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Abstract. Bayesian Networks and Machine Learning techniques were
evaluated and compared for predicting academic performance of Com-
puter Science students at the University of Cape Town. Bayesian Net-
works performed similarly to other classification models. The causal links AQ1

inherent in Bayesian Networks allow for understanding of the contribut-
ing factors for academic success in this field. The most effective indicators
of success in first-year ‘core’ courses in Computer Science included the
student’s scores for Mathematics and Physics as well as their aptitude for
learning and their work ethos. It was found that unsuccessful students
could be identified with ≈91% accuracy. This could help to increase
throughput as well as student wellbeing at university. AQ2

Keywords: Bayesian Networks · Machine learning
Educational Data Mining · Computer science education

1 Introduction

In the past two decades, the broader field of Educational Data Mining (EDM)
has developed into a respected and extensive research field [4]. According to the
EDM website,1 EDM can be defined as “an emerging discipline, concerned with
developing methods for exploring the unique types of data that come from educa-
tional settings, and using those methods to better understand students, and the
settings which they learn in”. Using EDM for prediction usually involves devel-
oping a model which accepts certain variables (factors affecting the prediction)
and outputs an expected result for the predicted variable [3].

EDM, specifically machine learning techniques, can be used to explore fac-
tors contributing to the success of high school applicants for the bachelor of
computer science curriculum (BSc(CS)) at the University of Cape Town (UCT).
While the graduation rate of computer science (CS) majors at the UCT has
been reasonably good over the past decade, there is a strong desire to improve
throughput and time-to-graduation. Furthermore, in the South African context,
UCT needs to consider social redress when admitting applicants. An accurate
1 http://www.educationaldatamining.org.
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model to predict student success could allow UCT to continue along its path of
social transformation while maintaining and indeed improving levels of success.

Available literature shows that one of the best predictors of academic suc-
cess at university relates to the marks attained thus far in a student’s academic
career [17]. However, when using secondary-school marks to predict university
performance in South Africa, this may not be the case, because the basic educa-
tion system in South Africa is worse than “(almost) all middle-income countries
that participate in cross-national assessments of educational achievement” as
well as “many low-income African countries” [18]. The South African Depart-
ment of Basic Education categorises schools into quintiles according to socio-
economic status, where Quintile 1 schools have the least resources and Quintile
5 schools the most. Independent or private schools are usually well resourced;
the term may also refer to some schools with a non-government syllabus that
are poorly resourced (e.g. some missionary schools). For this paper, 90% of the
independent schools considered are private and well-resourced.

Fig. 1. Average grade-9 test scores for TIMSS middle-income countries, 2011 [18]

Figure 1 shows the disparity in the average mathematics performance of
South African school-pupils in different quintiles. A positive correlation exists
between quintile and academic performance i.e., in general, the poorer the school,
the worse a student’s performance in mathematics and science [18]. However,
since the quality of education is so varied, a pupil in a lower quintile school may
have a greater aptitude for independent learning and/or a better work ethos
than a student from a higher quintile school who achieves similar marks.
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Using BN and ML to Predict CS Success 3

Another potential factor is the South African province in which a school is
located, due to differing standards of education between the provinces in this
country. Repeatedly this difference plays a role in the annual Matric pass rates,
drop-out rates and skills obtained (e.g., literacy) [18].2 Furthermore, emotional
difficulties associated with relocating to a new city may affect academic perfor-
mance [1]. More than just matric marks, these are potential factors that could
also contribute to a more effective prediction model.

This paper aims to explore Bayesian Networks (BN) and Machine Learning
(ML) techniques to predict success in the BSc(CS) degree at UCT. Available
data included applicants’ Matric scores, National Benchmarking Test (NBT)
scores, the quintile of their school, and the province in which it is located.

The remainder of this paper is set out as follows: Section 2 reviews related
literature on predicting academic performance. Section 3 explains the machine
learning methods used in this paper. Section 4 describes how the data was trans-
formed and the model constructed. Section 5 discusses model evaluation and
results achieved. Section 6 covers limitations and future work, and Sect. 7 con-
cludes.

