valodia tvalodia@cs.uct.ac.za

Kutloisiso Mona kmona@cs.uct.ac.za

Ken MaGregor ken@cs.uct.ac.za

Abstract

Many countries within Africa suffer from lack of access to necessary technology resources; the
resulting effect is a lack of computer literacy amongst these societies and in particular, learners
within educational institutions. There have been many investigations regarding the use of
Personal Digital Assistants (PDAs) within education; many of these investigations involve the
use of productivity software suites such as Microsoft Pocket Office. Although these
investigations have been undertaken, many of them involve proprietary software. There is a
significant need for an Open Source Office suite designed for a PDA, which is able to serve as an
alternative to proprietary software. This need is particularly high within the African context
whereby financial resources are scarce. This project aims at exploring the possibility of
providing an Open Source office applications suite for a PDA.

This project resulted in a word processor, spreadsheet application and presentation application
ported to a Linux-based PDA. These cheaper devices are limited in their resources yet the
resulting applications are not hindered by these limitations.

The applications rely on remotely accessing components that are present on a desktop machine,
rather than accessing components locally on the PDA. This approach shifts the greater portion of
processing, memory and storage requirements onto the desktop machine rather than to the
limited PDA. The resulting application sizes are significantly smaller than the original complete
applications.

As a result, educators and learners may make use of this software within a learning environment
to share and gain computer literacy skills

Keywords: Spreadsheet, CORBA, Components, Open Source Software, Education, Word
Processor, Presentation

Introduction
Handheld technology has recently
experienced tremendous growth and
advance, devices such as Cellular telephones
and PDAs (Personal Digital Assistant) are
now capable of providing sufficient
computing power to perform a variety of
tasks and support a number of software
applications. The ability to host user written
software on these handheld devices has lead
to their application in a variety of different
fields and environments; PDAs in particular
have been involved in extensive research
regarding their use in a variety of situations.
One such area of particular importance to
this project is the investigation regarding the
use of PDA devices within the educational
context.

Education is vital for the future of any
country s welfare. The economy of any
country relies heavily on the educational
status of the generations entering the
workplace. Several 3rd world countries
situated in Africa are already trailing far
behind other countries with respect to the
educational skills present in their workforce.
Owing to the fact that many of the
economies and workforces worldwide are
largely driven by technology, it is
imperative that adequate computing
education is incorporated into the
educational system in any country.
Unfortunately many of these 3rd world
countries simply have a lack of access to
such technology due largely to financial
constraints and regional boundaries; a large
factor for these high costs is the widespread
use of proprietary software and the
expensive hardware it requires.

One means of providing educational
institutions and people in general better
access to such technology is through the
incorporation of Open Source software
within education. The incorporation of Open
Source software within these poorer

countries, particularly within Africa, would
allow people and developers in these
countries to become part of a global Open
Source group and essentially could provide a
steep learning curve for learners in these
countries. Open Source software will not
only be beneficially through the learning
aspect but also through the financial aspect.
Open Source software is an ideal alternative
to proprietary software without the high
cost, Open Source software does not require
the high licensing costs involved with
proprietary software and is less dependant
on expensive skills and hardware [2].

The aim of the project is to investigate the
use of Open Source software together with
PDAs in the educational context. Owing to
the fact that Office suite productivity
software (such as Microsoft Office) is
extremely essential within a learning
environment, the specific goal of the project
is to provide Office suite functionality on a
PDA solely through the use of Open Source
software, this will provide institutions and
users with a cheaper, more accessible
alternative to proprietary applications such
as Microsoft Office.

Design

Framework

A component framework is required that
incorporates those components developed
for this project as well as have an ability to
incorporate future client and server
components.

The component framework should provide
solutions to the following requirements:

Maintain a client application that
installs and loads client-side
components.

Maintain a server application that
allows developers to install
components developed using the

Bonobo/ORBit component
architecture.

Dynamically searches and loads
server components.

Alerts the client application of all
available server components when
requested.

Fulfils the request of a user by
loading the selected application
component.

