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ABSTRACT 
“Foreknowledge of the future makes it possible to manipulate 
both enemies and supporters." --Raymond Aron in “The Opium of 
the Intellectuals” 

The above quote describes perfectly the motivation for developing 
a prediction tool. Being able to minimise uncertainty to any 
possible degree will give any business that engages in prediction 
or forecasting, a competitive advantage that is becoming 
necessary for economic prosperity. 

The main task of this project was to use Artificial Intelligence 
Methods to support Abalone Harvest Prediction. The first step 
was to choose a suitable graphical probabilistic network so that 
the abalone growth, given the factors that affect it, can be 
successfully modelled.  

An implementation structure for the chosen model was designed 
and then implemented. Once a suitable model was designed, the 
two core components of the system were implemented. A learning 
engine to learn the parameter values for the chosen model, and an 
inference engine to perform probabilistic inference on the learnt 
parameters. 

A graphical user interface that is user-friendly and easy to 
understand by the people at the farm was then developed and 
implemented.  This graphical user interface hides the complexities 
of artificial intelligences techniques of which can intimidate the 
novice user.  

1. INTRODUCTION 
In today’s business world, where the dynamics of market demand 
and supply are constantly changing, it has become increasingly 
important and difficult to establish and maintain competitive 
advantage.  

Uncertainty has been the most universal trait of market behaviour. 
This has made businesses realize that the innovative handling of 
uncertainty can lead to adding of value.  

The high costs of developing and maintaining systems today have 
led to the realization that standardization is a must in all domains. 
Standardization of processes can lead to the decreases of 
development costs financially and in terms of time and expertise.  

The high costs of developing systems and solutions today have led 
to the realization that standardisation is a must in any domain. 
Development costs can be decreased significantly in financial 
terms as well as in terms of time and expertise.   

A popular problem in the business world is that of prediction, 
applied to both supply and demand. In the case of this project, the 
problem to be addressed is one of predicting supply. To solve this 
problem, artificial intelligence techniques were evaluated and the 
most relevant technique was employed to provide a solution. 

This project was undertaken in conjunction with the I&J abalone 
culture division in Gansbaai, South Africa.   

The solution consists of two parts; the first being a supply 
prediction tool that predicts the growth rate of abalone using 
environmental data. The second part of the solution is a browser-
based software development process platform. The platform is to 
be used by the target organization to understand the work done on 
this project in order to allow the system’s extension.  

In order for the system to be implemented, there were a number of 
design decisions that first had to take place. The first decision 
involved choosing a model with which to represent the situation at 
the farm. Two technologies to construct models were evaluated 
based on their appropriateness to the problem domain. These were 
Bayesian Networks and Dynamic Bayesian Networks. 

The second decision involved deciding on an inference algorithm 
to implement the given model, and the third decision was to 
decide on a learning algorithm to employ in the model. 

Besides the design of the system, the design of the process 
platform had to be considered as well, so agile modelling, 
knowledge engineering, user-centred design and business process 
modelling had to be covered as well.  

2. BACKGROUND 
2.1 Bayesian Networks 
The statement “The heart of Bayesian Techniques lies in the 
celebrated inversion formula” in Pearl [1] refers to the formula: 

P (H | e) = P (e | H) P (H) / P (e).   

This is where H is a belief of a hypothesis, given evidence e and P 
(e | H) is the probability of the hypothesis given e. Another name 
for the inversion formula is Bayes rule; this formula provides the 
basis for all Bayesian techniques. 

A Bayesian network is a directed graphical model, where nodes 
represent random variables and arcs represent conditional 
dependence assumptions where the lack of an arc can be said to 
describe conditional independence assumptions as stated in 
Murphy [2].  



An example of a Bayesian Network can be seen in figure one, 
adapted from Murphy [2]. It represents the situation where the 
grass can be caused to be wet by a sprinkler or the rain. It also 
shows that the rain can be cause by the fact that the weather is 
cloudy. 

