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Abstract. We present a systematic approach for extending the KLM
framework for defeasible entailment. We first present a class of basic
defeasible entailment relations, characterise it in three distinct ways and
provide a high-level algorithm for computing it. This framework is then
refined, with the refined version being characterised in a similar manner.
We show that the two well-known forms of defeasible entailment, rational
closure and lexicographic closure, fall within our refined framework, that
rational closure is the most conservative of the defeasible entailment
relations within the framework (with respect to subset inclusion), but
that there are forms of defeasible entailment within our framework that
are more “adventurous” than lexicographic closure.

1 Introduction

The approach by Kraus, Lehmann and Magidor [23] (a.k.a. KLM) is a well-
known framework for defeasible reasoning. The KLM properties can be viewed
as constraints on appropriate forms of defeasible entailment. We present what we
believe to be the first systematic approach for extending the KLM framework.
Our first proposal, basic defeasible entailment, strengthens the KLM framework
by adding additional properties to it. We provide both a semantic character-
isation in terms of a class of ranked interpretations, and a characterisation in
terms of a class of functions that rank propositional (and defeasible) statements
in a knowledge base according to their level of typicality. We also provide an
algorithm for computing the framework. Next, we identify a crucial shortcom-
ing in basic defeasible entailment, and propose a further strengthening, rational
defeasible entailment, via an additional property. We prove that rational defea-
sible entailment can be characterised both semantically and in terms of ranks,
and show that the algorithm is also applicable for computing rational defeasible
entailment.

Currently there are two well-known forms of defeasible entailment satisfying
those properties: rational closure (RC) [25] and lexicographic closure (LC) [24].
We show that both are rational (and basic) defeasible entailment relations, that
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RC is the most conservative form of rational defeasible entailment, but there
are forms of rational defeasible entailment that are “bolder” than LC. We argue
that the framework for rational defeasible entailment is reminiscent of the AGM
framework for belief change [1].

In the next section we provide the relevant background material, after which
we present our work on basic defeasible entailment, rational defeasible entail-
ment, and a discussion on the relation between lexicographic closure and rational
defeasible entailment. We conclude with a discussion of related work, a summary,
and suggestions for future work.

2 Background

For P being a finite set of propositional atoms, we use p, q, . . . as meta-variables
for atoms. Propositional sentences are denoted by α, β, . . ., and are recursively
defined in the usual way: α ::= � | ⊥ | p | ¬α | α ∧ α | α ∨ α | α → α | α ↔ α.
With L we denote the set of all propositional sentences. With U ≡def {0, 1}P we
denote the set of all propositional valuations, with 1 representing truth and 0
representing falsity. We use u, v . . . to denote valuations. Sometimes we represent
valuations as sequences of atoms (e.g., p) and barred atoms (e.g., p̄), with the
understanding that the presence of a non-barred atom indicates that the atom
is true in the valuation, while the presence of a barred atom indicates that the
atom is false in the valuation. Satisfaction of a sentence α ∈ L by v ∈ U is
defined in the usual truth-functional way and is denoted by v � α. The models
of a set of sentences X is: �X� ≡def {v ∈ U | v � α for every α ∈ X}.

2.1 KLM-Style Defeasible Implication

In the logic proposed by Kraus et al. [23], often referred to as the KLM app-
roach, we are interested in defeasible implications (or DIs) of the form α |∼ β,
read as “typically, if α, then β”. The semantics of KLM-style rational defeasible
implications is given by structures referred to as ranked interpretations [25]. In
this work we adopt the following alternative representation thereof:

Definition 1. A ranked interpretation R is a function from U to N ∪ {∞} s.t.
R(u) = 0 for some u ∈ U , and satisfying the following convexity property: for
every i ∈ N, if R(v) = i, then, for every j s.t. 0 ≤ j < i, there is a u ∈ U for
which R(u) = j.

Given R, we call R(v) the rank of v w.r.t. R. Valuations with a lower rank
are deemed more normal (or typical) than those with a higher rank, while those
with an infinite rank are regarded as so atypical as to be impossible. With
UR ≡def {v ∈ U | R(v) < ∞} we denote the possible valuations in R. Given
α ∈ L, we let �α�R ≡def {v ∈ UR | v � α}. R satisfies (is a ranked model of) α
(denoted R � α) if UR ⊆ �α�R .

Note that R generates a total preorder �R on U as follows: v �R u iff
R(v) ≤ R(u). Given any total preorder � on V ⊆ U , we can use its strict
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version ≺ to generate a ranked interpretation as follows. Let the height h(v) of
v ∈ V be the length of the ≺-path between any one of the ≺-minimal elements
of V and v (the length of the ≺-path between any of the ≺-minimal elements
and a ≺-minimal element is 0). For V ⊆ U and a total preorder � on V, the
ranked interpretation R� generated from � is defined as follows: for every v ∈ U ,
R�(v) = h(v) if v ∈ V, and R�(v) = ∞ otherwise.

Given a ranked interpretation R and α, β ∈ L, R satisfies (is a ranked
model of) the conditional α |∼ β (denoted R � α |∼ β) if all the possible ≺-
minimal α-valuations also satisfy β, i.e., if min≺�α�R ⊆ �β�R . R satisfies a set
of conditionals K if R � α |∼ β for every α |∼ β ∈ K.

Figure 1 depicts an example of a ranked interpretation for P = {b, f, p} sat-
isfying K = {p → b, b |∼ f, p |∼ ¬f}. For brevity, we omit the valuations with
rank ∞ in our graphical representations of ranked interpretations.

2 pbf

1 pbf pbf

0 pbf pbf pbf

Fig. 1. A ranked interpretation for P = {b, f, p}.

Observe that all classical propositional sentences can be expressed as DIs:
R � α iff R � ¬α |∼ ⊥. The logic of defeasible implications can therefore be
viewed as an extension of propositional logic.

2.2 Defeasible Entailment

Let a knowledge base K be a finite set of defeasible implications. The main ques-
tion in this paper is to analyse defeasible entailment (denoted by |≈): what it
means for a defeasible implication to be entailed by a fixed knowledge K. It
is well-accepted that defeasible entailment (unlike classical entailment) is not
unique. For example, Lehmann and Magidor [25] put forward rational closure
as an appropriate form of defeasible entailment, while Lehmann [24] proposed
lexicographic closure as an alternative. We consider both of these in more detail
below. In studying different forms of defeasible entailment, the position advo-
cated by Lehmann and Magidor [25], and one we adopt here as well, is to consider
a number of rationality properties, referred to as the KLM properties, for defea-
sible entailment.

