Caching of XML Web Services to Support Disconnected
Operation

Justin Reabow
jreabow@cs.uct.ac.za

Darryl Pillay
dpillay@cs.uct.ac.za

Technical Report Number: CS04-09-00
Department of Computer Science
University of Cape Town

ABSTRACT

XML Web services can now be accessed in all plaresat all
times. The problem now facing these XML Web searsics the
need be to universal availability. Caching canubed by client
applications that use XML Web Services on wirelessnobile
networks in the face of intermittent connectivityThe idea of
interjecting a client side cache proxy may be & ste the
direction towards the ultimate goal of a seamlesne/offline
operating environment of these XML Web Servicest, BMeb
services present new challenges to existing ca@dreagers since
they have generally been designed without regachébing and
hence offer little support. The WSDL descriptioh & Web
service specifies the message format of a necessanvoke a
service operation but lacks the information neettedndicate
whether an operation will modify the server statepooduce
different results on different invocations. We basuggested
several annotations to the WSDL document that \allbw
custom cache managers to tailor their behavior dbase the
specific requirements of the Web service. We tierit a
caching system onto an HTTP proxy and interjectdeiween a
Web service and its application client, to test assumptions.
We demonstrated that a XML Web services could teraipd to
a limited extent disconnected from the server, sithmodifying
the implementation of the service or their applarat.

Categories and Subject Descriptors

C.2.4 [C Computer Systems Organization C.2 COMPUTER
COMMUNICATION NETWORKS Distributed Systems]: J2SE
XML

General Terms
Design Experimentation Reliability

Keywords

XML Web Services. Caching, SOAP Message Fabrication

WSDL Annotations, Local Cache Consistency Availiapil

1. INTRODUCTION

Web Services are emerging as the dominant apgicath the
Internet. The web is no longer just a vast repogitfor
information but is evolving in an active medium fooviders and
consumers of services. We are now seeing a widietyaof

services being offered on the Internet; peer-ta-pservices
providing access to such services as access toragrsontact
information, business services, and a whole hostasfsumer
services such as online bidding (ebay) and onlihepging
(amazon)[9]. Web services are evolving into sawidesigned
for programmatic use rather than human access.s,Twa are
seeing XML Web services becoming the building bfoder a
new generation of Internet applications. The paaéfor growth
of personal and business services are limitless.

One of the key requirements for the success oktliésb services
is universal availability. These XML Web servicend to be
accessed in many different places and at all timBsople are
now being found to access these services on a veidge of
devices, ranging from desktop computers, laptop#$? a whole
host of hand held devices, and now with a new gier of

smart phones using wireless networking technolo®ut, with

frequent disconnections and unreliable bandwidthratterizing
these networks, the availability of the Web sersibecome of
significant concern.

A solution to problem of availability would have tbe
transparently deployable and generally applical®¢ [ The
meaning of this is that a system that intends iwipg the
availability of Web services must not require chesmigo the
implementation of the client, or the server, or the
communication protocols between them. Due, to faw that
Web services are growing too rapidly, changes th éadividual
Web service implementation would be infeasible.aSwlution to
the problem would have to involve interposing sgerand logic
that acts transparently in the communication pattween the
client and server, and would require no changesthe
implementation of either the client or the server.

So what is the solution? Caching satisfies bothrdgquirements
of being transparently deployable and generalliegiple. This
project puts forward an architecture for a clieitesrequest-
response cache that mimics the behavior of our B&lice to a
limited extent. Our cache system is transparettoth the client
and the server, and hence no changes on eithedliém or the
server were needed. Our system conforms to thelatds put
forward by the W3C, so theoretically can be appteany Web
service that conforms to these standards.

This paper is organized in the following way. $m@tt2
introduces Web Services to the uninitiated andi@e@ discuses



the background to the project. In section 4 an stigation into
caching XML Web Services and the various issueoseqg are
summarized. The prescribed WSDL annotations anlitenture
of the enhanced Web Service that was developed\vsred in
section 5. An evaluation of the system follows iacton 6.
Finally, section 7 concludes the paper and disausgare work.

2. WEB SERVICES

Web Services generally consists of a service pesvidnd
multiple consumers based on a client-server arfbite. Each
Web service uses a custom communication protocdahfo client
to access the servers. The most common accesspftt a Web
service consists of requests and responses. @attsrp involves
the client sending a request message that spettiBegperation to
be performed and all the required information te server. The
server completes the relevant operations and eephkgh a
response message. This series of activities mawltren

permanent changes to state of the server.

