
Extending ODRL to Enable Bi-Directional
Communication

Alapan Arnab and Andrew Hutchison
Data Network Architectures Group
Department of Computer Science

University of Cape Town
Rondebosch, 7701

South Africa
{aarnab, hutch}@cs.uct.ac.za

Abstract— Current rights expression languages (RELs) only
allow for rights holders to dictate terms to the end users. This
limits their use as a means for negotiating electronic contracts and
end users are not able to request changes in their rights contracts.
In this paper we propose extensions to ODRL that allow end users
to request changes and for the rights holder to grant or deny
these changes. These extensions allow the end user to request
changes to their current rights, and for the rights holder to
grant or refuse the request. We also provide two examples to
demonstrate possible uses of our extensions. The extensions we
discuss can also be implemented in other RELs like XrML.

I. I NTRODUCTION

Rights Expression Languages (RELs), like Open Digital
Rights Language (ODRL) and eXtensible rights Markup Lan-
guage (XrML), form an integral part of a DRM system
because they allow the rights holders to express the terms
and conditions which need to be upheld by DRM systems.
Most RELs have an extensive vocabulary, supporting syntactic
rules that allow them to express a variety of different terms
and conditions. Thus RELs allow for greater flexibility in the
expression of rights from the view of the rights holders.

However, RELs have also been criticised for giving rights
holders too much control, and thus the flexibility offered by
RELs empower only the rights holders and not the end users.
This stems from the access control models used by most RELs
– only rights expressed in the usage license are granted to the
user, and thus rights not mentioned are considered to be not
granted. This is partly blamed on missing semantics in the
RELs. For example, ODRL has been criticised by some for
the absence of a “not” semantic [7], which prevents rights
holders from expressing a use license like “allow user B all
rights except right A”.

RELs allow for the expression of digital contracts, even
though some, like Felten in [4], have argued that the RELs
are unsuitable for expressing legal rights. However, contracts
are usually negotiated between two parties, and true contracts
require parties to communicate [5]. Referring to XrML, Mulli-
gan et al. argued that “the assumption of a one-way expression
of rights has in part led to the current deficiencies in the
REL” [5]. Mulligan et al. concluded that a REL allowing bi-
directional communication as well asrights messaging proto-

cols (RMP)that support contract negotiations are essential in
future DRM systems.

The problem with the current system can be best represented
using an example from the second scenario in Microsoft’s
overview of RMS [2]. Tom creates a document for Jill, and
protects it using RMS. He specifies that the document can
only be viewed and edited by Jill for one week. If Jill
requires additional time, Tom is required to edit the rights
to the document, extend the deadline and then redistribute
the document to Jill. However, this solution has some major
drawbacks, like:

1) If the document in question is very big (presentation
files for example can easily be over 50Mb in size),
it may become impractical for Tom to redistribute the
document every time rights need to be changed. Even
with broadband Internet, many mail servers for example
do not allow large attachments.

2) Tom could be out of the office, and thus may not
necessarily be in a position to handle rights changes. If
there are automated license servers, bi-directional RELs
could allow end users to request for changes without the
intervention of the rights holders.

With a bi-directional REL, it should allow the user and
rights holder to conduct negotiations on the rights the user
is given. This process can take more than a single round
of “requests” to the rights holder and “offers” to the user.
Furthermore, a bi-directional REL should also allow a user
to request changes to an existing use license. Furthermore, a
bi-directional REL potentially allows for upgrades to a use
license after the initial issuing without the need to change the
DRM controller or redistribute the protected data.

With bi-directional RELs it would also be possible to cater
for fair use at a general level – rights holders can issue use
licenses with usage rules fair for the majority of the users. If
there are users who require additional privileges that fall under
fair use (academics who would like to create extra copies for
their lectures, journalists who would like to excerpt a quote
for a review etc.), they can easily negotiate for these additional
rules.

