
Caching of XML Web Services to Support Disconnected
Operation

Justin Reabow
jreabow@cs.uct.ac.za

Darryl Pillay

dpillay@cs.uct.ac.za

Technical Report Number: CS04-09-00

Department of Computer Science
University of Cape Town

ABSTRACT
XML Web services can now be accessed in all places and at all
times. The problem now facing these XML Web services is the
need be to universal availability. Caching can be used by client
applications that use XML Web Services on wireless or mobile
networks in the face of intermittent connectivity. The idea of
interjecting a client side cache proxy may be a step in the
direction towards the ultimate goal of a seamless online/offline
operating environment of these XML Web Services. But, Web
services present new challenges to existing cache managers since
they have generally been designed without regard to caching and
hence offer little support. The WSDL description of a Web
service specifies the message format of a necessary to invoke a
service operation but lacks the information needed to indicate
whether an operation will modify the server state or produce
different results on different invocations. We have suggested
several annotations to the WSDL document that will allow
custom cache managers to tailor their behavior based on the
specific requirements of the Web service. We then built a
caching system onto an HTTP proxy and interjected it between a
Web service and its application client, to test our assumptions.
We demonstrated that a XML Web services could be operated to
a limited extent disconnected from the server, without modifying
the implementation of the service or their applications.

Categories and Subject Descriptors
C.2.4 [C Computer Systems Organization C.2 COMPUTER-
COMMUNICATION NETWORKS Distributed Systems]: J2SE
XML

General Terms
Design Experimentation Reliability

Keywords
XML Web Services. Caching, SOAP Message Fabrication,
WSDL Annotations, Local Cache Consistency Availability

1. INTRODUCTION
Web Services are emerging as the dominant application on the
Internet. The web is no longer just a vast repository for
information but is evolving in an active medium for providers and
consumers of services. We are now seeing a wide variety of

services being offered on the Internet; peer-to-peer services
providing access to such services as access to personal contact
information, business services, and a whole host of consumer
services such as online bidding (ebay) and online shopping
(amazon)[9]. Web services are evolving into services designed
for programmatic use rather than human access. Thus, we are
seeing XML Web services becoming the building blocks for a
new generation of Internet applications. The potential for growth
of personal and business services are limitless.

One of the key requirements for the success of these Web services
is universal availability. These XML Web services tend to be
accessed in many different places and at all times. People are
now being found to access these services on a wide range of
devices, ranging from desktop computers, laptops, PDAs, a whole
host of hand held devices, and now with a new generation of
smart phones using wireless networking technology. But, with
frequent disconnections and unreliable bandwidth characterizing
these networks, the availability of the Web services become of
significant concern.

A solution to problem of availability would have to be
transparently deployable and generally applicable [9]. The
meaning of this is that a system that intends improving the
availability of Web services must not require changes to the
implementation of the client, or the server, or to the
communication protocols between them. Due, to the fact that
Web services are growing too rapidly, changes to each individual
Web service implementation would be infeasible. So a solution to
the problem would have to involve interposing storage and logic
that acts transparently in the communication path between the
client and server, and would require no changes to the
implementation of either the client or the server.

So what is the solution? Caching satisfies both the requirements
of being transparently deployable and generally applicable. This
project puts forward an architecture for a client side request-
response cache that mimics the behavior of our Web Service to a
limited extent. Our cache system is transparent to both the client
and the server, and hence no changes on either the client or the
server were needed. Our system conforms to the standards put
forward by the W3C, so theoretically can be applied to any Web
service that conforms to these standards.

This paper is organized in the following way. Section 2
introduces Web Services to the uninitiated and section 3 discuses

the background to the project. In section 4 an investigation into
caching XML Web Services and the various issues exposed are
summarized. The prescribed WSDL annotations and architecture
of the enhanced Web Service that was developed is covered in
section 5. An evaluation of the system follows in Section 6.
Finally, section 7 concludes the paper and discusses future work.

2. WEB SERVICES
Web Services generally consists of a service provider and
multiple consumers based on a client-server architecture. Each
Web service uses a custom communication protocol for the client
to access the servers. The most common access pattern for a Web
service consists of requests and responses. This pattern involves
the client sending a request message that specifies the operation to
be performed and all the required information to the server. The
server completes the relevant operations and replies with a
response message. This series of activities may result in
permanent changes to state of the server.