(Ref) K |≈ α |∼ α (LLE)
α ≡ β, K |≈ α |∼ γ

K |≈ β |∼ γ
(RW)

K |≈ α |∼ β, β |= γ

K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ

K |≈ α |∼ β ∧ γ
(Or)

K |≈ α |∼ γ, K |≈ β |∼ γ

K |≈ α ∨ β |∼ γ
(CM)

K |≈ α |∼ β, K |≈ α |∼ γ

K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ, K �|≈ α |∼ ¬β

K |≈ α ∧ β |∼ γ

(1)
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Lehmann and Magidor argue that defeasible entailment ought to satisfy all
the above KLM properties. We refer to this as LM-rationality.

Definition 2. A ranked interpretation R is said to generate a defeasible
K-entailment relation |≈R by setting K |≈R α |∼ β iff R � α |∼ β. (If there
isn’t any ambiguity, we drop the subscript R).

Lehmann and Magidor proved the following useful result.

Observation 1 (Lehman and Magidor [25]). A defeasible entailment rela-
tion is LM-rational iff it can be generated from a ranked interpretation.

It is easy to see that rank entailment, defined next, is not LM-rational [25,
Sect. 4.2].

Definition 3. A defeasible implication α |∼ β is rank entailed by a knowledge
base K (denoted as K |≈R α |∼ β) if every ranked model of K satisfies α |∼ β.

But rank entailment plays an important part in defining acceptable versions
of defeasible entailment, since it can be viewed as the monotonic core of any
appropriate form of defeasible entailment [16].

2.3 Rational Closure

The first version of defeasible entailment satisfying LM-rationality we consider
is rational closure [25]. Consider the ordering �K on all ranked models of a
knowledge base K, which is defined as follows: R1 �K R2 if for every v ∈ U ,
R1(v) ≤ R2(v). Intuitively, ranked models lower down in the ordering are more
typical. Giordano et al. [21] showed that there is a unique �K-minimal element.

Definition 4. Let RRC
K be the minimum element of the ordering �K on ranked

models of K. A defeasible implication α |∼ β is in the rational closure of K
(denoted as K |≈RC α |∼ β) if RRC

K � α |∼ β.

Observe that there are two levels of typicality at work for rational closure, namely
within ranked models of K, where valuations lower down are viewed as more
typical, and between ranked models of K, where ranked models lower down in
the ordering are viewed as more typical. The most typical ranked model RRC

K
is the one in which valuations are as typical as K allows them to be.

Since rational closure can be defined in terms of a single ranked interpreta-
tion, it follows from Observation 1 that it is LM-rational (it satisfies all the KLM
properties).

It will be useful to be able to refer to the possible valuations w.r.t. a knowl-
edge base. We refer to UK

R ≡def U\{u ∈ �α� | K |≈R ¬α |∼ ⊥} as the set
of possible valuations w.r.t. K. So UK

R refers to all the valuations not in con-
flict with rank entailment w.r.t. K. From results by Lehmann and Magidor [25]
(Lemmas 24 and 30) it follows that the possible valuations in the minimal model
RRC

K are precisely the possible valuations w.r.t. K: UK
R = URRC

K .
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Rational closure can also be defined in terms of the base rank of a statement.
A propositional sentence α is said to be exceptional w.r.t. K if K |≈R � |∼ ¬α
(i.e., α is false in all the most typical valuations in every ranked model of K).
Let ε(K) = {α |∼ β | K |≈R � |∼ ¬α}. Define a sequence of knowledge bases
EK
0 , . . . , EK

∞ as follows: EK
0 ≡def K, EK

i ≡def ε(EK
i−1), for 0 < i < n, and E∞ ≡def

EK
n , where n is the smallest k for which EK

k = EK
k+1 (since K is finite, n must

exist). The base rank brK(α) of a propositional statement α w.r.t. a knowledge
base K is defined to be the smallest r for which α is not exceptional w.r.t. EK

r .
brK(α) ≡def min{r | EK

r �|≈R � |∼ ¬α}.

Observation 2 (Giordano et al. [21]). K |≈RC α |∼ β iff brK(α) < brK(α ∧
¬β) or brK(α) = ∞.

There is a fundamental connection between the base ranks of propositional state-
ments w.r.t. K and the ranks of valuations in the minimal ranked model RRC

K .

Observation 3 (Giordano et al. [21]). For every knowledge base K and α ∈
L, brK(α) = min{i | there is a v ∈ �α� s.t. RRC

K (v) = i}.
From Observation 3 it follows that a classical statement α (or its defeasible rep-
resentation ¬α |∼ ⊥) is in the rational closure of K iff the base rank of ¬α w.r.t.
K is ∞. The definition of base rank can be extended to defeasible implications as
follows: brK(α |∼ β) ≡def brK(α). Assigning base ranks to defeasible implications
in this way forms the basis of an algorithm for computing rational closure; an
algorithm that can be reduced to a number of classical entailment checks. Define
the materialisation of a knowledge base K as

−→K ≡def {α → β | α |∼ β ∈ K}.
It can be shown [25] that a sentence α is exceptional w.r.t. K iff

−→K |= ¬α.
From this we can define a procedure BaseRank which partitions the materi-
alisation of K into n + 1 classes according to base rank: i = 0, . . . n − 1,∞,
Ri ≡def {α → β | α |∼ β ∈ K, brK(α) = i}.

We use BaseRank to describe an algorithm originally proposed by Fre-
und [18] for computing rational closure. It takes as input K and α |∼ β, and
returns true iff α |∼ β is in the rational closure of K.

The algorithm keeps on removing (materialisations of) defeasible implica-
tions from (the materialisation of) K, starting with the lowest base rank, and
proceeding base rank by base rank, until it finds the first R which is classically
consistent with α (and therefore α is not exceptional w.r.t. the defeasible version
of R). α |∼ β is then taken to be in the rational closure of K iff R classically
entails the materialisation of α |∼ β.

Observation 4 (Freund [18]). Given K and α |∼ β, RationalClosure
returns true iff K |≈RC α |∼ β.