Electronic negotiation can be represented in a layered model
as shown in figure 1. The users are involved in atransaction,



Fig. 1. Layered view of electronic negotiation

and in the case of contract negotiation, the contract will be
a human readable contract. The contract isrepresentedin a
machine readable language, like ODRL. The negotiation takes
place using acommunication protocolover a computer net-
work. Ideally, these layers should be independent, and thus the
communication protocol should be separated from the REL.
For this reason, this paper focuses on the ODRL extensions
required to allow ODRL to express negotiations, and does not
discuss the details of various negotiation protocols that could
be used.

In this paper, we introduce vocabulary and syntax to fa-
cilitate bi-directional communication in ODRL. We motivate
our design, detail individual elements and then provide two
examples showing how a bi-directional ODRL can be used.
We also detail a scenario, with examples, demonstrating the
use of our extended language as a means for enabling fair use.
Similar vocabulary and syntax can also apply to other RELs
like XrML.

II. D ESIGN MOTIVATIONS

In 2000, Park et al. [6] discussed the different distribution
architectures that could be implemented for secure content
distribution. Park et al. distinguished various architectures with
three criteria: the presence of a virtual machine, the type of
control set and the distribution style. They concluded that a
virtual machine is required for secure content distribution,
while the type of control sets and distribution style dictate
the amount of control the “owner” of the content has after
distribution. In a DRM system, the virtual machine represents
the DRM controller and the control set represents the REL
and the usage licence mechanisms.

Park et al. categorised control sets into three types: fixed
control sets, embedded control sets and external control
sets [6]. Infixed control sets, the DRM system comes with a
predefined set of controls, and thus the DRM enabled data does
not have to have any additional controls. Inembedded control
sets, the DRM enabled data comes with a set of controls as a
single secure package while inexternal control sets, the control
set and the DRM enabled data come in separate packages.
It is possible to combine multiple type of control sets, as

long as the DRM controller can regulate which control sets
should be implemented; e.g. if the fixed control set does not
allow copying, but the embedded control set (issued after the
fixed control set) does allow copying then the DRM controller
should allow copying.

To fully exploit the power of a bi-directional REL, the
DRM system must allow for changes to be made to the
protected work after distribution has taken place. Thus the
DRM controller must be able to enforce all three types of
control sets, and be able to handle use licenses that allow for
rights previously disallowed.

It is true that any number of mechanisms can be used to
express communication from the user to the rights holders.
However, if the expression is not made in the language
used by the rights holders to express rights, there will be
a need to translate from the users’ needs to the appropriate
REL. Translation can be an expensive process, and can lead
to ambiguities and inaccuracies. Thus having bi-directional
support in a REL allows for the possibility of a standardised
mechanism to express the needs of the end users.

In our design we envisage a bi-directional system to be
implemented as a web-service. Thus a user wouldrequest
changes to their current rights and can expect to receive three
types of responses. Firstly, the rights holders can grant the
request and issue a new license, which can be easily expressed
with any REL. Alternatively, the rights holders can grant the
request by creating a licence addendum (in a separate file)
(grant-request). To handle this response, the DRM controller
must be able to detect and use the extended license. Lastly, the
rights holders can deny the request (deny-request). The user
would need to be informed which requests are being denied
since it may happen that the user requested three changes, of
which only one is granted. Thus, in both thegrant-requestand
deny-requestthere would be a need to include the requests.

There are three actions that a user could request:
• Request toadd one or more permissions, resources etc.

that are either not currently present or to extend the
current values e.g. add one more week to the deadline

• Request toremove one or more permissions, resources
etc. that have been granted through an earlier license or
license addendum. While this feature is most probably not
going to be in big demand, it could be used to strip down
undesired or unused permissions. The remove feature is
also necessary for:

• Request toreplace one or more permissions that have
been granted through an earlier license or license adden-
dum. The request to replace is essentially a combination
of an add and a remove request, but it would be more
useful for tracking purposes to utilise a replace request
mechanism. There should not be any restriction on how
the replace mechanism is used – for example a user
might request a replacement of dissimilar permissions,
e.g. replace his right to print 5 copies with the right to
make a backup.

