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Abstract

The automated functional and performance analysis of communication systems
specified with some Formal Description Technique has long been the goal of telecom-
munication engineers. In the past SDL and Petri nets have been the most popular
FDTs for the purpose. With the growth in popularity of UML the most obvious
question to ask is whether one can translate one or more UML diagrams describing
a system to a performance model. Until the advent of UML 2.0, that has been an
impossible task since the semantics were not clear. Even though the UML seman-
tics is still not clear for the purpose, with UML 2.0 now released and using ITU
recommendation Z.109, we describe in this paper a methodology and tool called
proSPEX (protocol Software Performance Engineering using XMI), for the design
and performance analysis of communication protocols specified with UML.

Key words: Formal Description Technique, UML, SDL, Performance Analysis,
Communication Protocols, Simulation, ESRO

1 Introduction

While UML has become a de facto modeling standard, it is not often em-
ployed in the protocol engineering process as a specification language. This is
primarily because it is a general-purpose modeling language without formal
semantics.

With the emerging UML 2.0 standard the Object Management Group (OMG)
appears to have addressed the shortcomings of UML in the real-time model-
ing and protocol engineering domains. Notably the architectural modeling
capabilities of UML 2.0 has been drawn from both the ROOM modeling
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language[SGW94] and SDL[Hog89]. For instance, the UML 2.0 architecture
diagrams show the hierarchical subdivision of active classes and are composed
of parts (which are also active classes), provided and required interfaces, ports
and connectors.

While UML 2.0 does provided enhanced architectural modeling capabilities
it is not a formal language and as such does not posses formal semantics
or a syntax. Tool vendors have worked around the problem by applying the
ITU Recommendation Z.109 [MP00] ”SDL Combined with UML” to UML
2.0. This recommendation is for a UML profile meaning that it specializes
UML using stereotypes, tagged values, constraints and notational elements.
By applying the Z.109 profile to UML 2.0 the abstractions, tightened semantics
and syntax that are found in SDL can be used when specifying the behavior
of active classes using state machines.

When building performance models using UML 2.0 enhanced with the Z.109
profile, previous approaches to performance analysis [BMSK96][MTMC99]
that incorporate temporal aspects into SDL specifications, can be applied.
UML 2.0 offers several diagram types with different system views which may
be semantically equivalent, as is the case with sequence and state machine
diagrams. In the proSPEX methodology, we use a minimal subset of UML
2.0 diagrams to specify communication protocols as well as the environmen-
tal constraints and workload associated with a particular system scenario.
These diagrams are then translated to a process-based discrete event simula-
tion model.

The modeling process itself should be supported by the use of design patterns
for protocol system architecture[PT00]. The model is created in a commercial
model editing tool, Telelogic Tau G2, and verified using this tool. Follow-
ing the Tau-based verification a collaboration diagram depicting a simulation
scenario is created by the user. This diagram serves as a basis for defining
system workloads and for specifying non-functional time dependent aspects.
The proSPEX tool then imports the model using its filters to Tau G2. It then
executes the model and gives performance measures to the user.

In Section2 we discuss the validation, verification and performance evaluation
of communication software. Model-driven development using UML 2.0 and
SDL is outlined in Section3. We then discuss communication system perfor-
mance modeling with SDL in Section4 and with UML 2.0 in Section5. The
proSPEX methodology, architecture and semantic time model are discussed
in Section6 to Section8 respectively. A performance analysis case-study is dis-
cussed in Section9 while concluding remarks are made in Section10.

2



2 Validation, Verification and Performance

Communication software is particularly susceptible to both errors and per-
formance problems due to the complexity of interactions in application and
network layer protocols. These errors and performance problems tend to arise
primarily due to the temporal dependencies among the participating processes.
It is generally accepted that communication software should be specified using
formal languages[SK00] [Hol92][Ste98][ea99] in order to allow automated anal-
ysis. Examples of such languages are the Process Meta Language (PROMELA,
the system description language of SPIN[Hol91,SK00]), the Specification and
Description Language (SDL) and Estelle.