2 Related Work

As explained in [16], predicting academic performance of students “is one of the
oldest and most popular applications of DM (Data Mining) in education” [16].
The most prevalent prediction models include: Decision Trees, Neural Networks,
Näıve Bayes, K-Nearest Neighbour, Support Vector Machines, Random Forests1
and Bayesian Networks [4,17]. Bayesian Networks can handle missing values and
have the ability to be queried and give answers that explain their predictions [10].
This allows further enquiry into the causal links between academic success and
the predictive variables, i.e.: Bayesian Networks are ‘white-box’ models [20]. This
will be crucial for explaining and understanding the predictions of a Bayesian
Network model over the typically ‘black box’ machine learning methods, such as
Neural Networks, which do not offer any clear explanations for their predictions.
A similar justification is made for using the Decision Tree, Näıve Bayes and
Random Forest models as benchmarks for the Bayesian model, i.e.: out of the
remaining approaches, these model are the easiest to understand [20].

Various papers have compared the predictive performance of these models.
The following examples provide a brief overview of the field. Nghe et al. com-
pared the accuracy of Decision Trees and Bayesian Networks in predicting the
academic performance of over 21’000 graduate students at two different tertiary
institutions [13]. Variables included were grade point average (GPA), prior insti-
tution rank, and other factors. They found that Decision Trees were slightly more
effective than Bayesian Networks (76.3% vs 71.2% accuracy). Similar results were
obtained by [12] for 826 CS students over seven years at the University of the
2 In South Africa, ‘Matric’ is name of the formal qualification level of pupils who have

passed their secondary school (highschool) education after school-year 12 before
university—somewhat similar to the Austrian ‘Matura’ or the German ‘Abitur’.
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Witwatersrand in South Africa [12]. Their Decision Tree model outperformed
the Näıve Bayes algorithm with accuracies of 84.5% and 78.9%, respectively.
However, those studies investigated different questions: [13] predicted success
of students enrolled in post-graduate programmes as well as 3rd-year students’
success from their 2nd-year results, whereas [12] predicted 1st-year final grades
based on 1st-year 1st-semester results.

According to [14], the Näıve Bayes classifier (76.7%) outperforms Decision
Trees (73.9%) and Neural Networks (71.2%) in predicting 1st-years’ academic
success in Business Informatics [14]. However, their data set had only 257 stu-
dents’ records. More recently, Asif et al. produced similar conclusions with their
dataset of 200 undergraduate students when predicting future performance [2],
however with a bigger difference in the accuracy of the compared models, (Näıve
Bayes: 83.7%, Decision Tree: 66.0%).

While there are further papers exploring such topics, their results produced
are always similarly varied. It thus appears that the accuracy of prediction mod-
els is highly dependent on the variables selected, the question addressed, and
the context of the investigation. Consequently it seems necessary to investigate
specifically Bayesian Network prediction of CS students’ performance at UCT,
and to compare the accuracy with other techniques.

3 Methods

Classification is the assignment of a label or category to a sample of data based
on a number of variables [11]. In particular, supervised classification allows a
model to learn how to classify some attribute of unknown data samples from
labeled data samples [14]. The chosen attribute for classification is known as the
‘target’ variable. There are various methods to address this problem. The four
machine learning methods used in this paper are defined and briefly explained
below.

3.1 Bayesian Networks

A Bayesian Network is a directed acyclic graph representing a particular domain.
Each node of the graph represents a variable from the domain. The nodes are
connected by arcs which represent the dependencies between variables. Each arc
is assigned a weight using

Bayes Theorem [11]: P (A|B) =
P (B|A) · P (A)

P (B)
.