 

Figure 1. Example Bayesian Network  

2.1.1 Inference in Bayesian Networks: 
Murphy [2] explains that the most common task to be solved by 
Bayesian networks is probabilistic inference. Charniak [3] goes on 
to state that the main constriction in using Bayesian networks is 
that inference can be an NP-hard problem. The problem arises in 
multiply-connected networks, if there is more than one path 
between any two nodes; computation of the probabilities of the 
network becomes more complex and takes much longer.  

 

Figure 2: Example of a singly-connected network 

      

Figure 3: Example of a multiply-connected network  

      

Figure 4: A clustered multiply-connected network 

The ideal form of inference is known as “Exact Inference”. Exact 
inference cannot always be used. Whether or not it can be used for 
a network depends heavily on the structure of the network itself. It 
can be used in singly-connected networks, also called polytrees. A 
polytree is a network where there is a maximum of one path 
between any two nodes; a simple example can be seen in figure 
two. 

Exact inference cannot be used in multiply-connected networks, 
such as in figure three. A detailed mathematical description of the 
problem is complex and not necessary in the context of this paper.  

The problem can best be explained in the context of figure three. 
If evidence is provided for node D, and the conditional 
probabilities at node C are known, the state at C should then be 
inferred. The problem is that C is not just directly influenced by 
the evidence at D, but also by A which is influenced by D via B. 

There are cases where exact inference can be used despite the 
network being multiply-connected. A process called clustering 
can be used, in which pairs of nodes of a multiply-connected 
network are combined to form single nodes until a polytree is 
formed. This process is described in detail in Charniak [3].  

An example of clustering can be seen by the transition of the 
network from figure three to figure four. Nodes B and C are 
combined into one so the network can become a polytree. The 
parameters contained in node BC are the results of the cross 
product of the values of B and C. The inference would then be 
applied to the polytree and the values for B and C can be found 
individually from the BC node. The new values for B and C can 
then be integrated into the original multiply-connected tree. 

In cases where clustering cannot be used to accommodate exact 
inference, a technique known as approximate inference is used. 
There are many algorithms for approximate inference, but there 
are common features in all of them.  

They all randomly collect values for a certain number of nodes, 
and then use the values of those nodes to assign values to other 
nodes in the network. A popular technique described in Charniak 
[3] is that of “Logic sampling”. The values of root nodes are 
guessed based on their conditional probabilities. The algorithm is 
then propagated down the network by taking the guessed parent 
node’s value as evidence and then assigning a value to the child 
node.  

A notable algorithm is the Message-Passing algorithm by Judea 
Pearl Kim[], which can be applied as a mechanism for both exact, 
as well as approximate inference. Message-passing will be 
described in detail later on in this paper.  

2.1.2 Parameter Learning 
The aim of parameter learning is to derive the probabilities for the 
CPT held at each node. Deriving these probabilities is considered 
to be the most straightforward learning situation when the 
structure is defined in its totality and the dataset containing the 
parameters is complete as described by Krause [4].  

The probabilities are derived from the dataset by using Maximum 
likelihood estimate algorithms. These algorithms, in short, ensure 
that the probabilities for the CPTs are representative of the 
parameter values in the dataset. An in-depth discussion of 
Maximum Likelihood Estimate algorithms can be found in [2]. 

When values for certain parameters are missing, i.e. the dataset is 
incomplete, and the structure of the network is defined, learning 
of parameters is not a straightforward process. Expectation 
Maximization or gradient ascent methods have to be employed in 
order to derive the probabilities for the CPT. 

 Both these methods use an inference algorithm as subroutine. The 
inference algorithm estimates values for the parameters with 
missing data. Then an iterative process is used during which the 
estimated values are refined until the probabilities in the CPTs 
converge.  



Once the probabilities in the CPTs converge, they represent the 
learnt probabilities. A detailed explanation of the Expectation 
Maximization method is given in Nilsson [5].  