Web services represent black box functionality, without
wondering how the actual service is implemented [1]. Web
services provide RPC like services to the client. But, due to the
vast diversity of the operations that are exported by these web
services, it is difficult to distinguish clear categories of operations.
For example, an address book web service may support operations
such as insert, delete, replace, and/or query operations to perform
database functions. But, one web service may support an
interface that is vastly different to that of another. For example, a
travel reservation web service may support operations to provide
services to search airfares, make reservations, book tickets, etc.

The World Wide Web Consortium (W3C) has recommended a set
of standard for web services based on the Extensible Markup
Language (XML) [2]. These XML-based standards provide
globally recognizable protocols for discovering, describing and
accessing the custom interfaces of Web Services [3]. This set of
standards compromise of two important standards: SOAP
(Simple Object Access Protocol) and WSDL (Web services
Description Language).

Web Service Description Language (WSDL) [4] is an XML based
standard which defines the interface to a Web Service. It provides
all the information required for an application to access the
specified service. A Web Service is defined as a collection of
ports, which, in turn, are a collection of abstract operations and
SOAP messages. Keeping the operations abstract allow them to
be bound to different protocols and data formats such as SOAP,
HTTP GET/POST or MIME. Thus a Web Services’ WSDL
document provides an adequate description of the entire specified
Web Service by defining its operations, the operation parameters
and the format of SOAP messages to be exchanged.

The Simple Object Access Protocol (SOAP) standard [5][6] is a
lightweight communication protocol based on XML for
information exchange between various entities of web services.
SOAP is typically transmitted over HTTP although other
transports are possible. A SOAP message consists of an outermost
element called the envelope. In turn the envelope consists of a
compulsory body element and an optional header element. The
body element carries the content of the message which for
example could be name of an operation to be performed and its
parameters. The header is responsible for any additional useful

information which the Web Service may require, for instance
password authentication.

3. BACKGROUND
There has been plenty of research into providing availability of
Files [7] [8], Databases [9][10][11], Web Pages [14] [15] [16]
[17] and Remote Objects [12] [13] during periods of
disconnection on mobile devices via caching. However, to date
there has been only one significant exploration and contribution to
cache XML Web Services to support disconnected operation on
mobile devices [18]. The ultimate goal of all these systems is
similar if not the same and as such, they share a common
architecture - that being the cache. How these systems differ is
dependant on what is being cached and how, as well as the degree
of co-operation between clients and servers. Due to the diverse
nature of web services the matured strategies employed above to
provide availability of file, databases, objects and web pages is
not applicable to XML Web Services.

Techniques and strategies used to support availability of File
Systems and Databases are well researched and implemented.
These traditional systems export relatively straight forward
operations such as Read, Write, Open and Close. Therefore, the
cache manager implements a rather simple interface. In the case
of Web Services, each service exposes its’ own unique interface.
A Web Service Cache must somehow be able to categorize each
operation the service exports, in order for the cache to know how
it should be handled. Thus the semantics of a Web Service need to
be known to the cache manager. This hints at the possibility of
any web service requiring their own specialized cache manger.

Web Services encapsulate their data in critical business logic
which, in fact this is one of the selling points of Web Services.
Having clients that are able to utilize this high level logic [18]
means an attempt to replicate data of Web Services to support
disconnected operation of the service is not a sufficient technique
[7] [19] [8] [32].

Distributed object systems also employ caching to support
availability during periods of disconnection as well as increased
performance [21] [12] [22] [13] [23]. The common ground
between objects and web services is that they both expose
operations through published interfaces. The techniques utilized
to support availability of distributed objects relies on code and
data (the objects) being cached in their entirety. This technique is
not applicable to Web Services as resources are most probably
limited on mobile devices and the Business Logic of Web
Services is often proprietary.

Web Browsers are well established in supporting a cache for web
pages [24]. However the current status and research with respect
this realm of caching to support usage during disconnection,
focuses on maximizing the cache hit rates while only preserving a
mediocre degree of cache consistency. Caching web pages is
dependant on directives provided by Web Servers to indicate what
is cacheable and for how long what is being cached is fresh for.
Web services are active entities and so the passive nature of
caching web pages and the mediocre consistency it provides is not
adequate to apply to web services.

Consequently no current strategies for providing availability of
files, databases, web pages and distributed objects are applicable
to XML web services. Therefore a new approach is required to

provide access to Web Services for intermittently connected
devices.

4. RELATED WORK
4.1 An experiment in caching XML Web
Services
XML Web Services present new challenges, due to the diverse set
of operations exported and supported by such services as well as
the lack of involvement in the caching process [18].

