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ABSTRACT
For radio telescopes, radio frequency interference from terrestrial
and other sources is a recognized problem that contaminates the
signal (RFI) and must be tracked and ultimately removed. At the
MeerKAT/SKA telescope, RFI is recorded with a variety of devices,
including telescopes, sensors, and scanners; but the combination
of data from these multiple sources to yield a unified view of RFI
remains a challenging problem. Previously, we demonstrated that
a scalable database model with an implementation based on the
Polystore framework is a potential solution for RFI monitoring.
Here we extend this work, implementing the database model in
an integrated environment and evaluating its performance across
a range of workloads with three data stores: SciDB, PSQL, and
Accumulo. We find that SciDB and Accumulo scale better than
PSQL under multi-user environments. Results show a minimal
latency as low as 0.02 seconds, irrespective of the location, and
data store type. Further, integrated APIs provide single notation
and are 5% faster than third-party APIs. Our findings thus provide
a guide to the proposed integrated RFI system at MeerKAT/SKA
radio telescope.

CCS CONCEPTS
• Information systems→ Semi-structured data;Databaseman-
agement system engines; Database design and models; • Ap-
plied computing→ Astronomy.
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1 INTRODUCTION
The Square Kilometre Array (SKA) telescope project aims to con-
struct the largest and most sensitive telescope in the world, with
the first phase (about 10% of the planned full SKA) expected to
complete in 2020. The SKA precursor, MeerKAT, is currently in
operation in South Africa and comprises approximately 1% of the
final SKA sensitivity [1].

In radio astronomy, radio frequency interference refers to any
signal captured by a radio telescope that did not originate from
the observed target in the sky. Sources of RFI range from human-
generated to natural objects such as the sun. With the expansion
of technology, RFI contamination of the radio signal is on the rise.
RFI signals are typically stronger than the weak celestial signals of
interest and therefore have a dramatic deleterious effect on observa-
tion data [2]. Radio astronomers therefore collect and store RFI data,
in order to explore and understand the nature of the RFI sources,
with a view to determining appropriate mitigation approaches.

The RFI data collect is dynamic and diverse, including images,
text, documents, arrays and tables. The data sets also tend to vary
widely in quality, coverage, accuracy, and period [3], making data
storage a concern. For example, at the MeerKAT/SKA telescope, RFI
data is collected using a radio telescope aswell as several monitoring
devices including fixed and mobile stations, sensors, and scanners
[4]. The use of several devices introduces incompatibilities in data
formats, models, languages, and infrastructure, which exacerbates
the disintegration gap [5]. Further, the isolated data environment
at MeerKAT, as well as other international radio telescopes [6],
hinders fast access and storage due to poor integration.

Traditional flat file formats, such as CSV, are commonly used
by many scientists for their data storage. However, they lack the
structure necessary for indexing multiple files. More structured file
formats, such as HDF5 [7] and NetCDF [8], were introduced to deal
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with large and diverse scientific data, but are still built on the basic
principle of a flat file [9]. A database management solution (DBMS)
is preferable, but the biggest challenge in using databases to store
scientific data lies in integrating a variety of data elements. Tradi-
tionally, a distributed database approach has been a solution for
disintegrated data environments. The SciDB platform supports fast
searches, bulk loading, and ad-hoc analysis and is used in EarthDB
to store Moderate Resolution Imaging Spectroradiometer data on
earth dynamics and processes [10]. Studies on science-oriented
DBMSs indicated that the PostgreSQL (PSQL) database system [11]
is a suitable solution for astronomy due to its extensibility and
powerful features. However, a distributed database approach does
not provide the interactivity and autonomy necessary for an on-site
RFI monitoring environment.