UML could also be used as a specification language, however it is a general-
purpose language without formal semantics. As a work-around a common
approach is to map a subset of UML diagrams to existing formal methods
[BDM02][MC01][LQV01] in order to allow automated analysis. An alterna-
tive approach is to merge UML with a formal language, as has been done
in the International Telecommunication Union Recommendation Z.109 titled
”SDL Combined with UML”[Bjo02]. Z.109 is a UML profile meaning that it
specializes UML using stereotypes, tagged values, constraints and notational
elements.

Having established that a communication component is error free, the next
step in the construction of reliable, quality software is performance analysis.
The formally specified network and component interaction protocols would
be analyzed by either analytic evaluation, experimentation or simulation. In
proSPEX, the prototype tool supporting our methodology, we use process-
based discrete event simulation and statistical performance evaluation. Sim-
ulation has the advantage of being able to evaluate protocol performance ac-
cording to given metrics as well as being useful in aiding in the understanding
of protocol interactions[MB02].

3 Model-Driven Development

Model-driven development or ”. . . the model is the implementation . . . ” ac-
cording to [Sel03, Selic] is an approach to software development in which the
resultant implementation is automatically generated from models. In order
to realize model-driven development one needs graphical programming abili-
ties which is the ability to program directly in the modeling language. SDL
has been used as a model-driven development language for some time in the
telecommunication industry. Part of the attraction of SDL stems from the
availability of specialized abstractions, such as signalling, that are useful in
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model-driven communication software development. The merger of UML 2.0 1

and SDL, via the ITU-T Z.109 Recommendation[Bjo02], is a powerful real-
ization of model-driven development geared towards communication software
development. The Telelogic Tau G2 tool uses such a merger resulting in the
non-standard Telelogic UML Syntax that largely resembles SDL.

Using UML 2.0 as a language for model-driven development of communication
software is appealing due to it being an evolution of the de facto UML 1.x
standard. This evolution has been driven by the need to address deficiencies
of UML 1.x noted since UML was first proposed in 1997. These deficiencies
include a lack of formal semantics, inadequate semantics definition[Sel03] and
excessive size. Of the enhancements offered by UML 2.0, the architectural mod-
eling capabilities are of particular importance when conducting model-driven
development of communication components. The architectural modeling ca-
pabilities of UML 2.0 are based on mature languages such as SDL and ROOM
(Real-Time Object-Oriented Modeling).

Model-driven development of communication software using UML 2.0 merged
with SDL is appealing due to SDL being a formal language with useful protocol
engineering abstractions. The appeal also derives from the fact that the lan-
guage and its higher level abstractions are target-language-independent [Bjo02].
This means that following verification and validation of a component program-
ming language code such as C, C++ or Java could be generated. The non-
standard Telelogic Tau UML Syntax is target language independent, meaning
that equivalent implementations and simulation models can be generated.

4 Performance Modeling with SDL

In this work we use UML 2.0 (extended with the ITU Z.109 profile) in which
SDL state machines are used for model-driven behavioral specification. As
such we review performance modeling issues and approaches to resolving these
issues in the context of SDL.

It has been acknowledged that performance-enhanced extensions of standard
SDL are necessary when modeling non-functional duration constraints. In var-
ious approaches to performance analysis with SDL, the semantic time model of
SDL is enhanced by providing means of modeling non-functional time depen-
dant aspects. Such semantic time models are realized by time related features
that are needed for functional design and also by time related features that
are needed for non-functional aspects and analysis.

1 Adopted as an official OMG standard specification in June 12, 2003
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Time related features required for functional design include clocks, timeouts
and time dependant enabling conditions. Time related features required for
non-functional design include timing restrictions due to knowledge of the ex-
ecution environment and modeling the execution times of tasks.

The means of modeling non-functional time dependant aspects are missing
from SDL [Gra02][Spi97], as is noted by Graf [Gra02]:

Non-functional primitives express timing features orthogonal to the func-
tional behavior, and they consist in constraints on the (relative) occurrence
time of events, and are completely lacking in the standard.

