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ABSTRACT
Deontic logic is a logic often used to formalise scenarios in the legal domain. Within the legal domain there
are many exceptions and conflicting obligations. This motivates the enrichment of deontic logic with not only
the notion of defeasibility, which allows for reasoning about exceptions, but a stronger notion of typicality
that is based on defeasibility. KLM-style defeasible reasoning is a logic system that employs defeasibility while
Propositional Typicality Logic (PTL) is a logic that does the same for the notion of typicality. Deontic paradoxes
are often used to examine logic systems as the paradoxes provide undesirable results even if the scenarios seem
intuitive. Forrester’s paradox is one of the most famous of these paradoxes. This paper shows that KLM-style
defeasible reasoning and PTL can be used to represent and reason with Forrester’s paradox in such a way as to
block undesirable conclusions without completely sacrificing desirable deontic properties.
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1 INTRODUCTION

Logic has for a long time been used to formalise legal norms and study legal reasoning (Grossi
& Rotolo, 2011). The difference between “what is the case” and “what should be the case”
is fundamental to law and this naturally translates to deontic logic and its notions of oblig-
ation, permission and prohibition. This paper is part of a research study which focuses on
introducing the notion of defeasibility into a deontic setting, a task that has been investigated
for many years within the deontic logic community. Defeasibility allows for reasoning about
exceptions in a domain, distinguishing between “what is normally the case” and “what is ac-
tually the case” (Makinson, 1993, 2005). It is important to note there are already notions
of defeasibility in the world of legal reasoning. The introduction of new information or a
new regulation can cause laws to conflict and/or present exceptions which make existing laws
inapplicable (Grossi & Rotolo, 2011). Therefore the further exploration of the use of defeas-
ibility and defeasible techniques within a deontic context is of interest. KLM-style defeasible
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reasoning is a logic system which allows for conclusions to be retracted and therefore allows
for dealing with exceptions (Casini & Straccia, 2012; Kraus et al., 1990). Typicality is based
on defeasibility and is a notion used in Propositional Typicality Logic (PTL) where its extra
expressivity makes it a more powerful version of defeasibility (Booth et al., 2015). In deontic
logic research, it is common for systems to be validated with the use of deontic paradoxes
(van der Torre, 1997). One of the famous paradoxes is Forrester’s paradox, also known as
the Gentle Murder paradox (Pigozzi & van der Torre, 2017; van der Torre, 1997). The se-
mantic connection between deontic logic and the logic systems of defeasibility and typicality
will be discussed later in the paper. This paper will present the paradox and also examine the
effectiveness of KLM-style defeasible reasoning and PTL when applied to the paradox. This
examination will mainly consist of three steps. To begin with, we must find a representation
of the deontic statements for each of KLM-style defeasible reasoning and PTL. Then we must
determine which of the deontic properties that we deem to be desirable are satisfied by these
logic systems. We then must examine whether Forrester’s paradox and its issues can be dealt
with in a reasonable manner using these logic systems.

Now we outline the structure of the paper. We begin by presenting propositional logic as
this is the logic that forms the foundation of the logic systems we will be working with. We
then detail the following logic systems: KLM-style defeasible reasoning, deontic logic and pro-
positional typicality logic. The deontic logic section will be where Forrester’s paradox and its
issues are detailed. Once these have been detailed we then look at the analysis of Forrester’s
paradox using KLM-style defeasible reasoning and PTL. During this analysis we show that, for
both logic systems, we can find sensible representations for the paradox and can subsequently
deal with the paradox’s issues in a reasonable manner. Finally, we present the conclusions.
This paper is an extended version of a paper published in the proceedings of the South African
Forum for Artificial Intelligence Research (Chingoma & Meyer, 2019).

2 PROPOSITIONAL LOGIC

Propositional logic is a logic used to formalise statements that can either be true or false (Booth
et al., 2015). These statements are usually represented using propositional letters such as p,q
and r. Given a set of propositional letters Φ, the language of propositional logic can be formed
with the following constants and operators (Booth et al., 2015; Parent & van der Torre, 2018;
Pigozzi & van der Torre, 2017). ⊥ is a constant which represents a contradiction while ¬ and
∧ are operators which represent negation and conjunction respectively. ∨ is the disjunction,
→ represents implication which makes↔ the double implication/“if and only if” and ⊤ is the
tautology (Parent & van der Torre, 2018; Pigozzi & van der Torre, 2017). These various parts
of the language can be combined to create propositional formulas, usually represented by α,
β, γ, etc. For example, p → ¬q and (p∧q)∨¬r are propositional formulas. Since the reasoning
aspect is of interest, it is important to mention the notion of entailment. Entailment refers to
what conclusions logically follow from a set of premises (Booth et al., 2015). The classical way
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to do this in propositional logic is to look at the truth assignments of the propositional letters,
usually denoted using valuations. A valuation is an assignment of either true or false to each
propositional letter. For example, {p,¬q} is a valuation where p is true and q is false. Let’s take
W to denote the set of all valuations. Given a valuation s ∈ W , a propositional letter p and a
propositional formula α, we can define the satisfaction in the language as follows (Parent &
van der Torre, 2018):

• s |= p iff p is true in the valuation s
• s |= ¬α iff not s |= α, as in α is false in s
• s |= α ∧ β iff s |= α and s |= β, as in α and β are both true in s
• s |= α ∨ β iff s |= α or s |= β, as in at least one of α and β are true in s
• s |= α → β iff s |= ¬α ∨ β, as in at least one of ¬α and β is true in s
• s |= α ↔ β iff s |= α → β and s |= β → α

Classical entailment commonly denoted using |=, tells us what logically follows from a set
of premises such as a knowledge base. A classical knowledge base, let’s say KB, is a set of
propositional formulas. If all the valuations that model KB, modelling a knowledge base
means the valuation satisfies all the formulas in KB, also satisfy a formula α, then we say that
KB entails α. This can be represented by KB |= α.

3 KLM-STYLE DEFEASIBLE REASONING

The logic system, proposed by Kraus et al. (1990), is a form of non-monotonic reasoning,
which is reasoning that allows for conclusions to be retracted. The property of monotonicity
is one that classical logic systems satisfy which states that the addition of new, and possibly
contradictory, information strictly leads to more conclusions. This does not align with the
usual thinking of humans who can deal with exceptions and thus this system allows us to reason
defeasibly. Take for example, we have the statements “Students do not pay tax” and “John is
a student and a part-time worker”, so we can conclude that John does not pay tax. Now we
add the statement “Students who are part-time workers pay tax”. Without non-monotonicity,
this addition would cause a contradiction as John both pays tax and does not pay tax. But
intuitively, we should be able to retract the first conclusion that John does not pay tax as we
now know of an exception, namely that students who are part-time workers pay tax. This
aligns more with the commonsense reasoning of humans.
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3.1 Language
The language of the KLM-style defeasible reasoning is formed by a set of propositional letters Φ,
the operators and constants of propositional logic with the addition of the following defeasible
implication operator, |∼. Thus the language of the KLM approach is an enriched version of
propositional logic where we can form defeasible implications such as α |∼ β, which can be
read as “α usually implies β” where α and β are propositional formulas.