Bayesian Networks can be used for a wide range of applications including rea-
soning, analysis, diagnosis, risk assessment and evaluation [11]. Bayesian Net-
works are particularly useful for classification tasks as they provide an explana-
tory model, in contrast to techniques such as neural networks. Constructing
a Bayesian Network requires the assumption of the Markov property whereby
“there are no direct dependencies in the system being modeled which are not
already explicitly shown via arcs” [11]. It holds for causal and predictive models.
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Using BN and ML to Predict CS Success 5

Näıve Bayes. The Näıve Bayes classification technique uses a Bayesian model
where the target variable is the parent of all the predictor nodes, i.e., these
models assume independence between every predictor variable [11]. Even with
these assumptions it is still an accurate and efficient prediction model for many
problems [11].

3.2 Decision Trees

A Decision Tree uses the concept of information entropy to divide the classifi-
cation into subproblems which are simpler to solve. Each node’s section of the
input space is recursively divided into subsections through its descendants. A
node with no descendants indicates a prediction made by the model. Thus the
higher up in the tree an attribute appears, the more influential it is in dividing
the data. When passed a set of input variables, it can produce an expected clas-
sification based on the tree that it has learned. There are a variety of algorithms
which use training data to construct these trees such as the C4.5 [15]. Tools
exist which automatically invoke this algorithm such as WEKA’s J48 classifica-
tion filter [9].

Random Forests. Random Forests construct multiple decision tree classifiers
that are trained on different subsets of the data with independent random subsets
of the features of the data [6]. Once numerous trees have been constructed, the
model classifies a data input by outputting the most popular decision, i.e., the
class chosen by the majority of the trees [6]. This method can reduce the ‘over-
fitting’ of data that can occur with Decision Tree classifiers [7].

4 Experimental Design

4.1 Data Pre-Processing and Analysis

The data set used in this paper covered a cohort of 783 students who were admit-
ted into the CS major at UCT between 2007 and 2016. The term ‘graduateCS’ is
used for students qualifying with a BSc(CS); others, who are not ‘graduateCS’,
may graduate with another major instead.

The CS major at UCT is a three-year programme consisting of six ‘core’
CS courses as well as a mandatory first-year course in mathematics. CS entrant
numbers are increasing annually and most courses have consistent pass rates
with no clear trends.

UCT offers an option for weak or under-prepared students to complete the
same BSc degree over four rather than three years (Extended Degree Pro-
gram: EDP). CS students are expected to complete Computer Science courses
CSC1015F and CSC1016S as well as Mathematics MAM1000W in their first
year. EDP students take extended versions of these courses ‘stretched’ over two
years. Consequently, a student who is likely to fail at least one of the three
required first year courses should be encouraged to join the EDP. In this context
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6 Z. Nudelman et al.

we define ‘at-risk’ as ‘likely to fail CSC1015F, CSC1016S or MAM1000W’. On
average 58.83% of all CS entrants who attempt to complete their first-year in
one year fail at least one of CSC1016S and MAM1000W.

Only ≈15% of all CS entrants receive financial aid. The majority of these
financial aid receivers come from Quintile 4 schools (30%) whereas only 25%
come from Quintile 1, 2, 3 schools (cumulatively).

Table 1. Raw data attributes

Data Context Attribute (Classifier) Data Type

Application Year Continuous

Application: Matric results Mathematics Continuous

Advanced mathematics Continuous

English Continuous

Physical sciences Continuous

Application: NBT results Mathematics Continuous

Quantitative literacy (QL) Continuous

Academic literacy (AL) Continuous

Progress Courses Registered Continuous

Courses passed Continuous

Cumulative GPA Continuous

Financial aid Binary (y/n)

Throughput Time to graduate Nominal

Dropped out (or excluded) Nominal

Course marks for each course Nominal

Secondary school Province Nominal

Quintile Nominal

Table 1 lists the data elements in our data set. The South African Master
Schools list was also used to retrieve the quintile of the applicants’ school. We
anonymised all data before continuing to use them with new anonymous identi-
fiers. A preliminary analysis of the data lead to selecting the input variables and
to determining the state space of each variable. Firstly, ‘AP Maths’ was reduced
to a categorical variable to indicate if a CS entrant had attempted it, since
there are too few data points to make a significant finding with respect to marks
achieved for it. Additionally, by means of regression analysis, scores with high
correlations (above 65%) were averaged and reduced, since these individually
would not provide the model with further information. Secondary school physics
and maths had a 69.8% correlation, and NBT maths and school maths had a
66.4% correlation. NBT AL and NBT QL had a 75.3% correlation. Consequently,
the following reduced variables were introduced: ‘AveSciences’ for science, maths
and NBT maths, and ‘ALQL’ for NBT AL and NBT QL.
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Using BN and ML to Predict CS Success 7