Abiword

The word processor component used in the
distributed environment will essentially
provide basic word processing functionality.
Owing to the fact that a PDA has limited
resources, certain advanced functionality
cannot be catered and is outside the scope of
this project. The following are the basic
features planned to be incorporated in the
word processor component:

File Operations: New file; Open file;
and Save file.

Edit Operations: Undo; Redo; Cut;
Copy; Paste; and Select All.

View Operations: Zoom
functionality.

Format Operations: Text Align;
Bold; Italic; Underline; and Fonts.

The distributed environment will essentially
consist of a single desktop machine running
as a server and multiple PDAs running as
clients. The clients and server are connected
via a network protocol such as Ethernet or
wireless. The following shows the process
when a user wishes to load an application:

The user runs the desired application
on the PDA; this will load a thin-
client application on the PDA.

The client PDA application will then
request a component corresponding

to the user s application from the
Server.

The Server machine activates the
component locally and delivers it to
the client.

The client then uses the component
which appears to be running locally
but is actually running on the server
and requires little resources from the
Client.

This distributed design is especially useful
for use with PDAs, the client application is
very small and few resources of the PDA are
used. Even though the application is small,
the use of a component technology such as
Bonobo and CORBA would provide great
functionality on these small PDAs without
much strain on the PDA as most of the
processing occurs on the server side. One of
the main challenges of the system however
is to achieve scalability whereby many users
on handhelds or PDAs can use the system
simultaneously.

MagicPoint

MagicPoint is an application that allows
users view learning content using Linux
machines. It is a lightweight, portable
presentation viewer that allows slideshows
to be viewed on any Linux machine. These
slideshows may be written in any text editor
using simple directives and tags for creating
slides. It offers image display in various
formats, background images and template
suppot. It also has the ability to export
slideshow to an html format which can be
viewed in most popular browsers.

To use MagicPoint for use on the Linux
PDA, it would have to be ported and cross-
compiled for the ARM architecture. Once
implemented the PDA would allow native
creation of MagicPoint presentations using
VI. These presentations may be viewed on

the Familiar Linux PDA without the need
for additional libraries.

YaSP

YaSP is a distributed application i.e. there is
part of the application is a client and the
other part is a server. The server is a
CORBA component and the client calls the
services implemented by the server. Figure 1
below shows the architecture overview of
YaSP. The client calls methods or services
provided by the server and the server
performs the service and sends the response
back to the client. All communication is
done via the CORBA ORB.

Figure 1 Architecture Overview

Only file operations were implemented in
this phase. Figure 2 depicts the use case
scenarios of YaSP.

Figure 2 YaSP Use Case Diagram

Implementation

Framework

This section will discuss the implementation
of a component framework that will
incorporate those components as well as
have to ability to incorporate future client -
server components and applications.

The following diagram illustrates the
relationship between the client and server
application of the framework:

Figure 3 Framework Client and Server Relationship

When the server starts, it traverses the sub-
directories searching for available server
components. Server components are
identified by a component descriptor within
its sub-directory. The descriptor file is a text
file containing the name of the application
component, the name of the object reference
filename, the server component executable
filename and the client component
executable filename. The name of the
descriptor file is component.descriptor .
An example of a component descriptor file:

Abiword

Abiword.ref

AbiControlServer

AbiControlClient

When requested, the server sends the client-
side details of the components to the client
PDA.

Figure 4 below is a screenshot showing the
client display after a list of components has
been requested.

Figure 4 A connection has been made

The user may select a component to load by
first selecting a component from the list and
then clicking the load button.

The significance of the framework lies in the
storage requirement of the client

components. The AbiWord client
component uses 0.5 MB of storage on the
PDA, while the entire AbiWord source code
amounts to approximately 30 MB.

AbiWord

The implementation of the word processor
component was achieved using a word
processor application known as AbiWord.
Owing to the fact that distributed computing
will be used to provide the word processing
functionality through component
technologies, AbiWord is an ideal word
processor to use as it already provides
support for the Bonobo/CORBA component
technologies.

Bonobo and CORBA are component
technologies which allow different
applications running on different
architectures and operating systems to
communicate via components. Components
can be thought of as individual pieces of
software and are specified through strict IDL
(Interface Definition Langauge) interfaces;
these interfaces are used to allow absolute
communicate between client and server
irrespective of programming language used
[1].

