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ABSTRACT
Datalog is a declarative logic programming language that uses classical logical reasoning as its basic form of
reasoning. Defeasible reasoning is a form of non-classical reasoning that is able to deal with exceptions to
general assertions in a formal manner. The KLM approach to defeasible reasoning is an axiomatic approach
based on the concept of plausible inference. Since Datalog uses classical reasoning, it is currently not able to
handle defeasible implications and exceptions. We aim to extend the expressivity of Datalog by incorporating
KLM-style defeasible reasoning into classical Datalog. We present a systematic approach for extending the KLM
properties and a well-known form of defeasible entailment: Rational Closure. We conclude by exploring Datalog
extensions of less conservative forms of defeasible entailment: Relevant and Lexicographic Closure. We provide
algorithmic definitions for these forms of defeasible entailment and prove that the definitions are LM-rational.
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1 INTRODUCTION

The KLM approach, proposed by Kraus et al. (1990), is a well-known framework for defeasible
reasoning. The KLM properties can be used to determine the rationality of different forms
of defeasible entailment. While rationality can often be understood intuitively, a common
definition is required in order to avoid confusion between different conflicting or assumed
definitions. Lehmann and Magidor’s definition of rationality (1992) is used extensively in the
literature and we use it throughout the paper. The framework has been discussed at length in
the literature for propositional logic (Kraus et al., 1990; Lehmann, 1995; Lehmann & Magidor,
1992) and description logics (Casini et al., 2014; Casini et al., 2013; Moodley, 2015; Straccia
Morris, M., Ross, T., and Meyer, T. (2020). Algorithmic definitions for KLM-style defeasible disjunctive Data-
log. South African Computer Journal 32(2), 141–160. https://doi.org/10.18489/sacj.v32i2.846
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& Casini, 2013). We present what we believe to be the first theoretical approach for extending
the KLM framework to Datalog. We consider an extended form of Datalog, Disjunctive Datalog,
which allows for disjunction in the head of Datalog clauses. We do not consider a semantic
characterisation for the Datalog case. Instead, we provide algorithmic definitions of defeasible
entailment.

There are two well-known forms of defeasible entailment that satisfy the KLM properties:
Rational Closure (RC) (Lehmann & Magidor, 1992) and Lexicographic Closure (LC) (Lehmann,
1995). Both are rational (Casini et al., 2019), with RC being the most conservative form of
rational defeasible entailment among the popular proposals, and LC a more permissive form.
Another form of defeasible entailment, Relevant Closure (RelC) (Casini et al., 2014), has been
proposed for description logics. It intuitively seems rational but does not satisfy all of the KLM
properties. We provide algorithmic definitions of RC, LC and RelC, showing that RC and LC
are still rational when converted to Datalog and that RelC is not.

Our results demonstrate that the KLM approach can be extended to operate in Datalog and
that rational definitions of defeasible entailment exist within the language. This shows promise
for the extension of KLM-style defeasible entailment to other more expressive logics, as well
as providing evidence for the possibility of a semantic definition of defeasible entailment in
Datalog.

In the next section we provide the relevant backgroundmaterial, after which we present our
work on KLM-style defeasible entailment for the Datalog case. We conclude with a discussion
of related work and suggestions for future work. This work is an extension of that done by
Morris et al. (2019).

2 BACKGROUND

2.1 Propositional Logic
Propositional logic Ben-Ari, 2012 is a simple logic which is built up from a finite set P of
propositional atoms, denoted by meta-variables p, q, . . .. The language L of propositional logic
is the set of all formulas, denoted by α, β, . . ., which are recursively defined as usual: α ::=
⊤ | ⊥ | p | ¬α | α ∧ α | α ∨ α | α → α | α ↔ α.

An interpretation is a function I : P → {T, F} which assigns a single truth value to each
atom. A formula α ∈ L is satisfied by an interpretation I, denoted I ⊩ α, if it can be evaluated
to true by I in the usual recursive truth-functional way. We define the models of a finite set of
formulas X to be JXK = {I : I ⊩ α, α ∈ X}. We say that a set of formulas X entails a formula
α, denoted by X |= α, if JXK ⊆ J{α}K.
2.2 The Failures of Monotonicity
Classical reasoning systems, such as propositional logic, are monotonic. This means that all
information is certain and adding new information does not change the conclusions that you
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could draw before. This form of reasoning can be too weak to model certain systems. To
illustrate this, consider an example where the following statements are made:
Example 1

1. Adults are people (a → p)
2. Students are people (s → p)

3. People pay taxes (p → t)

From this, we can conclude that “students pay taxes”, which may in fact be incorrect. How-
ever, each of these statements is perfectly reasonable from a human perspective. What we
actually meant was “typically, people pay taxes”. Then, when we add the extra information
that students do not pay taxes, we want the system to retract its conclusion that “students pay
taxes”. However, a monotonic, classical reasoning system cannot change previous conclusions,
and knowing that “students do not pay taxes” and “students pay taxes”, it must then conclude
that no students can exist, otherwise we would get a contradiction. In non-monotonic systems,
defeasible statements of the form “typically, something is the case” are permitted. This allows
for a more “common sense” approach to reasoning than in the approach of classical reasoning
(Casini et al., 2013).

2.3 KLM-style Defeasible Entailment
The KLM approach (Kraus et al., 1990) is based on the concept of plausible inference, which is
represented by defeasible implication operators of the form α |∼ β. This is read as “typically,
if α, then β”.

Let a knowledge base K be a finite set of defeasible implications. The KLM framework
answers the question: “What does it mean for a defeasible implication α |∼ β to be entailed by
a knowledge base K?”. This is referred to as defeasible entailment, and denoted by K |≈ α |∼ β.

Unlike classical entailment, it is well-accepted that defeasible entailment is not unique.
There are multiple formalizations of defeasible entailment, such as Rational Closure (Lehmann
& Magidor, 1992), Lexicographic Closure (Lehmann, 1995), and Relevant Closure (Casini et
al., 2014). Lehmann and Magidor (Lehmann & Magidor, 1992) proposed a set of rationality
properties known as the KLM properties. They argue that if a defeasible entailment algorithm
satisfies all the properties it is believed to be an acceptable form of defeasible entailment. We
adopt this approach and refer to these forms of defeasible entailment as LM-rational. The KLM
properties for propositional logic are stated below:

(Ref) K |≈ α |∼ α (LLE) α ≡ β, K |≈ α |∼ γ

K |≈ β |∼ γ
(RW)

K |≈ α |∼ β, β |= γ

K |≈ α |∼ γ

(And) K |≈ α |∼ β, K |≈ α |∼ γ

K |≈ α |∼ β ∧ γ
(Or) K |≈ α |∼ γ, K |≈ β |∼ γ

K |≈ α ∨ β |∼ γ
(CM)

K |≈ α |∼ β, K |≈ α |∼ γ

K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ, K |̸≈ α |∼ ¬β

K |≈ α ∧ β |∼ γ
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All of these properties have a fairly intuitive meaning. Consider the two defeasible implic-
ations: “typically, tutors are employees” (t |∼ e) and “typically, tutors are students” (t |∼ s). It
seems rational to conclude that “typically, tutors are employees and students” (t |∼ e ∧ s). This
is exactly what the And property enforces. Kraus et al. (Kraus et al., 1990) provide detailed
descriptions of the intended meaning of each property.

2.4 Rational Closure
Rational closure is the most conservative form of defeasible entailment. This means that any-
thing entailed by rational closure will also be entailed by the other common forms of defeasible
entailment. We use the algorithmic definition (Freund, 1998), which we refer to as the Rational
Closure Algorithm, as the sole definition of Rational Closure.

Algorithm 1: RationalClosureProp
Input: A defeasible propositional knowledge base K and a defeasible implication

α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := BaseRankProp(K);
2 i := 0;
3 R :=

∪j<n
i=0 Rj;

4 while R∞ ∪ R |= ¬α and R ̸= ∅ do
5 R := R \ Ri;
6 i := i+ 1;
7 return R∞ ∪ R |= α → β;

The algorithm is split into two distinct sub-algorithms, proposed by Casini et al. (Casini
et al., 2019). The BaseRankProp algorithm, Algorithm 2, is used to construct a ranking of the
classical versions (−→K ) of the statements in the defeasible knowledge base (K). For example,
the classical version of defeasible statement α |∼ β would be α → β. Intuitively, the more
“typical” statements are placed further down in the ranking, corresponding to the notion that
some typical implications are more typical than others.

The RationalClosureProp algorithm, Algorithm 1, is used to compute whether a defeasible
implication is entailed by the knowledge base and uses the BaseRankProp algorithm. Also note
that the RationalClosureProp algorithm just reduces to a sequence of classical entailment
checks.