3.2 Semantics
The semantics for the KLM approach is defined in the form of ranked interpretations. A ranked
interpretation, R, is a set of valuations, let’s say V ⊆ W , along with a binary relation ≤
where the valuations are ranked, with some valuations being preferred to others. We have
that ≤ is reflexive, antisymmetric, connected and transitive. And given a ranked interpreta-
tion R and a formula α, the set of valuations that satisfy α are represented as JαKR, whereJαKR = {v ∈ V | v |= α} (Booth et al., 2015). We say that a defeasible implication, let’s say
α |∼ β, is satisfied in a ranked interpretation if the minimal valuations where α is true are the
valuations where β is also true, min≤JαKR ⊆ JβKR (Booth et al., 2015; Lehmann & Magidor,
1992). That is to say that given JαKR, for every v′ in V , if we have v′ ∈ {v ∈ JαKR : v ≤ w for
every w in JαKR}, then v′ |= β. v ≤ w means that v is at least as preferred as w.

3.3 Properties of rational defeasible entailment relation
We now present the defeasible counterpart to the classical entailment relation, |=, that we
have seen in the previous section. We will use this defeasible entailment relation to denote
what we can derive from a defeasible knowledge base. A defeasible knowledge base being
a set which includes classical propositional formulas such as α,¬α, α ∨ β and α → β, along
with defeasible implications such as α |∼ β. Defeasible entailment will be denoted using the
relation |≈ and for example, a statement such as KB |≈ α |∼ β tells us that α |∼ β follows from
the knowledge base KB. Below we list some of the properties that the defeasible entailment
relation, |≈, ought to satisfy in order to be considered rational. Note that the below proper-
ties are not a complete list of those needed to consider a defeasible entailment relation to be
rational. The remaining properties are omitted as they are not used when dealing with the
issues of Forrester’s paradox. The role of the below properties in the paradox’s issues will
be detailed in the following section. These properties are to be interpreted as if we have a
defeasible knowledge base, let’s say KB, which makes use of propositional formulas such as
α, β and γ.

Conjunction If we have KB |≈ α |∼ β and KB |≈ α |∼ γ then we can derive KB |≈ α |∼ β ∧ γ
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If we have that α |∼ β follows from the knowledge base and also have that α |∼ γ follows
from the knowledge base, this property tells us that we can conclude that α |∼ β ∧ γ follows
from the knowledge base. If we have for example that “being a student usually implies having a
student card” and also have “being a student usually implies paying the fees in full” then we would
want it to be the case that “being a student usually implies having a student card and paying the
fees in full”.

Weakening If we have |= β → γ and KB |≈ α |∼ β then we can derive KB |≈ α |∼ γ

If we have β → γ as a tautology and that α |∼ β follows from the knowledge base, this
property tells us that we can conclude that α |∼ γ follows from the knowledge base. If we
have for example that “being a student implies having a student card” and “paying the fess in full
usually implies being a student” then we should be able to derive “paying the fess in full usually
implies having a student card”.

Rational Monotonicity If we have KB |≈ α |∼ β and KB ̸|≈ α |∼ ¬γ then we can derive
KB |≈ α ∧ γ |∼ β.

If we have that α |∼ β follows from the knowledge base and also have that α |∼ ¬γ does not
follow from the knowledge base, this property tells us that we can conclude that α ∧ γ |∼ β
follows from the knowledge base. If we have for example that “being a student usually implies
having a student card” and also have “being a student does not usually imply not paying the fees in
full” then we would want it to be the case that “being a student and paying the fees in full usually
implies having a student card”.

3.4 Lexicographic Closure
We now present the reasoning algorithm we will use when dealing with the KLM approach.
Lehmann detailed a form of entailment for defeasible reasoning called lexicographic closure
(Lehmann, 1995). This method satisfies the properties outlined in the previous section as well
as those that were omitted which were required to consider an entailment relation as rational.

Now we present the steps for a lexicographic closure algorithm that we used during the para-
dox analysis. Let’s take the following example knowledge base, {b |∼ f, b |∼ w, p |∼ ¬f, p →
b, r → b}, and observe the algorithm’s process more clearly. In the example, we have that p is
a “penguin”, r is a “robin”, b is a “bird”, f is “to fly” and w is “has wings”. For the purpose of the
example, let’s say we wish to observe whether we can derive p |∼ w, “penguins have wings” from
the knowledge base using lexicographic closure. The following are the summarised steps of a
lexicographic closure algorithm for propositional logic by Casini et al., which was generalised
in order to be implemented for Description Logics (Casini & Straccia, 2012). We will begin
by separating the knowledge base into A = {p → b, r → b} and B = {b |∼ f, b |∼ w, p |∼ ¬f},
which are the classical and defeasible parts of the knowledge base respectively. We will use
A and B along with the entire knowledge base, KB, in various parts of the algorithm. When

https://doi.org/10.18489/sacj.v32i2.848

https://doi.org/10.18489/sacj.v32i2.848


Chingoma, J., and Meyer, T.: Defeasibility applied to Forrester’s paradox 166

we refer to the premise, we are referring to the antecedent of the defeasible statement which
we query. So if we were to query whether p |∼ w is derived by lexicographic closure then p
would be the premise. Intuitively, when determining what follows from a premise, we look to
take into consideration as many statements of a ‘better’ rank as possible. Thus the algorithm
will assign ranks to the statements and separate them into various subsets. Then it will look
to determine which subsets to derive conclusions from, based on the number of statements,
starting from the highest ranked statements, the subsets satisfy.

Step 1We create a set of materialisations of the statements in the knowledge base and refer to it
as−→KB. A materialisation is the converting of defeasible implications into classical implications
so that we have −→KB being the classical implications of KB along with {α → β | α |∼ β ∈ KB}.
We must then check the consistency of the knowledge base using the materialisations set. If
a knowledge base is inconsistent then anything will follow from it, which is not desired when
reasoning. A knowledge base KB is inconsistent if and only if −→KB |= ⊥. We have that −→KB in
our example is {p → b, r → b, b → f, b → w, p → ¬f} which is consistent and we continue with
the algorithm.