The first and only significant exploration of caching of XML Web
Service was conducted by Douglas B. Terry and Venugopolan
Ramasubramanian at Microsoft Research Silicon Valley. The
study was conducted to research the suitability of caching to
support disconnected operations on Web Services. An
experiment was conducted in which a caching proxy was placed
between Microsoft .NET My Services1 and the sample client that
was shipped with these services. This suite of services
represented a non-trivial XML Web Service that supports both
query and update operations [18].

The Microsoft .NET My Services contained many different
services, including: MyContacts, which allowed users to store and
retrieve address and phone information; amongst others [18].
This service was used in the running of the experiment. This
particular service was chosen because it exported four significant
operations on shared databases:

Query lets users select portions of the database. This operation
takes in a String as the query argument.

Insert takes data to be inserted into the database, and uses a
String argument specifying the location for the insertion.

Delete takes a query argument and deletes the queried entries
from the database

Replace performs an atomic delete and insert in the database.

These operations were used to test sample applications having the
network connected, as well as deliberately disconnecting the
network [18].

They team of Terry and Ramasubramanian built a HTTP proxy as
defined in the HTTP protocol standard and deployed it on a client
device. In this case, the device was a laptop running the
Windows XP operating system. All HTTP messages originating
at the client were made to pass through the proxy server. The
proxy server simply acted as a tunnel for all HTTP packets that
are not SOAP messages [18].

1 Microsoft .NET My Services (Hailstorm) has since been

discontinued, after AOL threatened to sue Microsoft on the
ground that the suite was encroaching on the market created by
their product AIM (AOL instant messenger)

Figure 1

They proceeded to add a cache for storing SOAP messages to the
proxy server. Integrating the Web service cache into the proxy
served to meet the requirement of transparency. This cache stored
the SOAP request received as well as the complimentary response
provided by the web service server. All cache policies for
expiration and replacement were implemented according to the
HTTP standard. The cache served to store only HTTP messages
that had SOAP messages as its entities. Whenever the system
was acting in connected mode2, the SOAP request message was
sent to the server, and the received response was stored in the
cache along with the associated request, replacing the old
response if necessary. When the cache contained a previous
response for the same request, the new response was compared
with the old response, and the result from the comparison was
recorded in a log file [18].

If the network was disconnected3, the SOAP response message
stored in the cache (if present) was returned to the client and the
SOAP request was stored in the write-back queue. If the cache
has no stored response, the client times out waiting for the
response, as per normal when the server is unreachable. All
requests are stored in the write-back queue for later replay,
because the cache manager cannot determine which request
modifies the service state and which are simple queries. The
write-back queue is responsible for periodically checking the
network for connectivity. Whenever the connection to server is
restored, the request messages stored in the write-back queue are
played back to server and the resulting SOAP response messages
are stored, along with their complimentary SOAP request
messages, are stored in the cache [18].

2 The server was online and the system acts normally
3 The server is disconnected from the system; therefore the system

is relying on the cache for the responses to the requests
received.

Figure 2

The above experiment highlights the benefits of employing a Web
service cache to support disconnected operations [9]. It showed
that Web services can be operated offline to some degree of
success. Specifically it showed that the test users of Microsoft’s
.NET MyContacts while using the above system, were little aware
of interruptions to the disconnectivity to the network service. It
also showed that Web services can be operated, although to a
somewhat limited degree, in a disconnected mode without
alterations being made to the server or the client implementations
[9].

4.2 Issues in Caching XML Web Services
The experimentation done by the Microsoft team of Terry and
Ramasubramanian raised several issues that we intend to tackle to
improve the consistency and availability of offline access to Web
Services.

4.2.1 Playback and Cacheablity
Due to the diverse nature of Web services a major problem is
posed as to the identification of the semantics of the operation
exposed by the Web service. Unlike traditional systems, such as
file systems, where the interfaces exported to the client are all
pretty much standardized, Web Services almost always export
unique interfaces. So the question that arises is whether the
operations exposed by these interfaces have to be played back to
the server or whether an old cached response can be acceptably
returned to the client [9].

A successful Web service cache needs to understand the
properties of an operation to effectively function; that is to access
the cacheablity and/or the playbackability of an operation. An
operation is said to playbackable if, the execution of such an
operation leads to a permanent change in the state of the server.
An operation is said to be cacheable, if the subsequent execution
of such an operation with the same parameters will return the
same response. An operation may fulfill either, both or none of
these properties [9]. It is up to the developer of the system to
deduce this.