We can express any classical sentence α as a defeasible implication ¬α |∼ ⊥ (Casini et al.,
2019). For example, the rank of the statement β → γ corresponds to the rank of the statement
β ∧ ¬γ |∼ ⊥. This means that we can use the BaseRankProp algorithm to rank knowledge
bases which include classical sentences and the RationalClosureProp algorithm can be used
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to check classical queries as well. Note that this also means that the BaseRankProp algorithm
will put all classical sentences on the bottom (infinite) level.

Algorithm 2: BaseRankProp
Input: A defeasible propositional knowledge base K
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 i := 0;
2 E0 :=

−→
K := {α → β | α |∼ β ∈ K};

3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei |= ¬α};
5 Ri := Ei \ Ei+1;
6 i := i+ 1;
7 until Ei−1 = Ei;
8 R∞ := Ei−1;
9 if Ei−1 = ∅ then
10 n := i− 1;
11 else
12 n := i;
13 return (R0, . . . ,Rn−1,R∞, n)

To illustrate how the algorithm works, consider the following example knowledge base K.

Example 2
1. Adults are people (a → p)
2. Students are people (s → p)
3. Typically, people pay taxes (p |∼ t)
4. Typically, students do not pay taxes (s |∼ ¬t)

Figure 1 shows the ranking of K according to the BaseRankProp algorithm. Throughout
the paper, we illustrate the ranking of a knowledge base with all sentences in their original
form for ease of understanding.

Suppose we asked; “Do students typically pay taxes?”, corresponding to the query s |∼ t.
Then at the start of the algorithm when i = 0, R∞ ∪ R |= ¬s, since we have s → p → t
and s → ¬t. So the top level (R0) is thrown away. Now when i = 1, R∞ ∪ R ̸|= ¬s. Also,
R∞ ∪ R ̸|= s → t, so the algorithm returns false for the query. This makes sense, and the
algorithm has computed the intuitively correct result.
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0 p |∼ t

1 s |∼ ¬t

∞ a → p s → p

Figure 1: Ranking of the Knowledge Base K

2.5 Disjunctive Datalog
Datalog (Ceri et al., 1989) is a more expressive logic than propositional logic and a popular
query language for deductive databases Pasarella and Lobo, 2017; Shkapsky et al., 2016. Data-
log is a simplified version of general logic programming. It allows us to represent statements
about specific individuals as well as generic concepts which can be associated with many in-
dividuals. For example, in Datalog we can represent the statements in Example 3, whereas in
propositional logic we can only represent tutors in general.
Example 3

1. For all X, X is a tutor.
2. For all X, if X is an under-graduate, then X is a student.
3. Tyler is a tutor.
It is often useful to be able to represent statements that involve the disjunction “or”, since

these type of statements allow us to model incomplete knowledge. It is also useful to represent
statements about falsehood. Disjunctive Datalog (Datalog∨), as defined in this section, allows
us to make the same statements as standard Datalog as well as statements involving disjunction
and negation, such as the following:
Example 4

4. For all students X, X is an undergraduate or a postgraduate.
5. Tyler is not a lecturer.
The language of Disjunctive Datalog is made up of function-free Horn clauses (Ceri et al.,

1989), which are formulas with the general structure: l0 ∧ l1 ∧ · · · ∧ lm → lm+1 ∨ lm+2 ∨ · · · ∨ ln.
Each literal li is either ⊥ or is a positive atom of the form pi(t0, . . . , tki), where pi is a predicate
symbol and t0, . . . , tki are terms. A term is either a constant or a variable. In our version of
Datalog, the left-hand side of the clause is referred to as the body and the right-hand side as
the head. Horn clauses with a body are called rules and those without a body are called facts.

We can represent the statements from Example 3 and 4, using variable X, constant Tyler
and predicates s, t, u, p and l which represent students, tutors, under-graduates, post-graduates
and lecturers respectively:
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1. t(X)

2. u(X) → s(X)

3. t(Tyler)

4. s(X) → u(X) ∨ p(X)

5. l(Tyler) → ⊥

We say that clauses, such as t(Tyler), are ground since they do not contain any variables.
A Herbrand Base BP is the set of all ground facts constructible from the symbols in a Datalog
program P . For example; Tyler is the only constant in the program P , defined in Example 3
and 4, so the set of all possible ground facts that we can form is:

BP = {s(Tyler), t(Tyler), u(Tyler), p(Tyler), l(Tyler)}.

AHerbrand interpretation τ is simply a subset of a Herbrand Base: τ ⊆ BP . For any Herbrand
interpretation τ , we define that ⊥ is not in τ . So, following our example, a possible Herbrand
interpretation is:

τ = {s(Tyler), t(Tyler), p(Tyler)} ⊆ BP .

A rule l0∧ l1∧· · ·∧ lm → lm+1∨ lm+2∨· · ·∨ ln is true for Herbrand interpretation τ if and only
if, for each substitution θ which replaces variables by constants, if l0θ ∈ τ, l1θ ∈ τ, . . . , lmθ ∈ τ
then at least one of lm+1θ ∈ τ, lm+2θ ∈ τ, . . . , lnθ ∈ τ holds. For example; t(X)∧p(X) → l(X) is
not true for τ , since t(Tyler) ∈ τ and p(Tyler) ∈ τ but l(Tyler) ̸∈ τ . A fact l0∧ l1∧· · ·∧ lm is true
for Herbrand interpretation τ if and only if, for each substitution θ which replaces variables
by constants, l0θ ∈ τ, l1θ ∈ τ, . . . , lmθ ∈ τ all hold. For example; s(X) is true for τ but u(X) is
not. A Herbrand interpretation τ is a Herbrand model of a set of Horn clauses X if and only if
every clause in X is true for τ . For example; τ is a Herbrand model of P .

2.5.1 Entailment of Horn Clauses
Entailment is defined in the standard way: a set of Horn clauses X entails Horn clause α,
denoted by X |= α, if and only if each Herbrand model of X is also a model of α.

2.5.2 Molecules as Combinations of Literals
We introduce the idea of molecules as a shorthand for a combination of literals. A disjunctive
molecule, denoted α∨, is a combination of literals of the form: l1 ∨ l2 ∨ · · · ∨ ln. A conjunctive
molecule, denoted α∧, is a combination of literals of the form: l1 ∧ l2 ∧ · · · ∧ ln. A molecule,
denoted α, is either a disjunctive molecule or a conjunctive molecule. Now a Disjunctive
Datalog rule can be written as α∧ → β∨.

https://doi.org/10.18489/sacj.v32i2.846
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3 DEFEASIBLE DISJUNCTIVE DATALOG

3.1 KLM-style Defeasible Rules
We represent plausible inference in Disjunctive Datalog using defeasible rules of the form:
b1 ∧ · · · ∧ bm |∼ h1 ∨ · · · ∨ hn, where each bi, hi is a literal. This is read as “typically, if all
of b1, . . . , bm are true, then at least one of h1, . . . , hn is true”. We do not consider a semantic
definition of defeasible rules. We will instead define defeasible rules by adapting rational
defeasible entailment algorithms for Disjunctive Datalog.

3.2 Defeasible Entailment
Let knowledge base K be a finite set of defeasible rules. The main question of this paper is
to algorithmically analyse defeasible entailment K |≈ α∧ |∼ β∨. That is, how do we answer the
question: “Can we conclude α∧ |∼ β∨ from a defeasible knowledge base K?”. When analysing
different defeasible entailment algorithms, Lehmann andMagidor (Lehmann &Magidor, 1992)
advocate that the KLM properties be used to assess the rationality of these algorithms. We
adopt this approach for Datalog and provide an extension of the KLM properties for Disjunctive
Datalog.

3.2.1 A Motivation for Extending Disjunctive Datalog
We find that, due to the restrictive nature of Datalog’s syntax, none of the KLM properties can
be expressed using Disjunctive Datalog without violating the syntax. However, we need to
ensure that LM-rational forms of defeasible entailment satisfy all of the KLM properties. We
argue that this is necessary, even though the reasoning described by some of these properties
will never be computed by defeasible entailment algorithms for Disjunctive Datalog.

Let us consider an example where we can come to a conclusion that cannot be expressed in
Datalog’s syntax. Even though we cannot express that conclusion, we still want the algorithm
to be able to compute it, otherwise the algorithm would not be rational. For example, if
tutor(X) |∼ student(X) and tutor(X) |∼ employee(X) both hold, then we would want to be
able to conclude tutor(X) |∼ student(X) ∧ employee(X) holds as well.

As another example, if tutor(X) |∼ teacher(X) and lecturer(X) |∼ teacher(X) both hold,
then we would want to be able to conclude tutor(X) ∨ lecturer(X) |∼ teacher(X) holds as
well. These examples illustrate the KLM properties of And and Or respectively. Note that in
the conclusions of these examples, the syntax of Datalog, restricting disjunction to only be
allowed in the head and conjunction in the body, is violated.