The distribution of the quintile of the schools the 783 CS entrants had
attended was analysed. There were only 9 CS entrants from Quintile 1 schools,
22 from Quintile 2 schools, and 54 from Quintile 3 schools. Consequently, these
quintiles were combined under the new variable ‘Lower’: see Table 2. The quintile
of the school attended by 49 CS entrants could not be determined because of
insufficient information.

Table 2. Computer science intake per Quintile

Lower Quint.4 Quint.5 Priv. Indep. No Data TOTAL

# Students 85 61 285 187 116 49 783

% of total 10.86% 7.79% 36.40% 23.88% 14.81% 6.26% 100%

The distribution of the quintiles of the school attended across provinces was
analysed. The majority of students from low quintile schools attended schools
in the Eastern Cape and Limpopo, which are among South Africa’s poorest
provinces. Most students from independent schools came from Gauteng, which
is South Africa’s economically most productive province. Consequently, the
‘Province’ variable was split into the following: ‘Eastern Cape and Limpopo’;
‘Gauteng’; ‘Western Cape’; ‘International’; and ‘Other’.

4.2 Machine Learning Procedure

Before beginning the machine learning procedure, the data had to be split into
training and testing sets to avoid over-fitting. Cross-validation was used to train
and test the models during the machine learning process, whereby the last year
(2016) was kept aside as a hold-out set for evaluation of the final models. The
cohort from each year was used as a fold, e.g., 2007 was used as the test set and
all other years (2008–2015) as the training set in the first fold, and so on. Thus,
there were nine folds in total, one for each of the years between 2007 and 2015.

Measures of Success. CSC1016S is the second-semester course of our first-
year CS degree. It is the first course exclusively required by CS entrants and
justifiably so as it introduces a more theoretical foundation of modern day pro-
gramming with a focus on the Java language. The course introduces concepts
such as memory referencing, inheritance, and data type abstractions as well as an
introduction to data structures with its module on linked lists. These provide a
robust foundation for any construction of CS knowledge and consequently, with-
out it, a CS entrant is unlikely to succeed. Succeeding in the course is defined as
achieving over 50%. The probability of CS entrants passing this course was found
to be 95.53% and their chance of graduating in CS if this course was passed was
55.8%.

MAM1000W is the first-year mathematics course and is the first-year course
for Mathematics majors. It introduces “fundamental ideas in calculus, linear
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8 Z. Nudelman et al.

algebra, and related topics” [19]. The broad scope of Computer Science requires
not only an understanding of these topics, but also fluency with mathematical
language and logic. More importantly, MAM1000W requires a far stronger work
ethos than what is required at school. Consequently, successfully passing this
course allows the CS department to discern whether a student will be able to keep
up and succeed in the degree. Succeeding in MAM1000W is defined as achieving
over 50% marks for the final course result. The probability of CS entrants passing
MAM1000W was found to be 57.39% and their chance of graduating in CS if
they passed MAM1000W was 93.64%.

Furthermore, passing all core first year courses (CSC1015F, CSC1016S, and
MAM1000W) required for a major in CS on first attempt shows proficient under-
standing of foundational knowledge for CS as well as an ability to cope with vast
jumps in course load and difficulty. Consequently, passing these courses on first
attempt provides an even stronger indication of academic success. It was found
that the chance of a CS entrant graduating in CS having passed these core first-
year courses on first attempt is 97.58%, though their chance of passing them on
first attempt is only 41.45%. This consequently shows a student to be ‘At-Risk’,
or not.