Observe that RationalClosure involves a number of calls to a classical-
entailment checker that is polynomial in the size of K. Computing rational clo-
sure is therefore no harder than checking classical entailment.
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Algorithm 1. BaseRank
Input: A knowledge base K
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 i := 0;

2 E0 :=
−→K ;

3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei |= ¬α};
5 Ri := Ei \ Ei+1;
6 i := i + 1;

7 until Ei−1 = Ei;
8 R∞ := Ei−1;
9 if Ei−1 = ∅ then

10 n := i − 1;

11 else
12 n := i;

13 return (R0, . . . ,Rn−1,R∞, n)

Algorithm 2. RationalClosure
Input: A knowledge base K and a DI α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := BaseRank(K);
2 i := 0;

3 R :=
⋃j<n

i=0 Rj ;
4 while R∞ ∪ R |= ¬α and R �= ∅ do
5 R := R \ Ri;
6 i := i + 1;

7 return R∞ ∪ R |= α → β;

3 Basic Defeasible Entailment

Our departure point for defining defeasible entailment is that it ought to be LM-
rational. The central question we address in this paper is whether LM-rationality
is sufficient. The immediate answer is that it is not. For starters, we also require
|≈ to satisfy Inclusion (all elements of K should be defeasibly entailed by K):

(Inclusion) K |≈ α |∼ β for every α |∼ β ∈ K

and Classic Preservation—the classical defeasible implications (those corre-
sponding to classical sentences) defeasibly entailed by K should correspond
exactly to those in the monotonic core of K (i.e., those that are rank entailed
by K:

tmeyer@cs.uct.ac.za
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(Classic Preservation) K |≈ α |∼ ⊥ iff K |≈R α |∼ ⊥

An easy corollary of Classic Preservation is Classic Consistency, requiring that
a knowledge base is consistent iff it is consistent w.r.t. rank entailment.

(Classic Consistency) K |≈ � |∼ ⊥ iff K |≈R � |∼ ⊥

We refer to a defeasible entailment relation satisfying LM-rationality, Inclusion,
and Classic Preservation as a basic defeasible entailment relation.

We shall see below (using Theorem 1) that rational closure is a basic defeasi-
ble entailment relation. However, since ranked entailment does not satisfy RM,
it is not LM-rational, and is therefore not a basic defeasible entailment relation.

Definition 5. A ranked model R of K is said to be K-faithful if the possible
valuations in R are precisely the possible valuations w.r.t. K: UR = UK

R .

Note that the minimal model RRC
K is K-faithful.

Our first fundamental result (using points 1 and 2b of Theorem1 below)
is a semantic characterisation of basic defeasible entailment in terms of the
K-faithful ranked models. From this it also follows immediately that basic defea-
sible entailment satisfies the following property.

(Rank Extension) If K |≈R α |∼ β, then K |≈ α |∼ β

Rank Extension requires |≈ to extend its monotonic core.
We can also characterise basic defeasible entailment by generalising the

notion of base rank.

Definition 6. Let r : L −→ N∪{∞} be a rank function s.t. r(�) = 0, satisfying
the following convexity property: for every i ∈ N, if r(α) = i then, for every j
such that 0 ≤ j < i, there is a β ∈ L for which r(β) = j. r is entailment
preserving if α |= β implies r(α) ≥ r(β). r is K-faithful if ( i) it is entailment
preserving; ( ii) r(α) < r(α ∧ ¬β) or r(α) = ∞, for every α |∼ β ∈ K, and
( iii) r(α) = ∞ iff K |≈R α |∼ ⊥.

Observe that the base rank brK(·) is K-faithful.

Definition 7. A rank function r generates a defeasible entailment relation |≈
whenever K |≈ α |∼ β if r(α) < r(α ∧ ¬β) or r(α) = ∞.

It follows (using points 1 and 2c of Theorem1 below), that basic defeasible
entailment can be characterised using the K-faithful rank functions.

Next, we present an algorithm that computes the defeasible entailment
relation generated by a K-faithful rank function. It is a modified version of
RationalClosure, differing from it in that the call to BaseRank is replaced
with a call to the Rank algorithm described below. It receives as input a
knowledge base K and a K-faithful rank function r. It produces as output a
sequence (R0, . . . ,Rn−1,R∞, n) where the Ris are sentences, unlike BaseRank,
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which produces sets of sentences. DefeasibleEntailment is then adjusted
accordingly.

DefeasibleEntailment removes statements, starting with the lowest
rank, and proceeding rank by rank, until it finds the first R which is classi-
cally consistent with α. α |∼ β is then taken to be defeasibly entailed by K iff
R classically entails the materialisation of α |∼ β. The Ris correspond to clas-
sical representations of defeasible information, with different Ris representing
information with different levels of typicality, and with R∞ corresponding to
information that is classical. In fact, the set containing all the Ris is equivalent
to the materialisation of K.

Algorithm 3. DefeasibleEntailment
Input: A knowledge base K, a K-faithful rank function r, and a DI α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := Rank(K,r);
2 i := 0;

3 R :=
⋃j<n

i=0 {Rj};
4 while {R∞} ∪ R |= ¬α and R �= ∅ do
5 R := R \ {Ri};
6 i := i + 1;

7 return {R∞} ∪ R |= α → β;

Algorithm 4. Rank
Input: A knowledge base K and a K-faithful rank function r
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 R∞ := ¬
(∨

r([α]=∞)[α]
)
;

2 n := max{i ∈ N | there is an α ∈ L s.t. r(α) = i};
3 if n = 0 then
4 R0 := 	; n := 1;

5 else
6 for i := 0 to n − 1 do

7 Ri ≡def ¬
(∨

r([α])=i+1[α]
)

8 return (R0, . . . ,Rn−1,R∞, n)

For α ∈ L, let [α] be a canonical representative of the set {β | β ≡ α}.
Rank receives as input a knowledge base K and a K-faithful rank function r
and, as mentioned above, produces as output an ordered tuple of sentences
(R0, . . . ,Rn−1,R∞, n).

If there is no α such that r(α) = ∞, then R∞ will be set to �. This corre-
sponds to the case where all information is defeasible. If n = 0, it corresponds
to the case where there is no defeasible information. In this case we set n to 1
and set R0 to �.
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Proposition 1. Let (R0, . . . ,Rn−1,R∞, n) be the output obtained from the
Rank algorithm, given a knowledge base K and a K-faithful ranking function
r. Then {R∞} ∪ ⋃j<n

i=0 {Rj} ≡ −→K .