3.2.2 Datalog+
Our proposed extension to Datalog, Datalog+, introduces the idea of compounds. Compounds,
denoted byA,B, . . ., are recursively defined from base literals l as follows: A ::= l | ¬A | A∧A |
A ∨ A. In Datalog+ a fact is a compound A and rules have the form A → B.

https://doi.org/10.18489/sacj.v32i2.846
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Let τ be a Herbrand interpretation and consider some substitution θ which replaces vari-
ables by constants. We say that compound A is in τ under θ, denoted Aθ ∈ τ , if and only if
one of the following conditions holds, where B,Γ are compounds and l is a literal:

• A = l and lθ ∈ τ

• A = ¬B and Bθ ̸∈ τ

• A = B ∧ Γ, Bθ ∈ τ and Γθ ∈ τ

• A = B ∨ Γ and Bθ ∈ τ or Γθ ∈ τ

Herbrand interpretation τ is a model of fact A if and only if Aθ ∈ τ for every possible θ.
Herbrand interpretation τ is a model of rule A → B if and only if, whenever Aθ ∈ τ for some
θ, then Bθ ∈ τ for the same θ. A knowledge base K entails Datalog+ Horn clause (rule or
fact) α, denoted by K |= α, if and only if each Herbrand model of K is also a model of α.

3.2.3 The KLM Properties Expressed in Datalog+
We state the KLM properties (in Defeasible Datalog+) for Datalog below, where compounds
α, β, γ are used as a shorthand. Note that the defeasible implication operator |∼ has been
added to the language of Datalog+. These properties are used to define the rationality of a
defeasible entailment algorithm for Datalog. Only an algorithm which satisfies all of these
properties is considered rational and acceptable.

(Ref) K |≈ α |∼ α (RW)
K |≈ α |∼ β, |= β → γ

K |≈ α |∼ γ
(And) K |≈ α |∼ β, K |≈ α |∼ γ

K |≈ α |∼ β ∧ γ

(Or) K |≈ α |∼ γ, K |≈ β |∼ γ

K |≈ α ∨ β |∼ γ
(CM)

K |≈ α |∼ β, K |≈ α |∼ γ

K |≈ α ∧ β |∼ γ
(RM)

K |≈ α |∼ γ, K |̸≈ α |∼ ¬β
K |≈ α ∧ β |∼ γ

(LLE) |= α → β, |= β → α, K |≈ α |∼ γ

K |≈ β |∼ γ

4 RATIONAL CLOSURE FOR DATALOG

In this section we propose a simple adaptation to the Rational Closure algorithms for the
Disjunctive Datalog case.

4.1 Base Rank Algorithm
In the propositional case, we can rewrite a classical statement α as the defeasible statement
¬α |∼ ⊥ and, hence, we can assume that all of the statements in our knowledge base are
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defeasible. It is not possible to rewrite classical clauses as defeasible rules for the Datalog
case. Instead, the adapted version of the BaseRankProp algorithm, BaseRankDatalog, ranks
the statements in a knowledge base K = D ∪ C, where D is the set of defeasible rules and C
the set of classical clauses. It forms a ranking using only the defeasible statements by setting
E0 :=

−→
D on line 2. Then, since the classical statements are all definite, it adds them to the

most typical level (the infinite level).
In the propositional case, a statement α is exceptional with respect to a set of statements

X if X |= ¬α. Datalog∨’s syntax does not include the negation connective ¬, so we use the ⊥
literal to define a notion of falsehood, and hence exceptionality.

Proposition 1 Let τ be a Herbrand interpretation. Then, τ is a model of ¬α under Datalog+
semantics iff τ is a model of α → ⊥ under Datalog∨ semantics.

The exceptionality of molecule α is now assessed using the entailment check Ei ∪ C |=
α → ⊥ on line 4. Finally, when all the defeasible rules are ranked, BaseRankDatalog adds the
classical clauses to the infinite level by setting R∞ := Ei−1 ∪ C on line 8.

Algorithm 3: BaseRankDatalog
Input: A defeasible Datalog knowledge base D and classical Datalog knowledge base

C
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 i := 0;
2 E0 :=

−→
D ;

3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei ∪ C |= α → ⊥};
5 Ri := Ei \ Ei+1;
6 i := i+ 1;
7 until Ei−1 = Ei;
8 R∞ := Ei−1 ∪ C;
9 if Ei−1 = ∅ then
10 n := i− 1;
11 else
12 n := i;
13 return (R0, . . . ,Rn−1,R∞, n)

4.2 Rational Closure Algorithm
As with the BaseRankDatalog algorithm, we choose to represent falsehood using the ⊥ literal.
The RationalClosureDatalog algorithm now uses the entailment check R∞ ∪ R |= α → ⊥

https://doi.org/10.18489/sacj.v32i2.846
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on line 4. Under the assumption that we can compute classical entailment for Datalog∨, this
adapted version of the RationalClosureProp algorithm can be used to check whether a rule
α |∼ β is defeasibly entailed by the knowledge base K = D ∪ C.

Algorithm 4: RationalClosureDatalog
Input: A defeasible Datalog knowledge base D, a classical Datalog knowledge base C

and a defeasible rule α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := BaseRankDatalog(D,C);
2 i := 0;
3 R :=

∪j<n
i=0 Rj;

4 while R∞ ∪ R |= α → ⊥ and R ̸= ∅ do
5 R := R \ Ri;
6 i := i+ 1;
7 return R∞ ∪ R |= α → β;

Proposition 2 The adapted RationalClosureDatalog algorithm is LM-rational.
The proof of LM-rationality is provided in Appendix A.

4.3 Interactions Between Variables and Constants
While it is certainly important that RationalClosureDatalog is LM-rational, the KLM prop-
erties do not capture the full expressivity of Datalog. In particular, they do not express the
interactions between constants and variables in rules. While a set of properties that fully
express how defeasibilty should work with respect to this is certainly useful, it is beyond
the scope of this paper. Instead, we provide an example that illustrates the basics of how
RationalClosureDatalog fails to deal correctly with rules involving constants and variables.
Example 5 Consider the following knowledge base K:

1. Birds typically fly : b(X) |∼ f(X)

2. Tweety is a non-flying bird : b(t) ∧ ¬f(t)

3. Chirpy is a bird : b(c)
When ranked according to the BaseRankDatalog algorithm, we would want the statements

to appear as shown in Figure 2. Classical statements should have infinite rank and the defeas-
ible statement should have a finite rank. However, instead of this, all statements get ranked
on the same level, as this is in fact an inconsistent knowledge base. To see this, notice that the
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classical version of b(X) |∼ f(X) is b(X) → f(X). We also know b(t) is true, so we can use this
to conclude that f(t) must be in any Herbrand interpretation satisfying our knowledge base.
But we know that ¬f(t) must also be true, so f(t) is not in any such Herbrand interpretation,
a contradiction.

0 b(X) |∼ f(X)

∞ b(t) ∧ ¬f(t) b(c)

Figure 2: Desired Ranking of the Knowledge Base K

5 RELEVANT CLOSURE FOR DATALOG

It seems unnecessary for the Rational Closure algorithm to throw away an entire level of state-
ments when there is a conflict. While it is true that a statement within the level is causing
the conflict, there are other statements in the level that may have no effect on the conflict
occurring. Relevant closure takes a finer-grained approach to removing statements, only re-
moving the “relevant” statements in a level. In this section we give the definition for Rel-
evant Closure as provided by Casini et al. (Casini et al., 2014). The algorithm is based on
RationalClosureProp, with some slight changes.

5.1 Motivation for Relevant Closure
In this subsection we argue, by means of an example, that not all statements in a level are
responsible for being able to prove R∞ ∪ R |= ¬α, given the query α |∼ β.
Example 6

1. Adults are people (a → p)

2. Students are people (s → p)

3. Typically, people watch movies (p |∼ m)

4. Typically, people are adults (p |∼ a)
5. Typically, people pay taxes (p |∼ t)
6. Typically, students do not pay taxes (s |∼

¬t)
Figure 3 shows the ranking of these statements according to the BaseRankProp algorithm.
Let us now consider what happens when we ask the question; “Do students typically watch

movies?”, corresponding to the query s |∼ m. In the algorithm, when i = 0, we can conclude
that s → t and s → ¬t. That is, students both pay and don’t pay taxes, leading us to conclude
that there are no students. Thus, R∞ ∪ R |= ¬s, so we throw away the entire top level of the
ranking and check again.
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0 p |∼ m p |∼ a p |∼ t

1 s |∼ ¬t

∞ a → p s → p

Figure 3: Ranking of the Knowledge Base K

Now, R∞ ∪ R ̸|= ¬s, so we check if s → m holds. It does not, since the statement p → m
was thrown away in the previous iteration. Thus, the algorithm returns false. This intuitively
feels wrong, since the conclusion “Students typically watch movies” seems like a very reasonable
one to make from the given information. The issue arises from throwing away the statement
p → m in the previous iteration, even though it had nothing to do with us being able to
conclude that there were no students.