With a bi-directional system, it would require the rights
holders to keep track of individual licenses, and how the



licenses inter relate. The grant-request licenses should also be
able to identify (possibly through the use of a URI) the original
request as well as the original license. This would allow the
DRM controller to keep track of the permissions, resources,
etc. that have been removed or changed. For example, if the
user originally had permission to print a document 2 times,
printed it once, and then requested and received permission to
print the document an additional 5 times, the DRM controller
should allow the user to print 6 more times.

Lastly, we believe that the bi-directional extensions makes
ODRL morecomplete. Current ODRL specifications allow for
two types of licenses – anoffer and anagreement. With an
offer, the rights holders are allowed to express the rights that
they are willing to offer to the end user. If the end user accepts,
the rights holders can then create an agreement. With our
extensions, it is now possible for the end user to have a more
active part in generating the agreement, and thus allow for
flexibility for the user.

In the following section, we discuss the details of our
extensions.

III. ODRL-EXT: BI-DIRECTIONAL EXTENSIONS TOODRL

Our extension adds three more entities – request, grant-
request and deny-request – and are modelled on the agreement
entity. We envisage its main use as being in a web-services
environment and can be described in four easy steps. The end-
user can request the rights holder for a set of rights on a set of
assets. The rights holder can then evaluate the request, and then
deny or grant that request. The user can accept the decision or
carry on negotiating by refining his/her requests. This process
is shown in figure 2

Fig. 2. Negotiating a use license

This model can be further extended where the rights holder
can offer various rights at various prices. The prospective
end user can then request a combination of rights, pay for
these rights and then receive an end user license. Thus in this
manner the request entity can be used for electronic contract
negotiation. The grant and deny request entities can be used
to conditionally accept or reject requests during the contract
negotiation.

A. Add, Remove and Replace

The add, remove and replace requests are the base elements
of our extensions. A user can request a combination of these
requests, and similarly the rights holders can grant or deny the

Fig. 3. The Add Request Content Model

Fig. 4. The Remove Request Content Model

combination of the requests. For maximum flexibility, every
element of a ODRL license agreement should be negotiable –
permissions, constraints, requirements, conditions, assets and
even the parties. For this reason, add, replace and remove ele-
ments are simply instances of the offerAgreeType in the ODRL
Expression Language Schema [1]. Using the offerAgreeType
also minimises ambiguity during negotiations, as the exact
rights can be transfered to the “offer” license and eventually
the “agreement” license.

The replace-requestelement comprises of a set of remove
requests followed by a set of add requests. Although a replace-

Fig. 5. The Replace Request Content Model



request element is not necessary, we believe that this element
would allow for better tracking and management by the rights
holders. This would also allow for automation of license
servers, where the rights holders can write different rules on
which combinations of replace requests they would allow.
Figures 3,4 and 5 show the content model for the add, remove
and replace elements.

B. Request

Fig. 6. The Request Content Model

The user communicates to the rights holders through a
series of requests. The request element is the only element
of the requestType. The requestType type, creates an envelope
containing all the add, remove and replace requests from the
user as well as the context of the request and information
about the party making the request. Thecontext element
allows the rights holder to reconcile the request against an
existing agreement or an offer. At least one party is required to
identify the party making the request. The description element
allows for the end user to write notes, and give more detailed
information to the rights holder. If the request is processed
manually, this feature can be very useful. Figure 6 shows the
content model of the requestType.

C. Request Response

The requestResponseTypecreates an envelope for the rights
holders to respond back to the user making the request.

Fig. 7. The Response-Request Content Model

Fig. 8. The rightsType Content Model

There are two differences between the requestType and the
requestResponseType. Firstly, the response from the rights
holders must have a context, either of an earlier request or of
the affected agreement. This will allow the DRM controller to
keep track of the chain of agreements that it needs to manage
and also allow the rights holders to track their responses to
requests. Secondly the response must have at least two parties
- one identifying the user who made the request and another
to identify the rights holder. Figure 7 shows the content model
of the requestResponse type. The rights holders can respond
to a request from the end user in two ways – they can either
grant or deny the requests, and thus the grant and deny request
elements are of the requestResponseType.