An alternative is a heterogeneous database that integrates many
database systems while maintaining application-specific properties,
integrity control, and safety control [12]. Each database system
requires independent operation environments, database engines,
data structures, and semantics; and must also maintain the accu-
racy of a query during schema translation as data moves from one
system to another. Data integration aims to provide a global view
of the entire data environment and make storage faster and less
cumbersome. In previous work, we designed a scalable database
model[5] based on a polystore framework [13, 14]. Our database
model uses integrated middleware that coordinates multiple data
models, languages, and engines, to facilitate uniform modality and
query notation. Our design philosophy lies in leaving data in its
native format, as we model the data to fit in the suitable store. This
means distinct data structures dictate their store technologies and
calls for flexible logical and physical designs that can accommodate
several data structures.

Figure 1: The proposed integrated RFI monitoring system
(Source: SKA RFI Working Group)

Our scalable database model, illustrated in Figure 1, incorporates
an integrated RFI monitoring system linked to an RFI storage clus-
ter of autonomous data stores. The storage cluster consists of three
data stores: a Postgres (PSQL) [11] store for structured relational
data, an Accumulo [15] store for unstructured key-value data and
a SciDB [9] store for arrays. Our relational data includes RFI meta-
data and system (receiver and transmitter) information; key-value
data includes RFI measurement data, text in RFI reports and RFI

scans and multi-dimensional data, such as 3D frequency, time, and
polarisation data, is stored in arrays.

Figure 2: Basic polystore database framework [16]

Figure 2 illustrates a basic polystore framework with an inte-
grated middleware that coordinates the three database stores appro-
priate for our proposed integrated environment. The middleware
has four components that coordinate operations across engines;
the planner, executor, migrator, and monitor [14]. This middleware
enables several new database operations, including islands, shims,
and casts. Islands provide users with a variety of programming
and data models. Cast operations facilitate the migration of data
between engines, and shim operations facilitate translation of data
from one data format model to another.

Incoming queries may interact with one or more of the underly-
ing storage systems based on the query characteristics. For instance,
a linear algebraic query operation on time-series data may utilise
just the array database, while a join operation between time-series
data and catalog data may access both the array and relational
databases. To do this, the planner parses an incoming query into
a collection of data objects to identify possible query plan trees.
The query plans are then sent to the monitor to determine the ideal
engine for execution based on the experience of related queries.
The executor determines an optimal method from a combination of
operations with the help of a migrator that moves objects within
engines or islands once required by the query plan [17].

The polystore database model is a relatively new and promising
model for isolated data environments, but its performance has not
been clearly demonstrated. In this work, we assess the performance
of our model under a monitoring data-intensive environment. Our
queries are built to extract data from multiple stores with single
or multiple users. The query results in this work are limited to
100% read-only workload, which is one of the Yahoo Cloud Serving
Benchmark workload standards used to evaluate scalable systems
[18, 19]. We expect that integrating RFI data in our model will not
only provide uniform storage, but will also enhance database perfor-
mance by reducing data transfer delays associated with accessing
separate data stores.

2 METHODOLOGY
We implement the evaluation setup in a dockerized environment.
Docker [20] is an application that creates a virtualized environ-
ment suitable for running multiple applications that suffer from
integration and interoperability complexities [21]. The setup is typ-
ical of our monitoring environment that involves RFI detection,
deep analytics, and storage applications. We install the polystore
implementation framework using a bigdawg prototype available
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on GitHub repository [22]. We use Docker Engine (version 19.03.5,
build 633a0ea) to host the database setup, which contains three
database applications, that is, PSQL, SciDB, Accumulo. The host
machine runs Ubuntu Operating systems, 16GB RAM, and 1TB disk
capacity. The setup consists of a local clients and a remote database
server. The client can access the database through an integrated
API using an HTTP request shown in Figure 3.

Figure 3: Evaluation setup for the polystore implementation
of the integrated RFI database [23]. The measured parame-
ters are as follows: (1) response time; (2) upload size (3) down-
load size; (4) upload speed; (5) download speed; (6) connec-
tion time; (7) namelookup time; (8) latency.

