
Abalone Harvest Prediction using AI methods
Technical Paper CS04-15-00

Department of Computer Science
University of Cape Town

Rashin Maharaj
rmaharaj@cs.uct.ac.za

Shaan Bheekun
sbheekun@cs.uct.ac.za

Dr Anet Potgieter
anet@cs.uct.ac.za

Justin Kelleher
jkr@cs.uct.ac.za

ABSTRACT
“Foreknowledge of the future makes it possible to manipulate
both enemies and supporters." --Raymond Aron in “The Opium of
the Intellectuals”

The above quote describes perfectly the motivation for developing
a prediction tool. Being able to minimise uncertainty to any
possible degree will give any business that engages in prediction
or forecasting, a competitive advantage that is becoming
necessary for economic prosperity.

The main task of this project was to use Artificial Intelligence
Methods to support Abalone Harvest Prediction. The first step
was to choose a suitable graphical probabilistic network so that
the abalone growth, given the factors that affect it, can be
successfully modelled.

An implementation structure for the chosen model was designed
and then implemented. Once a suitable model was designed, the
two core components of the system were implemented. A learning
engine to learn the parameter values for the chosen model, and an
inference engine to perform probabilistic inference on the learnt
parameters.

A graphical user interface that is user-friendly and easy to
understand by the people at the farm was then developed and
implemented. This graphical user interface hides the complexities
of artificial intelligences techniques of which can intimidate the
novice user.

1. INTRODUCTION
In today’s business world, where the dynamics of market demand
and supply are constantly changing, it has become increasingly
important and difficult to establish and maintain competitive
advantage.

Uncertainty has been the most universal trait of market behaviour.
This has made businesses realize that the innovative handling of
uncertainty can lead to adding of value.

The high costs of developing and maintaining systems today have
led to the realization that standardization is a must in all domains.
Standardization of processes can lead to the decreases of
development costs financially and in terms of time and expertise.

The high costs of developing systems and solutions today have led
to the realization that standardisation is a must in any domain.
Development costs can be decreased significantly in financial
terms as well as in terms of time and expertise.

A popular problem in the business world is that of prediction,
applied to both supply and demand. In the case of this project, the
problem to be addressed is one of predicting supply. To solve this
problem, artificial intelligence techniques were evaluated and the
most relevant technique was employed to provide a solution.

This project was undertaken in conjunction with the I&J abalone
culture division in Gansbaai, South Africa.

The solution consists of two parts; the first being a supply
prediction tool that predicts the growth rate of abalone using
environmental data. The second part of the solution is a browser-
based software development process platform. The platform is to
be used by the target organization to understand the work done on
this project in order to allow the system’s extension.

In order for the system to be implemented, there were a number of
design decisions that first had to take place. The first decision
involved choosing a model with which to represent the situation at
the farm. Two technologies to construct models were evaluated
based on their appropriateness to the problem domain. These were
Bayesian Networks and Dynamic Bayesian Networks.

The second decision involved deciding on an inference algorithm
to implement the given model, and the third decision was to
decide on a learning algorithm to employ in the model.

Besides the design of the system, the design of the process
platform had to be considered as well, so agile modelling,
knowledge engineering, user-centred design and business process
modelling had to be covered as well.

2. BACKGROUND
2.1 Bayesian Networks
The statement “The heart of Bayesian Techniques lies in the
celebrated inversion formula” in Pearl [1] refers to the formula:

P (H | e) = P (e | H) P (H) / P (e).

This is where H is a belief of a hypothesis, given evidence e and P
(e | H) is the probability of the hypothesis given e. Another name
for the inversion formula is Bayes rule; this formula provides the
basis for all Bayesian techniques.

A Bayesian network is a directed graphical model, where nodes
represent random variables and arcs represent conditional
dependence assumptions where the lack of an arc can be said to
describe conditional independence assumptions as stated in
Murphy [2].

An example of a Bayesian Network can be seen in figure one,
adapted from Murphy [2]. It represents the situation where the
grass can be caused to be wet by a sprinkler or the rain. It also
shows that the rain can be cause by the fact that the weather is
cloudy.