Step 2We then give each statement in B a ranking based on their exceptionality. A formula α
is exceptional in a defeasible knowledge base, let’s say, KB if and only if −→KB |= ¬α (Giordano
et al., 2015; Lehmann & Magidor, 1992). This tells us the materialisation set classically entails
the negation of the formula. And a defeasible implication is exceptional if its antecedent is
exceptional with respect to KB. For example, α |∼ β is exceptional in KB if α is exceptional
in KB. In order to determine the degree to which a defeasible implication is exceptional, we
construct a non-increasing sequence of exceptional subsets of KB. We say that E(KB) is the
set of the exceptional defeasible implications of KB (Giordano et al., 2015; Lehmann & Ma-
gidor, 1992). Now, we consider a sequence of subsets of KB, Ci for i > 0, where C0 = KB,
and Ci = E(Ci−1). For a KB, there is an n ≥ 0 such that Cn = ∅ or for all m > n, Cm = Cn.
We then say that the rank of a formula, let’s say α, will be the smallest natural number, i, in
the subset sequence such that α is not exceptional. If the formula is exceptional for all the
subsets in the sequence then it is given an infinite rank. Classical statements are also given
an infinite rank. This can be seen as we can turn a classical statement, such as α → β, into a
defeasible statement (α∧¬β) |∼ ⊥, and for the antecedant, α∧¬β, to be exceptional, we would
require −→KB |= ¬α ∨ β. This is equivalent to −→KB |= α → β which will always be the case. Thus
classical statements receive an infinite rank as they will always be exceptional. The ranks of
the example’s statements in B are as follows, {rk(b |∼ f) = 0, rk(b |∼ w) = 0, rk(p |∼ ¬f) = 1}.
The ranks for the statements in A will be infinite and for the example we have rk(p → b) = ∞
and rk(r → b) = ∞.

Step 3We define the set B̃ to be {α |∼ β ∈ B | rk(α |∼ β) < ∞}. So B̃ will be all the defeasible
implications in B with a rank less than infinity. The rank of B̃, rk(B̃), will be the highest rank
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among the defeasible implications in B̃. The example’s B̃ will be {b |∼ f, b |∼ w, p |∼ ¬f} and
rk(B̃) = 1.

Step 4 We will now define T , which will be the set of the most preferred subsets of X which
are consistent with our premises and A, where X = {α → β | α |∼ β ∈ B̃}. Take k to be
the rank of B̃ and define the subset X i as the subset of statements in X which have rank i.
So we can now give every subset D of X a sequence of natural numbers with each number
representing a count of statements, which have a certain rank, that appear within that subset.
For the sequence, ⟨n0, ..., nk⟩D, the numbers are generally defined as ni =| D ∩ X k−i |. It is
with these sequences of numbers that we rank the subsets, where the number of statements
they satisfy is important along with the exceptionality of statements they satisfy. Let’s say we
have that ⟨n0, ..., nk⟩ ≥ ⟨m0, ...,mk⟩ iff (i) for every i (0 ≤ i ≤ k), ni ≥ mi or (ii) if ni < mi,
then there is a j such that j < i and nj > mj. We can say that a subset D is preferred to
a subset E iff ⟨n0, ..., nk⟩D > ⟨n0, ..., nk⟩E where > refers to the above relation ≥ but having
⟨n0, ..., nk⟩D ̸= ⟨n0, ..., nk⟩E .

So now to define the set T for our example. We list the subsets of X along with their nat-
ural number sequence. Note again that rk(B̃) = 1.
• {p → ¬f, b → f, b → w} - ⟨1, 2⟩ as one statement is of rank 1 while two are of rank 0.
• {b → f, b → w} - ⟨0, 2⟩
• {b → f, p → ¬f} - ⟨1, 1⟩
• {b → w, p → ¬f} - ⟨1, 1⟩
• {b → f} - ⟨0, 1⟩
• {b → w} - ⟨0, 1⟩
• {p → ¬f} - ⟨1, 0⟩

So for premise p and A = {p → b, r → b}, T will be {{b → w, p → ¬f}}.

Step 5 Finally, given the premise, p, we say p |∼ w is in the lexicographic closure if p∪A∪D |= w
for everyD ∈ T . So if we take p to be the premise, we can see that p |∼ w is in the lexicographic
closure and this can be denoted with p |∼lc

KB w.
{p} ∪ {b → w, p → ¬f} ∪ {p → b, r → b} |= w
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4 DEONTIC LOGIC

This section will formally present deontic logic and the specific logic system we will invest-
igate. Deontic Logic is a field of logic which formalises normative concepts. These concepts
include obligation (“what is an individual’s duty”, “what an individual ought to do”), per-
mission (“what an individual may do”) as well as other related concepts such as prohibition
(“what an individual is forbidden from doing”) (Hansson, 1969; Hilpinen & McNamara, 2013;
Parent & van der Torre, 2018; Pigozzi & van der Torre, 2017). The system we will be work-
ing with is the traditional Dyadic Standard Deontic Logic (DSDL) approach (Parent & van der
Torre, 2017, 2018; Pigozzi & van der Torre, 2017) although there are alternative approaches
to deontic logic such as input/output logic (Hilpinen & McNamara, 2013; Makinson & van
der Torre, 2000). The reason we opted for the more traditional approach was that it has a
semantics based on valuations, similar to that of the other logic systems we deal with in this
research study (Parent & van der Torre, 2017; Pigozzi & van der Torre, 2017).

4.1 Language
Given a set of propositional letters Φ, the language of Dyadic Standard Deontic Logic (DSDL)
can be represented with the following operator added to the propositional logic language
(Parent & van der Torre, 2018; Pigozzi & van der Torre, 2017): the ⃝-operator is added
which represents obligation. This operator in DSDL handles conditional obligations such as “if
p is true then it ought to be the case that q is true”. Such statements can be represented using
the “|” notation which is usually seen in conditional probability. The above example would be
translated to ⃝(q | p) in DSDL. This operator can be used similarly to the negation operator,
¬, in that it can be placed in front of any propositional formula and can be applied in a nested
fashion such as in the following example DSDL formula⃝(p | q ∧⃝(r | p)) (Parent & van der
Torre, 2018). Since many legal statements are of the conditional form, the conventional DSDL
will be the logic used when we are dealing in the deontic environment instead of Standard
Deontic Logic (SDL) which does not have the “|” mechanism for conditional obligations. The
notion of permission is related to obligation by Pp = ¬⃝¬p and that of prohibition being
similarly related by Fp = ⃝¬p. Pp is to be read as “p is permitted” while Fp can be read as
“p is prohibited/forbidden” (Parent & van der Torre, 2018; Pigozzi & van der Torre, 2017).
Obligations without a conditional can be written in the conditional form in the following
manner⃝p=⃝(p| ⊤) (Pigozzi & van der Torre, 2017).