Web services represent black box functionality, hoitt
wondering how the actual service is implemented [dleb
services provide RPC like services to the clieBut, due to the
vast diversity of the operations that are expotigdthese web
services, it is difficult to distinguish clear cgteies of operations.
For example, an address book web service may supperations
such as insert, delete, replace, and/or query tipesato perform
database functions. But, one web service may stpao
interface that is vastly different to that of armth For example, a
travel reservation web service may support operatio provide
services to search airfares, make reservation ticlets, etc.

The World Wide Web Consortium (W3C) has recommeralsdt
of standard for web services based on the Extendibdrkup
Language (XML) [2]. These XML-based standards fuev
globally recognizable protocols for discoveringsciébing and
accessing the custom interfaces of Web Services T8]s set of
standards compromise of two important standardsOAFS
(Simple Object Access Protocol) and WSDL (Web sawi
Description Language).

Web Service Description Language (WSDL) [4] is adlxXbased
standard which defines the interface to a Web Senit provides
all the information required for an application &cess the
specified service. A Web Service is defined as kecion of
ports, which, in turn, are a collection of abstraperations and
SOAP messages. Keeping the operations abstraet gllem to
be bound to different protocols and data formathsas SOAP,
HTTP GET/POST or MIME. Thus a Web Services’ WSDL
document provides an adequate description of ttieeespecified
Web Service by defining its operations, the operaplarameters
and the format of SOAP messages to be exchanged.

The Simple Object Access Protocol (SOAP) standafif] is a
lightweight communication protocol based on XML for
information exchange between various entities ob \wervices.
SOAP is typically transmitted over HTTP althoughheat
transports are possible. A SOAP message consists ofitermost
element called the envelope. In turn the envelopesists of a
compulsory body element and an optional header exienThe
body element carries the content of the messagehwfor
example could be name of an operation to be peddrand its
parameters. The header is responsible for any iaddituseful

information which the Web Service may require, fostance
password authentication.

3. BACKGROUND

There has been plenty of research into providinglability of
Files [7] [8], Databases [9][10][11], Web Pages][I#5] [16]
[17] and Remote Objects [12] [13] during periods of
disconnection on mobile devices via caching. Howet@ date
there has been only one significant exploration@mdribution to
cache XML Web Services to support disconnected atjper on
mobile devices [18]. The ultimate goal of all thesestems is
similar if not the same and as such, they shareormnmmn
architecture - that being the cache. How theseesystdiffer is
dependant on what is being cached and how, asawd¢fie degree
of co-operation between clients and servers. Duth¢odiverse
nature of web services the matured strategies sraglabove to
provide availability of file, databases, objectslameb pages is
not applicable to XML Web Services.

Techniques and strategies used to support avitjalmf File
Systems and Databases are well researched andmiemtied.
These traditional systems export relatively straigaorward
operations such as Read, Write, Open and Closeefime, the
cache manager implements a rather simple interlacthe case
of Web Services, each service exposes its’ ownugnigterface.
A Web Service Cache must somehow be able to caregeach
operation the service exports, in order for theheao know how
it should be handled. Thus the semantics of a Webi& need to
be known to the cache manager. This hints at thesilpitity of
any web service requiring their own specializecheamanger.

Web Services encapsulate their data in criticaliness logic
which, in fact this is one of the selling points \@eb Services.
Having clients that are able to utilize this higivel logic [18]
means an attempt to replicate data of Web Sentiwesipport
disconnected operation of the service is not ddefft technique
(7] [19] [8] [32].

Distributed object systems also employ caching tppsrt

availability during periods of disconnection as Mad increased
performance [21] [12] [22] [13] [23]. The common ognd

between objects and web services is that they leojhose
operations through published interfaces. The tegles utilized
to support availability of distributed objects edion code and
data (the objects) being cached in their entir€hys technique is
not applicable to Web Services as resources ar¢ pmobably

limited on mobile devices and the Business Logic B€b

Services is often proprietary.

Web Browsers are well established in supportingehe for web
pages [24]. However the current status and reseaitbhrespect
this realm of caching to support usage during disegtion,
focuses on maximizing the cache hit rates while @néserving a
mediocre degree of cache consistency. Caching vegfesis
dependant on directives provided by Web Servensdicate what
is cacheable and for how long what is being cadkdtkesh for.
Web services are active entities and so the passiere of
caching web pages and the mediocre consistencgvides is not
adequate to apply to web services.

Consequently no current strategies for providingilability of
files, databases, web pages and distributed objeetapplicable
to XML web services. Therefore a new approach ¢uired to



provide access to Web Services for intermittenthnrected
devices.