2.1.3 Structure Learning 
The goal of structure learning is to mine the interdependencies 
between the nodes of a Bayesian network from the data containing 
the parameters. When graphically portrayed, structure learning 
attempts to find the arcs between the nodes and its directionality. 

A naïve way of learning the structure is to enumerate all the 
possible network structures that can be constructed from a set of 
pre-defined nodes. Each of these structures is then evaluated using 
a scoring metric. A scoring metric is a set of measures that can be 
use to evaluate a Bayesian network.  

There are a number of scoring metrics and one of them is the 
description length scoring metric. A good discussion of it can be 
found in Nilsson [5]. In the case of the description length scoring 
metric, the network structure among all the possible network 
structures that minimises the metric is the structure that best 
describes the data and is hence the learnt structure.  

The evaluation of all the possible network structures using a 
scoring metric is generally not feasible as stated by Deviren [6]. 
This is due to the fact that the number of possible network 
increases exponentially with an increasing number of nodes. For 
example, as stated in Krause [4], the number of possible networks 
is approximately 4.2x108 for 10 nodes. 

There are many different methods that can be applied to solve the 
problem of evaluating all the possible network structures. One of 
the most discussed methods in literature is described in Krause 
[4]. It is the hill-descending or greedy search method in which 
changes to network i.e. the merit of adding, deleting or reversing 
an arc is evaluated using a scoring metric instead of evaluating the 
whole network. The greedy search method relies on the property 
that the scoring metric is decomposable.  

The scoring metric is decomposable in the sense that the scoring 
metric for whole Bayesian network is the sum of the local scoring 
metric at each node. Hence changes to a node only require the 
computation of the local scoring metric at that node as opposed to 
computation of the scoring metric of the whole Bayesian network.  

2.2 Dynamic Bayesian Networks 
A dynamic Bayesian network, when described in brief can be 
thought of as a probabilistic graphical network such as a Bayesian 
network that encodes the notion of time within it so as to 
accommodate sequential data.  

In more technical terms, dynamic Bayesian networks are directed 
graphical models of stochastic processes that in their simplest 
form generalise hidden Markov models as described by Pearl [1]. 
Stochastic processes are processes that involve some kind of 
randomness or unpredicted effects often associated with 
probabilistic or statistical treatments. Dynamic Bayesian networks 
generalise hidden Markov models hereafter referred as HMMs in 
the sense that they provide an easier way to specify the 
conditional independencies involved in HMM. The concepts 
involved in HMM and dynamic Bayesian networks are however 
similar.   

In order to understand the concepts involved in dynamic Bayesian 
networks it is best to give an example of an HMM. The example 
described below is adapted from Dugad [7] and Barber [8].  

Let there be 3 urns, U1, U2, U3 such that each of them can contain 
different proportions of Blue and Red marbles. These proportions 
of Red and Blue marbles in each urn can be represented as 
probabilities as shown in the matrix below.   

U1 U2 U3 

Bl
ue 

0.3 0.8 0.5 

Re
d 

0.7 0.2 0.5 

Table 1: Probability matrix of marble colour and urn 

Marbles are drawn from the urn in a sequence, e.g. U2 U1, U3.  Any 
of the three urns can be chosen as the first urn from which a 
marble is drawn as long as the sequence is respected. For example 
if U1 is chosen as the first urn, then the next urn chosen will be U3, 
then U2 and so on. There is a probability associated with each urn 
which represents its chances of being the first urn from which a 
marble is drawn i.e. the urn chosen at time t =1. This is shown in 
the table below. 

U1 U2 U3 

0.2 0.5 0.3 

Table 2: A clustered multiply-connected network 

Sometimes mistakes happen and the sequence of choosing the 
next urn is not respected. The probability of moving from one urn 
to another is given in the matrix below.       

U1 U2 U3 

U1 0.1 0.8 0.1 

U2 0.1 0.1 0.8 

U3 0.8 0.1 0.1 

 

Table 3: Transition matrix for moving from Ui to Uj. 