The AbiWord word processor provides a
Bonobo component which can be used as a
control within a user interface; this
essentially means an AbiWord Bonobo
control can be obtained remotely from a
server and embedded within a graphical user
interface on the client side, the word
processing functionality of the control can
then be used by the client via the user
interface.

When a client user wants to load the
AbiWord application, the user will start the
framework and select the AbiWord
component from the list. The client
application will then request the activation
of the AbiWord component from the Server.
The Server will then activate the AbiWord

component locally using the Bonobo
activation framework as follows:

Bonobo_Control AbiControl =
bonobo_get_object
("OAFIID:GNOME_AbiWord_Control",
bonobo/Control", &ev);

Once the server has activated the
component, the server obtains the CORBA
ID of the object and writes the ID to a file
on disk. The file is then sent to the client
whereby the client application uses the
CORBA ID from the file to obtain a
reference to the AbiWord component
residing on the server. The component is
then embedded inside a graphical user
interface on the client side and this enable
the user to manipulate documents via
communications with the AbiWord Bonobo
component.

Figure 5 The Abiword Component Interface

MagicPoint

MagicPoint was the only application that
successfully cross-compiled to the Linux
PDA.

The other packages were not successfully
compiled for the following reasons:

Missing dependency libraries

Missing compilation tools

Incompatible compilation tools.

Compiling MagicPoint on the PDA required
editing the source makefiles. The makefiles
compiled the source code using gcc. One of
the switches used during compilation were
-m32 -c -O2 -march=i586 -mcpu=i686 .

These switches did not allow a successful
compilation of MagicPoint within the
Scratchbox and had to be removed from the
compilation process.

The MagicPoint application makes use of
the entire graphical area during a slideshow.
The slide show may be controlled using the
arrow keys of the PDA as well as by making
use of the stylus.

Slideshows for MagicPoint may be created
directly on the PDA using the native VI or
may be created on a desktop machine with a
standard text editor and copied over to the
PDA.

Having successfully compiled MagicPoint
for the PDA gives the educator a chance to
provide course content, in the form of a
slideshow to the learners.

YaSP

Initially we attempted to implement Yet
another Spreadsheet Program (YaSP) using
Openoffice.org office suite. This failed for a
number of reasons but the main one was that
UNO Runtime Environment required
Openoffice.org and Java to be installed on
the machine.

Gnumeric was used as the CORBA server
that was to be called by our client. The latest
version of Gnumeric was 1.5 however we
used version 1.2.13. This earlier version of
Gnumeric was used because it was the latest
version of Gnumeric that still had Bonobo
support. Since this version Bonobo support
in Gnumeric has been discontinued.

Orbit and Bonobo were used as the CORBA
ORB implementation. Bonobo has an object
activation framework (OAF). Components
register themselves in OAF by installing an
XML description file (.serve) with their
location information (i.e., where to find the
executable or shared library), and arbitrary
other information. The framework works
very well for clients on the same machine as
the server however we were unable to query
for servers using remote clients.

In order to request a service from a server
object the ORB has to locate a server object
at run-time and the client application
requires a reference to it. This reference is
called an Interoperable Object Reference
(IOR). An IOR is a text string encoded in a
specific way, such that a client ORB can
decode the IOR to locate the remote server
object. It contains enough information to
allow:

A request to be directed to the
correct server (host, port number)

An object to be located or created
(class name, instance data)

This file is transferred from the machine
hosting Gnumeric to the PDA using trivial
transfer protocol (TFTP) program. This
program was also used to transfer other files.

When the client is started, i.e. the YaSP
program on the PDA it executes the
command:

xhost +[nameOfServerMachine]

This command is needed in order to allow
the control to be displayed on the PDA.
Otherwise there will be authentication error
since the server will not be allowed to use
the PDA display.

