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Figure 1:  Benchmarker, toolbar (centre), perceptual error (left) and pixel error (right)    

ABSTRACT  
We present a new means of comparing visibility 
algorithms by means of the implementation of a 
standard reference solution against which visibility 
algorithms may be tested.  This will allow new and 
existing visibility algorithms to be objectively tested.  

An accurate reference solution was developed that 
employs an optimised ray casting algorithm to 
calculate visibility.  Due to the excessive 
computational overhead in this calculations, a parallel 
implementation reduces the amount of time needed to 
produce the reference solution.  

The benchmarker component determines the 
accuracy of the algorithm undergoing testing based 
on a number of image error metrics which take into 
account the quality of the final, rendered image.  

This paper discusses the components that make up 
the VizMark system and how each is tested.  

Keywords:  visibility, ray casting, parallel 
computing, error metrics, rendered image quality  

1. INTRODUCTION  
The VizMark system aims to provide a platform upon 
which authors of visibility algorithms can test ideas 
in a standardised environment.  It is hoped that this 
will provide authors of such algorithms with a 
method for discarding unpromising ideas early, or 
refining promising ones.  This should streamline the 
development of algorithms leading to faster and more 
accurate algorithms.  

The VizMark system is unique in that it not only 
measures the accuracy of the algorithm being tested, 
in terms of the number of correctly or incorrectly 
classified polygons, but also on the basis of the 
quality of the final rendered image.  The rationale 
behind this is that an algorithm may classify some 
visible polygons in a scene as being invisible.  
However, the overall image quality may still remain 
high.  This means that an inaccurate solution may 
still be written so as to produce a high quality 
rendered result.  

The aim of the VizMark project is to develop a 
highly accurate visibility solution for a 3D scene 
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which is then compared against a test algorithm.  The 
reference solution will be time consuming to run for 
large scenes and will need to be parallelised to reduce 
this time.   VizMark also aims to provide a standard 
set of tests that will provide the author of a test 
implementation with an array of diverse and detailed 
information regarding how inaccurate their algorithm 
is, and where it is inaccurate.  

2. IMPLEMENTATION  

 

Test Data  

The test data for the following sections will be four 
scenes, referred to as Rocket, Forest, Hill Top and 
Large Forest.  Table 1 shows a rendered preview of 
each of the scenes along with the corresponding 
polygon count.  

Rocket Forest 

  

11,396 243,660 
Hill Top Large Forest 

  

1,145,662 4,003,262 
Table 1:  Test data  

The Rocket and Hill Top scenes have high levels of 
occlusion in the scene because many of the 
constituent polygons are contained within some 
structure.  For instance, the hull of the rocket model 
occludes any internal features, and the buildings in 
the Hill Top scene contain many unseen, smaller 
features.  The Forest scenes, however, have a lower 
level of occlusion as there are more possible paths 
through the small polygons that make up the leaves.  
Much of the scene is composed of densely packed 
polygons, visible from most points of view.  

2.1. REFERENCE SOLUTION  
The final solution consists of a complete program 
that takes parameters such as subdivision granularity, 
grid size and a model file then generates a potential 

visibility set (PVS) that contains visibility 
information for each region in the scene.  

The reference solution is broken down into three core 
components, region setup, polygon classification and 
traversal.  

 

Scene Partitioning  

This partitions the scene along each axis, according 
to three parameters.  The subsequent traversal stage 
then computes visibility from each of these regions.  

 

Polygon Classification to Regions  

The naïve approach for classifying the polygons in a 
scene would be for every region to intersect every 
polygon in the scene, with the bounding box of the 
region.  This technique slows down substantially as 
the number of regions and/or the number of polygons 
in the scene increases.  

For the partitioning algorithm, the structure in scene 
files is exploited to gain a substantial performance 
increase without the need for developing any extra 
techniques.  This is done by comparing the object 
axis-aligned bounding boxes (AABB) in the scene 
against the AABB of each region.  These AABB-
overlap tests reduce the search space and increase the 
performance of the partitioning process.  

Partitioning of forest scene 
Subdivisions Without AABB 

tests 
With AABB 
tests 

10x10x10 55.33 sec 1.63 sec 
9x9x9 44.42 sec 0.97 sec 
8x8x8 24.77 sec 0.57 sec 
7x7x7 16.85 sec 0.51 sec 

Table 2:  Polygon classification speed-up  

 

Region Traversal  

The traversal is the core component of the solution 
and makes use of data generated by region 
partitioning and calculates PVS data for the scene.  