We created a database by implementing a logical and physical
data model, and prepared data using CSV files to enable faster
loading of bulk files. The largest sample size considered is about
500MBs, mostly of an array type. Most RFI data is measurement
data that can fit well in a 2D or 3D structure. We run experiments
by designing sample queries that emulate our monitoring environ-
ment, as we measure performance parameters (listed in Table 1 and
labeled in Figure 3). To evaluate the performance of the database,
we focussed on download speed in kB/sec, the response time in
seconds, and latency in seconds. Download speed and response
time are measured to establish how fast to download RFI data from
the database. We measure latency to determine delay associated
with each data store. Connection and namelookup times are mea-
sured to determine the source of latency. We also measure database
throughput to determine the stability of the database cluster.

Table 1: Test parameters for the database implementation.

label parameter description
1 response time total time for the query transaction
2 upload size size of data uploaded
3 download size size of data downloaded
4 upload speed average speed for an upload
5 download speed average speed for a download
6 connection time time from start until TCP connection is complete
7 namelookup time time from start until name resolving is complete
8. latency time taken before the actual data transfer begins.

The query response time is the time taken for a full query trans-
action to complete. Upload sizes and speed are data sizes and speed
measured upon successful upload. We measure upload and down-
load parameters after successful upload and download operations.
Latency is the time measured before the actual data transfer (pre-
transfer time) begins, which includes connection time and name
lookup time (connection and namelookup time are therefore com-
ponents of the latency). Connection time is the time taken for a

database connection to complete, while namelookup time measures
the time to resolve a name within a database. Since latency is de-
pendent per store. It is important to establish a portion of latency
per store. We also compute connection and name lookup as percent-
ages of latency, to determine the biggest source of delay. If most
of the delay is attributable to connection time, then a high-quality
network connection can be recommended.

2.1 Sample Queries
We measure performance by running user queries that return data
residing in one or more data stores. We categorise the queries as
simple, complex, aggregate, and join. A simple query fetches data
from in a single store, while a complex query fetches data from
more than one store. An aggregate query fetches and computes
and returns a resultant value, while a join query consists of a join
operation that coordinates related data from two or more data
objects. An example of the syntax of a simple query is as follows.
Curl -X POST -d "bdtext(

'op' : 'scan', 'table' : 'transmitter', 'range' :
'start' : ['rfi001','',''], 'end' : ['rfi004','',''] );"
http://192.168.0.117:8080/bigdawg/query/
-w "time_total":"%time_total"

The client uses a client URL (cURL tool) to post data in the form of
a URL onto the database server (192.168.0.117) via HTTP port 8080.
The database uses the information stored in the islands to direct the
query to respective engines. In this case, the text island is linked
directly to theAccumulo (key-value/text) store engine that scans the
transmitter data object. RFI related data is arranged chronologically
in columns using unique identifiers (rfi001 and rfi004). The query
will return all RFI data with keys between rfi001 and rfi004 with
their associated values, and also compute the corresponding value
of the total time to complete the entire query transaction.

Our queries emulate a data-intensive environment that involves
bulk retrievals and many users with concurrent access. We linearly
increased the number of records from 2000 up until 16000. We vary
the number of users from 2 until 12. Each user reads data of not
less than 1MBs in size from the database. Our queries are limited
to Read-only workloads. This means the workloads in this work
involves 100% reading records from the database. This is one of
the YCSB benchmarks we applied to evaluate our scalable database
model. Others require to configure workloads to consists about 50%
reads and 50% updates; 95% of reads and 5% of updates; 95% of reads
and 5% of inserts; and Read-modify-write – where the query will
read a record, modify and write back the changes [19].