4.2.2 Consistency
While operating in disconnected mode the cache cannot provide
strong consistency, simply due to the fact that there is no access
to updates performed by other users using and making changes to
the same Web service. However, another solution that can be

adopted is to provide weak consistency4. In particular the
consistency requirement of each operation needs to be well
understood, i.e. which operation would invalidate another
operation if executed. For example, an insert operation or query
operation on a database system would be invalidated by a delete
operation. The goal being to develop a Web service cache which
correctly understands the semantics of Web service operations
that would enable invalidation or perform transformations of prior
operations thereby providing local consistency and increasing the
overall effectiveness of the cache proxy system. The ultimate
effectiveness of the system would depend on how well it
understands the consistency requirements of diverse Web
Services [9].

4.2.3 Request and Response Messages
The understanding of the format of messages exchanged between
the Web service client and server can pose yet another problem to
a caching proxy. Despite using standardized protocols such as
SOAP, web services deviate considerably in the structure and
format of the request and response messages. Even operations
such as identifying the name of the operation being performed
vary from service to service. Complicating things further, we
may find that operation names may have to be identified in a
completely different way for different Web services. This may
have drastic consequences on the transparency of the overall
system [9].

The correct comprehension of the message structure is also
required to accomplish many other fundamental tasks such as
comparison of request, and the fabrication and generation of
responses. A cache manager must also be aware and be able to
understand which elements of a request message should be used
as keys for cache lookups. The cache manager must be able to
accurately distinguish and differentiate between similar requests,
or every request would be cached and the cache would be
rendered useless.

The message structure of the request and response must be clearly
defined and documented to be effectively categorized the
request/response to determine the correct course of action. This is
needed since when a cache receives a request for a service
operation during disconnected activity, it is expected to return a
meaningful response to the client as to deceive the client that it is
still operating under normal connected mode of operation i.e. the
service is still available. The cache can either send a previously
fabricated message or, generate a response that conforms to the
message format of the service. Currently WSDL specifications
contain enough information to permit fabrication, but lacks
information about reasonable default information for each
element of the fabricated response. An effective algorithm can
only be devised through thorough examination of the SOAP
messages of the Web service in question.

5. SOLUTIONS TO THE ISSUES
This sections details the specific solutions to the various issues in
caching XML Web Services which this project tackled. A
prescribed set of WSDL annotations to facilitate caching are

4 Weak consistency strives to keep the cache consistent with the

user’s own actions

discussed. Following this an algorithm to keep the cache locally
consistent is explained. Next a discussion follows regarding the
generation of responses follows.

5.1 WSDL Annotations
The majority of the issues in caching XML web services are due
to diverse nature of the services. In order facilitate the effective
caching more information is required regarding the properties of
an operation. Is the operation cacheable? Does it cause permanent
changes to the server state? A generic technique for providing and
describing this information is required. A web services WSDL
document provides information as to what operations are exported
by the web service and the operations involved but lacks
information to assist caching. Thus, as suggested by the
experiment [18] the WSDL should be extended to provide such
information. Doing so would not affect tools which generate web
clients based on WSDL documents as the annotations would be
optional. Also this solution satisfies the two governing principles
of the system namely, transparency and general applicability.

5.2 Properties of Operations
To facilitate effective and efficient caching of Xml Web services
the following attributes can be added to a Web Services WSDL
document, in particular to the operation element. The operation
element specifies the messages involved in each of the operations
provided by the Web service. The attributes elaborate upon the
semantics and properties of each operation exported by the web
service and so it was natural to include them in the operation
element.

One complication is the difficulty in determining the properties of
an operation. The cacheable and Playback attributes defined
below serve to resolve the issue described in section 3.3. These
two properties of an operation need to be recognized in order for
the web service to function properly.

Attribute Description

Cacheable This Boolean attribute specifies whether the
operation is cacheable or not. An operation is
cacheable when subsequent executions of the
operation using a particular parameter results in
an identical response. For example, typical get
and query operations such as getName(),
getAddress().

Playback: A Boolean attribute which the cache manger
uses to determine whether the request currently
being processed should be replayed to the server
once the connection is restored. An operation
which results in a permanent change to some
state on the server side is an update operation,
and therefore needs to be played back to the
server upon reconnection. For example,
whenever setAddress(Bob, 21
NewAddress Road) is called while the
web service is being used during disconnection,
it must be sent to the server

Generate
Response

Another Boolean attribute which specifies
whether the cache manager can generate a
default response for the web service if one is not

Type

cached.