D. rightsType

In ODRL 1.1 the rightsType complex type encapsulates
agreements and offers with a digital signature and a revoke
mechanism [1]. We extended this type to encapsulate the
request, grant-request and deny-request elements.

We have also redefined the rights element to be of this
type. Figure 8 shows the content model of the rights type.
The rightsType in ODRL 1.1 extends the offerAgreeType and
this portion has been collapsed in the diagram.

We recognise that these extensions could also be encapsu-
lated in a new type (for examplenegotiationType) leaving the
existing rightsType type alone. If this approach is taken, it
would also need a digital signature and a revoke mechanism
and we think that our current approach is more elegant as it
avoids duplication of common functions.

E. Examples

In “Ebook Scenario #2” of the ODRL 1.1 specifications, a
consumer (Mary Smith) purchases an ebook “Why Cats Sleep
and We Don’t” [1]. The use license restricts consumers to a
single CPU and allows them to print the book at most two
times.



In example 1, the consumer requests the rights holders to
be allowed to print the ebook 5 more times. Note, that for
the sake of clarity we have left the namespace definitions and
schema locations out of the example. The descriptions of the
namespaces are detailed below.

odrl-ext: The extended ODRL schema as discussed in this
section.

o-ex: TheExpression Language Schemaof the ODRL 1.1
specifications.

o-dd: The Data Dictionary Schemaof the ODRL 1.1
specifications.

Example 2 shows a grant request should the rights holders
grant the user’s request. A deny request would be the same
except thegrant-requestelements will be replaced with the
deny-requestelement.

F. Full Listing

A full listing of the schema definition is available in the
appendix .

<odrl-ext:rights>
<odrl-ext:request>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/

license/1234567890-ABCDEF</o-dd:uid>
</o-ex:context>
<odrl-ext:request-add>

<o-ex:permission>
<o-dd:print>

<o-ex:constraint>
<o-dd:count>5</o-dd:count>

</o-ex:constraint>
</o-dd:print>

</o-ex:permission>
</odrl-ext:request-add>
<o-ex:party>

<o-ex:context>
<o-dd:uid>

urn:ebook.world/999999/users/
msmth-000111

</o-dd:uid>
<o-dd:name>Mary Smith</o-dd:na

me>
</o-ex:context>

</o-ex:party>
</odrl-ext:request>

</odrl-ext:rights>

Example 1: Simple ODRL Request

<odrl-ext:rights>
<odrl-ext:grant-request>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/

license/1234567890-GHIJKL</o-dd:uid>
</o-ex:context>

<o-ex:context>
<o-dd:uid>urn:ebook.world/99999/

license/1234567890-ABCDEF</o-dd:uid>
</o-ex:context>
<odrl-ext:request-add>

<o-ex:permission>
<o-dd:print>

<o-ex:constraint>
<o-dd:count>5</o-dd:count>

</o-ex:constraint>
</o-dd:print>

</o-ex:permission>
</odrl-ext:request-add>
<o-ex:party>

<o-ex:context>
<o-dd:uid>urn:ebook.world/99999

9/users/msmth-000111</o-dd:uid>
<o-dd:name>Mary Smith</o-dd:na

me>
</o-ex:context>

</o-ex:party>
<o-ex:party>

<o-ex:context>
<o-dd:uid>x500:c=AU;o=RightsDir

;cn=AddisonRossi</o-dd:uid>
</o-ex:context>

</o-ex:party>
<o-ex:party>

<o-ex:context>
<o-dd:uid>x500:c=AU;o=RightsDir

;cn=EBooksRUS
</o-dd:uid>

</o-ex:context>
</o-ex:party>

</odrl-ext:grant-request>
</odrl-ext:rights>

Example 2: ODRL Grant Request

IV. EXTENDED EXAMPLE

Examples 1 and 2 used a simple scenario to demonstrate
the use of our proposed extensions. In this section, we detail
a more complicated scenario (based once again on “Ebook
Scenario #2” in [1]) that also demonstrates how our extensions
could be used as a means to enable fair use.