We used the following statements to conclude ¬s;
s → ¬t s → p p → t

One could argue that since the statement p → mwas not relevant to us concluding ¬s, it should
not have been thrown away with the top level. This is the idea behind Relevant Closure.

5.2 Algorithmic Definition

Algorithm 5: RelevantClosureProp
Input: A defeasible propositional knowledge base K, a defeasible implication α |∼ β,

and a partition < R, R− > of K
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := BaseRankProp(K);
2 i := 0;
3 R′ := R;
4 while R∞ ∪ R− ∪ R′ |= ¬α and R′ ̸= ∅ do
5 R′ := R′ \ {Ri ∩ R};
6 i := i+ 1;
7 return R∞ ∪ R− ∪ R′ |= α → β;

The algorithm for Relevant Closure, provided by Casini et al. (Casini et al., 2014), is defined
in terms of ALC, a description logic. To make the algorithm easier to understand and convert
to Datalog, we will first express it in terms of propositional logic.

In the partition < R, R− > of K, R represents all statements relevant to the query α |∼ β.
When throwing away statements from a level, the algorithm only considers these statements
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in R as eligible for removal. We say that a statement α |∼ β is in the Relevant Closure of K if
and only if the RelevantClosureProp algorithm returns true when given α |∼ β and K.

5.3 Defining Relevance
Now that the algorithm has been defined, the only work remaining is to define how to calculate
the partition < R, R− > for a given query α |∼ β. Based on the ideas explored by Casini
et al. (Casini et al., 2014), we would want R to contain exactly all the statements used to
prove ¬α. To formalize this, we present a sequence of definitions to gradually build up the
idea of relevance.
Definition 1 α is said to be exceptional for K if K |= ¬α.
Definition 2 Let K be a knowledge base, J ⊆ K such that J only contains defeasible implications,
and α a propositional sentence. Then J is said to be an α-justification w.r.t. K if α is exceptional
for J and for any J ′ ⊂ J , α is not exceptional for J ′.
Definition 3 For a sentence α and knowledge base K, let
J K(α) = {J | J is an α-justification w.r.t. K}. Then α |∼ β is said to be in the Basic Relev-
ant Closure of K if it is in the Relevant Closure of K w.r.t. ∪J K(α).

5.4 Minimal Relevant Closure
It could be argued that for Basic Relevant Closure, we are still considering too many statements
as relevant to the query. This is because we consider all the statements in all α-justifications
as relevant to proving that α is exceptional. However, we could instead consider only the
statements of minimal rank from each α-justification as relevant, and still fix the exceptionality
of α.
Definition 4 For some set of justificationsJ ⊆ K, letJ K

min = {α |∼ β | rK(α) ≤ rK(γ) for every γ |∼
λ ∈ J }.

For a sentence α, let J K
min(α) =

∪
J∈JK(α) J K

min.
Then α |∼ β is said to be in the Minimal Relevant Closure of K if it is in the Relevant Closure

of K w.r.t. ∪J K
min(α).

5.5 Relevant Closure for Datalog
In terms of adapting the RelevantClosureProp algorithm for Datalog, no further work needs
to be done beyond what has already been said for Rational Closure. To define a molecule α
being exceptional, we simply need to be able to check entailment of negated molecules, which
is something we already know how to do. The remainder of the definitions for both Basic
and Minimal Relevant Closure only entail manipulating sets and checking the rankings of
statements.
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Algorithm 6: RelevantClosureDatalog
Input: A defeasible Datalog knowledge base K, a defeasible Datalog rule α |∼ β, and a

partition < R, R− > of K
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := BaseRankDatalog(K);
2 i := 0;
3 R′ := R;
4 while R∞ ∪ R− ∪ R′ |= ¬α and R′ ̸= ∅ do
5 R′ := R′ \ {Ri ∩ R};
6 i := i+ 1;
7 return R∞ ∪ R− ∪ R′ |= α → β;

5.6 LM-Rationality
For this, we will use Minimal Relevant Closure as the definition for Relevant Closure. As
shown by Casini et al. (Casini et al., 2014), Relevant Closure for propositional logic satisfies
the properties Ref, LLE, And, and RW, and does not satisfy Or, CM, or RM. We will show that
the same holds true for Relevant Closure for Datalog.

Let us consider the proofs that show that Rational Closure fulfills the KLM properties of Ref,
RW, andAnd. The only difference RelevantClosureDatalog has from RationalClosureDatalog
is the inclusion of the “relevance partition”. Thus, the proofs can be re-used without editing,
provided that the relevance partition is the same throughout the various queries.

The relevance partition is fully determined by the antecedent of the query (e.g. α in α |∼ β),
as can be seen in the definition of Minimal Relevant Closure. In the aforementioned properties,
the antecedent is the same in all queries made to the algorithm. Hence, the proofs can be
directly re-used to show that Relevant Closure fulfills the KLM properties of Ref, RW, and And.

The proof for satisfaction of the property LLE and the counter-examples for satisfaction
of the properties Or, CM, and RM can be found in Appendix C. The counter-examples were
adapted from the ALC case (Casini et al., 2014).

6 LEXICOGRAPHIC CLOSURE

In Section 5 we argue that it is unnecessary for the Rational Closure algorithm to throw away
an entire level of statements when there is a conflict, since some of the statements may have
no effect on the conflict occurring. Unfortunately the Relevant closure definition of defeasible
entailment is not LM-rational. Instead of attempting to define “relevant” statements, Lexico-
graphic closure (Lehmann, 1995) considers all possible subsets of worst-ranked statements and
removes the smallest possible subset such that there is no longer a conflict. The semantic and
algorithmic definitions of Lexicographic Closure for propositional logic are known and have

https://doi.org/10.18489/sacj.v32i2.846

https://doi.org/10.18489/sacj.v32i2.846


Morris, M, Ross, T, and Meyer, T: Algorithmic Definitions for KLM-Style Defeasible Disjunctive Datalog 156

been shown to be LM-rational (Lehmann, 1995). In this section we provide an extension of
Lexicographic Closure to the Datalog∨ case.

6.1 Lexicographic Closure for Propositional Logic
We adapt the definition of Lexicographic Closure for propositional logic provided by Cas-
ini et al.(Casini et al., 2019). The new definition, in terms of the sub-algorithms SubsetRankProp
and LexicographicClosureProp, can easily be adapted for Datalog∨.

The SubsetRankProp algorithm, Algorithm 7, constructs a new ranking of statements by
using the base ranks R0, . . . ,Rn−1,R∞ computed by the BaseRankProp algorithm. It adds new
rank levels Di,ni−1, Di,ni−2,..., Di,1 in between each existing rank level Ri and Ri+1. Each level
Di,j represents all the different ways of removing |Ri|−j statements from Ri. The Subsets(X, k)
function finds all possible subsets of size k < n of a set X of size n.
Algorithm 7: SubsetRankProp
Input: A defeasible propositional knowledge base K
Output: An ordered tuple (R0, . . . ,Rk,R∞, k + 1)

1 (B0, . . . , Bm−1, B∞,m) := BaseRankProp(K);
2 i := 0; k := 0;
3 repeat
4 for j := |Bi| to 1 do
5 Si,j := Subsets(Bi, j);
6 Di,j :=

∨
X∈Si,j

∧
x∈X x;

7 Rk := Di,j;
8 k := k + 1;
9 i := i+ 1;

10 until i := m;
11 R∞ := B∞;
12 return (R0, . . . ,Rk,R∞, k + 1)

As seen in Section 5, when the knowledge base in Example 6 is ranked according to the
BaseRankProp algorithm, the statements appear in the ranking shown in Figure 4.