Figure 1. Example Bayesian Network

2.1.1 Inference in Bayesian Networks:
Murphy [2] explains that the most common task to be solved by
Bayesian networks is probabilistic inference. Charniak [3] goes on
to state that the main constriction in using Bayesian networks is
that inference can be an NP-hard problem. The problem arises in
multiply-connected networks, if there is more than one path
between any two nodes; computation of the probabilities of the
network becomes more complex and takes much longer.

Figure 2: Example of a singly-connected network

Figure 3: Example of a multiply-connected network

Figure 4: A clustered multiply-connected network

The ideal form of inference is known as “Exact Inference”. Exact
inference cannot always be used. Whether or not it can be used for
a network depends heavily on the structure of the network itself. It
can be used in singly-connected networks, also called polytrees. A
polytree is a network where there is a maximum of one path
between any two nodes; a simple example can be seen in figure
two.

Exact inference cannot be used in multiply-connected networks,
such as in figure three. A detailed mathematical description of the
problem is complex and not necessary in the context of this paper.

The problem can best be explained in the context of figure three.
If evidence is provided for node D, and the conditional
probabilities at node C are known, the state at C should then be
inferred. The problem is that C is not just directly influenced by
the evidence at D, but also by A which is influenced by D via B.

There are cases where exact inference can be used despite the
network being multiply-connected. A process called clustering
can be used, in which pairs of nodes of a multiply-connected
network are combined to form single nodes until a polytree is
formed. This process is described in detail in Charniak [3].

An example of clustering can be seen by the transition of the
network from figure three to figure four. Nodes B and C are
combined into one so the network can become a polytree. The
parameters contained in node BC are the results of the cross
product of the values of B and C. The inference would then be
applied to the polytree and the values for B and C can be found
individually from the BC node. The new values for B and C can
then be integrated into the original multiply-connected tree.

In cases where clustering cannot be used to accommodate exact
inference, a technique known as approximate inference is used.
There are many algorithms for approximate inference, but there
are common features in all of them.

They all randomly collect values for a certain number of nodes,
and then use the values of those nodes to assign values to other
nodes in the network. A popular technique described in Charniak
[3] is that of “Logic sampling”. The values of root nodes are
guessed based on their conditional probabilities. The algorithm is
then propagated down the network by taking the guessed parent
node’s value as evidence and then assigning a value to the child
node.

A notable algorithm is the Message-Passing algorithm by Judea
Pearl Kim[], which can be applied as a mechanism for both exact,
as well as approximate inference. Message-passing will be
described in detail later on in this paper.

2.1.2 Parameter Learning
The aim of parameter learning is to derive the probabilities for the
CPT held at each node. Deriving these probabilities is considered
to be the most straightforward learning situation when the
structure is defined in its totality and the dataset containing the
parameters is complete as described by Krause [4].

The probabilities are derived from the dataset by using Maximum
likelihood estimate algorithms. These algorithms, in short, ensure
that the probabilities for the CPTs are representative of the
parameter values in the dataset. An in-depth discussion of
Maximum Likelihood Estimate algorithms can be found in [2].

When values for certain parameters are missing, i.e. the dataset is
incomplete, and the structure of the network is defined, learning
of parameters is not a straightforward process. Expectation
Maximization or gradient ascent methods have to be employed in
order to derive the probabilities for the CPT.

 Both these methods use an inference algorithm as subroutine. The
inference algorithm estimates values for the parameters with
missing data. Then an iterative process is used during which the
estimated values are refined until the probabilities in the CPTs
converge.

Once the probabilities in the CPTs converge, they represent the
learnt probabilities. A detailed explanation of the Expectation
Maximization method is given in Nilsson [5].

2.1.3 Structure Learning
The goal of structure learning is to mine the interdependencies
between the nodes of a Bayesian network from the data containing
the parameters. When graphically portrayed, structure learning
attempts to find the arcs between the nodes and its directionality.

A naïve way of learning the structure is to enumerate all the
possible network structures that can be constructed from a set of
pre-defined nodes. Each of these structures is then evaluated using
a scoring metric. A scoring metric is a set of measures that can be
use to evaluate a Bayesian network.

There are a number of scoring metrics and one of them is the
description length scoring metric. A good discussion of it can be
found in Nilsson [5]. In the case of the description length scoring
metric, the network structure among all the possible network
structures that minimises the metric is the structure that best
describes the data and is hence the learnt structure.