Example 1. Let K = {p → b, b |∼ f, p |∼ ¬f}. One can see there is only one
ranking function r for which r((b → f) → p) = 1, r(p ∧ (b → f)) = 2, and
r(¬(p → b)) = ∞. Moreover, for every α ∈ L, r(α) = ∞ or r(α) ≤ 2. Given K
and r, Rank will output the ordered tuple (R0,R1,R∞, 2), where R∞ ≡ p → b,
R1 ≡ ¬(p ∧ (b → f)) ≡ p → (b ∧ ¬f), and R0 ≡ ¬((b → f) → p) ≡ (b → f) ∧ ¬p.
Given K, r, and (p ↔ b)∧ (b ↔ f) |∼ ¬f, DefeasibleEntailment will return
true. It will do so by first verifying that {R0,R1,R∞} �|= ¬((p ↔ b) ∧ (b ↔ f))
and then checking whether {R0,R1,R∞} |= ((p ↔ b)∧ (b ↔ f)) → ¬f (which it
does). Note that, given this r, DefeasibleEntailment computes the rational
closure of K. ��
Example 2. Let K be as in Example 1. It can be shown that there is only one
ranking function r s.t. r(f → p) = 1, r((b∨ f) → (p∧ f)) = 2, and r(¬(p → b)) =
∞, and that r is K-faithful. Moreover, for r it will be the case that for every
α ∈ L, r(α) = ∞ or r(α) ≤ 2. Given K and r, the Rank algorithm will output
the ordered tuple (R0,R1,R∞, 2) where R∞ ≡ p → b, R1 ≡ ¬((b∨f) → (p∧f)) ≡
(¬b → f) ∧ (p → ¬f), and R0 ≡ ¬(f → p) ≡ f ∧ ¬p. Given K, r, and the DI
(p ↔ b)∧ (b ↔ f) |∼ ¬f, algorithm DefeasibleEntailment will return false.
It will do so by first removing R0 (since {R0,R1,R∞} |= ¬((p ↔ b)∧ (b ↔ f))),
then removing R1 (since {R1,R∞} |= ¬((p ↔ b) ∧ (b ↔ f))), and then, since
{R∞} �|= ¬((p ↔ b) ∧ (b ↔ f)), it will check whether {R∞} |= ((p ↔ b) ∧ (b ↔
f)) → ¬f (which it does not). ��
Definition 8. DefeasibleEntailment computes a defeasible entailment
relation |≈ for a knowledge base K and a rank function r if Defeasible-
Entailment, when presented with K, r, and α |∼ β, returns true if and only
if K |≈ α |∼ β.

It follows (using points 1 and 2d of Theorem1) that Defeasible-
Entailment computes exactly basic defeasible entailment.

Theorem 1. The following statements are equivalent: (1) |≈ is a basic defeasi-
ble K-entailment relation, and (2) there is a K-faithful ranked model R and a
K-faithful rank function r such that:

a. r(α) = min{i | there is a v ∈ �α� s.t. R(v) = i};
b. |≈ can be generated from R;
c. |≈ can be generated from r;
d. |≈ can be computed by Defeasible Entailment, given K and r as input.

Note that points 1 and 2 in Theorem1 establish a connection between R
and r via a result that is a generalisation of Observation 3. And observe that
DefeasibleEntailment involves a number of calls to a classic entailment
checker that is linear in n times the size of K (where n is the number returned
by the Rank algorithm). But note also that n may be exponential in the size
of K.
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4 Rational Defeasible Entailment

We now proceed by suggesting that basic defeasible entailment is too permissive.
We first show that it does not satisfy RC Extension:

(RC Extension) If K |≈RC α |∼ β, then K |≈ α |∼ β

To see that basic defeasible entailment does not satisfy RC Extension, consider
the following example.

Example 3. Figure 2(a) depicts the (K-faithful) minimal ranked model RRC
K of

K = {p → b, b |∼ f, p |∼ ¬f}. Note that RRC
K � ¬p ∧ ¬f |∼ ¬b and (from

Definition 4) that K |≈RC ¬p ∧ ¬f |∼ ¬b. But for the K-faithful ranked model
R in Fig. 2(b) below it follows that R �� ¬p ∧ ¬f |∼ ¬b. And from Theorem1 it
follows that for the basic defeasible K-entailment relation |≈ generated from R,
K �|≈ ¬p ∧ ¬f |∼ ¬b. So RC Extension does not hold. ��

2 pbf

1 pbf pbf

0 pbf pbf pbf

(a)

2 pbf

1 pbf pbf pbf

0 pbf pbf

(b)

Fig. 2. Ranked models of the knowledge base in Example 3. (a) Shows the minimal
K-faithful ranked model RRC

K , while (b) depicts the K-faithful ranked model R.

If a basic defeasible entailment relation also satisfies RC Extension, we refer
to it as rational defeasible entailment. We propose the class of rational defeasible
entailment relations as those worthy of the term rational and analyse them
further in the remainder of this section. We start by showing (points 1 and 2b
of Theorem 2) that rational defeasible entailment can be characterised in terms
of a subset of the K-faithful ranked models, referred to as rank preserving.

Definition 9. A K-faithful ranked model R is said to be rank preserving if the
following condition holds: for all v, u ∈ U , if RRC

K (v) < RRC
K (u), then R(v) <

R(u).

Informally, rank preservation requires the total preorder �R generated from R
to respect the relative positions assigned to valuations in the minimal model
RRC

K of K.
We can also characterise rational defeasible entailment (points 1 and 2c of

Theorem 2) using a subclass of K-faithful rank functions referred to as base rank
preserving.
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Definition 10. A K-faithful rank function r is said to be base rank preserving
if the following condition holds: for all α, β ∈ L, if brK(α) < brK(β), then
r(α) < r(β).

Base rank preserving rank functions (or, the relations < derivable from base
rank preserving rank functions) respect the base rank (or rather, the relation
< derivable from the base rank). We show (points 1 and 2d of Theorem2) that
DefeasibleEntailment described in the previous section can also be used to
compute rational defeasible entailment, provided it receives base rank preserving
rank functions as input.