When the marbles are drawn from the urn in the sequence 
described above (U2 U1, U3), only the colors of the marbles are 
shown to an observer. The urn from which a marble comes from 
is not shown to the observer.  The urns can be thought as being 
hidden (representing hidden states) and the colors represent 
observed variables from the hidden states. From the above 
information a hidden Markov model can be constructed. It 
consists of the following elements that are referred to as the 
parameters of the model: 

1. The probabilities of being in a particular state at time= 1 
which is shown by table two. 

2. The probabilities of moving from one state to another 
that is shown by Table three. 

3. The probabilities of each observed variable in each state 
which is shown by Table one.  

The model can be graphically portrayed with hidden states 
represented as hi and observed variable as oi and as shown below. 

From Ui

 

To Uj

 



      

                  Figure 5: A Hidden Markov Model.  

There are three problems for HMMs to solve, as described in 
Dugad [7]. Some HMM notation is required to understand them. 

N = number of states in the model. 

M = number of distinct observation symbols. 

T = number of symbols observed. 

it denotes the state at time t. 

V = {v1,…,vM} denotes the discrete set of possible observation 
symbols. 

 

= { i}, i = P (i1 = i), the probability of being in state i at time 
t=1. 

A = {aij} where aij = P (it+1 = j | it = i), the probability of being in 
state j at time t +1 given that we were in state i at time t.  

B= {bj(k)},bj(k) = P (vk at t | it = j), the probability of observing 
the symbol vk given that we are in state j. 

Ot will denote the observation symbol observed at instant t. 

 

= (A, B, ) will be used as a compact notation to denote an 
HMM. 

Problem 1: Given a model  = (A, B, ) how do you compute P (O 
| ), the probability of occurrence of the observation sequence O = 
O1, O2…OT. 

Problem 2: Given a model 

 

= (A, B, ) how do we choose a state 
sequence  

I = i1, i2… iT  so that P (O, I | ), the joint probability of the 
observation sequence  

O = O1, O2,…,OT and the state sequence I given the model 

 

is 
maximized. 

Problem 3: How do we adjust the HMM model parameters 

 

= 
(A, B, ) so that P (O | ) is maximized?  

2.1.1 Inference in DBNs 
Inference deals generally with the solution to Problem one. There 
are different algorithms that can be used to perform inference in a 
DBN. Two of the most popular algorithms are the Forward-
Backward algorithm, described fully in Dugad [7] and the 
Junction tree algorithm, described fully in Barber [8].  

2.1.2 Learning in dynamic Bayesian network 
As in Bayesian networks, there are two types of learning that can 
occur, structural learning and parameter learning. The algorithms 
for learning Dynamic Bayesian networks are extensions of 
algorithms for learning Bayesian networks as described by 
Murphy [9].  A discussion of these extensions is out of the scope 

of this paper, as it will require a full mathematical description of 
the learning algorithms. However a detailed description of the 
algorithms can be found in Murphy [9].  

2.2 Agile Modelling 
Adapted from Ambler [10], agile modelling, hereby referred to as 
AM, is a ‘chaordic’ practice-based methodology that describes 
how to perform modelling and documentation in software 
engineering in an agile manner. The term ‘chaordic’ refers to the 
fact that it combines the chaos of simple modelling with the order 
that is found in the production of artefacts that occurs in typical 
software engineering techniques. The word agile in AM, as 
adapted from Beck [11] refers to the principle of welcoming 
requirements changes throughout the development process.   

2.3 Knowledge Engineering 
Context in any decision-making process represents the secondary 
properties of a cognitive or motivational state of an individual that 
modify the effect of a stimulus or activity.  