After consultation with CS student advisors at UCT, the following target
variables for prediction were chosen:

1. Passing CSC1016S, i.e. achieving over 50% on first attempt;
2. Passing MAM1000W, i.e. achieving over 50% on first attempt;
3. At-Risk (Failing CSC1015F, CSC1016S or MAM1000W on first attempt);
4. Graduation (eventually, after any amount of time);
5. Graduation (in minimum time as per course-book).

Determining Causal Structure and Parameterization of the Bayesian
Network. The network structure was developed over several iterations of devel-
opment and evaluation with a student advisor.

The variables ‘AveSciences’, ‘AP Maths’ and ‘ALQL’ were included in the
structure, since, as explained above, these are often the most powerful predictors
of academic success. For reasons explained above, both province and quintile
were initially incorporated into the model with links to the Matric score variables.
It may seem as though one’s school’s quintile would be highly correlated with
their financial aid state; however, as shown in Sect. 4.1, financial aid is received
in fairly equal proportion by CS entrants from all quintiles.

When considering the causal relationships between the variables, it makes
little sense to assume that school marks directly affect university results. Rather,
there must be some more general (earlier) cause of success for both school and
university. Firstly, a student’s success in academic studies is determined by their
ability to understand the knowledge that is being provided to them as well as
their skills to apply this knowledge. Secondly, the strength of a student’s work
ethos will affect their academic performance, too. In a Bayesian Network, these
variables are known as ‘latent’ or ‘hidden’ variables [11]. Similar to any other
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Using BN and ML to Predict CS Success 9

variable in the network, there are causal links that point to and from these nodes.
If a student has a higher aptitude for learning and understanding knowledge, as
well as a strong work ethos, one would expect this to affect the school results
(the input variables) as well as the University results (the target variables).

In parameterizing a Bayesian Network, the training data are used to deter-
mine prior probabilities of each variable; then the conditional and posterior prob-
abilities are calculated [11]. However, by definition, latent variables are unmea-
surable. Consequently, the Expectation Maximization (EM) algorithm was used
to approximate the most likely values for these variables. The algorithm chooses
a value, e, at random to compute the “probability distribution over the missing
values” and iteratively uses a maximum likelihood to determine a new value
e [11]. The algorithm iterates until the maximum likelihood stabilizes.

Upon comparison of results with the Näıve Bayes model, the Bayesian Net-
work was performing suboptimally. Consequently, an iterative process of relaxing
the independence assumptions of the Näıve Bayes was undertaken in order to
find the best performing structure. This may provide greater insight into which
attributes contributed to effective predictions and which introduced noise in the
model.

The Bayesian Network was developed using Norsys’ Netica software pack-
age.3 The software also allows for learning latent variables with an EM learning
algorithm.

Discretising Continuous Variables and Selecting Significant Attribu-
tes. Discretising variables for machine learning can “improve the performance
of the algorithm and reduce the computation time considerably” [8]. In order
to determine suitable inflection points for each numeric attribute as well which
variables were significant, the J48 Decision Tree algorithm was used on each
fold for each model. The resulting trees were then analysed to determine which
attributes were to be included in the Decision Tree as well as what values for
numeric attributes were to be used. From this, various possible sets of data were
produced for each model. After testing each data set, the best performing data
set was chosen. The variables and inflection points found were thus shown to be
contributive to the target variable according to the machine learning algorithm.

While this procedure was conducted to improve the performance of the pre-
dictive models, its outcome is a result itself. These variables and inflection points
are significant as they provide an initial understanding of which variables are
indeed contributive to the target variables, and, consequently, to success in the
CS curriculum. This final state space emanating from the data pre-processing,
data analysis and initial experiments is shown in Table 3.

3 http://www.norsys.com/download.html.

A
u

th
o

r 
P

ro
o

f

http://www.norsys.com/download.html
deshen
Highlight

deshen
Sticky Note
using the Norsys

deshen
Highlight

deshen
Sticky Note
Expectation-Maximization (EM)

deshen
Highlight



10 Z. Nudelman et al.

Table 3. Final state space

Attribute CSC1016S MAM1000W At-Risk Graduation Time to Gr.