The final attribute that can be added to the
operation element is a type attribute. That is used
to keep the cache store consistent. A attribute
which categorize the operation. It can be one of
5 values, “delete”, “set”, “replace”, “query” and
“undefined”.

5.3 Identifying SOAP messages
In order to process SOAP requests and responses properly, the
Web service cache needs a method to distinguish between SOAP
messages via the operation being performed (A.K.A operation
name) and its parameters. Each operation name together with one
or more of its parameters can be used to uniquely identify any
request response pair. This combination of operation name and
parameter(s) can also be used to calculate a cache key for the
request response pair. Determining the operation name is an easy
affair as the first child element of the SOAP body (section 4.1.2)
is always the name of the operation being performed. However
there is no way to distinguish which of a message’s parameters
uniquely identify a request response pair. Thus an attribute has
been defined which is added to the Binding Element is the Web
Services WSDL document. The binding element describes the
components of the SOAP messages that are exchanged.

Identifier: The attribute is an XPATH string which represents
the path to a parameter which when used in conjunction with the
operation name can uniquely distinguish a request. XPATH is an
XML Path Language is a W3C [1] (see section 2) standard used to
query, navigate and identify specific portions of XML documents.

5.4 Cache Consistency
As with any caching solution the cache store needs to be
consistent with, that is be as up to date as possible with the server-
side to operate effectively. Once again the diverse nature of Web
services is the source of complications. All web services have
custom interfaces and so identifying and controlling read/write
and write/write conflicts is an issue. Updating the cache store with
the server is simply not possible during periods of disconnection
and the cache would be inconsistent (out of date) at such times.
As the experiment into caching web services [18] outlines it is
possible to provide local consistency that is a cache which is
consistent with the users own actions. This section outlines the
design to implement local cache consistency.

In order to keep the cache consistent with the users own actions
the cache manager needs to determine whether the current request
being processed can invalidate any of the request response pairs
stored in the cache. Invalidation can be detected by determining
whether the operations intersect each other and whether the
parameters of the two operations match. For example,
request1 which is a getCellNumber(Bob) operation,
that returns the Bob’s cell phone number, is stored in cache along
with it’s corresponding response1 . The next operation,
request2 a deleteCellNumber(Bob) is
performed. Request 1 and 2 intersect and the parameters match,
therefore request2 should invalidate request1 . Thus
determining whether a request invalidates another is a function of
the operations names and parameters:
Operation1(param x,…,param x-1)

Operation2(param y,…,param y-1)

Invalidation(operation1, operation2, param x, … , param y-1)

Determining the operation names and parameters of the requests
and responses utilizes the prescribed WSDL annotations. The
invalidation algorithm also relies on the WSDL document
labelling getCellNumber as a query operation and
deleteCellNumber as a delete operation. It also knows
from WSDL document that the parameter of
getCellNumber is a cell phone number that is the same cell
phone number as the parameter of deleteCellNumber .
Finally it needs to determine the common denominator
CellNumber in getCellNumber and
deleteCellNumber which can be easily achieved through
simple string manipulation. If an annotated WSDL document does
not exists for operation types then the invalidation algorithm
resorts to matching keywords such as “del”, “get” to operations to
determine an intersection.

Whenever a new request is being processed the cache manger
applies the invalidation function or cache update function to each
of the entries stored in cache along with the current request. This
is an expensive process but it is the only way to maintain a
consistent cache during disconnections. Below is a very basic
pseudo code version of the algorithm.
For Each Cached Entry

If (Current Request is a DEL|REPLACE|SET) & (Cached Request is a QUERY)

 If(Parameters match)

 Make appropriate changes

5.5 SOAP RESPONSE FABRICATION
This module is at the core of the system that we have designed. It
is responsible for creating properly formatted SOAP responses in
response to SOAP request that are received from the client. The
understanding of the structure of the SOAP request/response
messages exchanged between client and server is key to the
success of the overall system. Despite the fact that Web Services
are now mostly using the de facto standard of SOAP - Web
Services deviate drastically with the respect to the structure of
their SOAP messages. Even mechanisms for the identification of
operation name vary from service to service.

When a client issues a SOAP request during disconnect
operations, our system is expected to return a properly formatted,
meaningful response, so that the client can pretend to be still
functioning under normal circumstances. If this operation is
deemed cacheable, and the specific response has not been
previously cached, then this fabricated response has to cached so
that it can returned to the client the next time the operation is
processed.

To properly design an effective algorithm for the fabrication of
such responses, needs a deeper understanding of the operations
exported by the Web service, and the correlations and
dependencies between the SOAP service request and the resulting
SOAP responses.