In any domain, there are usually domain experts who, whether 
they have the ‘know that’ knowledge or not, are known to be 
experts because of their ‘know how’. Tacit knowledge is that 
knowledge that is implicitly held by an individual. There is tacit 
knowledge that can be made explicit. Explicit knowledge is 
accessible to everyone and shared. By observing and interacting 
with the expert in context, the explicitable tacit knowledge can be 
translated to explicit knowledge. This is extremely useful for 
knowledge engineers in a domain-specific environment. The 
dynamics of this process are illustrated in figure six, adapted from 
Brezillon [12].  

Context can be divided into two parts; the first is called 
Contextual knowledge which represents the fixed primary 
characteristics of a situation. The second is called External 
knowledge, and it represents the part of the context that does not 
influence the decision-making at a particular time. When the 
domain expert performs a task that includes contextual 
knowledge, the act is known as a procedural context. If the 
contextual knowledge is their activity within context, the 
procedural context is a single task. By observing and documenting 
this process, tacit knowledge can be made explicit. 

 

Figure 6: Contextual knowledge and procedural context   

3. APPROACH 
3.1 Model 
Due to the time related nature of the causal relationships at the 
farm, Dynamic Bayesian Networks (DBNs) seemed the obvious 
choice. There was a complication however, as seen in figure 
seven. The complication is that the hidden and observable variable 
are observable at the same time. The variable ‘ev’ stands for an 
environmental variable and the variable ‘g’ stands for the growth 

h1 h2 h3 h4 

o1 o2 o3 o4 



rate of an abalone. What is meant by hidden to the same degree is 
that they are both made observable at the same time i.e. once a 
month. When ‘ev’ is observed, ‘g’ will be inferred, but if ‘g’ and 
‘ev’ are made observable at the same time, then why infer ‘g’ 
when it can just be observed? It is for this reason that it was 
decided that DBNs would not be an ideal graphical model for the 
processes at the farm. 

      

Figure 7: Proposed DBN for farm (Left) 

     Figure 8: BN for one size-range (Right) 

When considering modelling the farms processes using a BN, it 
was clear that the fact that the process was time-related would be 
a complication. This turned out to not be a big design challenge, 
as the number of time-steps is fixed. This is because each time-
step represents one month. The network has the additional ‘t’ 
node because the month is the direct cause of the value of ‘ev’, 
due to the seasonal nature of the variance of ‘ev’.    

What this means is that each size range of animals can be 
represented by a Bayesian network. This is because different-
sized animals grow at different rates. For any particular month, 
the ‘t’ node will be given evidence, in the form of the current 
month, as it should be known. This is the model that was 
implemented as the backbone of AhPT. 

3.2 Structural Implementation 
It can be observed from the model in figure nine, that there are 
BNs for each size class, but more importantly, that for a particular 
month, they will all have the same evidence provided for ‘t’, as t 
represents the current month. Linked to this is the fact that the 
relationship between ‘t’ and ‘ev’ is the same irrespective of the 
size of the abalone. This might not be intuitive to the reader, but 
these issues could not be clarified specifically because of 
confidentiality. 

 

Figure 9: Structure of BN for three size classes over two 
months 

The first implication of the model is that there is only need for one 
CPT for the relationship between ‘t’ and ‘ev’, because the 
relationship is the same irrespective of the size of the animal. The 
other implication is that there is a need for a CPT for the ‘ev-g’ 
relationship for each time-step.  

These implications remove the need for the storage of an explicit 
structure containing all of the nodes. The ‘structure’ chosen to 
implement in the end was to persistently store the farm’s 
population containing all of the various sizes. A global CPT for 
the ‘t-ev’ relationship is persistently stored, as well as CPTs for 
each size class. The CPTs and population data are stored in XML 
format 

3.3 Inference 
Exact inference, as described in 2.1.1 was chosen, as opposed to 
approximate inference. Approximate inference can yield similar 
results as exact inference when applied to extensive data. Due to 
the sparseness of data at the farm, exact inference was chosen as a 
safer option. This was possible, as the networks in figure nine 
meet the criteria to be considered polytrees/singly-connected. 