4. RELATED WORK

4.1 An experiment in caching XML Web

Services

XML Web Services present new challenges, due taliberse set
of operations exported and supported by such sanas well as
the lack of involvement in the caching process [18]

The first and only significant exploration of caghiof XML Web
Service was conducted by Douglas B. Terry and Vepalgn
Ramasubramanian at Microsoft Research Silicon YallEhe
study was conducted to research the suitabilitycathing to
support disconnected operations on Web Services.n A
experiment was conducted in which a caching progg waced
between Microsoft .NET My Servickand the sample client that
was shipped with these services. This suite ofvices
represented a non-trivial XML Web Service that sarpp both
query and update operations [18].

The Microsoft .NET My Services contained many difet

services, including: MyContacts, which allowed sser store and
retrieve address and phone information; amongserstti18].

This service was used in the running of the expemim This
particular service was chosen because it expodeddignificant
operations on shared databases:

Query lets users select portions of the database. Tiesation
takes in a String as the query argument.

Insert takes data to be inserted into the database, aesl ais
String argument specifying the location for theenti®n.

Delete takes a query argument and deletes the querieieentr
from the database

Replace performs an atomidelete andinsert in the database.

These operations were used to test sample applisatiaving the
network connected, as well as deliberately discotimg the
network [18].

They team of Terry and Ramasubramanian built a HPpbRy as
defined in the HTTP protocol standard and deplayed a client
device. In this case, the device was a laptop ingnrihe
Windows XP operating system. All HTTP messagegiating
at the client were made to pass through the prexyes. The
proxy server simply acted as a tunnel for all HTgatkets that
are not SOAP messages [18].

! Microsoft .NET My Services (Hailstorm) has sinceeh
discontinued, after AOL threatened to sue Microsmfit the
ground that the suite was encroaching on the markeited by
their product AIM (AOL instant messenger)

Client Space

- """ ~"7~-~"7/"7"~7/"7/"7~ |

Client - Proxy -

,,,,,,,,,,,,,

High Level Diagram to show
where components reside

Figure 1

They proceeded to add a cache for storing SOAPagesso the
proxy server. Integrating the Web service cachie the proxy
served to meet the requirement of transparencys ddthe stored
the SOAP request received as well as the complemgmésponse
provided by the web service server. All cache g for
expiration and replacement were implemented acegrth the
HTTP standard. The cache served to store only Hfi€Bsages
that had SOAP messages as its entities. Whertbgesystem
was acting in connected mddd¢he SOAP request message was
sent to the server, and the received response twesdsin the
cache along with the associated request, replatieg old
response if necessary. When the cache containpte\aous
response for the same request, the new responseongsared
with the old response, and the result from the ammpn was
recorded in a log file [18].

If the network was disconnectédhe SOAP response message
stored in the cache (if present) was returned ¢octient and the
SOAP request was stored in the write-back quetiehel cache
has no stored response, the client times out wgaifor the
response, as per normal when the server is unrielechaAll
requests are stored in the write-back queue faer lagplay,
because the cache manager cannot determine whaeste
modifies the service state and which are simplerigsie The
write-back queue is responsible for periodicallyedaking the
network for connectivity. Whenever the connectionserver is
restored, the request messages stored in the baite-queue are
played back to server and the resulting SOAP respomessages
are stored, along with their complimentary SOAP uesj
messages, are stored in the cache [18].

2 The server was online and the system acts normally

% The server is disconnected from the system; thezehe system
is relying on the cache for the responses to tlguests
received.



Disconnected
Module

|

WriteBack Queue

Server
Interface

soeua)U|
welD

L1

Connected ‘
Module ‘

HTTP Tunnel

Implementation of Proxy without
proposed imporvements

Figure 2

The above experiment highlights the benefits of legipg a Web
service cache to support disconnected operatigns I[f9showed
that Web services can be operated offline to soegreg of
success. Specifically it showed that the testsuséMicrosoft’s
.NET MyContacts while using the above system, igite aware
of interruptions to the disconnectivity to the netWw service. It
also showed that Web services can be operatedyuglthto a
somewhat limited degree, in a disconnected modéhowit
alterations being made to the server or the clraptementations

(91

4.2 Issuesin Caching XML Web Services

The experimentation done by the Microsoft team efry and

Ramasubramanian raised several issues that welitagackle to

improve the consistency and availability of offliaecess to Web
Services.

4.2.1 Playback and Cacheablity

Due to the diverse nature of Web services a majoblem is

posed as to the identification of the semanticshef operation
exposed by the Web service. Unlike traditionatesyss, such as
file systems, where the interfaces exported todient are all

pretty much standardized, Web Services almost awexport

unique interfaces. So the question that arisewhsther the
operations exposed by these interfaces have tdalyegback to
the server or whether an old cached response catdeptably
returned to the client [9].

A successful Web service cache needs to understhad
properties of an operation to effectively functitimat is to access
the cacheablity and/or the playbackability of areragion. An

operation is said to playbackable if, the executidnsuch an

operation leads to a permanent change in the sfatee server.