The core of the algorithm is based around ray casting.  
Visibility is determined by casting a number of rays 
between two regions that are being tested.  Visibility 
is determined between a pair of faces on two regions, 
a vector is then calculated between points on each 
respective region face, using a jittered grid approach, 
illustrated below.  A jittered approach was necessary 
to provide better coverage of the space between the 
faces.  In the figures below, jittering is explained the 
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difference between jittered and non-jittered ray firing 
is demonstrated.   

  

Figure 2:  A region face.  
A non-jittered (left) and 
jittered (right) grid 
comparison. 

Figure 3:  Rays being 
cast between a non-
jittered (above) and 
jittered (below) grid. 

 

2.2. BENCHMARKER  
The benchmarker makes use of a number of 
perceptual quality metrics that measure impact that 
the culled polygons will have on the final, rendered 
image.  

Perceptual quality metrics are used to determine the 
quality of an image, when compared to a reference 
image.  In general, there are three types of metrics 
which can be used to determine image quality:  

1. Spatial domain metrics compare images at the 
pixel level, giving information about the 
structural similarity between images. These 
metrics generally focus on the difference 
between pixel colour values in each image.  

2. Spatial-Frequency domain metrics give 
information about the changes of image intensity 
and contrast by examining the frequency of 
colour values across the image.  

3. Human Vision System (HVS) metrics can be a 
combination of the above two and are designed 
to determine the quality of an image based on 
how it would be perceived by a human observer. 
These techniques rely on models of the human 
visual system and are used to determine the 
amount of realism an image portrays.  

 

Choice of Error Metrics  

It is important to design a metric, or set of metrics 
that provides a rich and diverse range or information 
regarding the errors contained in an image.  In 
general, there is no, single metric that can accurately 
measure all errors in a satisfactory manner.  It is 
therefore necessary to develop a set of metrics that 
together, comprise a more complete metric.  

The simplest metric is the pixel-level error metric, 
which measures the differences between two images, 
with correct polygons drawn in green and incorrect 
polygons drawn in red.  The principle behind this 
metric is that, while polygons in incorrectly classified 
regions are drawn in red, these polygons may not all 
be visible from a given point of view.  Conversely, 
even if a polygon is visible, it may not be completely 
visible from a given point of view.  The viewer may, 
for instance, be facing away from the region.  While 
the pixel-level error merely counts the number of red 
pixels on the screen, it provides information 
regarding the extent to which incorrectly classified 
polygons are actually visible.  

The second metric computed by the bench marker is 
the perceptual error metric.  This metric is computed 
with the model rendered in its original colours or 
with any textures that have been associated with it.  
The perceptual metric is designed to measure the 
amount of error that can be seen in the image, having 
taken into account the colouring of objects in the 
scene, as well as the effects of lighting on those 
objects.  The perceptual metric is composed of two 
metrics.  The L2 mean squared error [1,3,4,5,6], a 
spatial domain metric, computes structural 
differences between the two images by calculating 
the sum of the squared differences between the pixel 
colour values in each image.  This reports on any, 
differences between the images, on a global scale.  
The second metric, differences near areas of high 
transition (DNAHT) [1], is based on the fact that the 
human visual system is sensitive to sharp changes in 
contrast or colour.  This metric determines which 
areas in the reference image have high transitions 
between pixel values, masking off these areas (see 
Figure 4 below).  Based on the masked areas, the 
metric finds discontinuities in the test image.  
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Figure 4:  Original image (above) showing transition 
lines.  Blue, lines (below) mask off areas of high 

transition.  

These metrics, when combined, provide a wide 
spectrum of information regarding the difference 
between the two images.  

The benchmarker accepts as input two files 
containing the PVS data of the standard solution and 
the test algorithm.  The benchmarker is comprised of 
three main components:  

1. The raw pixel-level error metrics, which 
compare the two images and provide information 
about the number of incorrect pixels and whether 
the pixels are clustered together in groups called 
connected regions [2].  The metrics for this 
component are calculated based on the fact that 
all correctly classified polygons are coloured in 
green, and all incorrectly classified polygons are 
coloured in red.  This allows the bench marker to 
determine to what extent incorrect polygons are 
indeed visible from each point of view.  