The algorithm chosen was Judea Pearl’s message passing 
algorithm, taken from Diez [13] and Kim [14]. A detailed 
explanation of the algorithm from Diez [13] is below: 

A BN can be represented as directed acyclic graph, where each 
node represents a random variable with a probability distribution: 

P (x1, …, xn) = i P (xi  | pa(xi)), (where i=1
3i = 1*2*3) 

where xi represents a possible value of variable X and pa(xi) is an 
instantiation of the parents of Xi in the graph. The basic problem 
of inference is computing P (x | e) of variable X, given evidence e. 

e  {Xi = xi, Xj = xj,…, Xn = xn } . 

The message passing algorithm: 

The goal of the algorithm is to find P (x/e) as described above, i.e. 
the value of the probability that X = x given that we have evidence 
e. In a polytree such as the one depicted in figure fifteen, any node 
X divides the evidence into the evidence causing X, eX

+ ; and 
evidence connected to it’s effects, eX

-. Similarly a link XY divides 
evidence into evidence above the link, eXY

+ ; and evidence below 
the link, eXY

-. This division of evidence is called d-separation and 
it justifies the definition of the following messages used in the 
Message Passing algorithm. 

(x)  P (x, eX
+) 

(x)  P (eX
- | x) 

X(ui)  P (ui, eUX
+) (Note that UX is actually UiX in this equation) 

y(x)  P (eXY
- | x) (Note that Y in y is actually Yi, and XY is 

actually XYj ) 

The derivations of these messages are described in detail in Kim 
[19], but are not necessary for this report. D-separation results in 
two subsidiary properties of polytrees: 

 

For a node X, two children of X, Yi and Yj are 
independent of each other given the value of X. 
i.e.: P (yi | x) = P (yi | x, yj).    

 

A parent Ui and a child Yj of a node X are independent 
given the value of X. 
i.e.: P (ui | x) = P (ui | x, yj).     

To avoid confusion, it must be stated that although the first 
property above implies an independency between adjacent child 
nodes, this does not apply to parent nodes of X. 

i.e.: P (ui | x)  P (ui |x, uj).    



Given the independency properties described above, the recursive 
expressions for computing the messages are: 

P (x | e) = (x) (x)     

(x) = ? u1,…unP (x | u1, …, un) i=1
n

X(ui)        

(x) = j=1
m

Y(x)  (Note that Y is actually Yj)   

Y(x) = (x)

 

k  j Y(x)   (Note that Y in is actually 
Yj and Y in Y is actually Yk)  

Y(x) = ? y [ (yj) ? v1,…vp P (yj | x, v1, …,vp) k=1
p

Y(vk)]   

Where: 

 

is a normalization constant to be computed after finding (x) 
and (x). 

V1 , …, Vp are the causes of Yi other than X. 

The inference engine is an implementation of the message passing 
algorithm discussed above. The only modification is that the 
lambdas ( (x)) were ignored because of the nature of the causal 
relationships of our model. 

 

Figure 10: Evidence propagation using Message Passing  

3.4 Learning 
A learning algorithm was required in order to learn the parameters 
of the data for the system. In order to achieve this, a Maximum-
likelihood estimate-learning algorithm was implemented for the 
learning engine to achieve its goals. 

Following is a description of learning algorithm implemented, 
which is best explained in the context of an example adapted from 
Russell [15]. 

Suppose a bag of lime and cherry candy is bought from a 
manufacturer whose lime-cherry proportion is unknown and the 
type of candy cannot be determined from its wrapping. The 
Maximum-Likelihood algorithm can be used to estimate the 
proportion of cherry in the bag. Let the proportion of cherry, i.e. 
the parameter to be learnt, be denoted by . Suppose N candies are 
unwrapped of which c are cherries and l =N –c are limes. Under 
the assumption that these observations are independent and 
identically distributed, the likelihood of this particular dataset is 
given by:  

 

Where h

 

is a non-observed hypothesis about the data and d 
represents the dataset 

The log-likelihood L of the dataset is then calculated from the 
above equation  

L (d | h ) = log P(d | h ) =      log P(dj | h

 

) = c log  + l log (1- ) 

A differentiation of the above equation is then perform and 
equated to zero to obtain 

   

In order to calculate the parameter 

 

the values c and N first had 
to be obtained from the data.  