By the examination of the structure and correlations between
SOAP request and their resultant response, we can classify almost
all of these operations into one of at least four categories.

1. Those responses that are returned as default response

2. Those responses that require values extracted from the
request to fabricate the response

3. Those responses that require values to be extracted from
other request

4. Those responses that are special cases

By annotating the specific portType, of the Web services’s
WSDL document, that references that specific operation, so that it
corresponds to one of the above four categories. We can now
implement the algorithm which understands the semantics of the
SOAP requests by referencing the annotated WSDL to accurately
ascertain the proper course of action when fabricating a properly
formatted, meaningful response. This response can be returned to
the client, so as to deceive the client into believing that it is still
operating under normal connected circumstances. The general
algorithm is described in the diagram below.

Figure 3: The general algorithm for the fabrication of SOAP
responses

6. SYSTEM ARCHITECTURE
An HTTP proxy server intercepts messages passed between the
client and server. A message containing a SOAP request or
response is determined via the presence of an SOAPACTION
header within the HTTP header. HTTP messages are simply
tunneled to the respective server. SOAP messages are passed to
the inherent Web Service Cache. A Specialized Cache Manger is
instantiated for every Web Service with an annotated WSDL file.
Web Services without an annotated WSDL are handled by the
Default Cache Manger.

The cache store is responsible for storing and retrieving the
requests and responses together with the corresponding unique
numeric. The cache key is calculated by hashing the operation
name and parameters of the request. A pre-determined number of
request response pairs can be stored. Cache elements are stored on
disk and exist for a lifetime specified at runtime; upon expiry the
elements are deleted. Finally the cache store implements a Least
Recently Used (LRU) policy to cache a request response element
when the cache is full.

Messages that are deemed playbackable5 are placed on the Write-
Back queue during the first stage of the disconnected module, due
to network outages at the time of reception. The Write-Back
Queue module is responsible for polling the server periodically to
check for connectivity and playing back queued up request to the
server. Queued messages are stored as files on the local host.
Periodically, the write back queue module checks for network
connectivity by issuing the first request in the queue to the server.
If the network is still disconnected, the write back queue waits a
pre-determined duration and repeats the same issuing process
again to check for network connectivity.

If connectivity between the server and the cache-proxy system is
restored, then the Write-Back queue module purges its internal
queue of the stored messages and plays this back to the server.
These service requests are played back to the server in a FIFO
(First in First out) order. The resulting responses returned from
the server are given to the cache manager to be inserted into the
cache and the necessary transformations (e.g. replacing outdated
cache entries) done on the contents of the cache to maintain an
acceptable level of consistency.

A Specialized Manager is automatically created for each Web
service that has an annotated WSDL file. The Specialized
Manager then behaves according to the WSDL annotations.

If the network is connected the request is forwarded to the server
and the response waited upon. If the response is a cacheable
operation it is cached. Before the response is forwarded to the
client the consistency algorithm is applied to the cache.

If a disconnection is being experienced the Specialized
Cache Manager attempts to either locate the appropriate
cached response or generate a suitable response. If the request is
not cacheable a suitable response is generated and returned to the
client. If the request is cacheable and a response is cached then it
returns that response to the client. However, if no response is
found in the cache the request is checked to see whether it is of
type “query”. If it is then a response can be generated provided
the corresponding “insert” request is cached by using the contents
of the insert message. In the case where no corresponding “insert”
is found the operation is unavailable in disconnected mode and
the client will time out.

The default cache manager processes all requests and responses
for Web Services’ that do not have an annotated WSDL
document. It can operate in two modes each assumes a specific
configuration of default values for the missing annotations. The
“mode” is set a runtime. “Mode 1” assumes that all requests are
cacheable and replays all requests to the server. “Mode 2”
conservatively treats all requests and responses as non-cacheable.
“Mode 1” serves to maximize availability of a server during
periods of disconnection as is how the cache manager in [18]
operated an mode 2 simple tunnels messages.

7. Evaluation
The Web Service Caches’ ability to provide seamless online
offline transitions with losing as little operation of the service as

5 A message is deemed playbackable are requests that make

permanent changes to the state of the server. These are usually
“update” requests, i.e. insert, delete or modify requests.

possible was tested by using the cache with a Web Service that
models a car rental service. Exercising the service with the proxy
deployed and simulating disconnections; it was demonstrated that
the system was successful in providing disconnected operation for
the Car Rental Web. All aspects of the system were successful in
design and execution. The prescribed set of WSDL annotations
proved worthy in dictating the behavior for an effective and
efficient cache. Specifically, these annotations demonstrated that
they provide sufficient semantic information of the web service to
assist generation of default responses, maintain a consistent cache
and generally enhance the effectiveness of the cache.