AveSciences Low (<68)
Mid (68...78)
High (>78)

Low (<79)
High (≥79)

Low (<79)
Mid (79...83)
High (>83)

Low (<67)
Mid (67...83)
High (>83)

Low (<79)
Mid (79...83)
High (>83)

English Low (<71)
Mid (71...83)
High (>83)

Low (<72)
High (≥72)

Low (<64)
Mid (64...76)
High (>76)

Low (<77)
High (≥77)

ALQL Low (<68)
High (≥68)

Low (<71)
High (≥71)

Low (<71)
High (≥71)

Adv. Maths
attempted

Yes/no Yes/no Yes/no Yes/no Yes/no

Financ. Aid Yes/no Yes/no Yes/no

Province Gauteng
Western Pr.
ECLP
International
Other

Gauteng
Western Pr.
ECLP
International
Other

Gauteng
Western Pr.
ECLP
International
Other

Quintile Low, Q.4,
Q.5, Indep.

Low, Q.4,
Q.5, Indep.

Low, Q.4,
Q.5, Indep.

Target
variable

Fail (<50)

Pass (≥50)

Fail (<50)

Pass (≥50)

No (passed

all at first
time)/yes

Yes/no ThreeYears
Over3years

NotGradCS

5 Results and Discussion

5.1 Results

Once the models were constructed and parameterized, each model was tested
using the originally withheld testing set. Sensitivity (TPR) and Specificity (TFR)
were used to measure the predictive power of each model.

Sensitivity :=
TruePredictedPasses

TruePredictedPasses + FalsePredictedFails

Specificity :=
TruePredictedFails

TruePredictedFails + FalsePredictedPasses

The Matthews Correlation Coefficient (MCC) was also used as a useful mea-
sure for model performance on unbalanced data [5]. It measures the correlation
between the actual and predicted classifications for all classes. An MCC of 1 indi-
cates a perfect prediction while −1 indicates complete disagreement. A number
of experiments were done to predict the five target variables identified earlier,
with a focus on predicting At-Risk students. The results are summarized below.

CSC1016S. The Bayesian Network had the highest MCC of 0.38 and the high-
est TFR of 23%. It also had the joint highest TPR of 98.8%.
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Using BN and ML to Predict CS Success 11

MAM1000W. The Bayesian Network and the Näıve Bayes models both scored
the highest MCC of 0.43 as well as the highest TPR of 79%. The J48 and Random
Forest models attained the best TFR with 70%. The models for this prediction
were most effective using only the AveSciences and AP Maths variables as input.
This indicates that all other variables did not influence the MAM1000W result.

At-Risk. The variables used for these models were similar to those used for
the MAM1000W models, with the addition of Matric English scores. The results
for all models for the At-Risk variable are shown in Tables 4, 5, 6 and 7. For
this variable, ‘Sensitivity’ refers to prediction of ‘Not At-Risk’ students while
‘Specificity’ refers to prediction of ‘At-Risk’ students.

Table 4. Performance of the Random Forest for the At-Risk variable

Random Forest Hold-Out Set Average Std.

Specificity 92.42% 90.82% 8.95%

Sensitivity 66.67% 59.70% 13.39%

MCC 61.98% 53.47% 9.30%

F1 84.14% 67.91% 6.71%

Table 5. Performance of the J48 Decision Tree for the At-Risk variable

J48 DT Hold-Out Set Average Std.

Specificity 92.42% 86.92% 13.64%

Sensitivity 66.67% 63.61% 17.58%

MCC 61.98% 53.47% 9.30%

F1 84.14% 67.80% 6.55%

Table 6. Performance of the Näıve Bayes for the At-Risk variable

Näıve Bayes Hold-Out Set Average Std.