B0 p → m p → a p → t

B1 s → ¬t

B∞ a → p s → p

Figure 4: Base Ranking of the Knowledge Base K

Let us look at B0. Finding all the different ways of removing 1 statement from B0, is the
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equivalent of finding all the subsets of B0 of size 2 using S0,2 = Subsets(B0, 2) = {{p →
m, p → a}, {p → m, p → t}, {p → a, p → t}}. Now, using {p → m, p → a} is equivalent
to using the single statement (p → m) ∧ (p → a). And, using at least one of the statements
(p → m) ∧ (p → a), (p → m) ∧ (p → t) or (p → a) ∧ (p → t) is equivalent to using the single
statement ((p → m) ∧ (p → a)) ∨ ((p → m) ∧ (p → t)) ∨ ((p → a) ∧ (p → t)). So, all the
different ways of removing 1 statement from B0 can be represented by this one statement. If
we follow the algorithm for all possible subset sizes (from |Bi| to 1) for each Bi, then we get
the following ranking:

R0 = D0,3 (p → m) ∧ (p → a) ∧ (p → t)

R1 = D0,2 ((p → m) ∧ (p → a)) ∨ ((p → m) ∧ (p → t)) ∨ ((p → a) ∧ (p → t))

R2 = D0,1 (p → m) ∨ (p → a) ∨ (p → t)

R3 = D1,1 s → ¬t

B∞ a → p s → p

Figure 5: SubsetRanking of the Knowledge Base K

The LexicographicClosureProp algorithm ranks the statements in the input knowledge
baseK using the SubsetRankProp algorithm. It then checks whether the defeasible implication
α |∼ β is defeasibly entailed byK in amanner equivalent to that used by the RationalClosureProp
algorithm (LexicographicClosureProp is the same as RationalClosureProp, barring the use
of SubsetRankProp instead of BaseRankProp.)

Let us again consider what happens when we ask the question; “Do students typically watch
movies?” (s |∼ m). In the algorithm, when i = 0, we can conclude that s → t and s → ¬t so
we throw away R0 and check again. Now, for i = 1, R∞ ∪R ̸|= ¬s, so we check if s → m holds
and it does. Thus, the algorithm returns true.

6.2 Lexicographic Closure for Datalog
In this section we extend the Lexicographic Closure algorithm for the propositional case to the
Datalog case. We conclude the section by showing that our extended algorithm is LM-rational.

6.2.1 Rephrasing SubsetRank for Datalog
The definition of Lexicographic Closure for the propositional case cannot directly be applied
to the Datalog case. The statement Di,j is formed by combining statements from subset Si,j

using ∧ and ∨ connectives. It will violate Datalog∨’s syntax if Si,j contains multiple rules or
multiple subsets of facts. However, the statement Di,j can be transformed into Conjunctive
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Normal Form (CNF) Di,j := D1 ∧D2 ∧ . . . ∧Dn, where:
Di := ¬ai,1 ∨ . . . ∨ ¬ai,ri ∨ bi,1 ∨ . . . ∨ bi,si

:= ¬(ai,1 ∧ . . . ∧ ai,ri) ∨ (bi,1 ∨ . . . ∨ bi,si)

:= ai,1 ∧ . . . ∧ ai,ri → bi,1 ∨ . . . ∨ ∨bi,si
:= α∧

i → β∨
i

Thus, Di,j can be rewritten as a conjunction of Disjunctive Datalog rules. Checking entail-
ment from a conjunction of rules is equivalent to checking entailment from a set of the same
rules. Hence, we can replace each statement Di,j with a set of Datalog∨ rules. On line 7 of
the SubsetRankProp algorithm, Algorithm 7, we now set Rk := RNF(Di,j). The Rule Normal
Form function RNF(Γ) takes an “extended” Disjunctive Datalog statement Γ as input and does
the following:

1. Computes the Conjunctive Normal Form CNF(Γ).
2. Converts CNF(Γ) into a conjunction of clauses of the form (α∧

1 → β∨
1 )∧ (α∧

2 → β∨
2 )∧ . . .∧

(α∧
k → β∨

k ).
3. Converts the conjunction of clauses into a set of clauses {α∧

1 → β∨
1 , α

∧
2 → β∨

2 , . . . , α
∧
k →

β∨
k }.

4. Returns the set of clauses.

Algorithm 8: SubsetRankDatalog
Input: A defeasible Datalog knowledge base D and classical Datalog knowledge base

C
Output: An ordered tuple (R0, . . . ,Rk,R∞, k + 1)

1 (B0, . . . , Bm−1, B∞,m) := BaseRankDatalog(D,C);
2 i := 0; k := 0;
3 repeat
4 for j := |Bi| to 1 do
5 Si,j := Subsets(Bi, j);
6 Di,j :=

∨
X∈Si,j

∧
x∈X x;

7 Rk := RNF(Di,j);
8 k := k + 1;
9 i := i+ 1;

10 until i := m;
11 R∞ := B∞;
12 return (R0, . . . ,Rk,R∞, k + 1)
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6.2.2 Rephrasing Lexicographic Closure for Datalog
LexicographicClosureDatalog is the same as RationalClosureDatalog, with the exception
that the adapted SubsetRankDatalog algorithm is used to rank statements on line 1 instead of
the BaseRankDatalog algorithm.

Proposition 3 The adapted LexicographicClosureDatalog algorithm is LM-rational.

Proof of Proposition 3: Notice that the proofs for the satisfaction of each KLM prop-
erty by the RationalClosureDatalog procedure, in Appendix A, are independent of the rank-
ing produced by the BaseRankDatalog procedure. Furthermore, notice that the only differ-
ence between the LexicographicClosureDatalog procedure and the RationalClosureDatalog
procedure is the use of the SubsetRankDatalog procedure to rank statements instead of the
BaseRankDatalog procedure. Thus, the proofs for the satisfaction of each KLM property in Ap-
pendix A can be used to prove the satisfaction of each KLM property by the LexicographicClosureDatalog
procedure.

7 CONCLUSIONS & FUTURE WORK

The main focus of this paper was to provide versions of defeasible reasoning for Disjunctive
Datalog. To be able to express the KLM properties and the algorithm in Datalog, we motivated
for extensions that would have to be made to the syntax and semantics of Datalog. We proved
that Rational Closure for Datalog was LM-rational (i.e. it conforms to the KLM properties), but
showed by example that it does not seem to capture the relationship between variables and
constants in Datalog.

We introduced Relevant Closure and Lexicographic Closure as alternatives for computing
defeasible entailment and adapted both of the algorithms for Datalog. We found that Lexico-
graphic Closure is still LM-rational, but that Relevant Closure does not satisfy some of the KLM
properties.

This paper is a first step towards defining defeasible entailment for more expressive lo-
gics. Future work on this topic would most definitely include finding a semantic definition
of Rational Closure for Datalog, based on minimal models. Other future work could include
an attempted adaptation of the Relevant Closure method for computing defeasible entailment,
done in such a way that it satisfies the KLM properties, while still maintaining the basic ideas
of Relevant Closure.

As another option, Casini et al. (Casini et al., 2019) showed that LM-rationality is neces-
sary but not sufficient to define acceptability of defeasible entailment forms. The additional
properties for Basic Defeasible Entailment proposed by Casini et al. (Casini et al., 2019) can
be extended to Datalog. Furthermore, other properties that are specific to defeasible entail-
ment for Datalog should be explored. These properties would likely lead to a revision of our
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proposed algorithm, as it does not fully capture how variables and constants should interact
in defeasible Datalog.
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APPENDICES

A LM-RATIONALITY OF RATIONAL CLOSURE

Let K = D ∪ C be a Datalog knowledge base, where D is a set of defeasible rules and C is a
set of classical clauses. Let α, β, γ be molecules. We provide proofs below for the satisfaction
of each KLM property by the RationalClosureDatalog procedure. That is, we prove that
RationalClosureDatalog is LM-rational. We start by showing that while checking K |≈ α |∼ β,
if it is always the case that R∞ ∪ R |= ¬α, then the algorithm returns true.

Lemma 1 Let K be a Datalog knowledge base and α, β molecules such that when checking K |≈
α |∼ β, it is always the case that R∞ ∪ R |= ¬α. Then, the RationalClosureDatalog algorithm
returns true.

Proof of Lemma 1: Since, in the checking, it is always the case that R∞ ∪ R |= ¬α, the
while loop on line 4 will keep looping, until R = ∅. Then the algorithm will jump to line 7, and
return R∞ ∪ R |= α → β.

But, since R∞ ∪ R |= ¬α, we know that αθ ̸∈ τ for every substitution θ and model τ (of
R∞ ∪ R). Thus, α → β is true under every substitution θ and model τ . Hence, the query
R∞ ∪ R |= α → β must return true. So the algorithm itself returns true.

A.1 Ref
We want to show that K |≈ α |∼ α. We will make use of Lemma 2 to do so.

Lemma 2 The defeasible rule α → α is a tautology.

Proof of Lemma 2: Let τ be any Herbrand interpretation and θ a substitution which re-
places variables by constants. In the proofs, we refer to such a substitution as a grounding
substitution. If αθ ∈ τ then αθ ∈ τ . So τ is a model of α → α. Hence, α → α is a tautology.

Let τ be a Herbrand interpretation of K and θ a grounding substitution. We now consider
2 cases below:

Case 1: At some point (when i ∈ [0, n]) in the K |≈ α |∼ α checking, R∞ ∪ R ̸|= ¬α for
the first time. Then, since α → α is a tautology, any model of R∞ ∪ R must satisfy α → α so
R∞ ∪ R |= α → α. Thus, the algorithm returns true.