It is this lack in the standard which is the subject that is addressed by the
various approaches [BMSK96][Rou][Ste98] [MDMC96][MHSZ96][Spi97] to per-
formance analysis using SDL. Each approach provides a means of modeling
duration constraints that allow for the expression of timing characteristics
of the environment and underlying execution system [Gra02]. Non-functional
time related aspects include 2 [Gra02]:

– Communication delays: all communication in SDL occurs via channels
which may have an associated delay. Channel attributes may include a loss
rate and whether the delay is load dependent or not. A communication
channel with parallelism, such as the Internet, may be regarded as load
independent, while a sequential medium would be load dependent.

– Processing times: the processing of a signal can be divided into queueing
and treatment [Gra02] phases. The treatment time consists of pure exe-
cution and blocking time (due to scheduling). The overall processing time
can be modeled as an expression representing a time interval. With SDL
an important question that arises is for which sort of behaviors duration
constraints can be specified. For example are durations constraints associ-
ated with SDL behavioral primitives (i.e. tasks, output, input etc.), SDL
behavior sequences (i.e. transitions or procedures), or SDL processes?

– Execution modes: with execution modes we consider time passage in parts
of the system with no time constraints expressed. With standard SDL se-
mantics time passage is interpreted as passing arbitrarily in such parts. A
designer could specify a different execution mode, for example all non time
constrained actions could be immediate.

– Time constraints on the external environment: the timing constraints
of signals arriving from the environment must be expressible. Such charac-
teristics include response time, inter arrival times and jitter. The environ-
ment can be modeled by processes in which the above mentioned signal
characteristics can be expressed using time guards.

2 We borrow from work [Gra02] by Susanne Graf in the list of non-functional time
related aspects that are discussed.
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– Scheduling: in order to represent scheduling algorithms in SDL information
regarding the preemtability of atomic steps, or sequences of atomic steps,
must be provided. Questions of how or if scheduling information should
be represented in SDL is answered to varying degrees by the different ap-
proaches.

– Local time: the ability to express local clock time and global system clock
time (the external reference time, or now) is important in model-checking
in order to detect unforseen errors such as livelock and deadlock. Moreover,
the relationship between local time and the reference time must be clearly
defined.

Non-functional duration constraints need to be represented to allow for auto-
mated performance analysis. The resultant issue that we consider is whether
the standard SDL syntax is amended in such a representation when using a
particular approach to performance analysis.

The importance of this consideration is that if one wants a tool based on an
approach to be useful to the largest possible audience one would want to take
existing SDL specifications and analyze them using the tool without having
to change the given specification. In the context of this issue we examine the
means of attributing performance analysis directives (e.g. delay and scheduling
directives) to communication protocol models.

We review the SPECS, ObjectGEODE and QUEST approaches to perfor-
mance analysis using SDL. In our review we give particular consideration to
the means of representing non-functional duration constraints and whether
existing SDL specifications can be analyzed without change.

4.1 SPECS: SDL Performance Evaluation of Concurrent Systems

With the SPECS tool [BMSK96] a protocol system specified using standard
SDL is imported and then attributed with environmental constraints. Relative
execution speed values are assigned to each block while the processes within a
block are given weights. The assignment of these values, which is done using a
GUI dialog box, is equivalent to annotating the model using comment symbols.
Hence existing SDL/PR specifications can be analyzed since the SDL standard
has not been molested.

The units of the execution speeds are actions per time unit meaning that the
number of actions each process can execute (the process action quota) once
scheduled is determined by its weight. In this way time, which is maintained
by a global simulation clock, is advanced either when process instances have
exhausted their action quotas or process instances are all waiting for input.
At each advancement of the simulation clock, timers, which are maintained
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separately by each process instance, are checked for expiry.

With regards to the semantics of time when considering signal transmission,
SPECS enhances the standard semantics of SDL by assuming that signal trans-
fers over channels experience a randomly distributed delay and may be lost
with a certain probability.

4.2 ObjectGEODE: The SDL simulator

With the ObjectGEODE SDL Simulator [Rou] extensions to the SDL language
are used to model non-functional time dependant aspects. These extensions are
however used exclusively in SDL comment symbols and hence the annotated
models still conform to the Z.100 standard.

Processing delay timing constraints (or delays) are associated with individual
actions (and not transitions). NODE, PRIORITY and DELAY directive are
used with ObjectGEODE. The PRIORITY directive is used as an alternative
to the default scheduling algorithm which is a random uniform choice among
the fireable transitions of all process instances of a node. With the DELAY
directive the execution duration of SDL actions can be specified using some
random distribution.