In the existing scenario, Mary Smith purchases an ebook
“Why Cats Sleep and We Don’t” [1]. Users are restricted to
a single CPU and print the book at most 2 times (which we
extended by another 5 copies in examples 1 and 2). Suppose,
Mary Smith is a journalist and wishes to write a thorough
review of the ebook and would like to excerpt some of the
pictures for this purpose (excerption for the purpose of review
is normally considered a fair use right). In this section, we
detail the interactions between Mary Smith and the license
server for this purpose.

Note, that for the sake of clarity we have left the namespace
definitions and schema locations out of the example. The



descriptions of the namespaces are detailed below.

odrl-ext: The extended ODRL schema as discussed in this
section.

o-ex: TheExpression Language Schemaof the ODRL 1.1
specifications.

o-dd: The Data Dictionary Schemaof the ODRL 1.1
specifications.

o-dd-ext:An extension of the Data Dictionary Scheme of
ODRL 1.1 to allow representation of credentials
(discussed in sections IV-B and V).

A. Initial Request

Mary Smith wishes to excerpt 3 pictures from different
pages in the ebook, the first picture in page 3 while the last
picture is in page 56 (about half way through the book).

<odrl-ext:rights>
<odrl-ext:request>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/

license/1234567890-ABCDEF</o-dd:uid>
</o-ex:context>
<odrl-ext:request-add>

<o-ex:permission>
<o-dd:excerpt>

<o-ex:constraint>
<o-dd:range>

<o-dd:min>3</o-dd:min>
<o-dd:max>56</o-dd:max>

</o-dd:range>
</o-ex:constraint>

</o-dd:excerpt>
</o-ex:permission>

</odrl-ext:request-add>
<o-ex:party>

<o-ex:context>
<o-dd:uid>

urn:ebook.world/999999/users/
msmth-000111

</o-dd:uid>
<o-dd:name>Mary Smith
</o-dd:name>

</o-ex:context>
</o-ex:party>

</odrl-ext:request>
</odrl-ext:rights>

Example 3: Extended Example – Request 1

B. Initial Rejection and Counter Offer

Excerption is a fair use, but is usually limited to a
percentage of a work. The license server rejects Mary
Smith’s request with an explanation, but also offers a counter
offer that could be used by Mary Smith. This counter offer
makes use of acredential constraint not present in the
standard ODRL data dictionary. The counter offer is given as

agrant-request, although it could also be expressed as anoffer.

<odrl-ext:rights>
<odrl-ext:deny-request>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/

license/TRANS-0101</o-dd:uid>
</o-ex:context>
<odrl-ext:request-add>

<o-ex:permission>
<o-dd:excerpt>

<o-ex:constraint>
<o-dd:range>

<o-dd:min>3</o-dd:min>
<o-dd:max>56</o-dd:max>

</o-dd:range>
</o-ex:constraint>

</o-dd:excerpt>
</o-ex:permission>

</odrl-ext:request-add>
<o-ex:party>

<o-ex:context>
<o-dd:uid>

urn:ebook.world/999999/users/
msmth-000111

</o-dd:uid>
<o-dd:name>Mary Smith
</o-dd:name>

</o-ex:context>
</o-ex:party>
<odrl-ext:description>

Excerption is only available with an
academic, scholar or journalist
credential. Furthermore, a maximum of
10% of the total protected work can be
excerpted