An operation is said to be cacheable, if the sulseigexecution
of such an operation with the same parameters rgilirn the

same response. An operation may fulfill eithethbor none of

these properties [9]. It is up to the developettts system to
deduce this.

422 Consistency

While operating in disconnected mode the cache ataprovide
strong consistency, simply due to the fact thatethe no access
to updates performed by other users using and makianges to
the same Web service. However, another solutiah ¢an be

adopted is to provide weak consisteAf]cy In particular the
consistency requirement of each operation need$etowell
understood, i.e. which operation would invalidateotaer
operation if executed. For example, an insert ag@r or query
operation on a database system would be invalidayea delete
operation. The goal being to develop a Web sermé@dne which
correctly understands the semantics of Web serojperations
that would enable invalidation or perform transfations of prior
operations thereby providing local consistency ecgeasing the
overall effectiveness of the cache proxy systermhe Tltimate
effectiveness of the system would depend on howl tel
understands the consistency requirements of divafgeb
Services [9].

4.2.3 Request and Response Messages

The understanding of the format of messages exethhgtween
the Web service client and server can pose yethangroblem to
a caching proxy. Despite using standardized podéosuch as
SOAP, web services deviate considerably in thecttra and
format of the request and response messages. @&perations
such as identifying the name of the operation bgiegormed
vary from service to service. Complicating thinfgsther, we
may find that operation names may have to be ifiedtin a
completely different way for different Web service3his may
have drastic consequences on the transparencyeobybrall
system [9].

The correct comprehension of the message strudturalso
required to accomplish many other fundamental temksh as
comparison of request, and the fabrication and m¢ioe of
responses. A cache manager must also be awarbeaable to
understand which elements of a request messagédsbewsed
as keys for cache lookups. The cache manager lmeuable to
accurately distinguish and differentiate betweenilar requests,
or every request would be cached and the cache dwbal
rendered useless.

The message structure of the request and resparmstebmclearly
defined and documented to be effectively categdrizhe
request/response to determine the correct couraetioh. This is
needed since when a cache receives a request farvice
operation during disconnected activity, it is expécto return a
meaningful response to the client as to deceivelipat that it is
still operating under normal connected mode of aten i.e. the
service is still available. The cache can eitterdsa previously
fabricated message or, generate a response thfairmento the
message format of the service. Currently WSDL #igations
contain enough information to permit fabricationJt blacks
information about reasonable default informationr feach
element of the fabricated response. An effectigorghm can
only be devised through thorough examination of 8@AP
messages of the Web service in question.

5. SOLUTIONSTO THE ISSUES

This sections details the specific solutions tovthgous issues in
caching XML Web Services which this project tackledl

prescribed set of WSDL annotations to facilitatehtag are

4 Weak consistency strives to keep the cache censistith the
user’s own actions



discussed. Following this an algorithm to keep t¢hehe locally
consistent is explained. Next a discussion folloegarding the
generation of responses follows.

5.1 WSDL Annotations

The majority of the issues in caching XML web seeg are due
to diverse nature of the services. In order fat#itthe effective
caching more information is required regarding pheperties of
an operation. Is the operation cacheable? Doesigecpermanent
changes to the server state? A generic techniquerdeiding and
describing this information is required. A web seegs WSDL
document provides information as to what operatamesexported
by the web service and the operations involved laaks
information to assist caching. Thus, as suggestgd the
experiment [18] the WSDL should be extended to jgi®wsuch
information. Doing so would not affect tools whigknerate web
clients based on WSDL documents as the annotatiougd be
optional. Also this solution satisfies the two gmiag principles
of the system namely, transparency and generaicapylty.

52 Propertiesof Operations

To facilitate effective and efficient caching of Xiwveb services
the following attributes can be added to a Web i8esvWSDL
document, in particular to the operation elemerte Dperation
element specifies the messages involved in eattheobperations
provided by the Web service. The attributes elaieotgon the
semantics and properties of each operation expdryethe web
service and so it was natural to include them ia dtiperation
element.

One complication is the difficulty in determininiget properties of
an operation. Thecacheable and Playback attributes defined
below serve to resolve the issue described in@e@&i3. These
two properties of an operation need to be recognizeorder for
the web service to function properly.