4.2 Semantics
We can now formally define the preference-based semantics for DSDL which is presented with
similar formal definitions by Parent and van der Torre (2018) and Pigozzi and van der Torre
(2017). We have preference models defined asM = (V,≤) where V ⊆ W , withW being a non-
empty set of possible valuations. Note that we will not allow for duplicate valuations. ≤ is not
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only a binary relation over V but a total preorder as it is reflexive, transitive and connected.
The operator |= represents the satisfaction of a formula. Given a model M , a valuation s ∈ V
as well as propositional formulas α and β, we can define the satisfaction of formulas in the
deontic language as the usual notion for classical propositional satisfaction, covered in Section
2, along with the following (Parent & van der Torre, 2018):
• M, s |= ⃝(β | α) iff ∀s′ ∈ V , if s′ ∈ {s ∈ JαK : s ≤ t, ∀t ∈ JαK}, then M, s′ |= β (whereJαK = {s ∈ V : M, s |= α}). So ⃝(β | α) means that given α being true, then only if
the “minimal” or “most typical” valuations that satisfy α also satisfy β can we then can
derive that β is obligatory

4.3 Properties
The following is an outline of some of the desirable deontic properties that commonly occur
in the deontic logic literature (Goble, 2013; Parent & van der Torre, 2017; Pigozzi & van der
Torre, 2017; van der Torre, 1997). These properties were chosen because they were presented
as being important, or at least relevant, when assessing the usefulness of deontic logic systems.
Thus they should be seen as properties that an ideal system of deontic logic would have. Note,
this is not a full list of properties that can seem desirable for a deontic logic nor are they
necessary properties for a reasonable deontic system. These are simply those needed for the
analysis of Forrester’s paradox in the paper.

Ought Implies Can ¬⃝ (α ∧ ¬α)

This property could also be represented as ¬⃝⊥ as the conjunction of conflicting tasks, α∧¬α,
will be a logical contradiction and can therefore be represented by⊥. The property states that it
is undesirable for contradictory tasks such as α and ¬α to be obligatory. Without “ought implies
can”, the derivation of a contradiction, e.g⃝⊥, would be acceptable and simply indicate that
there has been a violation.

Factual Detachment If we have⃝(β | α) and α then we can derive⃝β

If we have an obligation to do a task β when α is satisfied, once we have that α has happened
then it is intuitive that we are now obligated to do β.

Restricted Strengthening of the Antecedent If we have⃝(β | α) then we can derive
⃝(β | γ ∧ α) if γ is true

Let’s say we have the obligation to do β when α is satisfied. It is intuitive that a more specific
version of α being true would still make β obligatory. Note that the restricted version of the
property that we refer to requires the formula α∧ γ, of the derived obligation⃝(β | γ ∧α), to
be consistent. The property will also be occasionally referred to as RSA in this paper.

Conjunction If we have⃝(β | α) and⃝(γ | α) then we can derive⃝(γ ∧ β | α)
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Let’s say we have an obligation to do a task β when α is satisfied. And we also have an
obligation to do γ when α is satisfied. By combining these two obligations, it is intuitive that
we are now obligated to do both β and γ when we have α. We will be working with a restricted
version of this property where we will require that β ∧ γ be consistent.

Weakening If we have⃝(β ∧ γ | α) then we can derive⃝(β | α)

Let’s say that we have the obligation to do both γ and β when α is satisfied. It is intuitive that
we can derive an obligation to do only one of γ or β when α is satisfied. So Weakening can be
applied in this scenario since we know β ∧ γ → β is always true.

4.4 Forrester’s paradox
Forrester’s paradox is one of the most frequently occurring paradoxes in the deontic logic lit-
erature (Parent & van der Torre, 2017; Pigozzi & van der Torre, 2017; van der Torre, 1997).
Although this is not a logical paradox in the usual sense, but rather a dilemma or problem,
we will retain the terminology from the literature. One of the reasons that this paradox was
chosen by us is that it is similar in structure to many other deontic examples as it is a contrary-
to-duty scenario (van der Torre, 1997). As scenarios with the contrary-to-duty structure have
challenged deontic logic researchers, another reason we look at the paradox is that it provides
difficulties that the straightforward examples would not (Parent & van der Torre, 2017; van
der Torre, 1997). For obligations ⃝(α1 | β1) and ⃝(α2 | β2), we say that the obligation
⃝(α2 | β2) is a contrary-to-duty obligation of⃝(α1 | β1) if its antecedent, β2, is contradictory
to the consequent of the first obligation, α1. Intuitively, this means an obligation that informs
us what must be the case when something forbidden has been done (Rönnedal, 2019).

This paradox comprises the following three statements. “You must not kill anybody”, “If you
kill someone then you must kill them gently” and “You killed someone”. With this we also have
the background knowledge that “Killing gently implies killing” (Parent & van der Torre, 2017;
Pigozzi & van der Torre, 2017; van der Torre, 1997). We will now detail two undesirable
derivations that occur through the different combinations of the deontic properties on this
paradox’s set of statements. Both are presented as they illustrate different issues with the
paradox and the properties. In the following figures, derivations of obligations are shown
using an arrow with a subscript containing the abbreviation of the property which was used
for the derivation. ⃝(β | α) →W ⃝(γ | α) would mean the Weakening property was used to
go from ⃝(β | α) to ⃝(γ | α). Weakening would be an applicable property in this example
if we knew β → γ to always be true. For derivations that involve more than one obligation
as the premise, these obligations are displayed between braces and separated by a comma.
{⃝(γ | α),⃝(β | α)} →Conj ⃝(γ ∧ β | α) means that the Conjunction property was used on
the obligations ⃝(γ | α) and ⃝(β | α) to derive ⃝(γ ∧ β | α). The paradox’s statements can
be represented by the following deontic knowledge base: {⃝¬k,⃝(g | k), k}
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4.4.1 RSA, Weakening and Conjunction
The following table illustrates the derivations of the Restricted Strengthening of the Anteced-
ant, Weakening and Conjunction properties.