Because OAF could not activate remote
components we created our own server. The
server activates Gnumeric component using
the OAF and creates a file containing its
IOR string. The TFTP program then copied

the IOR string file from the server machine
to the PDA. Normally a Bonobo component
is activated using the code:

Control = bonobo_get_object
("OAFIID:GNOME_Control","Bonobo/Con
trol", &ev);

The string "OAFIID:GNOME_Control" is
identification string of the

object. However for Gnumeric this does
not work. We thus used the following code
in the server to activate Gnumeric:

control = bonobo_get_object("file:/
test.gnm","IDL:Bonobo/Control:1.0",
&ev);

This queries the OAF for a component that
can handle the given file. When the
component was obtained it was exported to
file as an IOR-string. TFTP is then used to
copy the IOR file to the PDA. The client on
the PDA then creates a Gnumeric object
reference using the IOR. The object
reference is then used to get an interface that
has been implemented by Gnumeric. The
interface is used to call all the functions of
Gnumeric from the client on the PDA.
Figure 6 below shows the screenshot of
YaSP.

Figure 6 Screenshot of YaSP

Unfortunately only persistence and
zoomable interfaces are implemented in
Gnumeric and thus the only functionality
besides viewing that could be implemented
was zooming in and out.

Conclusion

The project resulted in a client-server
application that allows users to remotely
load components over a network. The
framework application created allows
developers to add their applications to the
framework providing PDA users with the
functionality provided. The applications
designed for the PDA may be component
based or standalone applications.

Although the Initial aim to develop a stand-
alone application to run on the PDA was
abandoned, the distributed environment
which followed for the AbiWord component
provided the use of basic word processing
functionality on a PDA.

Gnumeric is ineffective as a component.
None of the interfaces that are required to
implement features of a usable spreadsheet
are not implemented. Due to this limitation
YaSP cannot be implemented using
Gnumeric as the server spreadsheet.

However the use of such Open Source
software is a stepping stone in providing less
fortunate users, particularly learners with
productivity software other than proprietary
software. There is great potential in both the
use of Open Source software and handheld
devices in within the educational context;
this was definitely evident throughout the
duration of the project.

Much was learnt from using the Bonobo and
CORBA component technologies to enable
communication between the clients and the
server, the distributed environment was ideal
for the PDAs due to the limited resources
available on the PDA; there is also great
potential for the use of a distributed

environment with component technologies
as this enables older, cheaper hardware to
provide new functionality though
components which would previously have
been impossible.

MagicPoint resulted in a contribution to the
overall office suite in the form of a portable
presentation application. The MagicPoint
port is not a distributed application and
therfore files may not be stored directly onto
a server for backup purposes while the
resulting binary is slightly larger than the
AbiWord and Gnumeric client components.
However, users may make presentations and
view them without the need of a component
server. This makes the application more
portable while network connectivity is not
required to load presentations.

As a future works, an investigation
regarding the use of distributed components
using the UNO technology provided by the
OpenOffice.org office suite could be
undertaken. This investigation would be
interesting and possibly provide further
functionality than the AbiWord and
Gnumeric components.

References

1. CORBA FAQ. The Object Management
Group. Available at
http://www.omg.org/gettingstarted/corba
faq.htm

2. Victor van Reijswoud, Corrado Topi,
Alternative routes in the digital world

Open Source software in Africa. Open
Source research community. Available
at
http://opensource.mit.edu/papers/reijswo
udtopi.pdf

3. O'Reilly T. (1999) Lessons from open-
source software development,
Communications of the ACM, 42(4), 32-
37.

4. Feller, J. & Fitzgerald, B. (2000) A
framework analysis of the open source
software development paradigm,
Proceedings of the 21st International
Conference on Information Systems,
Brisbane, Australia. ACM Press. 58-69.

5. Guy Antony Halse and Alfredo Terzoli.
Open Source in South African Schools:
Two Case Studies. Centre of Excellence
in Distributed Multimedia, Rhodes
University. Available:
http://eprints.ru.ac.za/100/01/HALSE-
Highway-Africa-2002.pdf

Date
accessed: 01 October 2005

6. SchoolNet South Africa.
http://www.school.za/

http://www.omg.org/gettingstarted/corba
http://opensource.mit.edu/papers/reijswo
http://eprints.ru.ac.za/100/01/HALSE-
Highway-Africa-2002.pdf
http://www.school.za/