With respect to cache consistency the Web service used to test the
real world functionality of the system was a little lacking in terms
of operations. There was only one combination of operations
which truly tested the cache consistency algorithm. If there was a
replace operation, one which modified a record, the consistency
algorithm could be improved to not only invalidate responses but
also modify them. This smarter consistency algorithm could
locate a path, specified by the “replace” request, in the query
response stored in the cache, perform the respective operation and
modify the query response. Nevertheless, the current consistency
principle is sufficient and sound.

For web services lacking WSDL annotations the default Cache
manager provided a configurable level of availability to best suit a
Web Service. Mode 1 which caches all requests and responses
would be useful to provide a high cache-hit rate for classes of web
services which predominantly consist of query operations on
static data. Such services like currency conversion services, map
services and directory listings [18]. In this mode playback is set to
true for all operations so that if any update operations are
executed the server is notified upon reconnection. This in turn
requires that a default response be generated for requests which
are cache-misses. Playing all requests back to the server and
generating some responses is a costly affair however, it is a
necessary. Conversely, modes two treats all requests as non-
cacheable and are not placed in the write back queue. It simply
relays messages between client and server. Thus service is
unavailable and would best suit services which involves plenty of
insert, deletes and replaces.

Finally, the Web Service, Car Rental, which was used to evaluate
the system, was not as complicated as planned. It only exported
three of the required four operations. This does not negate the
success of the project but rather suggests that to completely
qualify the system it needs to be further tested using multiple non-
trivial XML Web Services.

8. CONCLUSION AND FUTURE WORK
In this paper, a XML Web Service Cache solution has been
described. The goal was to design and implement a solution to
provide access to a web service despite frequent connections and
limited bandwidth. The solution had to be transparent and
generally applicable to all Web services. Building upon the design
of a previous experiment [18] into caching XML web services we
built a HTTP cache proxy that cached SOAP requests and
responses. The experiments’ [18] design was extended upon by
prescribing WSDL annotations which enhance the effectiveness
of the cache managers. Modules to keep the cache locally
consistent and generate default responses were incorporated into

the system. A prototype was built and thoroughly tested using a
web service which models a car rental service. The system
satisfactorily provided a relatively high degree of availability
during intermittent disconnection demonstrating that caching web
services is viable and useful. However, the system needs to be
used with a number and variety of web services to completely
explore the utility of such a system. Areas for future
improvements include a smarter cache consistency algorithm –
one which not only invalidates responses but can perform
modifications to cached response. There are still other issues
remaining with respect to caching web services which need to be
addressed such security and user experience [18]. Ultimately,
what would be ideal are web service tools which can
automatically deduce properties of a web services’ operations and
provided the necessary annotations to its WSDL document.

9. REFERENCES

[1] Daniel Barbara and Tomaz Imielinski. Sleepers
and Workaholics: Caching Strategies in mobile
environments. Proceedings of the 1994 ACM
SIGMOD International Conference on
Management of Data, Minneapolis, Minnesota,
May 24-27, 1994 pages 1-12.

[2] Bharat Chandra, Mike Dahlin, Lei Gao, Amjad-
Ali Khoja, Amol Nayate, Asim Razzaq and, Anil
Sewani. Resource management for scalable
disconnected access to web services. Proceedings
of the tenth International Conference on World
Wide Web, 2001, Hong Kong, Pages: 245-256.

[3] Boris Y. L. Chan, Antonio Si, Hong Va Leong:
Cache Management for Mobile Devices: Design
and Evaluation. Proceedings of the Fourteenth
Internation Conference on Data Engineering,
February 23-27, 1998, Orlando, Florida: pages 54-
63.

[4] Bray T, Paoli J, C. M. Sperberg-McQueen, Eve
Maler. 2000. W3C Recommendation “Extensible
Markup Language (XML) 1.0 (Second Edition)”.
(See HTTP://www.w3c.org/TR/2000/REC-xml-
20001006.)

[5] P. Cauldwell, et. al. Professional XML Web
Services. Wrox Press Ltd. Birmingham, U. K.
2001.