1. ⃝¬k →W ⃝¬g
2. ⃝¬g →RSA ⃝(¬g | k)
3. {⃝(¬g | k),⃝(g | k)} →Conj ⃝(¬g ∧ g | k)

The background knowledge is represented by g → k. When we apply Weakening to the first
obligation “You must not kill anybody”, we can then derive “You must not kill gently” since we
have that “Killing gently implies killing” and the contrapositive that “Not killing implies not killing
gently”. This is an intuitive derivation since killing gently is still killing, which we want to
be forbidden. Then using RSA and the fact that “You killed someone”, we can go from “You
must not kill gently” to “If you kill then you must not kill gently”. This derivation is the issue
with the paradox, an obligation becoming the premise from which its own contrary-to-duty
obligation is derived is counter-intuitive (Parent & van der Torre, 2017; Pigozzi & van der
Torre, 2017). Then using Conjunction we can derive a contradiction from the obligations “If
you kill then you must not kill gently” and “If you kill then you must kill gently”. If we have the
aforementioned “ought implies can” property then this would be undesirable (Parent & van der
Torre, 2017; Pigozzi & van der Torre, 2017; van der Torre, 1997). Without it, we would be
satisfied with the derivation of a violation but “ought implies can” states we don’t want to settle
for a contradiction but rather to act as best as possible in the case of a violation (van der Torre,
1997).

4.4.2 Factual Detachment and Conjunction
The following table illustrates the derivations of the Factual Detachment and Conjunction
properties.

1. {⃝(g | k), k} →FD ⃝g
2. {⃝¬k,⃝g} →Conj ⃝(¬k ∧ g)
3. ⃝(¬k ∧ g) →contraposition ⃝(¬g ∧ g)

The rule of Factual Detachment gives us “You should kill gently” from the fact “You have killed”
and the obligation “If you kill then you should kill gently”. Applying Conjunction to “You should
kill gently” and the non-conditional obligation “You ought to not kill someone” gives us “You
should not kill and you should kill gently” which is an undesirable derivation if one was to use
the “ought implies can” principle (Parent & van der Torre, 2017; Pigozzi & van der Torre, 2017).
And as in the previous derivation, if we do not have “ought implies can” then the derivation is
not a problem.
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5 PROPOSITIONAL TYPICALITY LOGIC

5.1 Language
Given a set of propositional letters Φ, the language of the propositional typicality logic, de-
noted by L•, can be represented with the following •-operator added to the propositional
logic language (Booth et al., 2015): There is •α with its intuition being that it represents the
most typical situations where α holds. This operator can be used similarly to the negation op-
erator ¬ in that it can be placed in front of any propositional formula and can be applied in a
nested fashion such as in the following example PTL formula ••p. This means that PTL is more
expressive than KLM-style logic (Booth et al., 2015) from Section 3 and the bullet operator
can be applied to both the antecedent and consequent side of a conditional. Note that the PTL
statement •α → β would be equivalent to the KLM statement α |∼ β. The following example
illustrates how it can be used. •α → •¬β stands for “the most typical situations where α holds,
imply the most typical situations where β does not hold”. Note, this is a similar reading to the
semantics to that of DSDL conditionals as stated in Section 4.2.

5.2 Semantics
For the semantics of PTL, ranked interpretations are used. With W being the set of possible
valuations, ranked interpretations are pairs < V,≤>, where V ⊆ W and ≤ is a total preorder
over V . Intuitively, the valuations pushed lower down the rankings are more typical than
those that are higher (Booth et al., 2015). And given a ranked interpretation R and a formula
α, the set of valuations that satisfy α are represented as JαKR (Booth et al., 2015). Satisfaction
of a formula is defined in the classical way, such as in Section 4.2, with the omission of the
⃝-operator satisfaction and the addition of the following (Booth et al., 2015): v |= •α iff v |= α
and there is not a v′ ≤ v such that v′ |= α. So the valuations that satisfy •α will be the minimal
valuations that satisfy α. So J•αKR := min≤(JαKR) for a ranked interpretation R.

Note that the typicality •-operator can express any KLM-style conditionals. That is, for every
ranked interpretation R and every α, β ∈ L, R|=α |∼ β if and only if R|= • α → β. There
are L•-sentences that cannot be expressed using KLM-style |∼-statements on L, so the con-
verse does not hold (Booth et al., 2015). Now the method of entailment we will use, which is
proposed by Booth et al. (Booth et al., 2015), is outlined.

5.3 LM-entailment
The first form of entailment to be looked at is one that produces a single ranked model that
is constructed to be the LM-minimum model for the knowledge base. A sequence of ranked
interpretations (R0,R1,R2,...) constructed by the algorithm will be used to construct R∗

KB, the
ranked model, which will be used for entailment. The algorithm will make use of ranks in
order to construct R∗

KB. The ranks represent a level in the ranked interpretation, where the
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rank of a valuation u is less than the rank of v if and only if u < v, as defined in Section 5.2
(Booth et al., 2015). The following is some of the notation used in the algorithm. In this al-
gorithm, we say R1

S is the ranked interpretation obtained when any valuation not in S, where
S ⊆ V R where is V R are the valuations given a ranked interpretationR, has its rank increased
by 1. Similarly, R∞

S is the ranked interpretation obtained from R by setting the rank of all
valuations not in S to∞ (Booth et al., 2015). These would represent those at the highest level
ofR∗

KB and deemed to be atypical. Intuitively, the reasoning of the algorithm is separating out
the valuations which satisfy the knowledge base when taking a certain ranked interpretation
into account and building the ranked model in that manner. Now to present the steps in the
algorithm (Booth et al., 2015).

Step 1 Set the ranks of all valuations in the knowledge base to 0, define S0 which is ini-
tially empty and have variable i equal to 1.
Step 2 Find the valuations which satisfy the knowledge base with respect to the current ranked
interpretation R0, as in every knowledge base statement holds true in this valuation, and put
them into the set Si.
Step 3 If Si is equal to Si−1 then there hasn’t been a change so set the rank of all the valuations
that do not satisfy the knowledge base with respect to Ri to ∞ and return the interpretation
that remains.
Step 4 Otherwise create a new ranked interpretation Ri, by increasing the rank of every valu-
ation not in Si by 1.
Step 5 Find the valuations which satisfy the knowledge base with respect to the current ranked
interpretation Ri and put them in the set Si+1 and finally, increment i.
Step 6 Go to Step 3.

Example Now to present an example that illustrates the above steps. Let’s take the know-
ledge base, {•p → ¬f, •b → f, p → b}. The conditionals can be read as “typical penguins do
not fly”, “typical birds do fly” and “penguins are birds”. The situations that are most reasonable
given the information we have would be the situations where there are no penguins while the
most typical birds do fly. Such a scenario would satisfy all the statements. It seems reasonable
that the next best situation is when the most typical penguins don’t fly while we can have
that non-typical birds also don’t fly. Then we can have that non-typical penguins do fly. The
least desirable situations are when we have penguins that aren’t birds at all as this violates a
classical conditional, p → b. Now to look if the reasoning matches our intuition.