4.3 QUEST: The Queueing SDL Tool

With the QUEST [MDMC96] approach to the specification of non-functional
properties, the SDL language is extended, resulting in the QSDL (Queueing
SDL) language. QSDL has a QSDL/GR notation which has equivalent dia-
grams for each SDL/GR symbol. An SDL process is a machine (queueing
station) in QSDL and the parameters that can be associated with a machine
includes a name, server number, service discipline (e.g. FCFS, RANDOM), a
set of offered services and service-specific speed values. Each QSDL request
instruction is time consuming and requires a service amount attribute and an
optional priority. In this way time durations and the use of resources can be
associated with certain actions.

For workload characterization, a number of random distribution functions are
provided. These functions would be used in load generators which are imple-
mented as QSDL processes.
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5 UML 2.0 and Communication Software Performance Modeling

With UML the original intention was a language for specifying, visualizing,
constructing, and documenting the artifacts of software systems [BRJ98].
UML has over nine diagram types, some of which are semantically equiva-
lent, for the mentioned purposes. As we have mentioned, UML is not often
employed in the protocol engineering process primarily because it is a general-
purpose modeling language without formal semantics. With UML 2.0, the
Object Management Group (OMG) intended to address various shortcomings
[Kob02][Dor02] [Mil02] in the standard that have been noted since its incep-
tion.

Although UML 2.0 is not a formal language, it is an attractive language in the
protocol engineering field due to enhanced architectural modeling capabilities
which have been drawn from both the ROOM modeling language[SGW94]
and SDL[Hog89]. In addition, by applying the ITU Recommendation Z.109
[MP00] ”SDL Combined with UML” to UML 2.0, the abstractions, tightened
semantics and syntax that are found in SDL state machines become available.

As we have noted, when building performance models using UML 2.0 en-
hanced with the Z.109 profile, previous approaches to performance analysis
[BMSK96][MTMC99] that incorporate temporal aspects into SDL specifica-
tions, can be applied. These previous approaches dealt with SDL and not UML
2.0 and so Use Case, Collaboration, Sequence, Activity, Deployment (and other
diagrams) were not available. Questions that may therefore arise include which
UML 2.0 diagrams should be used when modeling non-functional duration
constraints and scenario-based workloads? In addition the UML Profile for
Schedulability, Performance and Time [Gro02] (UML-RT profile) should be
considered.

With proSPEX we have taken the approach of using the minimal subset of
diagrams when specifying communication protocols and subsequently anno-
tating the specifications with non-functional environmental constraints. In this
approach state machine diagrams, architectural diagrams and collaborations
diagrams are used as the basis of an executable performance model. We have
chosen not to make any syntax changes in the state machines (as is done
in [BMSK96][Rou]) and have therefore used an approach in which all non-
functional constraints are specified using collaboration diagrams annotated
with performance constraints. Our methodology, tool construction approach
and consideration of the UML-RT profile are discussed in subsequent sections.
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6 The proSPEX Methodology

The proposed methodology for the modeling, verification and performance
evaluation of communication software is presented in Figure 1. The steps in
our methodology are outlined below.

Fig. 1. The proposed methodology supported by the simulation-based proSPEX
performance analysis tool

Requirements Definition: The first step is to establish the requirements of the
communication component. In the case of a transport layer protocol, a re-
quirement may be to use the available bandwidth as efficiently as possible.
Following the requirements definition we identify or design suitable network
and application layer inter-component protocols. UML 2.0 use case and se-
quence diagrams could be used to aid understanding but these are not used
when generating the simulation model, as can be seen in Figure 1.

Architecture Specification: The next step is to use a combination of UML 2.0
class and architecture diagrams (with ports, connectors and interfaces) to de-
sign the protocol architecture. The use of design patterns for protocol system
architecture[PT00] is recommended at this stage. The focus is on identify-
ing the active classes, i.e., classes with their own thread of control and their
interfaces.