Theorem 2. The following statements are equivalent: (1) |≈ is a rational defea-
sible K-entailment relation, and (2) there is a rank preserving K-faithful ranked
model R and a K-faithful base rank preserving rank function r s.t.:

a. r(α) = min{i | v ∈ �α� and R(v) = i};
b. |≈ can be generated from R;
c. |≈ can be generated from r;
d. |≈ can be computed from Defeasible Entailment, given K and r as input.

Analogous to basic defeasible entailment, Points 1 and 2 of Theorem2 establish a
connection between R and r via a result that is a generalisation of Observation 3.

5 Lexicographic Closure

We now turn our attention to lexicographic closure, a second form of defeasible
entailment that has been studied in the literature [24]. Our central result is
that lexicographic closure is a rational defeasible entailment relation. We also
show that lexicographic closure can be characterised in three different ways:
semantically via a rank preserving K-faithful ranked model, in terms of a base
preserving K-faithful rank function r, and via DefeasibleEntailment when
it is presented with r (and a knowledge base K) as input. While the semantic
construction of lexicographic closure is known [24], the other two constructions
are new. We also show that there are rational defeasible entailment relations
that extend lexicographic closure, which means that lexicographic closure is not
the “boldest” form of rational defeasible entailment, as has been the conjecture
in the literature.

Let CK be a function from U to N s.t. CK(v) = #{α |∼ β ∈ K | v � α → β}
(where #X denotes the cardinality of the set X). The goal is to refine the
ordering on U obtained from the minimal model RRC

K with CK: in comparing
two valuations with the same rank w.r.t. RRC

K , the one with a higher number
will be viewed as more typical.

We define an ordering �K
LC on U : v �K

LC u if RRC
K (u) = ∞, or RRC

K (v) <
RRC

K (u), or RRC
K (v) = RRC

K (u) and CK(v) ≥ CK(u). Then let RLC
K be the ranked

interpretation obtained from �K
LC , which we call the lexicographic ranked model

of K.
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Definition 11. The lexicographic closure |≈LC of K is defined as follows:
K |≈LC α |∼ β if RLC

K � α |∼ β.

Proposition 2. RLC
K is a K-faithful and rank preserving ranked model.

From this result it follows from Theorems 1 and 2 that lexicographic closure
is a rational and basic defeasible entailment relation. Lehmann [24, Theorem 3]
already showed that lexicographic closure satisfies RC Extension.

Example 4. Figure 3(a) depicts the minimal ranked model RRC
K of K = {p →

b, b |∼ f, p |∼ ¬f, b |∼ w}, while Fig. 3(b) depicts the lexicographic ranked model
RLC

K of K. From these two models we can see that p |∼ w (penguins usually
have wings) is not in the rational closure of K, but is in the lexicographic closure
of K. This is indicative of the difference between, what Lehmann refers to as
Prototypical Reasoning and Presumptive Reasoning [24]. Presumptive Reason-
ing states that properties of a class are presumed to hold for all members of
that class unless we have knowledge to the contrary. Because birds usually have
wings we assume that penguins, being birds, usually have wings as well. Con-
trast this with Prototypical Reasoning which states that, while typical members
of a class are presumed to inherit the properties of that class, the same does not
hold for atypical members. According to Prototypical Reasoning, since penguins
are atypical members of the class of birds, they do not inherit the property of
having wings. Rational closure operates according to Prototypical Reasoning,
while lexicographic closure adheres to Presumptive Reasoning. ��

2 pbfw pbfw

1 pbfw pbfw pbfw pbfw

0 pbfw pbfw pbfw pbfw pbfw pbfw

(a)

5 pbfw

4 pbfw

3 pbfw pbfw

2 pbfw pbfw

1 pbfw

0 pbfw pbfw pbfw pbfw pbfw

(b)

Fig. 3. Ranked models of the knowledge base in Example 4. (a) Shows the minimal
model K-faithful ranked model RRC

K , while (b) depicts the lexicographic ranked model
RLC

K .

We have seen that lexicographic closure (|≈LC) can be generated from a
K-faithful rank preserving model. From Theorem2 it then follows that there is
a K-faithful base rank preserving rank function r from which |≈LC can be gen-
erated. Furthermore, it can be generated by DefeasibleEntailment, given
K and r as input. We now show how to construct the K-faithful base rank pre-
serving rank function r mentioned above.

tmeyer@cs.uct.ac.za



194 G. Casini et al.

Definition 12. The lexicographic rank w.r.t. a knowledge base K is defined as
rLC
K (α) ≡def min{RLC

K (v) | v ∈ �α�}.
Proposition 3. The lexicographic rank rLC

K w.r.t. a knowledge base K is
K-faithful and base rank preserving.

Now we show rLC
K generates the same rational defeasible entailment relation as

RLC
K .

Proposition 4. RLC
K � α |∼ β iff rLC

K (α) < rLC
K (α ∧ ¬β) or rLC

K (α) = ∞.

Finally, DefeasibleEntailment computes the same (rational) defeasible
entailment relation as RLC

K does when given the input K and rLC
K .

Proposition 5. DefeasibleEntailment returns true when given the input
K, rLC

K , and α |∼ β iff rLC
K (α) < rLC

K (α ∧ ¬β), or rLC
K (α) = ∞.

We conclude this section with an example which shows that lexicographic
closure is not (always) the “boldest” form of rational defeasible entailment.

Example 5. Consider the knowledge base K in Example 4 and let a K-faithful
ranked model R be as depicted in Fig. 4 below. R is a refinement of the lexi-
cographic ranked model RLC

K in Fig. 3(b). It can be shown that R is rank base
preserving, and therefore it generates a rational defeasible K-entailment rela-
tion |≈, and that |≈ strictly extends lexicographic closure: If K |≈LC α |∼ β, then
K |≈ α |∼ β, and there is at least one defeasible implication α |∼ β such that
K |≈ α |∼ β, but K �|≈LC α |∼ β. For example, observe that K |≈ b∧¬f∧w |∼ ¬p,
but K �|≈LC b ∧ ¬f ∧ w |∼ ¬p. ��

7 pbfw

6 pbfw

5 pbfw

4 pbfw

3 pbfw

2 pbfw

1 pbfw

0 pbfw pbfw pbfw pbfw pbfw

Fig. 4. The ranked model R of Example 5.
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6 Related Work

The original work in the KLM style [23] was inspired by the work of Shoham [28],
and investigated a class of non-monotonic consequence relations, where defeasible
implication was viewed as a (non-monotonic) form of entailment. This approach
was subsequently adapted by Lehmann and Magidor [25] to the case where |∼
is viewed as an object-level connective for defeasible implication, and where
the focus then shifts to defeasible entailment (i.e., |≈) for a logic language that
extends propositional logic with the defeasible implication connective |∼.