Specificity 74.24% 82.40% 18.62%

Sensitivity 70.37% 64.17% 18.71%

MCC 44.54% 49.50% 9.60%

F1 69.72% 65.25% 6.64%

Table 8 shows the predictive performance of the Näıve Bayes and the Bayesian
Network for the 2016 cohort. The Näıve Bayes had the lowest TFR of 74.24% on
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12 Z. Nudelman et al.

Table 7. Performance of the Bayesian Network for the At-Risk variable

Bayesian Network Hold-Out Set Average Std.

Specificity 92.42% 59.76% 13.77%

Sensitivity 66.67% 90.64% 9.26%

MCC 61.98% 53.34% 8.77%

F1 84.14% 67.91% 6.71%

Table 8. Confusion matrix showing performance of the Näıve Bayes and Bayesian
Network models on the 2016 cohort

Naive Bayes Classified as Bayesian Network Classified as

At-Risk Not At-Risk At-Risk Not At-Risk

At-Risk 49 17 At-Risk 61 5

Not At-Risk 16 38 Not At-Risk 18 36

MCC: 0.445 Specificity: 74% Sensitivity: 70% MCC: 0.620 Specificity: 92% Sensitivity: 67%

Table 9. Quintiles of misclassified At-Risk students compared to quintiles of students
from full data set. Note the strong %-discrepancy in the ‘independent’ category!

Qunit.1 Quint.2 Quint.3 Quint.4 Quint.5 Indep. TOTAL

# misclassif. stud. 0 1 5 5 16 20 47

% of misclassified 0.0% 2.1% 10.6% 10.6% 34.0% 42.6% 100%

% of all students 1.1% 2.8% 6.9% 7.8% 36.4% 23.9%

the 2016 cohort while the Bayesian Network had a TFR of 92.42% and an MCC
of 0.62. The J48 and Random Forest models produced results similar to the
ones of the Bayesian Network. The final Bayesian Network structure is shown in
Fig. 2.

Graduating with CS Major. Similar to the CSC1016S models, each variable
was seen as contributing to the predictions. The Bayesian Network had the
highest specificity of 61% while the Random Forest performed best at predicting
graduating with a sensitivity of 91% and the highest MCC of 0.39.

Time-to-Graduation with CS Major. The Bayesian Network attained the
greatest Minimum Time True Positive Rate of 70% as well as the best MCC
of 0.24. However, the Näıve Bayes had the best True Positive Rate for not
graduating and the Random Forest and J48 were able to predict graduating
in more than minimum time with a true positive rate of 9%. None of the models
was able to achieve satisfactory results in predicting graduating in more than
minimum time.
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Fig. 2. Bayesian Network for At-Risk students

5.2 Discussion

The inadequate accuracy for predicting failing CSC1016S may be a result of
the high (86%) CS entrant pass rate of this course—compared to the 61% CS
entrant pass rate of MAM1000W. The poor results for Graduating in Minimum
Time prediction are less clear; it is possible that there are no signifying features
in the given data to indicate how long a CS entrant may take to complete the
degree. However, this model performed better than the Graduation model for
predicting ‘no graduation’. The Bayesian Network achieved 72% accuracy (on
average with a standard deviation of 10%) compared to 35% (on average with
a standard deviation of 19%) for the Graduation model. Even when using the
same data set as the Minimum Time Graduation model (i.e., the same points of
inflection and variables included) for the graduation model, the results remained
the same. This should be considered in future work.

As far as algorithm performance is concerned, our results were mixed. The
Decision Tree and Random Forest models performed similarly to the Bayesian
Network for achieving a high specificity (92%) for predicting At-Risk students,
while the Näıve Bayes had the highest sensitivity (70%). The findings support
the mixed results from the literature which show optimal performance oscillating
between the Näıve Bayes, Decision Tree and Random Forest algorithms. In ear-
lier studies, the Näıve Bayes model achieved the highest accuracy of 83.65% [2]
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and a lowest accuracy of 76.65% [14]. The best performing Decision Tree was
in [12] (84.46%) and the worst in [2] (66.03%). While few studies used Bayesian
Network for classification, the one which we found in achieved an accuracy of
71.23% [13].