Interface-based design has the benefit of both reduced design complexity and
giving distributed teams the ability to work concurrently while using the in-
terface as a contract. In UML 2.0 an interface, is a classifier representing a
declaration of a set of public features and obligations[Gro03]. Interfaces are
not instantiations, instead they are either provided or required by a classifier
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such as a class. When a class provides an interface it carries out its obligations
to clients of instances of the class. When a class requires an interface it means
that it needs the services specified in the interface in order to perform its
function and fulfill its own obligations to its clients. The notation introduced
for a provided interface is a full-circle lollipop whilst the notation introduced
for a required interface is a semi-circle lollipop.

Figure 2 shows the architecture diagram of an active class with two parts,
namely any number of Sessions and a single RoutingPeerProxy. The parts
are linked with connectors that are attached to ports. Note that ports are the
squares to which the required interfaces, provided interfaces and connectors are
attached. Each port serves the duel purpose of being used to group an active
class’s related interfaces and also acting as interaction (or connecting) points
through which the services of a class can be accessed. In the architectural
view of an active class we want to be able to distinguish between behavior
that is delegated to the class itself and behavior that is delegated to its parts.
Connectors terminating in a behavior port mean that the signals sent to the
port are handled by the containing class. A behavior port is represented by a
state symbol attached to a square port symbol, as can be seen in Figure 2.

Behavior Specification: Following the architectural specification we specify the
detailed behavior of active classes by implementing state machines using stat-
echart diagrams. As discussed in section 3, we use specialized communication
abstractions derived from SDL in this model-driven development process. The
subset of SDL employed to represent behavior is therefore finite state machines
as defined in the standard 3 .

Figure 3 shows a part of a UML 2.0 statechart diagram, note that the syntax
used is the Telelogic Tau UML Syntax derived from SDL. Once this stage is
complete the software is verified using facilities provided by the model editing
tool, in our case Telelogic Tau G2.

Simulation Scenario Specification: Once the software has been verified the per-
formance modeling phase commences. With proSPEX non-functional timing
annotations are embedded in UML 2.0 comment symbols, thereby allowing
for the use of commercial modeling tools for specification and validation.

The performance modeling phase starts with the modeling of the environment
of the communication component. That is, we create client and server (or peer)
active classes and their associated state machines. A collaboration diagram
(see Figure 4) is then drawn up illustrating a simulation scenario which in
combination with the statechart diagrams of the client(s) and server(s) serve

3 Note that the degree to which Telelogic Tau G2, the editor we used, conforms to
any version (SDL-88, SDL-92 or SDL-2000) of the SDL standard is not explicitly
given.
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Fig. 2. Architecture specification with UML 2.0

as the workload.

This collaboration diagram would indicate the number of clients and servers
and also network link characteristics (loss probability, bandwidth and delay
distribution). Processing delay timing constraints (or delays) are associated
with active classes and may be deterministic of randomly distributed. The
network link and processing delay parameters are specified using comment
symbols.

Once the scenario has been completed the proSPEX tool user imports the
model from which a semantically equivalent simulation model is generated.
Results: The events and corresponding trace messages that the simulator is
able to generate dictate the set of performance statistics that can be calculated.
The simulation model generated by proSPEX is able to generate the following
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Fig. 3. Behavior specification with UML 2.0

types of trace messages 4 for some general time ti:

(1) Message M sent via Connector C from process P1 to process P2 at time
ti

(2) Message M from process P1 read by process P2 at time ti

(3) Message M from process P1 arrives in queue of process P2 at time ti

(4) Process P created at time ti

(5) Process P destroyed at time ti

(6) Overflow: message M from P1 to P2 discarded at time ti

(7) Process P has transition from state S1 to state S2 at time ti

(8) Message M from process P1 discarded by process P at time ti

(9) Timer T set to duration d in process P at time ti

(10) Timer T reset in process P at time ti

(11) Timeout: Timer T in process P at time ti

4 For brevity we use the term process instead of active class
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Fig. 4. Simulation scenario and workload specification

The performance measures that can be calculated from the analysis of simu-
lation traces containing the above mentioned messages include the following:

(1) Mean queue waiting time: this is the average time that a signal spends
in the queue of a process. A high mean queue waiting time means that
process response time may be too slow or that there are too many retrans-
mission messages in the queue of a process as a result of the timeout of
the sending process being too short. Trace messages 2, 3 and 8 are used
in the calculation of this statistic.