</odrl-ext:description>
</odrl-ext:deny-request>
</odrl-ext:rights>

Example 4: Extended Example – Response 1, the denial
of request

<odrl-ext:rights>
<odrl-ext:grant-request>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/

license/1234567890-ABCDEF</o-dd:uid>
</o-ex:context>
<o-ex:context>

<o-dd:uid>urn:ebook.world/999999/
license/1234567890-ABCDEF-01</o-dd:uid>

</o-ex:context>
Example continued over the page



<odrl-ext:request-add>
<o-ex:permission>

<o-dd:excerpt>
<o-ex:constraint>

<o-dd:range>
<o-dd:min>3</o-dd:min>
<o-dd:max>13</o-dd:max>

</o-dd:range>
<o-dd-ext:credential>

<o-dd-ext:OrList>
<o-dd-ext:CredentialsType>

Journalist
</o-dd-ext:CredentialsType>
<o-dd-ext:CredentialsType>

Academic
</o-dd-ext:CredentialsType>
<o-dd-ext:CredentialsType>

Scholar
</o-dd-ext:CredentialsType>

</o-dd-ext:OrList>
</o-dd-ext:credential>

</o-ex:constraint>
</o-dd:excerpt>

</o-ex:permission>
</odrl-ext:request-add>
<o-ex:party>

<o-ex:context>
<o-dd:uid>

urn:ebook.world/999999/users/
msmth-000111

</o-dd:uid>
<o-dd:name>Mary Smith
</o-dd:name>

</o-ex:context>
</o-ex:party>

</odrl-ext:request>
</odrl-ext:rights>

Example 5: Extended Example – Response 2, A counter
offer

C. Refined Request

Mary Smith decides to refine her request to suit the terms
of the license server. She chooses to make a request to excerpt
from three different parts of the book but with much smaller
page ranges. She also decides to get the license specified for
a “Journalist” credential only. The credential would form part
of the protocol and not part of the negotiation message, and
thus would be represented separately.

<odrl-ext:rights>
<odrl-ext:grant-request>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/

license/1234567890-ABCDEF-01</o-dd:uid>
</o-ex:context>
<odrl-ext:request-add>

<o-ex:permission>
<o-dd:excerpt>

<o-ex:constraint>
<o-dd:range>

<o-dd:min>3</o-dd:min>
<o-dd:max>4</o-dd:max>

</o-dd:range>
<o-dd:range>

<o-dd:min>16</o-dd:min>
<o-dd:max>18</o-dd:max>

</o-dd:range>
<o-dd:range>

<o-dd:min>56</o-dd:min>
<o-dd:max>57</o-dd:max>

</o-dd:range>
<o-dd-ext:credential>

<o-dd-ext:CredentialsTy
pe>

Journalist
</o-dd-ext:CredentialsTy

pe>
</o-dd-ext:credential>

</o-ex:constraint>
</o-dd:excerpt>

</o-ex:permission>
</odrl-ext:request-add>
<o-ex:party>

<o-ex:context>
<o-dd:uid>

urn:ebook.world/999999/users/
msmth-000111

</o-dd:uid>
<o-dd:name>Mary Smith
</o-dd:name>

</o-ex:context>
</o-ex:party>

</odrl-ext:request>
</odrl-ext:rights>

Example 6: Extended Example – Request 2, A refined
request

D. Accepted Response

The license server accepts Mary Smith’s request and issues
a grant request use license.