[6] Roberto Chinnici, Martin Gudgin, Jean-Jacques
Moreau, Sanjiva Weerawarana. W3C Working
Draft “Web Services Description Language
(WSDL) Version 1.2”, 9 July 2002 (See
HTTP://www.w3c.org/TR/wsdl12/.)

[7] Martin Gudgin, Marc Hadley, Jean-Jacques
Moreau Henrik Frystysk Nielsen. W3C Working
Draft “SOAP 1.2 Part 1 Messaging Framework”, 2
October 2001. (See
HTTP://www.w3c.org/TR/soap12-part1.)

[8] Martin Gudgin, Marc Hadley, Jean-Jacques
Moreau Henrik Frystysk Nielsen. W3C Working

Draft “SOAP 1.2 Part 2 Adjuncts”, 2 October
2001. (See HTTP://www.w3c.org/TR/soap12-
part12.)

[9] R.G. Guy, J.S. Heideman, W. Mak, T. W. Page,
Jr., G.J. Popek, and D. Rothmeier. Implementation
of the Fiscus replicated file system. Proceedings
Summer USENIX Conference, June 1990, pages
63-71.

[10] Kahol, S. Khurana, S.K.S. Gupta and P.K.
Srimani. A strategy to mange cache consistency in
a disconnected distributed environment. IEEE
Trans. On parallel and Distributed Systems, Vol.
12. No. 7, July 2001 pp. 686-700.

[11] James J. Kistler, M. Satyanarayanan,
Disconnected operation in the Coda File System,
ACM Transaction on Computer Systems (TOCS),
v10 n.1, p.3-25, Feb 1992.

[12] Antony D. Joseph, M. Frans Kasshoek, Building
reliable mobile aware applications using rover
toolkit. Wireless Networks, v.3 n.5, p.405-419,
Oct 1997.

[13] Barbara Liskov, A. Adya, M. Castro, S.
Ghemawat, R. Gruber, U. Maheshwari, A. C
Meyers, M. Day, and L. Shira. Safe and Efficient
Sharing of Persistant Objects in Thor. Proceedings
International Conference on Managament of Data
(SIGMOD), 1996, Montreal, Quebec, Canada,
pages 318-329.

[14] Ing-Ray Chen, Ngoc Anh Phan, and I-Ling Yen.
Alogorithms for supporting Disconnected Write
Operations for Wireless Web Access in Mobile
Client-Server Enviroments. IEEE Transactions on
Mobile Computing, Vol. 1, No 1, January-March
2002, pages 56-58.

[15] Rick Floyd, Barron Housel and, Carl Tait. Mobile
Web Access using eNetworks Web Express. IEEE
Personal Communications, Vol. 5, No 5, October
1998, pages 47-52.

[16] Douglas B Terry, Venugopalan
Ramasubramanian. For Mobility. QUEUE. May
2003. Page 71 -78.

[17] Joanne Holliday, Divyakant Agrwal, and Amr El
Abbadi. Disconecction Modes for mobile
databases. Wireless Networks, Issue 8, 2002,
pages 117-157.

[18] D. B. Terry. Ramasubramanain, V. Caching of
XML Web Services for Disconnected Operation.
Microsoft Research.

[19] D. B. Terry, M. M. Theimer, Karin Petersen, A. J.
Demers, M. J. Spreitzer, C. H. Hauser, Managing
update conflicts in Bayou, a weakly connected
replicated storage system, Proceedings of the
fifteenth ACM Symposuim on Operating System
Principles, Copper Mountain, Colorado,
December, 1995, pages 172-182.

[20] Gregory V. Chockler, Danny Dolev, Roy
Freidman, and Roman Vitenberg. Implementing a
Caching Service for Distributed CORBA Objects.
Proceedings International Conference on
Distributed System Platforms (Middleware), New
York, 2000, pages 1-23.

[21] R. Kordale, M. Ahamad, and M. DevaraKonda.
Object Caching in a CORBA Compliant System.
Proceedings USENIX Conference on Object
Orientated Technologies. (COOTS), Toronto,
Canada, June, 1996

[22] Micheal N. Nelson and Yousef A. Khalidi.
Generic Support for caching and Disconnected
Operation. Proceedings Fourth Workshop on

Workstation Operating Systems, Napa, CA,
October, 1993, pages 61-65.

[23] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk
Nielson, T. Berners-Lee. IEFT “RFC 2616:
Hypertext Transfer Protocol- HTTP/1.1” January
1997. HTTP://www.IEFT.org/rfc/rfc2616.txt.)

[24] World Wide Web Consortium.
HTTP://www.w3c.org