Attribute Description
Cacheable This Boolean attribute specifies whether the
operation is cacheable or not. An operatior is
cacheable when subsequent executions of the
operation using a particular parameter result:s in
an identical response. For example, typical get
and query operations such getName(),
getAddress().
Playback: A Boolean attribute which the cache manger
uses to determine whether the request currently the cache manager needs to determine whether tlentrequest
being processed should be replayed to the serverpeing processed can invalidate any of the requsgionse pairs
once the connection is restored. An operalion stored in the cache. Invalidation can be detecteddiermining
which results in a permanent change to stme \hether the operations intersect each other andthehethe
state on the server side is an update operation, parameters of the two operations match. For example
and therefore needs to be played back to the requestl  which is agetCellNumber(Bob)
server upon reconnection. For examgle,
whenever  setAddress(Bob, 21 with it's correspondingresponsel
NewAddress Road) is called while the  request2 a
web service is being used during disconnect on,
it must be sent to the server therefore request2
Generate Another Boolean attribute which specifizs \
Response whether the cache manager can generale athe operations names and parameters:

cached.

The final attribute that can be added to "he
operation element is a type attribute. That is used
to keep the cache store consistent. A attritute
which categorize the operation. It can be one: of
5 values, “delete”, “set”, “replace”, “query” and
“undefined”.

Type

5.3 Identifying SOAP messages

In order to process SOAP requests and responseeriyrothe
Web service cache needs a method to distinguisheleet SOAP
messages via the operation being performed (A.Kp&ration
name) and its parameters. Each operation namehtrgetth one
or more of its parameters can be used to uniquiEntify any
request response pair. This combination of operatiame and
parameter(s) can also be used to calculate a demhdor the
request response pair. Determining the operatiomenia an easy
affair as the first child element of the SOAP bddgction 4.1.2)
is always the name of the operation being perfornttmivever
there is no way to distinguish which of a messagaameters
uniquely identify a request response pair. Thusatinbute has
been defined which is added to the Binding Elemerihe Web
Services WSDL document. The binding element dessrithe
components of the SOAP messages that are exchanged.

Identifier: The attribute is an XPATH string which represent
the path to a parameter which when used in conpmetith the
operation name can uniquely distinguish a requ&RATH is an
XML Path Language is a W3C [1] (see section 2)dzac used to
query, navigate and identify specific portions dflXdocuments.

5.4 Cache Consistency

As with any caching solution the cache store netxlsbe
consistent with, that is be as up to date as plessiith the server-
side to operate effectively. Once again the dives®re of Web
services is the source of complications. All webviees have
custom interfaces and so identifying and contrgllread/write
and write/write conflicts is an issue. Updating taehe store with
the server is simply not possible during periodslistonnection
and the cache would be inconsistent (out of dateueh times.
As the experiment into caching web services [18]imes it is
possible to provide local consistency that is aheawhich is
consistent with the users own actions. This sectiotlines the
design to implement local cache consistency.

In order to keep the cache consistent with thesusem actions

operation,
that returns the Bob’s cell phone number, is stamezhche along
. The next operatign
deleteCellNumber(Bob) is
performed. Request 1 and 2 intersect and the paessneatch,
should invalidaterequestl . Thus
determining whether a request invalidates anotharfunction of

default response for the web service if one is not Operationl(param x,...,param x-1)



Operation2(paramy,...,param y-1)
Invalidation(operationl, operation2, param X, ... , param y-1)

Determining the operation names and parameterkeofequests
and responses utilizes the prescribed WSDL anwooti The
invalidation algorithm also relies on the WSDL domnt
labelling getCellNumber as a query operation and
deleteCellNumber as a delete operation. It also knows
from  WSDL document that the parameter of
getCellNumber
phone number as the parameter defleteCellNumber

Finally it needs to determine the&ommon denominator
CellNumber in getCellNumber and
deleteCellNumber which can be easily achieved through
simple string manipulation. If an annotated WSDIculment does
not exists for operation types then the invalidatagorithm
resorts to matching keywords such as “del”, “getbperations to
determine an intersection.

Whenever a new request is being processed the caehnger
applies the invalidation function or cache updaitecfion to each
of the entries stored in cache along with the audrrequest. This
is an expensive process but it is the only way t@ntain a
consistent cache during disconnections. Below ey basic
pseudo code version of the algorithm.

For Each Cached Entry
If (Current Request is a DEL|IREPLACE|SET) & (CacRegfjuest is a QUERY)
If(Parameters match)
Make appropriate changes

55 SOAP RESPONSE FABRICATION

This module is at the core of the system that we liesigned. It
is responsible for creating properly formatted SQrABponses in
response to SOAP request that are received frorsligret. The
understanding of the structure of the SOAP requesgibnse
messages exchanged between client and server isokdlge

success of the overall system. Despite the fatt\Web Services
are now mostly using the de facto standard of SOAReb

Services deviate drastically with the respect te structure of
their SOAP messages. Even mechanisms for theifidation of

operation name vary from service to service.

When a client issues a SOAP request during dis@inne
operations, our system is expected to return agolpformatted,
meaningful response, so that the client can pretente still
functioning under normal circumstances. If thiseigtion is
deemed cacheable, and the specific response hasbewt
previously cached, then this fabricated responsettv@ached so
that it can returned to the client the next time tiperation is
processed.