We are aware of four instances of defeasible entailment that have been stud-
ied: ranked entailment [25] which is not LM-rational, rational closure [4,7,21,25],
and lexicographic closure [24] which are both regarded as appropriate forms of
defeasible entailment, and relevant closure [17] which is also not LM-rational.

Our investigation here is reminiscent of the AGM framework for belief change
[1,19], where classes of belief change operators are studied. Rational closure can
be viewed as the defeasible entailment equivalent of full-meet belief contraction
or revision since, by virtue of the property of RC Extension, it is the most
conservative of those defeasible entailment relations regarded as appropriate.
The boldest forms of rational defeasible entailment can be seen as analogous to
maxichoice belief contraction and revision: maxichoice operators are obtained
by imposing a linear ordering on the propositional valuations that are counter-
models of a belief set, while the boldest forms of rational defeasible entailment
are obtained by imposing a linear ordering on UK

R , the set of possible valuations
w.r.t. a knowledge base K and then considering the defeasible entailment rela-
tions generated from the base rank preserving K-faithful ranked models obtained
from such linear orderings.

Studies of defeasible entailment beyond the propositional case include ver-
sions of defeasible implication in more expressive languages, most notably
description logics [2,3,10,14,15,20,26,27] and modal logics [8,9,11]. A differ-
ent type of extension is one in which defeasible implication is enriched by either
introducing a notion of typicality in propositional logic [4–6] or a notion of defea-
sible modality [12,13].

7 Conclusion

The central focus of this paper is the question of determining what (defeasible)
entailment means for propositional logic enriched with a defeasible implication
connective. The short answer is that a defeasible entailment relation needs to
be rational in a technical sense provided above. In arriving at this conclusion
we have made a detour through the more permissive class of basic defeasible
entailment relations.

There are at least three lines of research to which the work in this paper
can lead. First is an analysis of concrete forms of rational defeasible entailment
other than rational and lexicographic closure. Secondly, both basic and rational
defeasible entailment is on the knowledge level [19] in the sense that the syntactic
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form of knowledge bases are, for the most part, irrelevant. But there is a strong
case to be made for defining defeasible implication where syntax matters. This is
analogous to the distinction between belief change on sets closed under classical
consequence and base change [22], where the structure of the set of beliefs of an
agent plays a role. And although lexicographic closure is an instance of rational
defeasible entailment, it is an example of a form of entailment where the struc-
ture of the knowledge base matters. We conjecture that a syntax-based class of
defeasible entailment will form a strict subclass of the class of rational defea-
sible entailment relations, and that lexicographic closure will be the strongest
form of syntax-based rational defeasible entailment. Finally, we have presented
an algorithm for computing any rational defeasible entailment relation, but the
algorithm depends on the provision of a knowledge base K, as well as a function
that ranks all statements. With a syntax-based approach, it may be possible
to use the structure of K to rank statements, in the way that the BaseRank
algorithm does in the process of computing rational closure.
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2014. LNCS (LNAI), vol. 8761, pp. 92–106. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11558-0 7

18. Freund, M.: Preferential reasoning in the perspective of Poole default logic.
Artif. Intell. 98, 209–235 (1998). http://www.sciencedirect.com/science/article/
pii/S0004370297000532

19. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States.
MIT Press, Cambridge (1988)

20. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: A non-monotonic description
logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

21. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Semantic characterization of
rational closure: from propositional logic to description logics. Artif. Intell. 226,
1–33 (2015)

22. Hansson, S.: A Textbook of Belief Dynamics: Theory Change and Database Updat-
ing. Kluwer, Boston (1999)

23. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44, 167–207 (1990)

24. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15(1), 61–82 (1995)

25. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif.
Intell. 55, 1–60 (1992)

26. Pensel, M., Turhan, A.-Y.: Including quantification in defeasible reasoning for the
description logic EL⊥. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 78–84. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5 9

27. Quantz, J., Royer, V.: A preference semantics for defaults in terminological logics.
In: KR 1992, pp. 294–305 (1992)

28. Shoham, Y.: Reasoning About Change: Time and Causation from the Standpoint
of Artificial Intelligence. MIT Press, Cambridge (1988)

tmeyer@cs.uct.ac.za

https://doi.org/10.1007/978-3-642-35101-3_43
https://doi.org/10.1007/978-3-319-90050-6_7
https://doi.org/10.1007/978-3-319-11558-0_7
https://doi.org/10.1007/978-3-319-11558-0_7
http://www.sciencedirect.com/science/article/pii/S0004370297000532
http://www.sciencedirect.com/science/article/pii/S0004370297000532
https://doi.org/10.1007/978-3-319-61660-5_9
https://doi.org/10.1007/978-3-319-61660-5_9

	Preface
	Organization
	Contents
	Invited Talks
	Possibilistic Logic: From Certainty-Qualified Statements to Two-Tiered Logics – A Prospective Survey
	1 Introduction
	2 Short Refresher on Possibility Theory
	3 Basic Possibilistic Logic
	4 Applications of Basic Possibilistic Logic
	5 Extensions of Basic Possibilistic Logic
	6 Generalized Possibilistic Logic
	7 Applications of Generalized Possibilistic Logic
	8 Conclusion
	References

	Vadalog: Recent Advances and Applications
	1 Introduction
	2 Preliminaries
	3 The Logical Core of Vadalog
	4 Query Answering via Proof Trees
	5 Datalog Rewritability
	6 Limiting Recursion
	7 Applications
	References

	Belief Revision and Argumentation
	AGM Meets Abstract Argumentation: Contraction for Dung Frameworks
	1 Introduction
	2 Background
	2.1 Abstract Argumentation
	2.2 Dung-Logics
	2.3 AGM-Style Contraction

	3 Dung-Style Contraction
	3.1 Contraction Postulates for Kernel k
	3.2 Non-existence of Contraction Operators
	3.3 Brute Contraction
	3.4 Discussion

	4 Related Work and Summary
	References

	A Possible World View and a Normal Form for the Constellation Semantics
	1 Introduction
	2 Preliminaries
	2.1 Abstract Argumentation
	2.2 Constellation Based Probabilistic Abstract Argumentation Frameworks
	2.3 Inducing AAFs by Imposing Restrictions