The evaluation of all the possible network structures using a
scoring metric is generally not feasible as stated by Deviren [6].
This is due to the fact that the number of possible network
increases exponentially with an increasing number of nodes. For
example, as stated in Krause [4], the number of possible networks
is approximately 4.2x108 for 10 nodes.

There are many different methods that can be applied to solve the
problem of evaluating all the possible network structures. One of
the most discussed methods in literature is described in Krause
[4]. It is the hill-descending or greedy search method in which
changes to network i.e. the merit of adding, deleting or reversing
an arc is evaluated using a scoring metric instead of evaluating the
whole network. The greedy search method relies on the property
that the scoring metric is decomposable.

The scoring metric is decomposable in the sense that the scoring
metric for whole Bayesian network is the sum of the local scoring
metric at each node. Hence changes to a node only require the
computation of the local scoring metric at that node as opposed to
computation of the scoring metric of the whole Bayesian network.

2.2 Dynamic Bayesian Networks
A dynamic Bayesian network, when described in brief can be
thought of as a probabilistic graphical network such as a Bayesian
network that encodes the notion of time within it so as to
accommodate sequential data.

In more technical terms, dynamic Bayesian networks are directed
graphical models of stochastic processes that in their simplest
form generalise hidden Markov models as described by Pearl [1].
Stochastic processes are processes that involve some kind of
randomness or unpredicted effects often associated with
probabilistic or statistical treatments. Dynamic Bayesian networks
generalise hidden Markov models hereafter referred as HMMs in
the sense that they provide an easier way to specify the
conditional independencies involved in HMM. The concepts
involved in HMM and dynamic Bayesian networks are however
similar.

In order to understand the concepts involved in dynamic Bayesian
networks it is best to give an example of an HMM. The example
described below is adapted from Dugad [7] and Barber [8].

Let there be 3 urns, U1, U2, U3 such that each of them can contain
different proportions of Blue and Red marbles. These proportions
of Red and Blue marbles in each urn can be represented as
probabilities as shown in the matrix below.

U1 U2 U3

Bl
ue

0.3 0.8 0.5

Re
d

0.7 0.2 0.5

Table 1: Probability matrix of marble colour and urn

Marbles are drawn from the urn in a sequence, e.g. U2 U1, U3. Any
of the three urns can be chosen as the first urn from which a
marble is drawn as long as the sequence is respected. For example
if U1 is chosen as the first urn, then the next urn chosen will be U3,
then U2 and so on. There is a probability associated with each urn
which represents its chances of being the first urn from which a
marble is drawn i.e. the urn chosen at time t =1. This is shown in
the table below.

U1 U2 U3

0.2 0.5 0.3

Table 2: A clustered multiply-connected network

Sometimes mistakes happen and the sequence of choosing the
next urn is not respected. The probability of moving from one urn
to another is given in the matrix below.

U1 U2 U3

U1 0.1 0.8 0.1

U2 0.1 0.1 0.8

U3 0.8 0.1 0.1

Table 3: Transition matrix for moving from Ui to Uj.

When the marbles are drawn from the urn in the sequence
described above (U2 U1, U3), only the colors of the marbles are
shown to an observer. The urn from which a marble comes from
is not shown to the observer. The urns can be thought as being
hidden (representing hidden states) and the colors represent
observed variables from the hidden states. From the above
information a hidden Markov model can be constructed. It
consists of the following elements that are referred to as the
parameters of the model:

1. The probabilities of being in a particular state at time= 1
which is shown by table two.

2. The probabilities of moving from one state to another
that is shown by Table three.

3. The probabilities of each observed variable in each state
which is shown by Table one.

The model can be graphically portrayed with hidden states
represented as hi and observed variable as oi and as shown below.

From Ui

To Uj

 Figure 5: A Hidden Markov Model.

There are three problems for HMMs to solve, as described in
Dugad [7]. Some HMM notation is required to understand them.

N = number of states in the model.

M = number of distinct observation symbols.

T = number of symbols observed.

it denotes the state at time t.

V = {v1,…,vM} denotes the discrete set of possible observation
symbols.

= { i}, i = P (i1 = i), the probability of being in state i at time
t=1.

A = {aij} where aij = P (it+1 = j | it = i), the probability of being in
state j at time t +1 given that we were in state i at time t.

B= {bj(k)},bj(k) = P (vk at t | it = j), the probability of observing
the symbol vk given that we are in state j.

Ot will denote the observation symbol observed at instant t.