We first note that because of the last statement we can immediately discount the valuations
{p,¬b, f} and {p,¬b,¬f} as having infinite rank, and therefore on the highest level, as they will
never satisfy the set of statements. So we begin by setting the rank of all the valuations to 0.
The valuations that satisfy all the statements are {¬p, b, f}, {¬p,¬b, f} and {¬p,¬b,¬f}. There-
fore they become the first level of ourmodel, S1 := JKBKR0 = {{¬p, b, f}, {¬p,¬b, f}, {¬p,¬b,¬f}}.
All the valuations not in S1 obtain a rank of 1. The valuations that satisfy all the statements
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w.r.t. R1 are {p, b,¬f} and {¬p, b,¬f}. So we have S2 := JKBKR1 = {{p, b,¬f}, {¬p, b,¬f}}.
The remaining valuation {p, b, f} will be S3 and {p,¬b, f} and {p,¬b,¬f} will be S4. As pre-
viously mentioned the valuations in S4 will not satisfy the statements so S4 will remain the
same as S5 and so on. The algorithm terminates at this stage. The ranked models for the Bird
example generated during the execution of the LM-entailment algorithm are given in figure 1.

R0
0. {¬p, b, f}, {¬p,¬b, f}, {¬p,¬b,¬f}, {p, b,¬f}

{¬p, b,¬f}, {p, b, f}, {p,¬b, f}, {p,¬b,¬f}

R1
1. {p, b,¬f}, {¬p, b,¬f}, {p, b, f}, {p,¬b, f}, {p,¬b,¬f}
0. {¬p, b, f}, {¬p,¬b, f}{¬p,¬b,¬f}

R2

2. {p, b, f}, {p,¬b, f}, {p,¬b,¬f}
1. {p, b,¬f}, {¬p, b,¬f}
0. {¬p, b, f}, {¬p,¬b, f}{¬p,¬b,¬f}

R∗
KB

2. {p, b, f}
1. {p, b,¬f}, {¬p, b,¬f}
0. {¬p, b, f}, {¬p,¬b, f}, {¬p,¬b,¬f}

Figure 1: The ranked models for the Bird example generated during the execution of the LM-entailment
algorithm. R∗

KB is then the final model which we can use for entailment.

6 KLM ANALYSIS

This section aims to presents the analysis on the paradox using the KLM defeasible reasoning
approach. The representation is chosen first, and then the properties are addressed. Then the
problematic derivations of the paradox are investigated using the KLM approach.

6.1 Representation
We now present a guide to translate the deontic statements into their KLM equivalents. For
the translation of deontic obligations into the language of the KLM defeasible reasoning, we
say that ⃝(β | α) is equivalent to α |∼ β. Non-conditional obligations such as ⃝α will be
represented as ⊤ |∼ α. Facts are given in the usual way with no additional operators, such
as α. This gives an appropriate method to handle the translation of deontic statements and
allows for the analysis to continue.
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6.2 Properties
In this section we look at which of the deontic properties that we deemed desirable are satisfied
by the KLM-style defeasible reasoning approach. This begins with an analysis of the “ought
implies can” principle’s satisfaction and its subsequent impact on the way in which we reason
within the KLM logic system.

6.2.1 Ought Implies Can Principle and Violations
When working with obligations, we ideally want to be able to explicitly state whether a certain
fact brings up a violation with respect to our set of obligations. This will require the logic
system we use to cater for the occurrence of conflicts. But when dealing with these KLM
defeasible implications we will see that lexicographic closure cannot perform their reasoning
with the presence of conflicts and thus satisfy the “ought implies can” principle. Ideally if one
is obligated to perform a task then they should be able to do so, therefore the task should not be
simultaneously obligatory and prohibited. This principle can be represented by the derivation
of ¬⃝ (α∧¬α) which tells us that there is no obligation to perform contradictory tasks. With
conflicts being an explicit indication that a violation has occurred, the “ought implies can”
principle means we must find a way to detect violations. To do this, we temporarily keep a
fact in the knowledge base before the application of the lexicographic algorithm and check if
the knowledge base is inconsistent. If so, then we check the fact against every obligation to
identify which have been violated. We will then remove the fact from the knowledge base and
determine which general obligations arise from the set of obligations we have along with the
background knowledge. We then use the facts as a premise when examining the derivations
of actual obligations. These actual obligations refer to the obligations which a hypothetical
agent must act upon when certain facts are taken into consideration.

6.2.2 Deontic properties
In Section 3, we have that the following desired deontic properties used in Forrester’s paradox
are satisfied by the defeasible entailment relation of lexicographic closure, |≈: Weakening and
Conjunction. This allows us to look at the paradox’s problematic derivations which involve
these properties. Another of the desirable deontic properties which is satisfied is the Factual
Detachment property. If we have KB |≈ α |∼ β and |= α is a tautology, then either the
knowledge base is inconsistent or we can derive that KB |≈ ⊤ |∼ β. Note that we treat facts
for this property differently than is usual, in that we do not consider it a possible or contingent
fact, but rather, it has to be a tautology or known truth. The treatment will be similar in Section
7. We now move on to examine the remaining property of interest, Restricted Strengthening
of the Antecedent.
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6.2.3 Strengthening of the Antecedent
Recall that we will not have the Strengthening of the Antecedent property with lexicographic
closure since the reasoning we will be using is non-monotonic (Kraus et al., 1990). We instead
have the property of Rational Monotonicity in the KLM logic system which was outlined in
Section 3.3. This property will serve as an alternative and is shown again below.

KB |≈ α |∼ β,KB ̸|≈ α |∼ ¬γ
KB |≈ α ∧ γ |∼ β

Although not having any version of the Strengthening of the Antecedent property blocks us
from intuitive derivations, its omission also results in many issues within the paradoxes no
longer arising.

6.3 Forrester’s paradox analysis
This paradox comprises three statements. The obligations “You must not kill anybody” and “If
you kill someone then you must kill them gently” as well as the fact “You killed someone”. Along
with these we also have the background knowledge, “Killing gently implies killing”. The KLM
equivalent of these obligations is given in the following set of KLM statements and this comes
with the translated background knowledge, g → k and the fact k.

{⊤ |∼ ¬k, k |∼ g}

It is clear that the fact k causes the knowledge base to become inconsistent with respect to−→
KB if it were included during reasoning and it is clear that ⊤ |∼ ¬k is the obligation that
is violated. We then continue to build a ranking based on exceptionality. We now have a
consistent −→KB to construct the ranking of the statements. We have B̃ = {⊤ |∼ ¬k, k |∼ g} with
rk(⊤ |∼ ¬k) = 0 and rk(k |∼ g) = 1 so the ranking would be the following:

1 k |∼ g
0 ⊤ |∼ ¬k

Now we examine what can be gathered given the above ranking and compare this with the
paradox’s undesirable derivations.