Case 2: It is always the case in the K |≈ α |∼ α checking that R∞ ∪ R |= ¬α. Then, the
algorithm returns true, by Lemma 1.

A.2 LLE
Suppose |= α → β, |= β → α and K |≈ α |∼ γ. We want to show that K |≈ β |∼ γ. We will
make use of Lemma 3 to do so.
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Lemma 3 Let τ be a Herbrand interpretation and θ a grounding substitution. Then, |= α → β and
|= β → α iff αθ ∈ τ and βθ ∈ τ , or, αθ ̸∈ τ and βθ ̸∈ τ .

Proof of Lemma 3: Let τ be some Herbrand interpretation and θ some grounding substitu-
tion. Suppose that αθ ∈ τ . Since |= α → β we must have that τ satisfies α → β and so βθ ∈ τ .
Now suppose that αθ ̸∈ τ . We know that τ satisfies β → α since |= β → α. So we must have
βθ ̸∈ τ . Similar arguments hold for when βθ ∈ τ and βθ ̸∈ τ .

Claim: At each level, R∞ ∪ R |= ¬β iff R∞ ∪ R |= ¬α.
Proof of Claim: Suppose that, at some point i ∈ [0, n], R∞ ∪ R |= ¬α. Let τ be a model of

R∞ ∪ R and θ some grounding substitution. So τ is a model of ¬α and, hence, αθ ̸∈ τ . Thus,
by Lemma 3, βθ ̸∈ τ so τ is a model of ¬β. Hence, R∞ ∪ R |= ¬β. Similarly, we can show that
if at some point i ∈ [0, n], R∞ ∪ R |= ¬β, then R∞ ∪ R |= ¬α.

Now suppose that, at some point i ∈ [0, n], R∞ ∪ R ̸|= ¬α. Then, there is some model τ of
R∞∪R such that τ is not a model of ¬α. So there must be some substitution θ such that αθ ∈ τ .
Hence, by Lemma 3, βθ ∈ τ so τ is not a model of ¬β. Thus, R∞ ∪ R ̸|= ¬β. Similarly, we can
show that if at some point i ∈ [0, n], R∞ ∪ R ̸|= ¬β, then R∞ ∪ R ̸|= ¬α.

We now consider 2 cases below:
Case 1: At some point (when i ∈ [0, n]) in the K |≈ α |∼ γ checking, R∞ ∪ R ̸|= ¬α for the

first time. Then, at point i, since K |≈ α |∼ γ, R∞ ∪ R |= α → γ. As shown above, at the same
point i, R∞ ∪ R ̸|= ¬β for the first time. The algorithm now checks that R∞ ∪ R |= β → γ. Let
τ be a model of R∞ ∪ R and θ a grounding substitution. Suppose βθ ∈ τ then, by Lemma 3,
αθ ∈ τ too. And, since R∞ ∪ R |= α → γ, we must have γθ ∈ τ . So R∞ ∪ R |= β → γ and the
algorithm returns true.

Case 2: It is always the case in the K |≈ α |∼ γ checking that R∞ ∪ R |= ¬α. Then, in the
K |≈ β |∼ γ checking, as shown above, it is also always the case that R∞ ∪ R |= ¬β. So the
algorithm returns true, by Lemma 1.

A.3 RW
Suppose |= β → γ and K |≈ α |∼ β. We want to show that K |≈ α |∼ γ. Consider the 2 cases
below:

Case 1: At some point (i ∈ [0, n]) in the K |≈ α |∼ β checking, R∞ ∪ R ̸|= ¬α for the first
time. Then, at that point i, since K |≈ α |∼ β, we have that R∞ ∪ R |= α → β. When checking
K |≈ α |∼ γ, the algorithm reaches that same point i, where R∞∪R ̸|= ¬α for the first time and
then checks whether R∞ ∪ R |= α → γ.

Let τ be a model of R∞ ∪ R and θ a grounding substitution. Suppose αθ ∈ τ then, since
R∞ ∪ R |= α → β, we have that βθ ∈ τ . Since β → γ is a tautology, we must also have that
γθ ∈ τ . So R∞ ∪ R |= α → γ and the algorithm returns true.

Case 2: It is always the case in the K |≈ α |∼ β checking that R∞ ∪ R |= ¬α. Then, in the
K |≈ α |∼ γ checking, it is also always the case that R∞ ∪ R |= ¬α. So the algorithm returns
true, by Lemma 1.
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A.4 And
Suppose K |≈ α |∼ β and K |≈ α |∼ γ. We want to show that K |≈ α |∼ β ∧ γ. Consider the 2
cases below:

Case 1: At some point (i ∈ [0, n]) in the K |≈ α |∼ β checking, R∞∪R ̸|= ¬α for the first time.
Then, at the same point i in the K |≈ α |∼ γ checking, R∞ ∪ R ̸|= ¬α for the first time. Now,
since K |≈ α |∼ β and K |≈ α |∼ γ, at point i we have that R∞∪R |= α → β and R∞∪R |= α → γ.
So, at point i in the K |≈ α |∼ β ∧ γ checking, R∞ ∪R ̸|= ¬α for the first time and the algorithm
checks whether R∞ ∪ R |= α → β ∧ γ.

Let τ be a model of R∞ ∪ R and θ a grounding substitution. Suppose αθ ∈ τ then, since
R∞ ∪ R |= α → β and R∞ ∪ R |= α → γ, we must have βθ ∈ τ and γθ ∈ τ . So (β ∧ γ)θ ∈ τ .
Thus, R∞ ∪ R |= α → β ∧ γ and the algorithm returns true.

Case 2: It is always the case in the K |≈ α |∼ β checking that that R∞ ∪ R |= ¬α. Then, in
the K |≈ α |∼ β ∧ γ checking, it is also always the case that R∞ ∪ R |= ¬α. So the algorithm
returns true, by Lemma 1.

A.5 Or
Suppose K |≈ α |∼ γ and K |≈ β |∼ γ. We want to show that K |≈ α ∨ β |∼ γ. Consider the 2
cases below:

Case 1: It is always the case (for all i ∈ [0, n]) that in the K |≈ α |∼ γ checking, R∞∪R |= ¬α
and, in the K |≈ β |∼ γ checking, R∞ ∪ R |= ¬β. Let τ be a model of R∞ ∪ R at some point
(i ∈ [0, n]) and θ a grounding substitution. Then, at point i, we must have that αθ ̸∈ τ and
βθ ̸∈ τ so (α ∨ β)θ ̸∈ τ . Thus, R∞ ∪ R |= ¬(α ∨ β) at point i. Hence, in the K |≈ α ∨ β |∼ γ
checking, it is always the case that R∞∪R |= ¬(α∨β) so the algorithm returns true, by Lemma
1.

Case 2: There is some point (i ∈ [0, n]) at which, without loss of generality, R∞ ∪ R ̸|= ¬α
for the first time and at each point before point i (for each 0 ≤ j < i), R∞ ∪ R |= ¬β. That is,
R∞∪R ̸|= ¬α for the first time either at the same level or a higher level than the level at which
R∞ ∪ R ̸|= ¬β for the first time. Since we know that K |≈ α |∼ γ, at point i we must have that
R |= α → γ.

At point i, since R∞ ∪ R ̸|= ¬α, there is some model τ of R∞ ∪ R which is not a model of
¬α. Thus, there is some substitution θ such that αθ ∈ τ . Thus, (α∨ β)θ ∈ τ so (¬(α ∨ β))θ ̸∈ τ .
Hence, at point i in the K |≈ α ∨ β |∼ γ checking, R∞ ∪ R ̸|= ¬(α ∨ β).

Furthermore, at any point j < i, we have that R∞ ∪ R |= ¬α and R∞ ∪ R |= ¬β. Thus, as
shown above in Case 1, we must have that R∞ ∪R |= ¬(α∨ β) at point j. So point i is the first
point at which R∞ ∪ R ̸|= ¬(α ∨ β).

We again let τ be a model of R∞ ∪ R at point i and θ a grounding substitution. Now we
consider 2 sub-cases below:

i At point i, R∞ ∪ R |= ¬β. Then βθ ̸∈ τ . Suppose that αθ ̸∈ τ . Then, (α ∨ β)θ ̸∈ τ so
α∨β → γ is true under τ for substitution θ. Now suppose that αθ ∈ τ . Then, (α∨β)θ ∈ τ
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and, since R |= α → γ, γθ ∈ τ . So, α ∨ β → γ is true under τ for substitution θ. Hence,
R |= α ∨ β → γ and the algorithm returns true.

ii At point i, R∞∪R ̸|= ¬β (and this is not the case for any j < i, otherwise it would violate
our assumption for case 2). So, since K |≈ β |∼ γ, we have that R∞∪R |= β → γ. Suppose
that αθ ̸∈ τ and βθ ̸∈ τ . Then, (α ∨ β)θ ̸∈ τ so α ∨ β → γ is true under τ for substitution
θ. Now suppose that, without loss of generality (since both R |= α → γ and R |= β → γ),
αθ ∈ τ . Then, (α ∨ β)θ ∈ τ and, since R |= α → γ, γθ ∈ τ . So, α ∨ β → γ is true under τ
for substitution θ. Hence, R |= α ∨ β → γ and the algorithm returns true.