= (A, B,) will be used as a compact notation to denote an
HMM.

Problem 1: Given a model = (A, B,) how do you compute P (O
|), the probability of occurrence of the observation sequence O =
O1, O2…OT.

Problem 2: Given a model

= (A, B,) how do we choose a state
sequence

I = i1, i2… iT so that P (O, I |), the joint probability of the
observation sequence

O = O1, O2,…,OT and the state sequence I given the model

is
maximized.

Problem 3: How do we adjust the HMM model parameters

=
(A, B,) so that P (O |) is maximized?

2.1.1 Inference in DBNs
Inference deals generally with the solution to Problem one. There
are different algorithms that can be used to perform inference in a
DBN. Two of the most popular algorithms are the Forward-
Backward algorithm, described fully in Dugad [7] and the
Junction tree algorithm, described fully in Barber [8].

2.1.2 Learning in dynamic Bayesian network
As in Bayesian networks, there are two types of learning that can
occur, structural learning and parameter learning. The algorithms
for learning Dynamic Bayesian networks are extensions of
algorithms for learning Bayesian networks as described by
Murphy [9]. A discussion of these extensions is out of the scope

of this paper, as it will require a full mathematical description of
the learning algorithms. However a detailed description of the
algorithms can be found in Murphy [9].

2.2 Agile Modelling
Adapted from Ambler [10], agile modelling, hereby referred to as
AM, is a ‘chaordic’ practice-based methodology that describes
how to perform modelling and documentation in software
engineering in an agile manner. The term ‘chaordic’ refers to the
fact that it combines the chaos of simple modelling with the order
that is found in the production of artefacts that occurs in typical
software engineering techniques. The word agile in AM, as
adapted from Beck [11] refers to the principle of welcoming
requirements changes throughout the development process.

2.3 Knowledge Engineering
Context in any decision-making process represents the secondary
properties of a cognitive or motivational state of an individual that
modify the effect of a stimulus or activity.

In any domain, there are usually domain experts who, whether
they have the ‘know that’ knowledge or not, are known to be
experts because of their ‘know how’. Tacit knowledge is that
knowledge that is implicitly held by an individual. There is tacit
knowledge that can be made explicit. Explicit knowledge is
accessible to everyone and shared. By observing and interacting
with the expert in context, the explicitable tacit knowledge can be
translated to explicit knowledge. This is extremely useful for
knowledge engineers in a domain-specific environment. The
dynamics of this process are illustrated in figure six, adapted from
Brezillon [12].

Context can be divided into two parts; the first is called
Contextual knowledge which represents the fixed primary
characteristics of a situation. The second is called External
knowledge, and it represents the part of the context that does not
influence the decision-making at a particular time. When the
domain expert performs a task that includes contextual
knowledge, the act is known as a procedural context. If the
contextual knowledge is their activity within context, the
procedural context is a single task. By observing and documenting
this process, tacit knowledge can be made explicit.

Figure 6: Contextual knowledge and procedural context

3. APPROACH
3.1 Model
Due to the time related nature of the causal relationships at the
farm, Dynamic Bayesian Networks (DBNs) seemed the obvious
choice. There was a complication however, as seen in figure
seven. The complication is that the hidden and observable variable
are observable at the same time. The variable ‘ev’ stands for an
environmental variable and the variable ‘g’ stands for the growth

h1 h2 h3 h4

o1 o2 o3 o4

rate of an abalone. What is meant by hidden to the same degree is
that they are both made observable at the same time i.e. once a
month. When ‘ev’ is observed, ‘g’ will be inferred, but if ‘g’ and
‘ev’ are made observable at the same time, then why infer ‘g’
when it can just be observed? It is for this reason that it was
decided that DBNs would not be an ideal graphical model for the
processes at the farm.

Figure 7: Proposed DBN for farm (Left)

 Figure 8: BN for one size-range (Right)

When considering modelling the farms processes using a BN, it
was clear that the fact that the process was time-related would be
a complication. This turned out to not be a big design challenge,
as the number of time-steps is fixed. This is because each time-
step represents one month. The network has the additional ‘t’
node because the month is the direct cause of the value of ‘ev’,
due to the seasonal nature of the variance of ‘ev’.