<odrl-ext:rights>
<odrl-ext:grant-request>

<o-ex:context>
<o-dd:uid>urn:ebook.world/999999/

license/1234567890-ABCDEF</o-dd:uid>
</o-ex:context>
<o-ex:context>

<o-dd:uid>urn:ebook.world/999999/
license/1234567890-ABCDEF-01</o-dd:uid>

</o-ex:context>
<odrl-ext:request-add>

<o-ex:permission>
<o-dd:excerpt>

<o-ex:constraint>
<o-dd:range>

<o-dd:min>3</o-dd:min>
<o-dd:max>4</o-dd:max>

</o-dd:range>
<o-dd:range>

<o-dd:min>16</o-dd:min>
<o-dd:max>18</o-dd:max>

</o-dd:range>
<o-dd:range>

<o-dd:min>56</o-dd:min>
<o-dd:max>57</o-dd:max>

</o-dd:range>
<o-dd-ext:credential>

<o-dd-ext:CredentialsTy
pe>

Journalist
</o-dd-ext:CredentialsTy

pe>
</o-dd-ext:credential>

</o-ex:constraint>
</o-dd:excerpt>

</o-ex:permission>
</odrl-ext:request-add>
<o-ex:party>

<o-ex:context>
<o-dd:uid>

urn:ebook.world/999999/users/
msmth-000111

</o-dd:uid>
<o-dd:name>Mary Smith
</o-dd:name>

</o-ex:context>
</o-ex:party>

</odrl-ext:request>
</odrl-ext:rights>

Example 7: Extended Example – Response 3

V. FUTURE WORK

As pointed out by Mulligan et al. [5], bi-directional commu-
nication does not depend on REL support only. The protocols
used by the DRM systems and the DRM controllers need to
be modified to allow for bi-directional communication and for

better management of multiple use licenses for the same digital
object.

License servers could also be setup to grant or deny certain
requests automatically, and thus algorithms are needed to au-
tomatically evaluate license templates (ODRL offers) against
user requests.

We are currently investigating the use of credentials in
DRM, particularly as a mechanism in allowing for fair use
(as shown in section IV). Together with a bi-directional
REL, we believe that most of the common fair uses can be
accommodated in a DRM system.

In the broader scheme, bi-directional REL forms a core
part of our proposal to create an open right management
services framework [3], and will hopefully overcome many of
the current obstacles in DRM systems. A smaller sub-project
is currently implementing some of the extensions for DRM
controllers mentioned above.

VI. CONCLUSIONS

In this paper we discussed extensions to ODRL to allow for
bi-directional communication. We discussed our motivation,
the concept model, the syntax and semantics of the extensions.
Furthermore, we presented examples using existing ODRL
scenarios that make use of our extensions. Finally, we dis-
cussed how the extensions could be used to allow for fair use
with examples drawn from an existing ODRL scenario.

The extensions allow end users to specify any part of a use
license including rights, constraints and resources, they would
like to have in a use license and rights holders to respond to
these requests, thus allowing for negotiations of rights. These
extensions complement the existing “offer” and “agreement”
license types, and make ODRL more complete.

By extending the XML schema, we have not broken the
existing standard; and thus allows for full backward compati-
bility. We believe that the request feedback mechanism would
allow for easier rights management through better contract
negotiation, and would also allow for users to request (and be
subsequently granted) fair use rights that might not necessarily
hold for everyone. The extensions we have presented can also
be implemented in other RELs such as XrML.

ACKNOWLEDGEMENTS

This work is partially supported through grants from the
UCT Council and the National Research Foundation (NRF)
of South Africa. Any opinions, findings, and conclusions or
recommendations expressed in this paper/report are those of
the author(s) and do not necessarily reflect the views of UCT,
the NRF or the trustees of the UCT Council.

XML Schema content model diagrams were generated
using XMLspy.

Alice and Bob created by Nicholas Hall.c©Nicholas Hall
2005, all rights reserved.



REFERENCES

[1] Open Digital Rights Language (ODRL) 1.1, 2002,
URL: http://odrl.net/1.1/ODRL-11.pdf.

[2] “Technical overview of windows rights management services for windows
server 2003,” Microsoft,” White Paper, 2003.

[3] A. Arnab and A. Hutchison, “Distributed DRM System,” University of
Cape Town,” Departmental Technical Report, No. CS04-27-00, 2004.

[4] E. Felten, “Skeptical view of DRM and Fair Use,”Communications of
the ACM, vol. 46, no. 4, pp. 57–59, 2003.

[5] D. Mulligan and A. Burstein, “Implementing Copyright Limitations in
Right Expression Languages,” inProceedings of the 2002 ACM workshop
on Digital Rights Management. ACM, 2002.

[6] J. Park, R. Sandhu, and J. Schifalacqua, “Security architectures for
controlled digital information dissemination,” inProceedings of the 16th
Annual Computer Security Applications Conference, 2000.