3.5 Production Simulation 
In order for a prediction to be made, both the inference engine and 
production simulations have to be used. Essentially, the inference 
engine is to provide one of the inputs for the production 
simulation. The production simulation gets the other input by 
reading in the current population from an XML file of the current 
stock. Product objects containing size class objects are then 
generated using the XML as input.  

The production simulation then updates the sizes of the animals 
using the growth rates generated by the inference engine. The 
other production rules include exporting of animals, injection of 
new stock to the population, and moving of animals between size 
and product classes. Once all of the production simulation is done, 
the new population is written to a new XML file. This process can 
be clearly seen in figure sixteen. 

 

Figure 11: Overview of Production Simulation  

3.6 Process Platform 
The AhPT Process Platform was implemented as a browser-based 
process platform, using HTML. The reason for it being browser-
based is that it can be used on the web for easy access and that it 
is completely platform unspecific. It is iterative in nature, 
comprising of four phases, “Requirements Management”, 
“Software Specification”, “Implementation” and “Testing”.  

4. RESULTS 
The results of a heuristic analysis test on our data were positive; 
Mr Loubser (A domain expert) chose the graph of our results as 
the second-most likely of a collection of datasets. Further more 
there was only one notable difference between the graph chosen 
as most likely and the results of our system. The difference is a 
‘kink’ in our graph, which we found was caused by a lack of data 
and sampling error in the data gathering at the farm.  



An ad hoc prediction accuracy test at the farm where we predicted 
September’s environmental variable was conducted and the result 
was extremely pleasing. Our prediction of ‘ev’ was extremely 
close to the real value. The actual value can not be stated in this 
report for confidentiality reasons. 

The bench-marking done for the inference algorithm against a 
package called ‘JavaBayes’ Cozman [17] yielded positive results. 
The inference returned the same results except that JavaBayes is 
more accurate as AhPT rounds off the 17th decimal place, due to 
the nature of floating point manipulation in C#.  

The learning engine was tested by comparing parameters learnt 
from the same dataset using a product called BayesiaLab [18] and 
those learnt using AhPT. Parameters learnt using BayesiaLab are 
expressed as a percentage while the parameters learnt using AhPT 
are expressed as a proportion but they represent the same 
information. When learnt parameters using BayesiaLab and using 
AhPT are expressed in the same manner, it can be seen that the 
difference between them is negligible. This shows that learning 
that occurs in AhPT is acceptable when compared to the one in 
BayesiaLab and was successfully implemented.  

5. CONCLUSIONS 
Given the initial problem description we have delivered: 

 

The Abalone harvest Prediction Tool: 
AhPT is a prediction tool that uses artificial intelligence 
techniques to perform predictions. The tool learns trends 
from historical data and uses probabilistic inference to 
perform harvest predictions. 

 

The AhPT Process Platform: 
The AhPT Process Platform is a browser-based software 
development process platform that was designed to 
adhere to the practices and principles of Agile 
Modelling. The AhPT Process Platform makes us of 
both user centred design and requirements traceability. 
It has been evaluated heuristically to have fulfilled its 
main design goal.  

 

The Inference Engine: 
An implementation of Judea Pearl’s Message passing 
algorithm benchmarked against JavaBayes and has been 
found to result in adequate inference. 

 

The Learning Engine: 
An implementation of the Maximum likelihood estimate 
algorithm benchmarked against BayesiaLab and has 
been found to have a negligible difference in results 
with BayesiaLab. 

 

Production Simulation: 
This consists of the simulation of the production events 
at the farm, which covers the growth, exporting and 
movement between products and sizes of the abalone. 

Given the comments above, we conclude this project to be a 
success  
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