
Technical Report. Department of Computer Science. University of Cape Town. 2005 1

VizMark: Benchmarking Visibility Preprocessing

Piotr Dubla, Tai Lucas, Sebastian Murray-Roberts
{pdubla, tlucas, smurray-}@cs.uct.ac.za

Figure 1: Benchmarker, toolbar (centre), perceptual error (left) and pixel error (right)

ABSTRACT
We present a new means of comparing visibility
algorithms by means of the implementation of a
standard reference solution against which visibility
algorithms may be tested. This will allow new and
existing visibility algorithms to be objectively tested.

An accurate reference solution was developed that
employs an optimised ray casting algorithm to
calculate visibility. Due to the excessive
computational overhead in this calculations, a parallel
implementation reduces the amount of time needed to
produce the reference solution.

The benchmarker component determines the
accuracy of the algorithm undergoing testing based
on a number of image error metrics which take into
account the quality of the final, rendered image.

This paper discusses the components that make up
the VizMark system and how each is tested.

Keywords: visibility, ray casting, parallel
computing, error metrics, rendered image quality

1. INTRODUCTION
The VizMark system aims to provide a platform upon
which authors of visibility algorithms can test ideas
in a standardised environment. It is hoped that this
will provide authors of such algorithms with a
method for discarding unpromising ideas early, or
refining promising ones. This should streamline the
development of algorithms leading to faster and more
accurate algorithms.

The VizMark system is unique in that it not only
measures the accuracy of the algorithm being tested,
in terms of the number of correctly or incorrectly
classified polygons, but also on the basis of the
quality of the final rendered image. The rationale
behind this is that an algorithm may classify some
visible polygons in a scene as being invisible.
However, the overall image quality may still remain
high. This means that an inaccurate solution may
still be written so as to produce a high quality
rendered result.

The aim of the VizMark project is to develop a
highly accurate visibility solution for a 3D scene

Technical Report. Department of Computer Science. University of Cape Town. 2005 2

which is then compared against a test algorithm. The
reference solution will be time consuming to run for
large scenes and will need to be parallelised to reduce
this time. VizMark also aims to provide a standard
set of tests that will provide the author of a test
implementation with an array of diverse and detailed
information regarding how inaccurate their algorithm
is, and where it is inaccurate.

2. IMPLEMENTATION

Test Data

The test data for the following sections will be four
scenes, referred to as Rocket, Forest, Hill Top and
Large Forest. Table 1 shows a rendered preview of
each of the scenes along with the corresponding
polygon count.

Rocket Forest

11,396 243,660
Hill Top Large Forest

1,145,662 4,003,262
Table 1: Test data

The Rocket and Hill Top scenes have high levels of
occlusion in the scene because many of the
constituent polygons are contained within some
structure. For instance, the hull of the rocket model
occludes any internal features, and the buildings in
the Hill Top scene contain many unseen, smaller
features. The Forest scenes, however, have a lower
level of occlusion as there are more possible paths
through the small polygons that make up the leaves.
Much of the scene is composed of densely packed
polygons, visible from most points of view.

2.1. REFERENCE SOLUTION
The final solution consists of a complete program
that takes parameters such as subdivision granularity,
grid size and a model file then generates a potential

visibility set (PVS) that contains visibility
information for each region in the scene.

The reference solution is broken down into three core
components, region setup, polygon classification and
traversal.

Scene Partitioning

This partitions the scene along each axis, according
to three parameters. The subsequent traversal stage
then computes visibility from each of these regions.

Polygon Classification to Regions

The naïve approach for classifying the polygons in a
scene would be for every region to intersect every
polygon in the scene, with the bounding box of the
region. This technique slows down substantially as
the number of regions and/or the number of polygons
in the scene increases.

For the partitioning algorithm, the structure in scene
files is exploited to gain a substantial performance
increase without the need for developing any extra
techniques. This is done by comparing the object
axis-aligned bounding boxes (AABB) in the scene
against the AABB of each region. These AABB-
overlap tests reduce the search space and increase the
performance of the partitioning process.

Partitioning of forest scene
Subdivisions Without AABB

tests
With AABB
tests

10x10x10 55.33 sec 1.63 sec
9x9x9 44.42 sec 0.97 sec
8x8x8 24.77 sec 0.57 sec
7x7x7 16.85 sec 0.51 sec

Table 2: Polygon classification speed-up

Region Traversal

The traversal is the core component of the solution
and makes use of data generated by region
partitioning and calculates PVS data for the scene.