2. The perceptual error metrics compare the images 
produced by the two algorithms when rendered 
in their original colours. The perceptual error 
metrics used in the benchmarker determine both  
the structural error in the final images as well as 

a measure of how the human visual system 
would interpret the error in the image.  

3. The final output, a fly-through of the scene, is 
used to generate a report of the error data.  This 
takes the form of a graph representing the error 
at each frame of the fly-through and a summary 
of the error statistics recorded over the entire fly-
through.  

The figure below illustrates typical output from the 
benchmarker.  

 

Figure 5:  All three metrics plotted on same set of 
axes  

3. RESULTS  
3.1. REFERENCE SOLUTION  
After theoretical analysis of the algorithm, the 
complexity was calculated to be O(N2G4HP + N3) 
where N is the number of regions, G is the grid size, 
H is the average number of regions that a ray passes 
through and P the average amount of polygons per 
region.  

The table below illustrates how the number of 
regions into which the scene is divided affects the 
number of regions removed from the visibility 
calculations.  For each region that is considered in the 
traversal algorithm, the total cost of the computation 
is dependent on the number of other regions that need 
to be considered.  The higher the subdivision, the 
more costly the overall computation however, 
unnecessary calculations are avoided by not 
considering invisible regions. 
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Rocket Forest Hilltop 

2x2x2 0.00% 0.00% 0.00% 

3x3x3 14.81%

 

7.41% 7.41% 

4x4x4 25.00%

 

10.94% 20.31%

 

5x5x5 32.80%

 

17.60% 32.00%

 

6x6x6 39.81%

 

23.15% 39.35%

 
Su

bd
iv
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n 

10x10x10 84.90%

 

60.20% 75.20%

 

Table 3:  Correlation between subdivision size and 
the mean percentage of regions culled.  

The two parameters that affect the performance of the 
traversal algorithm are region count and grid size.  
The traversal stage of the program occupies a large 
proportion of the total execution time of the program 
and is most affected by the changes in these 
variables.  

The combination of the number of regions and the 
grid size affect the overall accuracy of the 
implementation or sampling density.  The sampling 
density is related to the distance between the grid 
points on the faces of the regions.  Even if the grid 
size is small, the grid points may be closely spaced 
because the region sizes are small.  As the number of 
regions in the scene increases, the area of each of the 
faces decreases and so the grid points on the face are 
placed closer together.  

The timing data for a fixed grid size (as with the 
previous tests) and variable region partitions, ranging 
from 125 regions to 3375 regions is plotted in Graph 
1.  The second graph shows timing data for a variable 
grid sizes, ranging from 3 to 13.  The timing values 
are taken for the fully parallel implementation, 
running on all nodes.  
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Graph 1:  Execution time with varying region counts  
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Graph 2:  Execution time with varying grid sizes  

The execution time increases in a non-linear fashion, 
as either of these parameters is increased.  Due to the 
nature of the traversal algorithm, the amount of 
computation rises rapidly, as there is an exponential 
relation between computation cost and the two 
parameters.  

Although it may appear as if these two parameters 
cause a compound loss in performance, it is 
important to note that they work together toward the 
accuracy of the solution.  Once these parameters have 
been set though, the system will scale in a linear 
fashion as the number of nodes in the cluster is 
increased.  

The tables below compare the overall execution time 
of the visibility preprocessor for both the serial and 
parallel implementations.  

The number of polygons in each test scene has been 
chosen to properly represent an increasing amount of 
data for the preprocessor to compute.  

Scene Execution time (seconds) 
Rocket 22.0 
Forest 264.00 
Hill Top 2917.00 
Large Forest 11460.00 
Table 4:  Total execution time for serial program  

Parallel Performance 
Scene 

time (seconds) speedup 
Rocket 5.29 4.16 
Forest 63.48 4.16 
Hill Top 755.73 3.86 
Large Forest 2923.16 3.92 
Table 5:  Total execution time and speedup for 

parallel implementation  
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Overall Speedup  

Given linear scalability, the speedup in each test 
scene for an ideal parallel implementation would 
be five times that of the serial version (for five 
nodes running).  In this implementation, the 
speedup ranges from 4.16 for the smallest scene, 
to 3.92 for the largest scene.  The speedup is 
therefore not proportional to the number of nodes 
running on the cluster and indicates a loss of 
efficiency of the program due to parallelisation.  

 

Test Scenes  

In the ideal case, while considering efficiency 
loss, the speedup should be the same for all 
scenes, which would indicate that the system is 
unaffected by the size of the input data.  There is 
only a small effect on the overall speedup as a 
result of the scene size.  