2.2 Test Environments
We consider three test environments that characterise our moni-
toring environment. The first environment relates to a linear data
growth pattern where data sizes and the number of records in-
creases linearly. This growth pattern is ideal for any organisation.
We also model a multi-user environment where we increase the
number of database users linearly, with a workload of about 1 MB
per user. Here, we increase the workload by increasing the number
of users, whereas for the linear test where we varied the number
of records. The second environment concerns measuring bulk in-
gestion. This is a key factor in our monitoring environment that
requires fast loading of bulk datasets into the database, a common
requirement for modern databases [24]. To measure load speed, a
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data file of 1.2 MB is loaded into each of the three stores to measure
average load speed and total time taken. It is important to note
that each store has a unique loading technique dependent on its
level of development. Lastly, we consider an API environment. Here
we compare the query performance of native API with that of a
RESTful third-party API – Insomnia [25] – that applies to our setup.
Native API is inherent in the polystore model, while the third party
is an added application that runs on top of the RFI database.

3 RESULTS

Figure 4: Individual store performance as the number of
records scales linearly. Download speed, response time,
and latency are computed as averages. Connection and
namelookup time are represented as percentages of latency.

Figure 4 shows the performance of individual stores as the num-
ber of records and data sizes increase linearly. This allows us to
assess store performance in terms of download speed, average re-
sponse time, download sizes, and latency.Note that the PSQL and
SciDB stores download significantly larger data sizes than Accu-
mulo, given the same number of records. The difference in data
sizes is attributed to the varying data structures in each store: the
Accumulo data structure holds a single value per record; whereas
PSQL and SciDB that hold multiple values per record.

On the other hand, the average response time in SciDB is signifi-
cantly higher than that of Accumulo and PSQL. This is because of
the SciDB structure that stores much more RFI data per record than
Accumulo and PSQL. About 40% of the sample dataset is structured
as arrays and therefore stored in the SciDB store, leaving Accumulo
and PSQL share 30% each. As we increase the number of records,
the SciDB response time increases. These higher response times
affect download speeds adversely: SciDB has a much lower speed as
a result of longer response times, and subsequently longer transfer
times. Any query that fetches data from the SciDB store will be
slowed down.

The average latency in all data stores is less than 0.02 seconds.
We observer the latency for PSQL and Accumulo drops as low as
0.01 seconds. High latency in SciDB is a result of longer response
times and longer data transfers. Databases that experience aver-
age latency ranging from 0.01 and 0.02 seconds are recommended

for handling large datasets. We observe that connection time con-
tributes just over 50% of total latency and namelookup slightly
below 50%. There is less congestion from single-user connections,
therefore, the latency is fairly distributed between database con-
nections and namelookup times.

Figure 5: Individual store performance in a multi-user en-
vironment. Results show average response time, download
speed, and latency. Connection andnamelookup time as per-
centages of latency.

Figure 5 shows the store performance as the number of users
increases. Download sizes for all stores are relatively similar simply
because the same size of workload (about 1 MB) was considered.
Despite a similar size in workload, we still observe differences in
download sizes because of the difference in structure per store.
SciDB data store registers the highest average response time of
the three stores. Accumulo and PSQL stores have a much lower
response time, but PSQL with the lowest. Average response time
directly affects average speeds. This can be observed between re-
sponse and speed plot where SciDB and Accumulo high response
results in lower speeds.

Our latency results reduce with an increase in users for all stores.
Here, the average latency is slightly over 0.02 seconds. PSQL and
Accumulo, record higher latency than SciDB. This indicates that
PSQL and Accumulo are much impacted than SciDB when more
users access the database at the same time. The longer latency in
PSQL is attributed to its lengthy connection process required to
access the database. We also observe that most latency (over 98%) is
attributable to connection time, and 2% to namelookup time. This
is expected as multiple users try to connect and access the remote
server that hosts the database. Long connection times are a result of
several connections to the database and likely to cause unnecessary
re-transmissions or completely lost transmissions (see Figure 6,
network variability performance).