The core of the algorithm is based around ray casting.
Visibility is determined by casting a number of rays
between two regions that are being tested. Visibility
is determined between a pair of faces on two regions,
a vector is then calculated between points on each
respective region face, using a jittered grid approach,
illustrated below. A jittered approach was necessary
to provide better coverage of the space between the
faces. In the figures below, jittering is explained the

Technical Report. Department of Computer Science. University of Cape Town. 2005 3

difference between jittered and non-jittered ray firing
is demonstrated.

Figure 2: A region face.
A non-jittered (left) and
jittered (right) grid
comparison.

Figure 3: Rays being
cast between a non-
jittered (above) and
jittered (below) grid.

2.2. BENCHMARKER
The benchmarker makes use of a number of
perceptual quality metrics that measure impact that
the culled polygons will have on the final, rendered
image.

Perceptual quality metrics are used to determine the
quality of an image, when compared to a reference
image. In general, there are three types of metrics
which can be used to determine image quality:

1. Spatial domain metrics compare images at the
pixel level, giving information about the
structural similarity between images. These
metrics generally focus on the difference
between pixel colour values in each image.

2. Spatial-Frequency domain metrics give
information about the changes of image intensity
and contrast by examining the frequency of
colour values across the image.

3. Human Vision System (HVS) metrics can be a
combination of the above two and are designed
to determine the quality of an image based on
how it would be perceived by a human observer.
These techniques rely on models of the human
visual system and are used to determine the
amount of realism an image portrays.

Choice of Error Metrics

It is important to design a metric, or set of metrics
that provides a rich and diverse range or information
regarding the errors contained in an image. In
general, there is no, single metric that can accurately
measure all errors in a satisfactory manner. It is
therefore necessary to develop a set of metrics that
together, comprise a more complete metric.

The simplest metric is the pixel-level error metric,
which measures the differences between two images,
with correct polygons drawn in green and incorrect
polygons drawn in red. The principle behind this
metric is that, while polygons in incorrectly classified
regions are drawn in red, these polygons may not all
be visible from a given point of view. Conversely,
even if a polygon is visible, it may not be completely
visible from a given point of view. The viewer may,
for instance, be facing away from the region. While
the pixel-level error merely counts the number of red
pixels on the screen, it provides information
regarding the extent to which incorrectly classified
polygons are actually visible.

The second metric computed by the bench marker is
the perceptual error metric. This metric is computed
with the model rendered in its original colours or
with any textures that have been associated with it.
The perceptual metric is designed to measure the
amount of error that can be seen in the image, having
taken into account the colouring of objects in the
scene, as well as the effects of lighting on those
objects. The perceptual metric is composed of two
metrics. The L2 mean squared error [1,3,4,5,6], a
spatial domain metric, computes structural
differences between the two images by calculating
the sum of the squared differences between the pixel
colour values in each image. This reports on any,
differences between the images, on a global scale.
The second metric, differences near areas of high
transition (DNAHT) [1], is based on the fact that the
human visual system is sensitive to sharp changes in
contrast or colour. This metric determines which
areas in the reference image have high transitions
between pixel values, masking off these areas (see
Figure 4 below). Based on the masked areas, the
metric finds discontinuities in the test image.

Technical Report. Department of Computer Science. University of Cape Town. 2005 4

Figure 4: Original image (above) showing transition
lines. Blue, lines (below) mask off areas of high

transition.

These metrics, when combined, provide a wide
spectrum of information regarding the difference
between the two images.

The benchmarker accepts as input two files
containing the PVS data of the standard solution and
the test algorithm. The benchmarker is comprised of
three main components:

1. The raw pixel-level error metrics, which
compare the two images and provide information
about the number of incorrect pixels and whether
the pixels are clustered together in groups called
connected regions [2]. The metrics for this
component are calculated based on the fact that
all correctly classified polygons are coloured in
green, and all incorrectly classified polygons are
coloured in red. This allows the bench marker to
determine to what extent incorrect polygons are
indeed visible from each point of view.

2. The perceptual error metrics compare the images
produced by the two algorithms when rendered
in their original colours. The perceptual error
metrics used in the benchmarker determine both
the structural error in the final images as well as

a measure of how the human visual system
would interpret the error in the image.

3. The final output, a fly-through of the scene, is
used to generate a report of the error data. This
takes the form of a graph representing the error
at each frame of the fly-through and a summary
of the error statistics recorded over the entire fly-
through.

The figure below illustrates typical output from the
benchmarker.

Figure 5: All three metrics plotted on same set of
axes

3. RESULTS
3.1. REFERENCE SOLUTION
After theoretical analysis of the algorithm, the
complexity was calculated to be O(N2G4HP + N3)
where N is the number of regions, G is the grid size,
H is the average number of regions that a ray passes
through and P the average amount of polygons per
region.