(2) Connector throughput: this is the traffic on a connector and trace
message 1 is used in its calculation.

(3) Mean and maximum queue length: The buffers of a communication
system are often modeled using process queues. A high maximum queue
length indicates that the system requires large buffers. Trace messages 2,
3 and 8 are used to calculate this statistic.

(4) Detection of queue overflows: queue overflow is indicated by trace
message 6 and shows that the process’ buffers are too small.

(5) Throughput of a state: this statistic shows how many times a state is
reached and hence which program parts are frequently processed. States
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with a high throughput may indicate process bottlenecks. Trace message 7
is used in the calculation of this statistic.

(6) Discarded signals: Such signals may either be caused by insufficient
process buffer size or as a result of being sent to processes that no longer
exist. Trace messages 6 and 8 show discarded signals.

(7) List Unreachable states: Process’ states that are never reached in-
dicates dead code however since simulation is not exhaustive it is not
guaranteed that the code is actually unreachable. Trace message 7 is
used in determining unreachable states.

(8) Average time spent blocked in a state for a signal: This time
period shows the idle time of a process and records how long a process
spends waiting for a signal. Trace message 7 is used in its calculation.

(9) The lifetime of a process: This statistic is used in other statistical
calculations and uses trace messages 4 and 5.

(10) Timeout reset and expiration ratios: The first ratio is that of the
number of timeouts set to the number of timers expired. It shows what
proportion of timeouts were exceeded. The second ratio is that of the
number of timeouts in a queue to the number of timers set. It shows how
many timeout messages in the queue had to be reset. Both ratios show
whether timeouts in the system are set at sub-optimal values and are very
useful in improving the performance of protocol systems. Trace messages
9, 10 and 11 are used in the calculation of the mentioned ratios.

Naturally any analysis results would refer to either the steady-state or tran-
sient behavior of the system and would be computed with confidence intervals.
These measures would then prompt the user to either change the simulation
parameters or the model itself.

7 The proSPEX Tool Architecture

In this section we give a general overview of the proSPEX tool architecture and
certain technical issues encountered when translating a UML 2.0 model to an
executable simulation representation. We also motivate our design decisions
and report on the manner in which we overcame challenges.

With proSPEX our intention was to create a model-processing tool and not
a model editor since developing an editor would deviate from the primary
objective of the project. Telelogic Tau G2 offered an XML-based model file
format which was sufficient for our purposes, although the standard XML
Metadata Interchange (XMI) 2.0 file format would have been preferable, since
this would theoretically allow any future UML 2.0 editor to be used. We had to
filter the Telelogic Tau XML and place the filtered aspects into data structures
that can be used for simulation code generation. With the Tau XML being

14



rather verbose, this was not a trivial task.

We were faced with the option of either developing a process-based discrete
event simulator from the ground up or to use existing simulation packages.
A review of the available simulation packages showed that Simmcast[MB02],
an object-oriented framework for network simulation, would be ideal. Simm-
cast is specifically intended to be used in research environments with limited
resources, as the excerpt from [MB02] shows:

. . . the complete development of a dedicated simulation tool from scratch is
not practical, since the amount of resources dispensed in such a project would
detract the researcher’s focus from the project.

Simmcast offers extensible building blocks (such as nodes, paths, network and
packet) that are combined to describe the simulated network environment.
Nodes, each of which are uniquely identified by an integer and contains at
least one thread of execution, are the fundamental interacting entities and are
connected via paths. The user extends the Node class, via inheritance and
places protocol logic and simulation action primitives (such as send, receive,
setTimer, sleep) in the extended class.

Despite offering a framework with extendible building blocks we found the
need to extend the list of simulation action primitives in order to accommodate
required actions such as process creation and termination. Simmcast does not
offer such primitives since a Simmcast simulation experiment is defined using
a simulation description file that specifies the network topology and startup
parameters. We extended Simmcast to generate simulation traces with the
messages mentioned in Section 6.