To properly design an effective algorithm for thabrication of
such responses, needs a deeper understanding opéhations
exported by the Web service, and the correlatiomsl a
dependencies between the SOAP service requesharddulting
SOAP responses.

By the examination of the structure and correlatidoetween
SOAP request and their resultant response, welaasify almost
all of these operations into one of at least fategories.

1. Those responses that are returned as default spon

is a cell phone number that is the same cell

2. Those responses that require values extracted tinem
request to fabricate the response

3. Those responses that require values to be extrécted
other request

4. Those responses that are special cases

By annotating the specific portType, of the Webvems's
WSDL document, that references that specific op@raso that it
corresponds to one of the above four categorie®e cé&h now
implement the algorithm which understands the se¢icgof the
SOAP requests by referencing the annotated WSQictorately
ascertain the proper course of action when fabnigad properly
formatted, meaningful response. This responsebeareturned to
the client, so as to deceive the client into batiguhat it is still
operating under normal connected circumstancese gdneral
algorithm is described in the diagram below.

WSDL
Documant

Erapat Properfy
formatiad
meaningful
FESpOnsa

SOAP Request Case 2

Case 3

Cased

Fabrication Algorithm

Addition requesis

Figure 3: The general algorithm for the fabrication of SOAP
responses

6. SYSTEM ARCHITECTURE

An HTTP proxy server intercepts messages passeuebptthe
client and server. A message containing a SOAP estqor
response is determined via the presence of an SQAR2N

header within the HTTP header. HTTP messages an@lysi
tunneled to the respective server. SOAP messagepased to
the inherent Web Service Cache. A Specialized Cd&dneger is
instantiated for every Web Service with an annotaéSDL file.

Web Services without an annotated WSDL are hanbiedhe

Default Cache Manger.

The cache store is responsible for storing andexéty the

requests and responses together with the corresgpnohique

numeric. The cache key is calculated by hashingogheration

name and parameters of the request. A pre-detetinmumber of
request response pairs can be stored. Cache etearergtored on
disk and exist for a lifetime specified at runtinugion expiry the
elements are deleted. Finally the cache store imgés a Least
Recently Used (LRU) policy to cache a request nresp@lement
when the cache is full.



Messages that are deemed playbacRatie placed on the Write-
Back queue during the first stage of the discoreteatodule, due
to network outages at the time of reception. ThdtéABack
Queue module is responsible for polling the sepegiodically to
check for connectivity and playing back queued eguest to the
server. Queued messages are stored as files olodhlehost.
Periodically, the write back queue module checks rfetwork
connectivity by issuing the first request in theege to the server.
If the network is still disconnected, the write hapieue waits a
pre-determined duration and repeats the same gsuiocess
again to check for network connectivity.

If connectivity between the server and the cacloeapsystem is
restored, then the Write-Back queue module purtesniernal
queue of the stored messages and plays this battleteerver.
These service requests are played back to thersene FIFO
(First in First out) order. The resulting respanseturned from
the server are given to the cache manager to leeténksinto the
cache and the necessary transformations (e.g.cieglautdated
cache entries) done on the contents of the caclmeatotain an
acceptable level of consistency.

A Specialized Manager is automatically created dach Web
service that has an annotated WSDL file. The Sjeedh
Manager then behaves according to the WSDL anootati

If the network is connected the request is forwdrtethe server
and the response waited upolf the response is a cacheable
operation it is cached. Before the response iwdoited to the
client the consistency algorithm is applied to ¢aehe.

If a disconnection is being experiencdte Specialized
Cache Manager attempts to either locate the appropriate
cached response or generate a suitable resportbe. iéquest is
not cacheable a suitable response is generateceanded to the
client. If the request is cacheable and a respnsached then it
returns that response to the client. However,odifresponse is
found in the cache the request is checked to seghehit is of
type “query”. If it is then a response can be gatest provided
the corresponding “insert” request is cached bpgide contents
of the insert message. In the case where no camdsyg “insert”
is found the operation is unavailable in disconeéatnode and
the client will time out.

The default cache manager processes all requedtseaponses
for Web Services’ that do not have an annotated WSD
document. It can operate in two modes each assanspecific
configuration of default values for the missing atations. The
“mode” is set a runtime. “Mode 1" assumes thatretjuests are
cacheable and replays all requests to the serModé 2"
conservatively treats all requests and responsesrasacheable.
“Mode 1" serves to maximize availability of a servéuring
periods of disconnection as is how the cache maneag§l8]
operated an mode 2 simple tunnels messages.