	3 Possible Worlds and AAFs
	4 Probabilistic Attack Normal Form
	4.1 Transforming General PrAAFs to Probabilistic Attack Normal Form PrAAFs
	4.2 Transforming Probabilistic Arguments to Probabilistic Attacks

	5 Conclusion and Future Work
	References

	Well-Foundedness in Weighted Argumentation Frameworks
	1 Introduction
	2 Background
	2.1 Other Weighted Proposals in the Literature

	3 Well-Foundedness in Weighted AAFs
	3.1 Motivations
	3.2 Well-Foundedness

	4 Some Formal Results on Unicity and Existence
	5 Related Work
	6 Conclusion
	References

	Multi-valued GRAPPA
	1 Introduction
	2 Multi-valued GRAPPA
	3 Acceptance Programs
	3.1 Syntax
	3.2 Semantics

	4 Examples
	5 Conclusions
	References

	Empirical Study on Human Evaluation of Complex Argumentation Frameworks
	1 Introduction
	2 Preliminaries of Abstract Argumentation Theory
	3 Cognitive Variability of Humans
	4 Design of the Study
	5 Results and Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Preprocessing Argumentation Frameworks via Replacement Patterns
	1 Introduction
	2 Argumentation Frameworks and Equivalence
	3 Replacement Patterns
	3.1 Main Concepts
	3.2 Formalizing Concrete Patterns

	4 Empirical Evaluation
	5 Conclusions
	References

	Manipulating Skeptical and Credulous Consequences When Merging Beliefs
	1 Introduction
	2 Belief Merging
	3 Acceptance and Satisfaction Notions
	4 Manipulability and Strategyproofness
	4.1 Constructive and Destructive Manipulation with Respect to an Atom
	4.2 Manipulation with Respect to a Satisfaction Index

	5 Influence of One Agent over the Outcome
	6 Complexity of Constructive and Destructive Manipulation
	7 Related Work
	8 Conclusions
	References

	Repairing Non-monotonic Knowledge Bases
	1 Introduction
	2 Background
	3 Addition-Based Repairs
	4 Arbitrary Repairs
	5 Preferences and Refinements
	6 Excursus: Inconsistency in Abstract Argumentation
	7 Conclusions
	References

	Causal, Defeasible and Inductive Reasoning
	ACUOS2: A High-Performance System for Modular ACU Generalization with Subtyping and Inheritance
	1 Introduction
	2 Least General Generalization Modulo A, C, and U
	3 ACUOS2: A High Performance Generalization System
	4 ACU Generalization in a Biological Domain
	5 Experimental Evaluation
	6 Related Work
	References

	Taking Defeasible Entailment Beyond Rational Closure
	1 Introduction
	2 Background
	2.1 KLM-Style Defeasible Implication
	2.2 Defeasible Entailment
	2.3 Rational Closure

	3 Basic Defeasible Entailment
	4 Rational Defeasible Entailment
	5 Lexicographic Closure
	6 Related Work
	7 Conclusion
	References

	Typed Meta-interpretive Learning of Logic Programs
	1 Introduction
	2 Related Work
	3 Framework
	3.1 Preliminaries
	3.2 Meta-interpretive Learning
	3.3 Typed Meta-interpretive Learning
	3.4 Hypothesis Space Reduction

	4 MetagolT and HEXMILT
	4.1 MetagolT
	4.2 HEXMILT

	5 Experiments
	5.1 Experiment 1: Ratio Influence
	5.2 Experiment 2: Droplasts
	5.3 Experiment 3: More Problems

	6 Conclusions
	References

	Explaining Actual Causation in Terms of Possible Causal Processes
	1 Introduction
	2 The Causal Logic: Syntax and Informal Semantics
	3 Formal Semantics: Causal Processes and Possible Worlds
	4 Definitions of Actual Causation
	4.1 Early Preemption Versus Switch

	5 Related Work and Conclusions
	References

	Explaining Actual Causation via Reasoning About Actions and Change
	1 Introduction
	2 Preliminaries
	3 Theoretical Framework
	3.1 Definitions
	3.2 Yale Shooting Problem

	4 ASP Implementation of the Framework
	4.1 Answer Set Programming
	4.2 Framework Implementation

	5 Empirical Study of the Implementation
	6 Overview of Related Work
	7 Conclusions and Future Work
	References

	Advancements in Resource-Driven Substructural Defeasible Logic
	1 Introduction
	2 Language and Logical Formalisation of RSDL
	3 Results
	4 Conclusions and Related Work
	References

	SLD-Resolution Reduction of Second-Order Horn Fragments
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 Problem Statement and Decidability
	3.1 Preliminaries
	3.2 Derivation Reduction

	4 Fragments of Interest in H
	5 The Fragment Hc Is Reducible to Hc,2
	5.1 Graph Encoding
	5.2 Reducibility of Hc

	6 Reducibility of H2c2,
	7 Reducibility of H2c3,
	8 Extension to Standard Resolution
	9 Conclusion
	References

	Conditional, Probabilistic and Propositional Logic
	Systematic Generation of Conditional Knowledge Bases up to Renaming and Equivalence
	1 Introduction
	2 Background: Conditional Logic
	3 Orderings and Normal Forms for Conditionals
	4 Knowledge Base Equivalences and Isomorphisms
	5 Systematic Generation of Knowledge Bases
	6 Conclusions and Further Work
	References

	Unifying Reasoning and Core-Guided Search for Maximum Satisfiability
	1 Introduction
	2 Maximum Satisfiability, MaxSAT Solving and Preprocessing
	2.1 Core-Guided MaxSAT Solving and MaxSAT-Reducibility
	2.2 MaxSAT Preprocessing and MCS-Equivalence

	3 An Abstract MaxSAT Solving Framework
	4 Overview of Results
	5 Analysis of Known Transformations
	5.1 MaxSAT-Reducibility
	5.2 MCS-Equivalence
	5.3 Combining MSRED and MCSEQ

	6 RAT Clauses in MaxSAT
	7 Correction Set Reducible Transformations
	8 Related Work
	9 Conclusions
	References

	Facets of Distribution Identities in Probabilistic Team Semantics
	1 Introduction
	2 Preliminaries
	3 Expressiveness of FO()
	4 Expressiveness of FO(*) and FO()
	4.1 Translations of Dependence and Marginal Identity to FO(*)
	4.2 Scaled Union Closure of FO()