An additional technical issue that had to be overcome in the translation pro-
cess involved addressing. During the translation from an UML 2.0 model to a
(modified) Simmcast simulation model we had to map concepts such as Pid
(process identifier) expressions 5 , which can either be self, parent, offspring or
sender, to Simmcast simulation code.

In the Simmcast code generation process we found the need to use templates,
as can be seen in Figure 5. The templates act as input into a text templating
engine in order to insert dynamic content into prewritten Simmcast source
code. Text templating engines are essential tools in code generation as they
solve the problem of inserting dynamic content into prewritten text. Our cho-
sen text templating engine, the Velocity Template Engine[Pro04]), is used
for Java implementation code generation in the popular Poseidon UML tool
created by Gentleware AG.

5 These expressions are derived from SDL and incorporated into UML 2.0 via the
ITU-T Z.109 Recommendation
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Fig. 5. The proSPEX architecture

8 The proSPEX Semantic Time Model

In Section4 we noted that performance-enhanced extensions of standard SDL
are necessary when modeling non-functional duration constraints. Here we ex-
plicitly mention how these non-functional time related aspects are represented
in proSPEX.

– Communication delay: with proSPEX communication delay is associ-
ated with packets that traverse network links. Such links have an associated
propagation delay (modeled with a random distribution), bandwidth and
loss probability. When a packet (or signal) is sent across a network link, de-
lay is applied in two stages before it reaches the receiving queue of the target
process. In the first stage the packet is delayed by a sending time, which
is calculated using the bandwidth and a packet byte size attribute. In the
second stage a propagation delay is applied and loss probability is applied,
with the propagation delay being drawn from a random distribution.

– Processing times: with proSPEX we have used the facilities of the under-
lying simulation framework and hence a sending and receiving processing
delay is associated with active classes. Active classes that have such delays
specified have their execution blocked by the specified delay values when-
ever a signal is sent and received. In other words the sending and receiving

16



delay associated with an active class is effectively mapped to each input and
output operation. Such delay is deterministic by default, although the use
of random delay distributions is possible.

Future extensions to proSPEX will be to allow for processing delay to be
associated with individual actions and transitions, as is done in the object-
GEODE [Rou] approach, using annotated comment symbols.

– Execution modes: with execution modes we consider time passage in parts
of the system with no time constraints expressed. With proSPEX only input
and output actions are time constrained, and hence all non time constrained
actions are immediate.

– Time constraints on the external environment: with proSPEX the
environment is modeled by processes in which signal characteristics can be
expressed using time guards.

– Scheduling: scheduling information is not represented with proSPEX. Pro-
cess scheduling is determined by the order of the individual process event
sequences.

9 Case study

In order to illustrate the application and utility of our methodology we studied
the performance of the Efficient Short Remote Operations (ESRO) transport
protocol in the context of the network scenario illustrated in Figure 6. The
scenario is one in which ESRO is used in a credit card authorization application
in which a number of clients invoke operations on a single server acting as the
ESRO server. In this scenario multiple mobile stations are linked (via a GPRS
network) with an e-commerce server using ESRO as the transport protocol.

The service ESRO offers is a reliable connectionless transport for wireless links
when efficiency is of concern. The service supports applications based on a
remote operations model that is largely the same as the Remote Procedure Call
(RPC) model [Mic88]. Service data units (SDU) are segmented into protocol
data units (PDU), each of which are encapsulated into a UDP datagram. The
simplicity of the protocol lies in the retransmission strategy, which is that if
an SDU is segmented, the retransmission strategy is not applied to individual
lost segments, the whole SDU is retransmitted.

Since we adhered to the proSPEX methodology in the specification of the
ESRO protocol, we specified static aspects using UML 2.0 class and archi-
tecture diagrams and dynamic aspects using SDL state machines. Once the
specification of the protocol was complete we specified the temporal attributes
of processing, network and workload delay parameters using a combination of
collaboration and state machine diagrams. Processing and network delay pa-
rameters were specified in accordance with the proSPEX semantic time model
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Fig. 6. Network used in the proSPEX case study

described in Section8). In other words, these parameters were placed in com-
ment symbols in a collaboration diagram. An example of the specification of
network link and processing delay parameters in the collaboration diagram
was given in Figure 4. In that figure we see that a network link exists be-
tween RoutingPeerProxy instances with a loss probability of 0.01, bandwidth
of 3430 Kb and an exponential delay distribution with an associated mean
of 0.5 milliseconds. In addition active classes in the server and clients have a
sending and receiving delay of 2.9 and 67.6 milliseconds respectively. Figure
4 shows that the syntax used in the specification of network link parameters
is simple and intuitive. For example network link loss probability is specified
with an LP directive. Processing delay is specified using sending delay, SD, and
receiving delay, RD, directives.