What this means is that each size range of animals can be
represented by a Bayesian network. This is because different-
sized animals grow at different rates. For any particular month,
the ‘t’ node will be given evidence, in the form of the current
month, as it should be known. This is the model that was
implemented as the backbone of AhPT.

3.2 Structural Implementation
It can be observed from the model in figure nine, that there are
BNs for each size class, but more importantly, that for a particular
month, they will all have the same evidence provided for ‘t’, as t
represents the current month. Linked to this is the fact that the
relationship between ‘t’ and ‘ev’ is the same irrespective of the
size of the abalone. This might not be intuitive to the reader, but
these issues could not be clarified specifically because of
confidentiality.

Figure 9: Structure of BN for three size classes over two
months

The first implication of the model is that there is only need for one
CPT for the relationship between ‘t’ and ‘ev’, because the
relationship is the same irrespective of the size of the animal. The
other implication is that there is a need for a CPT for the ‘ev-g’
relationship for each time-step.

These implications remove the need for the storage of an explicit
structure containing all of the nodes. The ‘structure’ chosen to
implement in the end was to persistently store the farm’s
population containing all of the various sizes. A global CPT for
the ‘t-ev’ relationship is persistently stored, as well as CPTs for
each size class. The CPTs and population data are stored in XML
format

3.3 Inference
Exact inference, as described in 2.1.1 was chosen, as opposed to
approximate inference. Approximate inference can yield similar
results as exact inference when applied to extensive data. Due to
the sparseness of data at the farm, exact inference was chosen as a
safer option. This was possible, as the networks in figure nine
meet the criteria to be considered polytrees/singly-connected.

The algorithm chosen was Judea Pearl’s message passing
algorithm, taken from Diez [13] and Kim [14]. A detailed
explanation of the algorithm from Diez [13] is below:

A BN can be represented as directed acyclic graph, where each
node represents a random variable with a probability distribution:

P (x1, …, xn) = i P (xi | pa(xi)), (where i=1
3i = 1*2*3)

where xi represents a possible value of variable X and pa(xi) is an
instantiation of the parents of Xi in the graph. The basic problem
of inference is computing P (x | e) of variable X, given evidence e.

e {Xi = xi, Xj = xj,…, Xn = xn } .

The message passing algorithm:

The goal of the algorithm is to find P (x/e) as described above, i.e.
the value of the probability that X = x given that we have evidence
e. In a polytree such as the one depicted in figure fifteen, any node
X divides the evidence into the evidence causing X, eX

+ ; and
evidence connected to it’s effects, eX

-. Similarly a link XY divides
evidence into evidence above the link, eXY

+ ; and evidence below
the link, eXY

-. This division of evidence is called d-separation and
it justifies the definition of the following messages used in the
Message Passing algorithm.

(x) P (x, eX
+)

(x) P (eX
- | x)

X(ui) P (ui, eUX
+) (Note that UX is actually UiX in this equation)

y(x) P (eXY
- | x) (Note that Y in y is actually Yi, and XY is

actually XYj)

The derivations of these messages are described in detail in Kim
[19], but are not necessary for this report. D-separation results in
two subsidiary properties of polytrees:

For a node X, two children of X, Yi and Yj are
independent of each other given the value of X.
i.e.: P (yi | x) = P (yi | x, yj).

A parent Ui and a child Yj of a node X are independent
given the value of X.
i.e.: P (ui | x) = P (ui | x, yj).

To avoid confusion, it must be stated that although the first
property above implies an independency between adjacent child
nodes, this does not apply to parent nodes of X.

i.e.: P (ui | x) P (ui |x, uj).

Given the independency properties described above, the recursive
expressions for computing the messages are:

P (x | e) = (x) (x)

(x) = ? u1,…unP (x | u1, …, un) i=1
n

X(ui)

(x) = j=1
m

Y(x) (Note that Y is actually Yj)

Y(x) = (x)

k j Y(x) (Note that Y in is actually
Yj and Y in Y is actually Yk)

Y(x) = ? y [(yj) ? v1,…vp P (yj | x, v1, …,vp) k=1
p

Y(vk)]

Where:

is a normalization constant to be computed after finding (x)
and (x).

V1 , …, Vp are the causes of Yi other than X.

The inference engine is an implementation of the message passing
algorithm discussed above. The only modification is that the
lambdas ((x)) were ignored because of the nature of the causal
relationships of our model.