7. Evaluation
The Web Service Caches’ ability to provide seamlesine
offline transitions with losing as little operatiaf the service as

> A message is deemed playbackable are requestsmihiad
permanent changes to the state of the server. eTdresusually
“update” requests, i.e. insert, delete or modifyuests.

possible was tested by using the cache with a Wahic® that

models a car rental service. Exercising the senvitle the proxy

deployed and simulating disconnections; it was destrated that
the system was successful in providing disconneapedation for

the Car Rental Web. All aspects of the system wapeessful in
design and execution. The prescribed set of WSDiotations

proved worthy in dictating the behavior for an effee and

efficient cache. Specifically, these annotationsmadestrated that
they provide sufficient semantic information of threb service to
assist generation of default responses, maintaonaistent cache
and generally enhance the effectiveness of theecach

With respect to cache consistency the Web sended to test the
real world functionality of the system was a littkeking in terms
of operations. There was only one combination oérafions

which truly tested the cache consistency algorittirthere was a
replace operation, one which modified a record, dbasistency
algorithm could be improved to not only invalidagsponses but
also modify them. This smarter consistency algaoriticould

locate a path, specified by the “replace” requestthe query

response stored in the cache, perform the respeagigration and
modify the query response. Nevertheless, the cuoemsistency
principle is sufficient and sound.

For web services lacking WSDL annotations the def@ache

manager provided a configurable level of avail&piid best suit a
Web Service. Mode 1 which caches all requests asgonses
would be useful to provide a high cache-hit ratecfasses of web
services which predominantly consist of query opena on

static data. Such services like currency conversemices, map
services and directory listings [18]. In this mgalayback is set to
true for all operations so that if any update opens are
executed the server is notified upon reconnectidnis in turn

requires that a default response be generateceéprests which
are cache-misses. Playing all requests back toséneer and
generating some responses is a costly affair howevéas a

necessary. Conversely, modes two treats all regjugstnon-
cacheable and are not placed in the write back equélsimply

relays messages between client and server. Thusceseis

unavailable and would best suit services which lve® plenty of
insert, deletes and replaces.

Finally, the Web Service, Car Rental, which wasduseevaluate
the system, was not as complicated as plannedlyt exported
three of the required four operations. This doet megate the
success of the project but rather suggests thatotopletely
qualify the system it needs to be further testédgusultiple non-
trivial XML Web Services.

8. CONCLUSION AND FUTURE WORK

In this paper, a XML Web Service Cache solution hagn
described. The goal was to design and implemerdl&ien to
provide access to a web service despite frequentemtions and
limited bandwidth. The solution had to be transparand
generally applicable to all Web services. Buildumpn the design
of a previous experiment [18] into caching XML wsdrvices we
built a HTTP cache proxy that cached SOAP requesis
responses. The experiments’ [18] design was ertémgon by
prescribing WSDL annotations which enhance thecéffeness
of the cache managers. Modules to keep the cacballylo
consistent and generate default responses wereporeded into



the system. A prototype was built and thoroughbted using a
web service which models a car rental service. Shstem
satisfactorily provided a relatively high degree afailability

during intermittent disconnection demonstrating tteching web
services is viable and useful. However, the systemds to be
used with a number and variety of web servicesampietely
explore the utility of such a system. Areas for ufet
improvements include a smarter cache consistenggritim —
one which not only invalidates responses but carfope

modifications to cached response. There are stileroissues
remaining with respect to caching web services twinieed to be
addressed such security and user experience [l8mdtely,

what would be ideal are web service tools which can

automatically deduce properties of a web serviopsrations and
provided the necessary annotations to its WSDL ohecu.

9. REFERENCES

[1] Daniel Barbara and Tomaz Imielinski. Sleepers
and Workaholics: Caching Strategies in mobile
environments. Proceedings of the 1994 ACM
SIGMOD International Conference on
Management of Data, Minneapolis, Minnesota,
May 24-27, 1994 pages 1-12.

[2] Bharat Chandra, Mike Dahlin, Lei Gao, Amjad-
Ali Khoja, Amol Nayate, Asim Razzaq and, Anil
Sewani. Resource management for scalable

disconnected access to web services. Proceedings

of the tenth International Conference on World
Wide Web, 2001, Hong Kong, Pages: 245-256.
[3] Boris Y. L. Chan, Antonio Si, Hong Va Leong:
Cache Management for Mobile Devices: Design
and Evaluation. Proceedings of the Fourteenth
Internation Conference on Data Engineering,

February 23-27, 1998, Orlando, Florida: pages 54-

63.
[4] Bray T, Paoli J, C. M. Sperberg-McQueen, Eve

Maler. 2000. W3C Recommendation “Extensible

Markup Language (XML) 1.0 (Second Edition)”.
(SeeHTTP://www.w3c.org/TR/2000/REC-xml-
20001006

[5] P. Cauldwell, et. al. Professional XML Web
Services. Wrox Press Ltd. Birmingham, U. K.
2001.