In Figure 4 we also saw that an ESRO protocol entity is compose of Manager,
Session and RoutingPeerProxy active classes. Each such class has behav-
ior which is concerned with either performing or invoking a remote opera-
tion. An example of the behavioral specification of a Session instance in the
performer role is given in Figure 7. Note that a peer invocation request sig-
nal, invokReqPeer, with an invoke PDU, invPDU or segmented invoke PDU,
segInvPDU payload is expected in state START STA01.

In particular, for the system illustrated in Figure 6 we asked what the expected
buffer size at the server and switching nodes, respectively, will be given cer-
tain link and node parameter value scenarios. We determined the expected
buffer size from the maximum queue length determined by simulating the

18



Fig. 7. A Session active class in the performer role

specification. The results are given in Figure 8.

With an estimated maximum queue length of 7 packets at the server and a
maximum PDU length of 1500 bytes used in the scenario, the largest buffer
size required in the ESRO server would be about 10Kb.

10 Conclusion

UML 2.0, a major revision of the de facto UML modeling standard, has
emerged as a model-driven development language well suited to communi-
cation system development. By applying the ITU Recommendation Z.109
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Switch Server

Mean Queue Length 1.00 1.33

95% Confidence Interval (1.00 - 1.00) (0.79 - 1.88)

Maximum Queue Length 1.00 7.00

95% Confidence Interval (1.00 - 1.00) (6.34 - 7.66)

Fig. 8. Estimated ESRO server buffer size

[MP00] ”SDL Combined with UML” to UML 2.0, the abstractions, tightened
semantics and syntax of SDL state machines become available in UML. With
this enhancement previous approaches to performance analysis [BMSK96][MTMC99]
that incorporate temporal aspects into SDL specifications can be applied.

In this work we have developed a methodology for the design and performance
analysis of communication software. This methodology is supported by the
proSPEX performance analysis tool. One of the questions we set out to answer
was whether one can translate from one or more UML diagrams describing a
system to a performance model.

In developing our methodology we found that the UML 2.0 class, architec-
ture and state chart diagrams were necessary to define the architecture and
behavior of communication software. We investigated means of representing
non-functional duration constraints and the associated semantic time models
in the case of SDL. We chose not to make syntactical changes in state chart di-
agrams and hence used an annotated approach in representing non-functional
duration constraints. Thus network link characteristics and processing delay
directives are specified by using UML 2.0 collaboration diagrams. Both net-
work link and processing delay directives are specified using UML comment
symbols using a simple syntax. Network link characteristics which that can be
specified include bandwidth, loss probability and delay distribution. Process-
ing delay directives are associated with active classes and are used to describe
packet sending and receiving delay in the generated performance model.

In addition to presenting our methodology we have highlighted the architec-
tural aspects of the proSPEX tool 6 which takes advantage of XML-based ap-
plication integration and an extendible simulation framework, namely Simm-
cast. We found it necessary to extend the set of simulation primitives offered
by Simmcast in order to allow for dynamic node (or active class) creation and
termination. In addition, we developed a means of representing SDL signalling
abstractions (e.g. pid, child and parent) and a means of encoding the system
architecture. We also found that the UML 2.0 communication abstractions,

6 The authors may be contacted with regard to obtaining the source code and
examples.

20



offered by extending UML 2.0 with SDL actions, map readily to Simmcast
simulation primitives.

Future work with regard to the modeling of processing delay could be to
associate random delay with individual actions or transitions as is done in the
objectGEODE approach to performance analysis with SDL. In addition, the
syntax used for performance directives in comment symbols should be in line
with that which is specified in the UML Profile for Schedulability, Performance
and Time.
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