A.6 CM
Suppose K |≈ α |∼ β and K |≈ α |∼ γ. We want to show that K |≈ α∧ β |∼ γ. We will make use
of Lemma 4 to do so.

Lemma 4 Suppose K |≈ α |∼ β and K |≈ α |∼ γ for some knowledge base K. Then, the following
holds:

i If R∞ ∪ R |= ¬α at some point i in the RationalClosureDatalog algorithm, then R∞ ∪ R |=
¬(α ∧ β) at that point i.

ii If R∞ ∪R ̸|= ¬α for the first time at some point i in the RationalClosureDatalog algorithm,
then R∞ ∪ R ̸|= ¬(α ∧ β), also for the first time, at that point i.

Proof of Lemma 4:

i Suppose that R∞ ∪R |= ¬α at some point i. Let τ be a model of R∞ ∪R at point i and θ a
grounding substitution. Then αθ ̸∈ τ so (α∧ β)θ ̸∈ τ and, hence, (¬(α∧ β))θ ∈ τ . Hence,
R∞ ∪ R |= ¬(α ∧ β).

ii Suppose that, at point i, R∞ ∪ R ̸|= ¬α for the first time. Then, since K |≈ α |∼ β, we
have that R∞ ∪ R |= α → β. And, since R∞ ∪ R ̸|= ¬α, there is some model τ of R∞ ∪ R
which is not a model of ¬α. Thus, there is some substitution θ such that αθ ∈ τ . Since
R∞∪R |= α → β, we must have that βθ ∈ τ too. So (α∧β)θ ∈ τ and, thus, (¬(α∧β))θ ̸∈ τ .
Hence, at point i, R∞ ∪ R ̸|= ¬(α ∧ β).
Now, it remains to show that point i is the first point at which R∞∪R ̸|= ¬(α∧β). Assume,
to the contrary, that at some point j < i, R∞ ∪ R ̸|= ¬(α ∧ β). But, then at this point, we
know R∞ ∪ R |= ¬α, so R∞ ∪ R |= ¬(α ∧ β), which is a contradiction. Thus, point i is the
first point at which R∞ ∪ R ̸|= ¬(α ∧ β).

Now we consider 2 cases below:
Case 1: At some point (i ∈ [0, n]) in the K |≈ α |∼ β checking, R∞ ∪ R ̸|= ¬α for the first

time. Then, at the same point i, in the K |≈ α |∼ γ checking, R∞ ∪ R ̸|= ¬α for the first time.
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Thus, at this point i we have that R∞ ∪ R |= α → β and R∞ ∪ R |= α → γ. And, by Lemma 4,
at point i in the K |≈ α ∧ β |∼ γ checking, R∞ ∪ R ̸|= ¬(α ∧ β) for the first time.

Let τ be a model of R∞ ∪ R at point i and θ a grounding substitution. Suppose that αθ ̸∈ τ .
Then, (α∧β)θ ̸∈ τ so α∧β → γ is true under τ for substitution θ. Suppose now that αθ ∈ τ so,
since R∞∪R |= α → β and R∞∪R |= α → γ, we have that βθ ∈ τ and γθ ∈ τ . Thus, (α∧β)θ ∈ τ
and γθ ∈ τ so α ∧ β → γ is true under τ for substitution θ. Hence, R∞ ∪ R |= α ∧ β → γ so the
algorithm returns true.

Case 2: It is always the case in the K |≈ α |∼ β checking that R∞ ∪ R |= ¬α. Then, by
Lemma 4, in the K |≈ α ∧ β |∼ γ checking, it is always the case that R∞ ∪ R |= ¬(α ∧ β) and so
the algorithm returns true, by Lemma 1.

A.7 RM
Suppose that K |≈ α |∼ γ and K |̸≈ α |∼ ¬β. We want to show that K |≈ α ∧ β |∼ γ. Consider
the 2 cases below:

Case 1: At some point (i ∈ [0, n]) in the K |≈ α ∧ β |∼ γ checking, R∞ ∪ R ̸|= ¬(α ∧ β). We
claim that we must have that both R∞ ∪ R ̸|= ¬α and R∞ ∪ R ̸|= ¬β. Suppose, to the contrary,
R∞ ∪ R |= ¬α. Let τ be a model of R∞ ∪ R at point i and θ a grounding substitution. Then
αθ ̸∈ τ so (α ∧ β)θ ̸∈ τ . Thus, R∞ ∪ R |= ¬(α ∧ β), a contradiction. Similarly, if R∞ ∪ R |= ¬β
then R∞ ∪ R |= ¬(α ∧ β), a contradiction.

Claim: Point i is the first point at which R∞ ∪ R ̸|= ¬α.
Proof of Claim: Assume to the contrary that there exists some j < i such that R∞∪R ̸|= ¬α,

where j is minimal. Based on the assumptions of Case 1, we know that R∞ ∪ R |= ¬(α ∧ β) at
point j. And, since K |̸≈ α |∼ ¬β, we know that R∞ ∪R ̸|= α → ¬β at point j. Let τ be a model
of R∞ ∪ R and θ a substitution that replaces variables with constants. Now, either αθ ∈ τ or
αθ ̸∈ τ . We consider 2 sub-cases below:

i If αθ ̸∈ τ . Then, α → ¬β must be true under τ for θ.
ii If αθ ∈ τ . Then, we must have that βθ ̸∈ τ . Otherwise, we would have (α∧ β)θ ∈ τ , and,
hence, R∞ ∪ R ̸|= ¬(α ∧ β), a contradiction. Thus, ¬βθ ∈ τ and so α → ¬β must be true
under τ for θ.

Either way, α → ¬β is true under τ for θ, so R∞ ∪ R |= α → ¬β, a contradiction. Thus, no
such j < i exists.

So, since R∞ ∪R ̸|= ¬α at point i (and not before) and K |≈ α |∼ γ, we know that R∞ ∪R |=
α → γ at this point. Suppose that at least one of αθ ̸∈ τ or βθ ̸∈ τ holds. Then, (α∧ β)θ ̸∈ τ so
α ∧ β → γ is true under τ for substitution θ. Now suppose that both αθ ∈ τ and βθ ∈ τ . Then,
(α ∧ β)θ ∈ τ and, since R∞ ∪ R |= α → γ, we know that γθ ∈ τ too. So α ∧ β → γ is true under
τ for substitution θ. Hence, R∞ ∪ R |= α ∧ β → γ and the algorithm returns true.

Case 2: It is always the case in the K |≈ α ∧ β |∼ γ checking that R∞ ∪ R |= ¬(α ∧ β). Then,
the algorithm returns true, by Lemma 1.
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B LM-RATIONALITY OF LEXICOGRAPHIC CLOSURE

In this section, for completeness, we provide proofs for the satisfaction of each KLM property by
the LexicographicClosureDatalog procedure. That is, we prove that LexicographicClosureDatalog
is LM-rational.

Notice that the proofs for the satisfaction of each KLM property by the RationalClosureDatalog
procedure, in Appendix A, are independent of the ranking produced by the BaseRankDatalog
procedure. Furthermore, notice that the only difference between the LexicographicClosureDatalog
procedure and the RationalClosureDatalog procedure is the use of the SubsetRankDatalog
procedure to rank statements instead of the BaseRankDatalog procedure.

Thus, the proofs for the satisfaction of each KLM property in Appendix A can be used to
prove for the satisfaction of each KLM property by the LexicographicClosureDatalog proced-
ure.

C LM-RATIONALITY OF RELEVANT CLOSURE

Here we provide a proof that Minimal Relevant Closure satisfies the KLM property of LLE. We
also provide counter-examples to show that it does not satisfy the properties of Or, CM, and
RM.

C.1 LLE
Let us start by examining the KLM property of LLE:

(LLE) |= α → β, |= β → α, K |≈ α |∼ γ

K |≈ β |∼ γ

The proof (in Appendix A.2) that Rational Closure satisfies LLE does not directly translate
to a proof for Relevant Closure, since the relevance partitions in the two queries are different.
The two queries in question are K |≈ α |∼ γ and K |≈ β |∼ γ. The relevance partitions for these
queries are fully determined by α and β respectively, since the K in both instances is the same
K.