While the efficiency of the system is affected by the 
size of the input data set, this effect is only marginal 
when considering how the input size increases for 
each test scene and would suggest that overall 
scalability of the system is good for scenes of 
appreciable size.  

3.2. BENCHMARKER   

Benchmarker results were generated using an 
approximation of an aggressive visibility algorithm 
which removes more regions than an exact solution.  
This test PVS consisted of a PVS generated by the 
reference solution, with a pre-defined percentage of 
regions removed.    

The results showed that the metrics were strongly 
correlated where large numbers of regions were 
incorrectly classified as invisible from certain point 
of view. This is due to the fact that each region that is 
not drawn results in a potentially significant amount 
of polygons missing from the image. Scenes in which 
the background colour showed through, such as the 
forest scene yielded higher values for the perceptual 
metrics than for the pixel metrics, as the sharp 
changes between colouring of the scene and the 
background accentuated the differences in the image. 
Scenes with enclosed areas such as the rocket yielded 
higher pixel error values, as the perceptual metrics 
are not sensitive to small changes in colour. In cases 
where large numbers of polygons were missing, the 
perceptual metrics did return higher values.  

  

Figure 6:  Similarities between metrics.  

The images above show the error values for the forest 
scene. Due to the fact that one of the leaves, which is 
drawn in red, is missing, both the incorrect pixel 
count and the perceptual metrics found large errors 
for this frame.  

The images below show the maximum error for the 
metrics using a different fly-through and highlight the 
differences between the metrics. The pixel error 
metric is sensitive to errors close to the viewpoint, 
due to the fact that it counts the number of red pixels. 
However, the perceptual error is sensitive to errors 
near areas of high transition or large structural 
differences. In reality the leaf in the pixel error image 
would not be seen, and this would not have a large 
impact on visual quality. However, the missing 
polygons of the tree shown highlighted by the 
perceptual metric would have a large impact on 
visual quality.  
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Table 6:  Differences between metrics  

4. CONCLUSIONS  
The reference solution produces accurate results, 
even with modest values of the grid size and region 
count parameters.  With high enough values of these 
parameters, this implementation produces near-exact 
visibility.  

Visibility calculations have been shown to be 
computationally intensive for scenes of appreciable 
size and VizMark demonstrates that running such 
calculations in a distributed environment can 
significantly reduce the amount of time required.  
The system design shows good scalability as the 
problem size and number of nodes increases.  
Consistency checks of the system determined that the 
parallel program behaved in a deterministic way, 
thereby producing the same output for constant 
parameter settings yet varying node counts.  

5. FUTURE WORK  

 

Implementation of a region to polygon visibility 
algorithm  

The solution would greatly benefit from a change of 
the algorithm from a region to region to a region to 

polygon visibility solution, where only the relevant 
polygons that are visible in each region are recorded.  

 
Ensure that the algorithm is exact, and that this 
can be verified.  

The reference solution provides a means against 
which other algorithms are checked.  It would greatly 
benefit from a traversal algorithm that could 
guarantee exact visibility for a given scene.  

 

Use of rational arithmetic  

The accuracy of the solution would greatly benefit if 
a rational arithmetic is used.  Numerical inaccuracies 
would be avoided entirely and this would be of most 
benefit for the many intersection tests.  This would 
however have a drastic effect on the speed of the 
program and so the traversal algorithm would have to 
undergo significant optimisation before this approach 
is used.  

 

Parallel Implementation  

Scalability of the parallel preprocessor has been 
tested here with only a small cluster size.  The 
effectiveness of the strategies devised here ought to 
undergo testing with larger node counts so as to 
properly test this and to identify the susceptibility to 
existing bottlenecks.  

 

Benchmarker  

Polygon cutting refers to the technique of dividing a 
single polygon into two or more polygons which 
comprise the original. Polygon cutting is particularly 
useful in from-region visibility as it prevents 
polygons that belong to more than one region from 
being coloured incorrectly. At present, the 
benchmarker draws incorrect regions after drawing 
the polygons in each region s visibility list. This is 
done to ensure that under-classified regions 
(conservative algorithms) are drawn in red. The idea 
behind polygon cutting in the benchmarker case is 
that polygons which belong to more than one region 
are divided along the boundary of the two regions. 
This ensures that only polygons which belong to a 
certain region are drawn if that region is classified as 
visible.  
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