[7] R. Wenning, “DRM and the Web,” inODRL International Workshop
2004, Vienna Austria, 2004,
URL: http://www.w3.org/Talks/2004/04-odrl/.

APPENDIX

In this section, we provide a full source listing of the
extended ODRL schema. Due to space constraints, indentation
has been reduced.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://people.
cs.uct.ac.za/˜aarnab-ODRL"
elementFormDefault="qualified"
attributeFormDefault="qualified" version="
0.1" xmlns:odrl-ext="http://people.cs.uct.
ac.za/˜aarnab-ODRL"
xmlns:xs="http://www.w3.org/2001/XMLSchema
" xmlns:o-ex="http://odrl.net/1.1/ODRL-EX"
>

<xs:import namespace="http://odrl.net/1.1/
ODRL-EX" schemaLocation="http://www.odrl.n
et/1.1/ODRL-EX-11.xsd"/>

<xs:annotation>
<xs:documentation>

XML Schema extends ODRL Expression Lang
uage Schema by allowing users/distribut
ers to requ-est rights from theright ho
lder.

Alapan Arnab
Validated with XMLSpy 2004

</xs:documentation>
</xs:annotation>

<xs:element name="rights" type="odrl-ext:
rightsType"/>

<!-- Add the query element to the language
-->
<xs:element name="request" type="odrl-ext:
requestType"/>

<xs:element name="grant-request" type="odr
l-ext:responseRequestType"/>
<xs:element name="deny-request" type="odrl
-ext:responseRequestType"/>

<!-- The request type comprises of a numbe
r of addition, replace and remove requests
. These requests themselves are of the off
erAgreeType.
-->

<xs:complexType name="requestType">
<xs:choice minOccurs="0" maxOccurs="unbou

nded">
<xs:element ref="o-ex:context" minOccurs

="0"
maxOccurs="unbounded"/>

<xs:element ref="odrl-ext:request-add"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="request-replace"
type="odrl-ext:requestReplaceType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="odrl-ext:request-remove
"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="o-ex:party"

maxOccurs="unbounded"/>
<xs:element name="description" type="xs:

string"
minOccurs="0" maxOccurs="unbounded"/>

</xs:choice>
</xs:complexType>

<!-- A grant/deny request should have the
information about the request its granting
, the license number/context information
of the original request and license.contex
t information about the new license.-->

<xs:complexType name="responseRequestType"
>

<xs:complexContent>
<xs:restriction base="odrl-ext:requestTy

pe">
<xs:choice minOccurs="0" maxOccurs=

"unbounded">
<xs:element ref="o-ex:context"

maxOccurs="unbounded"/>
<xs:element ref="odrl-ext:request-add"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="request-replace"

type="odrl-ext:requestReplaceType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="odrl-ext:request-remo



ve"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="o-ex:party" minOccurs
="2"

maxOccurs="unbounded"/>
<xs:element name="description"

type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>

</xs:choice>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

<!-- Allows for a multiple number of tuppl
es for replacement.-->

<xs:complexType name="requestReplaceType">
<xs:sequence minOccurs="0"

maxOccurs="unbounded">
<xs:element ref="odrl-ext:request-remove

"/>
<xs:element ref="odrl-ext:request-add"/>

</xs:sequence>
</xs:complexType>

<xs:element name="request-add"
type="o-ex:offerAgreeType"/>

<xs:element name="request-remove"
type="o-ex:offerAgreeType"/>

<!-- The rightType container. Added the re
quest container. -->

<xs:complexType name="rightsType">
<xs:complexContent>

<xs:extension base="o-ex:rightsType">
<xs:choice minOccurs="0"

maxOccurs="unbounded">
<xs:element ref="odrl-ext:request"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="odrl-ext:grant-reques

t" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="odrl-ext:deny-request

" minOccurs="0" maxOccurs="unbounded"/>
</xs:choice>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:schema>