Figure 10: Evidence propagation using Message Passing

3.4 Learning
A learning algorithm was required in order to learn the parameters
of the data for the system. In order to achieve this, a Maximum-
likelihood estimate-learning algorithm was implemented for the
learning engine to achieve its goals.

Following is a description of learning algorithm implemented,
which is best explained in the context of an example adapted from
Russell [15].

Suppose a bag of lime and cherry candy is bought from a
manufacturer whose lime-cherry proportion is unknown and the
type of candy cannot be determined from its wrapping. The
Maximum-Likelihood algorithm can be used to estimate the
proportion of cherry in the bag. Let the proportion of cherry, i.e.
the parameter to be learnt, be denoted by . Suppose N candies are
unwrapped of which c are cherries and l =N –c are limes. Under
the assumption that these observations are independent and
identically distributed, the likelihood of this particular dataset is
given by:

Where h

is a non-observed hypothesis about the data and d
represents the dataset

The log-likelihood L of the dataset is then calculated from the
above equation

L (d | h) = log P(d | h) = log P(dj | h

) = c log + l log (1-)

A differentiation of the above equation is then perform and
equated to zero to obtain

In order to calculate the parameter

the values c and N first had
to be obtained from the data.

3.5 Production Simulation
In order for a prediction to be made, both the inference engine and
production simulations have to be used. Essentially, the inference
engine is to provide one of the inputs for the production
simulation. The production simulation gets the other input by
reading in the current population from an XML file of the current
stock. Product objects containing size class objects are then
generated using the XML as input.

The production simulation then updates the sizes of the animals
using the growth rates generated by the inference engine. The
other production rules include exporting of animals, injection of
new stock to the population, and moving of animals between size
and product classes. Once all of the production simulation is done,
the new population is written to a new XML file. This process can
be clearly seen in figure sixteen.

Figure 11: Overview of Production Simulation

3.6 Process Platform
The AhPT Process Platform was implemented as a browser-based
process platform, using HTML. The reason for it being browser-
based is that it can be used on the web for easy access and that it
is completely platform unspecific. It is iterative in nature,
comprising of four phases, “Requirements Management”,
“Software Specification”, “Implementation” and “Testing”.

4. RESULTS
The results of a heuristic analysis test on our data were positive;
Mr Loubser (A domain expert) chose the graph of our results as
the second-most likely of a collection of datasets. Further more
there was only one notable difference between the graph chosen
as most likely and the results of our system. The difference is a
‘kink’ in our graph, which we found was caused by a lack of data
and sampling error in the data gathering at the farm.

An ad hoc prediction accuracy test at the farm where we predicted
September’s environmental variable was conducted and the result
was extremely pleasing. Our prediction of ‘ev’ was extremely
close to the real value. The actual value can not be stated in this
report for confidentiality reasons.

The bench-marking done for the inference algorithm against a
package called ‘JavaBayes’ Cozman [17] yielded positive results.
The inference returned the same results except that JavaBayes is
more accurate as AhPT rounds off the 17th decimal place, due to
the nature of floating point manipulation in C#.

The learning engine was tested by comparing parameters learnt
from the same dataset using a product called BayesiaLab [18] and
those learnt using AhPT. Parameters learnt using BayesiaLab are
expressed as a percentage while the parameters learnt using AhPT
are expressed as a proportion but they represent the same
information. When learnt parameters using BayesiaLab and using
AhPT are expressed in the same manner, it can be seen that the
difference between them is negligible. This shows that learning
that occurs in AhPT is acceptable when compared to the one in
BayesiaLab and was successfully implemented.

5. CONCLUSIONS
Given the initial problem description we have delivered:

The Abalone harvest Prediction Tool:
AhPT is a prediction tool that uses artificial intelligence
techniques to perform predictions. The tool learns trends
from historical data and uses probabilistic inference to
perform harvest predictions.

The AhPT Process Platform:
The AhPT Process Platform is a browser-based software
development process platform that was designed to
adhere to the practices and principles of Agile
Modelling. The AhPT Process Platform makes us of
both user centred design and requirements traceability.
It has been evaluated heuristically to have fulfilled its
main design goal.

The Inference Engine:
An implementation of Judea Pearl’s Message passing
algorithm benchmarked against JavaBayes and has been
found to result in adequate inference.