The table below illustrates how the number of
regions into which the scene is divided affects the
number of regions removed from the visibility
calculations. For each region that is considered in the
traversal algorithm, the total cost of the computation
is dependent on the number of other regions that need
to be considered. The higher the subdivision, the
more costly the overall computation however,
unnecessary calculations are avoided by not
considering invisible regions.

Technical Report. Department of Computer Science. University of Cape Town. 2005 5

Rocket Forest Hilltop

2x2x2 0.00% 0.00% 0.00%

3x3x3 14.81%

7.41% 7.41%

4x4x4 25.00%

10.94% 20.31%

5x5x5 32.80%

17.60% 32.00%

6x6x6 39.81%

23.15% 39.35%

Su

bd
iv

is
io

n

10x10x10 84.90%

60.20% 75.20%

Table 3: Correlation between subdivision size and
the mean percentage of regions culled.

The two parameters that affect the performance of the
traversal algorithm are region count and grid size.
The traversal stage of the program occupies a large
proportion of the total execution time of the program
and is most affected by the changes in these
variables.

The combination of the number of regions and the
grid size affect the overall accuracy of the
implementation or sampling density. The sampling
density is related to the distance between the grid
points on the faces of the regions. Even if the grid
size is small, the grid points may be closely spaced
because the region sizes are small. As the number of
regions in the scene increases, the area of each of the
faces decreases and so the grid points on the face are
placed closer together.

The timing data for a fixed grid size (as with the
previous tests) and variable region partitions, ranging
from 125 regions to 3375 regions is plotted in Graph
1. The second graph shows timing data for a variable
grid sizes, ranging from 3 to 13. The timing values
are taken for the fully parallel implementation,
running on all nodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 125 625 1125 1625 2125 2625 3125

tim
e

(s
ec

on
ds

)

number of regions

Overall execution time versus region count

Graph 1: Execution time with varying region counts

 0

 200

 400

 600

 800

 1000

 1200

 1400

 3 4 5 6 7 8 9 10 11 12 13

tim
e

(s
ec

on
ds

)

grid size

Overall execution time versus grid size

Graph 2: Execution time with varying grid sizes

The execution time increases in a non-linear fashion,
as either of these parameters is increased. Due to the
nature of the traversal algorithm, the amount of
computation rises rapidly, as there is an exponential
relation between computation cost and the two
parameters.

Although it may appear as if these two parameters
cause a compound loss in performance, it is
important to note that they work together toward the
accuracy of the solution. Once these parameters have
been set though, the system will scale in a linear
fashion as the number of nodes in the cluster is
increased.

The tables below compare the overall execution time
of the visibility preprocessor for both the serial and
parallel implementations.

The number of polygons in each test scene has been
chosen to properly represent an increasing amount of
data for the preprocessor to compute.

Scene Execution time (seconds)
Rocket 22.0
Forest 264.00
Hill Top 2917.00
Large Forest 11460.00
Table 4: Total execution time for serial program

Parallel Performance
Scene

time (seconds) speedup
Rocket 5.29 4.16
Forest 63.48 4.16
Hill Top 755.73 3.86
Large Forest 2923.16 3.92
Table 5: Total execution time and speedup for

parallel implementation

Technical Report. Department of Computer Science. University of Cape Town. 2005 6

Overall Speedup

Given linear scalability, the speedup in each test
scene for an ideal parallel implementation would
be five times that of the serial version (for five
nodes running). In this implementation, the
speedup ranges from 4.16 for the smallest scene,
to 3.92 for the largest scene. The speedup is
therefore not proportional to the number of nodes
running on the cluster and indicates a loss of
efficiency of the program due to parallelisation.

Test Scenes

In the ideal case, while considering efficiency
loss, the speedup should be the same for all
scenes, which would indicate that the system is
unaffected by the size of the input data. There is
only a small effect on the overall speedup as a
result of the scene size.

While the efficiency of the system is affected by the
size of the input data set, this effect is only marginal
when considering how the input size increases for
each test scene and would suggest that overall
scalability of the system is good for scenes of
appreciable size.

3.2. BENCHMARKER

Benchmarker results were generated using an
approximation of an aggressive visibility algorithm
which removes more regions than an exact solution.
This test PVS consisted of a PVS generated by the
reference solution, with a pre-defined percentage of
regions removed.