6.3.1 Restricted Strengthening of the Antecedent, Weakening and Conjunction
1. ⃝¬k →W ⃝¬g
2. ⃝¬g →RSA ⃝(¬g | k)
3. {⃝(¬g | k),⃝(g | k)} →Conj ⃝(¬g ∧ g | k)

We first want to check if we can derive⃝¬g as a general obligation before we apply the fact.
This was derived via the Weakening property as seen in the above table. As a non-conditional
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obligation, we assume the tautology, ⊤ as the premise and observe if we can derive ¬g. With
⊤ as the premise, we have D = {⊤ → ¬k, k → g} and we include the background knowledge
g → k in the set of statements which have infinite rank, A, where it is the only statement. We
then have the following derivation which shows that ¬g follows from our knowledge base using
lexicographic closure. This is clear through the contraposition of g → k, which is ¬k → ¬g.

{⊤} ∪ {g → k} ∪ {⊤ → ¬k, k → g} |= ¬g

Now we look at whether we can derive the undesirable conditional obligation⃝(¬g | k). This
was derived using Restricted Strengthening of the Antecedent in the above table but recall
that we do not have this property. It is thus of interest to observe whether the alternative,
Rational Monotonicity, ‘blocks’ this undesirable obligation from being derived. This would be
considered an actual obligation which occurs when we take the fact that killing has occurred.
For this situation, we have k as the premise and D = {k → g}. This results in the following
derivation which tells us that we cannot derive ¬g from the knowledge base given the fact k

{k} ∪ {g → k} ∪ {k → g} ̸|= ¬g

Intuitively, this tells us that although there we can originally derive ⃝¬g which tells us “do
not kill gently” in general, once one kills then we retract that obligation. This seems reasonable
since the individual will now be obligated to kill gently once they have killed.

6.3.2 Factual Detachment and Conjunction
1. {⃝(g | k), k} →FD ⃝g
2. {⃝¬k,⃝g} →Conj ⃝(¬k ∧ g)
3. ⃝(¬k ∧ g) →contraposition ⃝(¬g ∧ g)

For the first derivation, we examine whether we can derive ⃝g given the fact k. With this
being a non-conditional obligation, we would normally have the tautology as the premise but
taking the fact k into account means we use k as a premise. We then have that D = {k → g}
and A = {g → k}. The following derivation tells us that we can derive the obligation to do g.

{k} ∪ {g → k} ∪ {k → g} |= g

We can also see lexicographic closure also blocks the issues that come between Factual Detach-
ment and Conjunction where⃝(¬k ∧ g) can be derived. We continue to take k as the premise
since have already taking it into account. We still have D = {k → g} and A = {g → k}. While
g follows from this lexicographic closure configuration, we cannot derive ¬k. Thus we cannot
derive the undesirable⃝(¬k ∧ g) using lexicographic closure.

{k} ∪ {g → k} ∪ {k → g} ̸|= ¬k ∧ g

This tells us that although we originally had the non-conditional obligation to not kill, if one
does kill then we can retract that non-conditional obligation, avoiding a violation. Then we
can aim for the next best scenario which would be for one to kill gently.
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7 PTL ANALYSIS

This section aims to presents the analysis on the paradox using PTL, LM-entailment specific-
ally. Similarly to Section 6, the order of analysis will be the representation of statements, the
desirable properties and then the problematic derivations of the paradox.

7.1 Representation
It is important to note that we restrict ourselves to the use of only a subset of PTL for this
analysis. We will only allow PTL statements of the form, •α → β or •α → •β, where α
and β could be any combination of the PTL language except •-operator. The reason being
that the examples we deal with can be represented reasonably with this limited language and
this limiting also reduces the complexity of the analysis. Statements of the form α → •β do
not have the intuitive reading we desire. Since we do not want the properties of β, whether
they are the most typical or not, to apply to all α valuations. This is why we require that
the antecedent have a bullet operator. We can represent the statements with the typicality
bullet on antecedent side only where •α → β reads as “the most typical α are β”. As previously
stated, bullets on the antecedent-side only make the conditionals equivalent to the KLM-style
conditionals, the results of which we have already explored. Thus we will use the alternative
representation to examine typicality and its added expressive power. This is •α → •β and
can be read as “the most typical α are the most typical β”. This is a stronger reading where the
most typical β worlds are in a sense tied to α worlds. Intuitively, this obligation states not
only that “the most typical α are β” but also that “the most typical β should possibly be a result
of α occurring”. For example, let’s say we have •d → •l where “d” reads as “driving” and “l”
reads as “having a license”. •d → •l not only tells us that in the most typical driving scenario
that you have a license, but it also states that in the most typical license-having scenarios, we
cannot have that you can only be a non-driver.

7.2 Properties
We check whether our restricted PTL satisfies the aforementioned desirable properties using
LM-entailment. In other words, we check if the properties can be applied when we have oblig-
ations of the form similar to that of Forrester’s paradox. We are not assessing whether these
are general properties that are satisfied by PTL. Except for the “ought implies can” principle,
we do the check for the different representations of obligations that we have, which are cases
which first involve non-conditional obligations and then conditional obligations. We will in-
vestigate these two cases for each property, where applicable. For each property, we present
the knowledge bases and their corresponding LM-entailment models.
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7.2.1 Ought Implies Can and Violations
Let’s say we have a knowledge base that contains the conditionals •⊤ → •α and •⊤ → •¬α.
There will be no valuations that satisfy the knowledge base because of the conflicting condi-
tionals, therefore we cannot reason with this knowledge base. This implies that we have the
“ought implies can” property. Since having contradictory facts in the knowledge base stops us
from using the LM-entailment reasoning, we will not have any facts in the knowledge base
when using the LM-entailment algorithm. But similarly to the previous section, we can observe
which obligations have been violated by a certain fact by checking each obligation against the
fact. When there is an inconsistency and thus no valuations that satisfy the knowledge base,
that indicates that we can proceed to check the obligations to determine which have been
violated. After determining the violated obligations, we will then only use the facts after the
LM-entailment algorithm constructs the rankedmodel. Wewill strip valuations from themodel
that contradict the facts we are presented with and then reason with the resultant model. This
will give the best case scenario whenever an obligation has been violated.