Thus, to allow the proof to translate, we just have to prove that∪J K
min(α) =

∪
J K

min(β) (i.e.
the relevance partitions for the two queries are the same). To do this, we start by showing
that JK(α) = JK(β). We first prove that JK(α) ⊆ JK(β).

Let J ∈ JK(α); then J is an α-justification. This means that J |= ¬α. Now since |= β → α,
J |= ¬β.

Assume to the contrary that there is some J ′ ⊂ J such that J ′ |= ¬β. Then since |= α → β,
J ′ |= ¬α, contradicting J being an α-justification. So J is also a β-justification. This means
that J ∈ JK(β) as required, proving that JK(α) ⊆ JK(β). The proof that JK(β) ⊆ JK(α) is
very similar.
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Thus, we have that JK(α) = JK(β). Since these are exactly equal, it must also be the case
then that ∪J K

min(α) =
∪

J K
min(β). The proof (in Appendix A.2) that Rational Closure satisfies

the property of LLE can now be used directly to show that Relevant Closure also satisfies the
property.

C.2 Or
For the upcoming three counter-examples, we will use the symbol a to represent the Datalog
molecule a(Tyler), b to represent b(Tyler), and so on. In this case, Tyler is just some constant
in our Datalog program. This way, truth can be assigned to these molecules in the same way
that it is for propositional logic.

We need to find a knowledge base K and molecules a, g, e such that K |≈ a |∼ e and
K |≈ g |∼ e, but K |̸≈ a ∨ g |∼ e. Define:

K = {a |∼ b, b |∼ c, a |∼ ¬c, a |∼ d,

g |∼ d, d |∼ e, g |∼ h, h |∼ ¬e, g |∼ e}

This can be represented neatly by a lattice, where a |∼ b would be represented by a line
going upwards from a to b and a |∼ ¬b by a dashed line.

a

b

c

d

e

g

h

Figure 6: Lattice Representing K

When ranked according to the base rank algorithm, the statements would appear as follows.
Note that there is no “infinite rank”, since there are no classical statements in the knowledge
base.

0 b |∼ c d |∼ e h |∼ ¬e

1 a |∼ b a |∼ ¬c a |∼ d g |∼ d g |∼ h g |∼ e

Figure 7: Ranking of the Knowledge Base K

To compute Relevant Closure, we first need to compute the justification sets for each of
the queries we will be making:

• JK(a) = {a |∼ b, b |∼ c, a |∼ ¬c}, so J K
min(a) = {b |∼ c}
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• JK(g) = {{g |∼ e, g |∼ h, h |∼ ¬e}, {g |∼ d, d |∼ e, g |∼ h, h |∼ ¬e}}, so J K
min(g) = {h |∼

¬e, d |∼ e}

• JK(a ∨ g) = JK(¬(¬a ∧ ¬g)) = {{a |∼ b, b |∼ c, a |∼ ¬c, g |∼ e, g |∼ h, h |∼ ¬e}, {a |∼
b, b |∼ c, a |∼ ¬c, g |∼ d, d |∼ e, g |∼ h, h |∼ ¬e}}, so J K

min(a∨g) = {b |∼ c, h |∼ ¬e, d |∼ e}
From this, it can be clearly seen that K |≈ a |∼ e and K |≈ g |∼ e. We now consider what

happens when the algorithm is passed the query a∨g |∼ e. When i = 0, R−∪R′ = K |= ¬(a∨g),
so the algorithm proceeds to the next iteration. When i = 1, R− ∪ R′ ̸|= ¬(a ∨ g), so we check
if R− ∪ R′ |= a ∨ g → e. At this point:

R− ∪ R′ = {a |∼ b, a |∼ ¬c, a |∼ d, g |∼ d, g |∼ h, g |∼ e}

Consider a Herbrand interpretation τ such that a, b, d, h ∈ τ and c, g, e ̸∈ τ . Then τ ⊩ R−∪R′,
but τ ̸⊩ a∨g → e. Thus R−∪R′ ̸|= a∨g → e, and the algorithm returns false. So K |̸≈ a∨g |∼ e
as required.

C.3 CM
We now need to find K, c, d, and e such that K |≈ c |∼ d, K |≈ c |∼ e, but K |̸≈ c∧ d |∼ e. Define:

K = {e |∼ ¬g, h |∼ e, b |∼ ¬d, c |∼ d,

c |∼ b, c ∧ d |∼ g, c |∼ h, c ∧ d |∼ h}

This can be represented by a lattice, where a |∼ b would be represented by a line going
upwards from a to b, a |∼ ¬b by a dashed line, and a∧ b by thinly dotted lines from a, b to a∧ b.

c

b

d

c ∧ d

h

e

g

Figure 8: Lattice Representing K

When ranked according to the base rank algorithm, the statements would appear as shown
in Figure 9.

We now compute the justification sets for each of the queries we will be making:
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0 e |∼ ¬g h |∼ e b |∼ ¬d

1 c |∼ d c |∼ b c ∧ d |∼ g c |∼ h c ∧ d |∼ h

Figure 9: Ranking of the Knowledge Base K

• JK(c) = {b |∼ ¬d, c |∼ d, c |∼ b}, so J K
min(c) = {b |∼ ¬d}

Thus K |≈ c |∼ d and K |≈ c |∼ e. Now we consider the justification set for c∧ d, which consists
of three different c ∧ d-justifications:

• {b |∼ ¬d, c |∼ d, c |∼ b}

• {c ∧ d |∼ g, c ∧ d |∼ h, h |∼ e, e |∼ ¬g}

• {c ∧ d |∼ g, c |∼ h, h |∼ e, e |∼ ¬g}

Thus J K
min(c ∧ d) = {b |∼ ¬d, e |∼ ¬g, h |∼ e}. Thus, when processing the query c ∧ d |∼ e,

the 0th rank is entirely thrown away, leaving only the 1st rank in R− ∪ R′. So when i = 1,
R− ∪ R′ ̸|= ¬(c ∧ d), so we check if R− ∪ R′ |= c ∧ d → e.

Consider a Herbrand interpretation τ such that c, b, d, h, g ∈ τ and e ̸∈ τ . Then τ ⊩ R− ∪ R′,
but τ ̸⊩ c∧ d → e. Thus R−∪R′ ̸|= c∧ d → e, and the algorithm returns false. So K |̸≈ c∧ d |∼ e
as required.

C.4 RM
We now need to find K, c, d, and e such that K |̸≈ c |∼ ¬d, K |≈ c |∼ e, but K |̸≈ c ∧ d |∼ e.
Consider the same counter-example as above for CM. Since K |≈ c |∼ d, it is also the case that
K |̸≈ c |∼ ¬d.

To see this, assume to the contrary that K |≈ c |∼ ¬d. Then at some point i when R− ∪R′ ̸|=
¬c, R− ∪R′ |= c → ¬d. However, this stopping point i is the same stopping point for the query
c |∼ d, so R− ∪ R′ |= c → d. But then R− ∪ R′ |= c → ¬d and R− ∪ R′ |= c → d, so R− ∪ R′ |= ¬c,
a contradiction.

Thus, we have that K |̸≈ c |∼ ¬d, K |≈ c |∼ e, but K |̸≈ c ∧ d |∼ e as before. So the previous
counter-example is also a counter-example for RM.

D OTHER PROOFS

D.1 Proposition 1
Let τ be a Herbrand interpretation. Then, τ is a model of ¬α under Datalog+ semantics iff τ is a
model of α → ⊥ under Datalog∨ semantics.
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Proof of Proposition 1: Let τ be a Herbrand interpretation and θ a substitution which
replaces variables with constants. We want to show that τ is a model of ¬α under Datalog+
semantics iff τ is a model of α → ⊥ under Datalog∨ semantics.

Suppose τ is a model of ¬α under Datalog+ semantics. Then, αθ ̸∈ τ under Datalog+
semantics. Clearly, we also have that αθ ̸∈ τ under Datalog∨ semantics. So, α → ⊥ is true
under τ for θ. Hence, τ is a model of α → ⊥ under Datalog∨ semantics.

Suppose τ is a model of α → ⊥ under Datalog∨ semantics. We claim that αθ ̸∈ τ under
Datalog∨ semantics. Suppose, to the contrary, that αθ ∈ τ . Notice that it is always the case
that ⊥θ ̸∈ τ . Thus, α → ⊥ is not true under τ for θ, contradicting the assumption that τ is a
model of α → ⊥. Thus, our claim holds - αθ ̸∈ τ under Datalog∨ semantics. Clearly, we also
have that αθ ̸∈ τ under Datalog+ semantics. Thus, ¬α is true under τ for θ. Hence, τ is a
model of ¬α under Datalog+ semantics.
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