Figure 6 shows performance variation due to network variabil-
ity in a multi-user environment. The results show performance
variation in terms of database throughput and query completion
time. This result demonstrates how the database performance is
disrupted by numerous network variations typical of multiple-user
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Figure 6: Performance variation in throughput and comple-
tion time due to network variability.

environments. We observe a higher throughput in PSQL and Ac-
cumulo, despite a relatively high variation with time. This high
variation is attributed to the store’s ability to accommodate many
users, while the high throughput is as a result of shorter response
and transfer times. Unlike SciDB, that show low throughput, but
with a relatively stable impact. This indicates that SciDB perfor-
mance is less disrupted as more users access the database cluster.
This is in line with the underlying design principles of Accumulo
and SciDB that guarantees stability under unstable data environ-
ments that are filled with many failovers, errors, and crashes. The
variability results can improve with high-quality network speeds
that allocate enough bandwidth to multiple users to reduce compe-
tition for network resources.

Table 2: showing performance of loading technique per
store

item size (MB) time (sec) avg.speed (KB/sec)
PSQL 1.20 0.16 7.30
SciDB 1.20 0.12 9.80
Accumulo 1.20 324.30 0.004

Table 2 demonstrates results obtained from a loading test. This
test is crucial to our environment, which is characterised by fre-
quent bulk loading. A workload of 1.2 MB was loaded in three
separate stores as we measured the time it takes to load. The results
show that SciDB loads much faster with the highest speed of 9.8
MB/sec and the shortest loading time of the three stores, followed
by PSQL with a speed of 7.3 MB/sec. Accumulo has the longest
loading time that greatly affects the speeds. This fastest loading
speeds in SciDB and PSQL are attributed to the more advanced

loading techniques found in each of the stores. Both stores are built
on a foundation of a traditional relational database that has existed
for close to 5 decades. On the other hand, poor loading speeds found
in Accumulo is as a result of a relatively new data model that uses
basic ETL (extract, transform, and load) techniques for loading bulk
data into the database.

Table 3: showing performance of native vs. third-party API

query native (sec) 3rd party API (sec) % increase
simple 0.57 0.61 6.59
complex 0.68 0.72 5.48
aggregate 0.59 0.59 0.04
join 1.34 1.41 4.94

Table 3 shows indicate results obtained from two API environ-
ments, that is native and a thirty-party API. These test results are
vital to determine how the model performance in different API
environments. API is a key feature when dealing with multiple
and isolated data stores. We ran the same type of query (either
simple, complex, aggregate, or join) to return similar data from two
different APIs, as we measured average response time.

Table 3 indicate third-party API with a higher response time
than native API. On average, we observed a significant percentage
increase in response time of over 5% in third-party API, except
for aggregate queries that show an insignificant increase of about
0.04%. This is because aggregate queries are concerned with a single
aggregated value, and they are not affected by the nature of the
API. In other words, aggregated query operations do not affect the
average response time irrespective of the API used to fetch the
data. Overall, the native API performance results for all query types
outperform those of a third-party API by about 5% in response time.

3.1 Limitations
This work is limited to a workload that consists of 100% reading
from the database. Considering other workload variations may
give a deeper understanding of the performance of the database
model. We limited the sample data size to about 500MBs file due
to performance issues associated with the limited specifications of
the Host machine of 16 of RAM and 1TB of capacity. A machine
with higher specifications is likely to improve on speed reading
data from the database.

4 CONCLUSIONS
In this work, we conduct performance tests of our polystore model
for RFI under different test environments. We demonstrate that
database queries encounter a latency of fewer than 0.02 seconds this
facilitates faster transfers, though more work can be done to reduce
latency further e.g. better network connections or newer optimizing
techniques. PSQL and SciDB possess more advanced and faster
loading scripts. The native API performance results outperforms
those of a third-party API by about 5%. SciDB throughput is more
reliable under unstable network connections, and about 98% of
latency is a result of poor database connections Our results show
that the polystore model can be a solution for disintegrated data
environments. This work will assist scientists and astronomers to
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smoothly implement and assess the RFI database at SKA/MeerKAT
radio telescope.
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