The Learning Engine:
An implementation of the Maximum likelihood estimate
algorithm benchmarked against BayesiaLab and has
been found to have a negligible difference in results
with BayesiaLab.

Production Simulation:
This consists of the simulation of the production events
at the farm, which covers the growth, exporting and
movement between products and sizes of the abalone.

Given the comments above, we conclude this project to be a
success

6. REFERENCES

[1] PEARL, J. 1988. Probabilistic reasoning in intelligent
systems: Networks of Plausible Inference. San Mateo, California:
Morgan Kaufmann

[2] MURPHY, K. 1998. A brief introduction to Graphical Models
and Bayesian Networks.[Online]. Available:
http://www.ai.mit.edu/~murphyk/Bayes/bintro.html

[3] CHARNIAK, E. 1991. Bayesian Networks without Tears.
Menlo Park, California: American Association for Artificial
Intelligence

[4] KRAUSE,J P. 1999 . Learning probabilistic network. New
York, USA: Cambridge University Press. [Online]. Available :
http://citeseer.ist.psu.edu/cache/papers/cs/430/http:zSzzSzwww.au
ai.orgzSzbayesUS_krause.pdf/krause98learning.pdf

[5] NILSSON, N.J. 1998. Artificial Intelligence: A New Synthesis.
San Francisco, California: Morgan Kaufmann

[6] DEVIREN, M et al. 2001. Structural Learning of Dynamic
Bayesian Network in Speech Recognition. [Online].
http://citeseer.ist.psu.edu/deviren01structural.html

 [7] DUGAD, R et al. 1996. A tutorial on Hidden Markov Models.
Indian Institute of Technology, Bombay, Signal Processing and
Artificial Neural Networks Laboratory, Technical Report
SPANN-96.1

[8] BARBER, D. 2003. Probabilistic Modelling and Reasoning
Dynamic Bayesian Networks: Discrete Hidden Variables
[Online]. Available: http://anc.ed.ac.uk/~dbarber/pmr/pmr.html

[9] MURPHY, P. 2002 .Dynamic Bayesian Network:
Representation , Inference and Learning.[Online].
www.ai.mit.edu/~murphyk/Thesis/thesis.pdf

[10] AMBLER, S. 2001. An introduction to Agile Modelling.
[Online]. Available:
http://www.agilemodeling.com/essays/agileModeling.htm

[11] BECK, K et al. 2001. The Manifesto for Agile Software
Development. [Online]. Available: http://www.agilemanifesto.org/

[12] BREZILLON, P & POMEROL, J. 2001. Is Context a Kind of
Collective Tacit Knowledge? European CSCW 2001 Workshop
on Managing Tacit Knowledge, Bonn, Germany, Jacovi and A.
Ribak (Eds.), pp 23-29.

[13] DIEZ, F. 1996. Local Conditioning in Bayesian Networks.
Dpto Inteligencia Artificial. UNED, Sena del Rey, Madrid, Spain:
[UNKOWN]

[14] KIM, J & PEARL, J. 1983. A Computational model for
Causal and Diagnostic Reasoning in Inference Systems.

http://www.ai.mit.edu/~murphyk/Bayes/bintro.html
http://citeseer.ist.psu.edu/cache/papers/cs/430/http:zSzzSzwww.au
http://citeseer.ist.psu.edu/deviren01structural.html
http://anc.ed.ac.uk/~dbarber/pmr/pmr.html
http://www.ai.mit.edu/~murphyk/Thesis/thesis.pdf
http://www.agilemodeling.com/essays/agileModeling.htm
http://www.agilemanifesto.org/

Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, Los Altos, California, W. Kaufmann.

[15] RUSSELL, S. & NORVIG, P. 1995. Artificial Intelligence:
A modern approach. Upper Saddle River, New Jersey: Upper
Saddle River: Prentice Hall.

[16] BECK, K et al. 2001. The Manifesto for Agile Software
Development. [Online]. Available: http://www.agilemanifesto.org/

[17] COZMAN, F et al. 1998. JavaBayes - version 0.346.
[Online]. Available: http://www-2.cs.cmu.edu/~javabayes/Home/

[18] Bayesia. 1998.Bayesia Your decision partner. [Online].
Available: http://www.bayesia.com

http://www.agilemanifesto.org/
http://www-2.cs.cmu.edu/~javabayes/Home/
http://www.bayesia.com

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