The results showed that the metrics were strongly
correlated where large numbers of regions were
incorrectly classified as invisible from certain point
of view. This is due to the fact that each region that is
not drawn results in a potentially significant amount
of polygons missing from the image. Scenes in which
the background colour showed through, such as the
forest scene yielded higher values for the perceptual
metrics than for the pixel metrics, as the sharp
changes between colouring of the scene and the
background accentuated the differences in the image.
Scenes with enclosed areas such as the rocket yielded
higher pixel error values, as the perceptual metrics
are not sensitive to small changes in colour. In cases
where large numbers of polygons were missing, the
perceptual metrics did return higher values.

Figure 6: Similarities between metrics.

The images above show the error values for the forest
scene. Due to the fact that one of the leaves, which is
drawn in red, is missing, both the incorrect pixel
count and the perceptual metrics found large errors
for this frame.

The images below show the maximum error for the
metrics using a different fly-through and highlight the
differences between the metrics. The pixel error
metric is sensitive to errors close to the viewpoint,
due to the fact that it counts the number of red pixels.
However, the perceptual error is sensitive to errors
near areas of high transition or large structural
differences. In reality the leaf in the pixel error image
would not be seen, and this would not have a large
impact on visual quality. However, the missing
polygons of the tree shown highlighted by the
perceptual metric would have a large impact on
visual quality.

Technical Report. Department of Computer Science. University of Cape Town. 2005 7

Table 6: Differences between metrics

4. CONCLUSIONS
The reference solution produces accurate results,
even with modest values of the grid size and region
count parameters. With high enough values of these
parameters, this implementation produces near-exact
visibility.

Visibility calculations have been shown to be
computationally intensive for scenes of appreciable
size and VizMark demonstrates that running such
calculations in a distributed environment can
significantly reduce the amount of time required.
The system design shows good scalability as the
problem size and number of nodes increases.
Consistency checks of the system determined that the
parallel program behaved in a deterministic way,
thereby producing the same output for constant
parameter settings yet varying node counts.

5. FUTURE WORK

Implementation of a region to polygon visibility
algorithm

The solution would greatly benefit from a change of
the algorithm from a region to region to a region to

polygon visibility solution, where only the relevant
polygons that are visible in each region are recorded.

Ensure that the algorithm is exact, and that this
can be verified.

The reference solution provides a means against
which other algorithms are checked. It would greatly
benefit from a traversal algorithm that could
guarantee exact visibility for a given scene.

Use of rational arithmetic

The accuracy of the solution would greatly benefit if
a rational arithmetic is used. Numerical inaccuracies
would be avoided entirely and this would be of most
benefit for the many intersection tests. This would
however have a drastic effect on the speed of the
program and so the traversal algorithm would have to
undergo significant optimisation before this approach
is used.

Parallel Implementation

Scalability of the parallel preprocessor has been
tested here with only a small cluster size. The
effectiveness of the strategies devised here ought to
undergo testing with larger node counts so as to
properly test this and to identify the susceptibility to
existing bottlenecks.

Benchmarker

Polygon cutting refers to the technique of dividing a
single polygon into two or more polygons which
comprise the original. Polygon cutting is particularly
useful in from-region visibility as it prevents
polygons that belong to more than one region from
being coloured incorrectly. At present, the
benchmarker draws incorrect regions after drawing
the polygons in each region s visibility list. This is
done to ensure that under-classified regions
(conservative algorithms) are drawn in red. The idea
behind polygon cutting in the benchmarker case is
that polygons which belong to more than one region
are divided along the boundary of the two regions.
This ensures that only polygons which belong to a
certain region are drawn if that region is classified as
visible.

REFERENCES
[1] Sahasrabudhe, N. Structured Spatial Domain Image
and Data Comparison Metrics . Proceedings of the
conference on Visualization 99, pages 97-104, 1999

Technical Report. Department of Computer Science. University of Cape Town. 2005 8

[2] Nirenstien, S. Fast and Accurate Visibility
Preprocessing . PhD thesis, U. Cape Town, 2003.

[3] Tian, Q., Xue, Q., Yu, L., Sebe1, N., Huang, T.S.
Toward an improved error metric . IEEE International

Conference on Image Processing, October 2004

[4] Fienup, J.R.. Invariant error metrics for image
reconstruction . Applied Optics Vol. 36, No. 32,
November 1997

[5] Wang, Z., Simoncelli, E.P. Stimulus Synthesis for
Efficient Evaluation and Refinement of Perceptual Image
Quality Metrics . Human Vision and Electronic Imaging
IX. In Proceedings of SPIE volume 5292, January 2004

[6] Zhou, H., Chen, M., Webster, M.F. Comparative
Evaluation of Visualization and Experimental Results
Using Image Comparison Metrics . In IEEE Visualisation
2002, October November 2002