Of particular interest is the At-Risk model. All classification models but the
Näıve Bayes performed similarly, with specificities of 92.42%. The prediction
errors of this model can be a result of two causes. Firstly, a False Failure Rate
(FFR) indicates the model predicted CS entrants At-Risk when they in fact were
not. These CS entrants misclassified as being At-Risk would be advised to take
the extended courses in vain. However, the second and more pressing source of
error is the False Passing Rate (FPR). This figure indicates the number of CS
entrants that were classified as Not At-Risk when they in fact were At-Risk, i.e.,
the model failed to recognise those who are in need of assistance. For the hold-
out set, only 5 out of 66 students were misclassified as Not At-Risk. However,
it is necessary to try and analyse these misclassified students and determine if
there is a prominent reason for their misclassification.

Following such analysis we found that a disproportionate number of CS
entrants who were misclassified as not being At-Risk were from independent
schools, specifically private schools, (42% compared to 24% for the full data
set) as shown in Table 9. Contrary to the initial results found in the Bayesian
Network model, attending a private school may be a contributing factor to pre-
dicting academic success. Consequently, future research should include this as a
variable in prediction models. Furthermore, only 8.33% of misclassified At-Risk
students received financial aid compared to 19.8% of students from the full data
set. This is another variable that should be explored in subsequent research.

6 Limitations and Future Work

Our data was limited to CS degree applicants over the last ten years. Conse-
quently there were no data for anyone who changed their major to CS or who
took CS courses as electives. If larger data sets were used, the models evaluated
could have been more accurate or realistic. Additionally, the CS department at
UCT has a very limited number of applicants who attend lower quintile schools
as well as applicants who are on financial aid. This resulted in the data being
biased towards CS entrants in higher quintiles and thus an accurate reflection
of success of these categories of CS entrants could not be obtained. Since this
study was conducted with UCT students, the situation might perhaps differ at
other South African universities.

Bayesian Networks use known data to learn conditional probabilities of the
network. Any unknown variable can only be approximated using various algo-
rithmic techniques. Consequently, the variables ‘Aptitude’ and ‘Work Ethos’
in the Bayesian Networks may not be realistic or accurate and their addition
should be further explored. Future studies into this specific topic should focus
on understanding the effect of different partitionings of the state space for differ-
ent variables to try and attain a more nuanced understanding of the contributing
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factors of performance. As an example, initial experiments show that using a pass
mark of 51% can have a substantial impact on predictive performance.

Finally, while financial aid and quintiles initially seemed to have no effect
on the predictive performance of the models, analysis of misclassification of At-
Risk students suggested that financial aid and quintile indeed affects the models’
results. Hence, further studies should explore the inclusion of these factors (pos-
sibly with different partitions) in the experiments.

7 Conclusions

Comparatively, Bayesian networks do not outperform other classifiers, but can
attain a similar performance to other classifiers. However, the usefulness of a
Bayesian Network does not lie solely in its ability to predict classes. Its visual
nature provides insight and greater understanding into the causes of success and
the contributing factors to success. Bayesian Networks have a high potential to
predict students at risk of not passing their core first-year courses in Computer
Science. In particular, failing at least one of the first-year mathematics and
computer science courses can be predicted with a 90.64% accuracy (on average).
This finding justifies the method of identifying At-Risk-students automatically.
Once these students are identified, they can be enrolled in the EDP in order to
improve students’ academic success and graduation throughput.

The key contributing factors were found to be the marks the students received
in secondary school for Mathematics, Science and English, whether or not the
student had attempted the AP Maths subject at school, and their aptitude and
work ethos. It was initially found that in predicting these At-Risk students, the
students’ province and quintile did not play a discriminatory role, though deeper
analysis suggests that more research will be needed to reach a better conclusion
in this matter.

While this paper described the effectiveness of Bayesian Networks to predict
and analyse academic success in Computer Science at UCT, further research is
required to better ‘unpack’ these results as well as to improve the predictive
performance of the underlying models.
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