[6] Roberto Chinnici, Martin Gudgin, Jean-Jacques
Moreau, Sanjiva Weerawarana. W3C Working
Draft “Web Services Description Language
(WSDL) Version 1.27, 9 July 2002 (See
HTTP://www.w3c.org/TR/wsdl12)

[7] Martin Gudgin, Marc Hadley, Jean-Jacques
Moreau Henrik Frystysk Nielsen. W3C Working

Draft “SOAP 1.2 Part 1 Messaging Framework”, 2

October 2001. (See
HTTP://www.w3c.org/TR/soapl2-par)l

[8] Martin Gudgin, Marc Hadley, Jean-Jacques
Moreau Henrik Frystysk Nielsen. W3C Working

Draft “SOAP 1.2 Part 2 Adjuncts”, 2 October
2001. (Se¢TTP://www.w3c.org/TR/soapl2-
partl2)

[9] R.G. Guy, J.S. Heideman, W. Mak, T. W. Page,
Jr., G.J. Popek, and D. Rothmeier. Implementation
of the Fiscus replicated file system. Proceedings
Summer USENIX Conference, June 1990, pages
63-71.

[10]Kahol, S. Khurana, S.K.S. Gupta and P.K.
Srimani. A strategy to mange cache consistency in
a disconnected distributed environment. IEEE
Trans. On parallel and Distributed Systems, Vol.
12. No. 7, July 2001 pp. 686-700.

[11]James J. Kistler, M. Satyanarayanan,
Disconnected operation in the Coda File System,
ACM Transaction on Computer Systems (TOCS),
v10 n.1, p.3-25, Feb 1992.

[12] Antony D. Joseph, M. Frans Kasshoek, Building
reliable mobile aware applications using rover
toolkit. Wireless Networks, v.3 n.5, p.405-419,
Oct 1997.

[13]Barbara Liskov, A. Adya, M. Castro, S.
Ghemawat, R. Gruber, U. Maheshwari, A. C
Meyers, M. Day, and L. Shira. Safe and Efficient
Sharing of Persistant Objects in Thor. Proceedings
International Conference on Managament of Data
(SIGMOD), 1996, Montreal, Quebec, Canada,
pages 318-329.

[14]Ing-Ray Chen, Ngoc Anh Phan, and I-Ling Yen.
Alogorithms for supporting Disconnected Write
Operations for Wireless Web Access in Mobile
Client-Server Enviroments. IEEE Transactions on
Mobile Computing, Vol. 1, No 1, January-March
2002, pages 56-58.

[15]Rick Floyd, Barron Housel and, Carl Tait. Mobile
Web Access using eNetworks Web Express. IEEE
Personal Communications, Vol. 5, No 5, October
1998, pages 47-52.

[16]Douglas B Terry, Venugopalan
Ramasubramanian. For Mobility. QUEUE. May
2003. Page 71 -78.

[17]Joanne Holliday, Divyakant Agrwal, and Amr EI
Abbadi. Disconecction Modes for mobile
databases. Wireless Networks, Issue 8, 2002,
pages 117-157.

[18]D. B. Terry. Ramasubramanain, V. Caching of
XML Web Services for Disconnected Operation.
Microsoft Research.

[19]D. B. Terry, M. M. Theimer, Karin Petersen, A. J.
Demers, M. J. Spreitzer, C. H. Hauser, Managing
update conflicts in Bayou, a weakly connected
replicated storage system, Proceedings of the
fifteenth ACM Symposuim on Operating System
Principles, Copper Mountain, Colorado,
December, 1995, pages 172-182.




[20] Gregory V. Chockler, Danny Dolev, Roy
Freidman, and Roman Vitenberg. Implementing a
Caching Service for Distributed CORBA Objects.
Proceedings International Conference on
Distributed System Platforms (Middleware), New
York, 2000, pages 1-23.

[21]R. Kordale, M. Ahamad, and M. DevaraKonda.
Object Caching in a CORBA Compliant System.
Proceedings USENIX Conference on Object
Orientated Technologies. (COOTS), Toronto,
Canada, June, 1996

[22] Micheal N. Nelson and Yousef A. Khalidi.
Generic Support for caching and Disconnected
Operation. Proceedings Fourth Workshop on

Workstation Operating Systems, Napa, CA,
October, 1993, pages 61-65.

[23]R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk
Nielson, T. Berners-Lee. IEFT “RFC 2616:
Hypertext Transfer Protocol- HTTP/1.1” January
1997.HTTP://www.IEFT.org/rfc/rfc2616.tx)

[24]World Wide Web Consortium.
HTTP://lwww.w3c.org