7.2.2 Restricted Strengthening of the Antecedent
We assume that we have⃝(β | α) and then check if⃝(β | γ ∧ α) can be derived.
1. We have {•⊤ → •β} and ideally want to derive •α → •β when α holds.

1 {α,¬β},{¬α,¬β}
0 {α,β},{¬α,β}

In the case where α holds then it is clear that the most typical α valuation is also the
most typical β valuation. This would be blocked if we had •α → •¬β in the knowledge
base.

2. We have {•α → •β} and ideally want to derive •(α ∧ γ) → •β when γ holds.

1 {α,¬β, γ},{α,¬β, ¬γ}
0 {α,β, γ},{α,β, ¬γ}, {¬α,β, γ}, {¬α,¬β, γ}, {¬α,¬β, ¬γ}, {¬α,β, ¬γ}

In the case where γ holds then it is clear that the most typical α ∧ γ valuation is also
the most typical β valuation. This would be blocked if we had •¬(α ∧ γ) → •β in the
knowledge base.

7.2.3 Weakening
We assume that we have⃝(β ∧ γ | α) and then check if⃝(β | α) can be derived.
1. We have {•⊤ → •(β ∧ γ)} and ideally want to derive •⊤ → •β.
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1 {β,¬γ}, {¬β,γ} , {¬β,¬γ}
0 {β,γ}

It is clear that the most typical valuation is the most typical β valuation which allows
for the derivation of •⊤ → •β. The most typical valuation in the model is also the most
typical γ valuation thus the derivation of •⊤ → •γ also holds.

2. We have {•α → •(β ∧ γ)} and ideally want to derive •α → •β.
1 {α,¬β, γ},{α,¬β, ¬γ}, {α,β, ¬γ}
0 {α,β, γ}, {¬α,β, γ}, {¬α,¬β, γ}, {¬α,¬β, ¬γ}, {¬α,β, ¬γ}

It is clear that the most typical α valuation, which is {α, β, γ}, is also the most typical
β valuation as well as the most typical γ valuation. This means that both •α → •β and
•α → •γ also holds.

7.2.4 Factual Detachment
We assume that we have ⃝(β | α) and α, and then check if ⃝β can be derived when using
LM-entailment. There is only one case to look at as the non-conditional obligation check is
trivial.
1. We have {•α → •β} and ideally want to derive •⊤ → •β when α holds.

1 {α,¬β}
0 {α,β}, {¬α,β}, {¬α,¬β}

When α is true then the most typical valuation is {α, β} therefore the derivation holds.

7.2.5 Conjunction
We assume that we have⃝(β | α) and⃝(γ | α), and then check if⃝(β∧γ | α) can be derived.
The cases with non-conditional obligations aren’t checked since they will be equivalent to
Deontic Detachment.
1. We have {•⊤ → •β, •⊤ → •γ} and ideally want to derive •⊤ → •(β ∧ γ).

1 {β,¬γ},{¬β,γ},{¬β,¬γ}
0 {β,γ}

It is clear that we get •⊤ → •(β ∧ γ) as the best valuation is {β, γ}.
2. We have {•α → •β, •α → •γ} and ideally want to derive •α → •(β ∧ γ).

1 {α,¬β, γ},{α,¬β, ¬γ}, {α,β, ¬γ}
0 {α,β, γ}, {¬α,β, γ}, {¬α,¬β, γ}, {¬α,¬β, ¬γ}, {¬α,β, ¬γ}

There is only one best α valuation and it is {α, β, γ} therefore we can derive •α → •(β∧γ).
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7.3 LM-entailment analysis
We present the paradox once again and then translate it into a PTL version. The LM-entailment
model is then presented and afterwards we show that the undesirable derivations, from Section
4.4, can no longer be derived. This is despite the satisfaction of all the properties. The para-
dox’s statements are translated into the following PTL knowledge base, {•⊤ → •¬k, •k → •g}.
With this knowledge base comes the background knowledge g → k and the fact k. The back-
ground knowledge means that the valuation {g,¬k} must be omitted from the model. It is
also clear that the violated obligation is •⊤ → •¬k when k holds.

2 {¬g, k}
1 {g, k}
0 {¬g,¬k}

Figure 2: LM-entailment model for Forrester’s paradox.

7.3.1 RSA, Weakening and Conjunction
Now using Weakening we can go from •⊤ → •¬k to •⊤ → •¬g as the model shows that the
most typical valuations are ¬g valuations. This is equivalent to the derivation of “You must
not kill gently” from “You must not kill anybody” in Section 4.4.1. But unlike in Section 4.4.1,
one cannot derive •k → •¬g using RSA. The model blocks this derivation since the best k
valuations are g valuations in this model.

7.3.2 Factual Detachment and Conjunction
The issue presented in Section 4.4 is blocked because once we assume the fact k in the model,
the ¬k valuations are removed as seen in the following model. The model shows that the
derivation of •⊤ → •¬k, which means “You must not kill anybody”, is not possible, and thus
when k is assumed the derivation of •⊤ → •(¬k ∧ g) is blocked in the model shown in the
above Figure 2.

8 CONCLUSION

This paper explored the extent that KLM-style defeasible reasoning and Propositional Typical-
ity Logic (PTL) can be used to deal with the issues found with Forrester’s paradox. Along with
detailing the paradox and its issues, we formally presented the two logic systems we used to
analyse the paradox, KLM-style defeasible reasoning and PTL. The sections which show the
paradox analysis for KLM-style defeasible reasoning and PTL, sections 6 and 7 respectively,
followed the same analysis process. A representation for the paradox in each logic system’s
language was determined. Then we showed the desirable properties which were satisfied
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by the logic systems. These are the properties which are the source of the paradox’s issues.
Then lexicographic closure and LM-entailment algorithms were used in the respective sections
to reason with the paradox and show that the undesirable derivations from Section 4.4 are
avoided using these reasoning methods. This shows us that we can reasonably represent and
deal with the issues of Forrester’s paradox using these logic systems without having to drop
the desirable deontic properties. This shows the potential that both KLM-style defeasible reas-
oning and PTL possess when applied in a deontic setting and this paper serves to highlight
any such potential for further use. These two techniques mainly differ in the reading of the
obligations but also in potential to represent other obligations. PTL provides more expressive
power which could offer greater potential in dealing with other types of deontic scenarios,
such as those with exceptional obligations, according-to-duty obligations or multiple levels of
violations. These approaches differ from other Forrester’s paradox solutions such as those by
Sinnott-Armstrong (1985) and Meyer (1987) in that they avoid the need for the expansion of
the representative language using actions and/or logic quantifiers. So the question to be asked
is if KLM-style defeasible reasoning and PTL can be used on a variety of other examples with
similar effectiveness.
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