	5 Binary Probabilistic Teams
	6 Conclusions and Further Directions
	References

	Description Logics
	Privacy-Preserving Ontology Publishing for EL Instance Stores
	1 Introduction
	2 Preliminaries
	3 Computing Optimal Compliant Generalizations
	4 Computing Optimal Safe Generalizations
	5 The Complexity of Deciding Optimality
	6 Conclusion
	References

	A Bayesian Extension of the Description Logic ALC
	1 Introduction
	2 Preliminaries
	3 BALC
	4 Consistency
	5 Satisfiability and Subsumption
	6 Instance Checking
	7 Conclusions
	References

	Computing Minimal Projection Modules for ELHr-Terminologies
	1 Introduction
	2 Preliminaries
	3 Projection Modules
	4 Computing Minimal Projection Modules
	4.1 Definition of Subsumption Projection Justifications
	4.2 Computing Subsumee Projection Justifications

	5 Application of Minimal Projection Modules
	5.1 Computing Minimal Query Modules
	5.2 Ontology Comparison Measure

	6 Conclusion
	References

	Closed-World Semantics for Conjunctive Queries with Negation over ELH_ Ontologies
	1 Introduction
	2 Preliminaries
	3 Conjunctive Queries with Negation
	3.1 Semantics for NCQs

	4 A Combined Rewriting for NCQs
	4.1 Correctness

	5 Conclusion
	References

	Extending ALC with the Power-Set Construct
	1 Introduction
	2 Preliminaries
	2.1 The Description Logic ALC
	2.2 The Theory 
	2.3 The Description Logic ALC

	3 A Set Theoretic Translation of ALC
	3.1 A Set Theoretic Translation of ALC with Empty ABox
	3.2 Translating the Fragment  LC
	3.3 Translating ALC by Encoding into LC

	4 Conclusions and Related Work
	References

	Learning Description Logic Axioms from Discrete Probability Distributions over Description Graphs
	1 Introduction
	2 Related Work
	3 The Probabilistic Description Logic P1EL
	4 Concept Inclusion Bases in 硅䰠bot 
	5 Axiomatization of Concept Inclusions in PnEL
	6 Conclusion
	References

	Learning Ontologies with Epistemic Reasoning: The EL Case
	1 Introduction
	2 Learning with Epistemic Reasoning
	2.1 The Epistemic Extension of L
	2.2 A Learning Model Based on Epistemic Reasoning

	3 Epistemic and Exact Polynomial Learnability
	4 The Epistemic EL Description Logic
	4.1 EL: Syntax, Semantics, and Complexity
	4.2 Reasoning in ELK 
	4.3 Reasoning in Conjunctive ELK 

	5 Learning EL with Epistemic Reasoning
	6 Discussion
	References

	Counting Strategies for the Probabilistic Description Logic ALCME Under the Principle of Maximum Entropy
	1 Introduction
	2 The Description Logic ALCME
	3 Conditional Structures and Types for ALCME
	4 Counting Strategies for ALCME
	5 Consistency Check and Drawing Inferences in ALCME
	6 Conclusion and Future Work
	References

	Logic Programming
	Memory-Saving Evaluation Plans for Datalog
	1 Introduction
	2 An ASP-Based Evaluation Planner
	2.1 Evaluation Plans
	2.2 Computing Evaluation Plans via ASP

	3 Experimental Evaluation
	4 Conclusion
	References

	Chain Answer Sets for Logic Programs with Generalized Atoms
	1 Introduction
	2 Background
	2.1 Notation
	2.2 FLP Semantics
	2.3 SFLP Semantics

	3 Chain Answer Set Semantics
	3.1 Supportedness, Anti-chain Property, Relationship to FLP

	4 Integrating Support with Chain Answer Sets
	5 Computational Complexity
	6 Conclusion and Discussion
	References

	Algorithm Selection for Paracoherent Answer Set Computation
	1 Introduction
	2 Preliminaries
	2.1 Syntax of ASP
	2.2 Standard Semantics
	2.3 Paracoherent Semantics
	2.4 Evaluation Algorithms

	3 Classification Models and Experiments
	4 Conclusion
	References

	Extending Bell Numbers for Parsimonious Chase Estimation
	1 Introduction
	2 Preliminaries
	3 Parsimonious Chase Estimation
	4 Discussion and Future Work
	References

	The Weak Completion Semantics Can Model Inferences of Individual Human Reasoners
	1 Introduction
	2 Mathematical Preliminaries
	3 Modelling the WST with the WCS
	4 Extending the WCS for the Individual Case
	5 Results, Conclusion, and Future Work
	References

	Lower Bound Founded Logic of Here-and-There
	1 Motivation
	2 Background
	3 Lower Bound Founded Logic of Here-and-There
	3.1 HTLB Properties
	3.2 Negation in HTLB
	3.3 HTLB versus HT
	3.4 HTLB-stable versus Ferraris-style stable models
	3.5 Modeling with Bound Founded Programs

	4 Related Work
	5 Conclusion
	References

	A Logic-Based Question Answering System for Cultural Heritage
	1 Introduction
	2 Answer Set Programming
	3 Overview of the Problem
	4 ASP-based System for Question Answering
	4.1 Question NL Processing
	4.2 Template Matching
	4.3 Intent Determination
	4.4 Query Execution
	4.5 Answer Generation

	5 System Performance on Real-World Data
	6 Related Work
	7 Conclusion
	References

	Characterising Relativised Strong Equivalence with Projection for Non-ground Answer-Set Programs
	1 Introduction
	2 Preliminaries
	2.1 Logic Programs
	2.2 Notions of Equivalence

	3 Program Correspondence
	4 Characterising Relativised Strong Equivalence Without Projection
	5 Characterising Relativised Strong Equivalence with Projection
	6 Computability Issues
	7 Conclusion
	References

	Uhura: An Authoring Tool for Specifying Answer-Set Programs Using Controlled Natural Language
	1 Introduction
	2 Preliminaries
	2.1 Answer-Set Semantics
	2.2 The Controlled Natural Language PENGASP

	3 The System Uhura
	3.1 Workflow in Uhura
	3.2 The Controlled Natural Language LU of Uhura
	3.3 Implementation

	4 Conclusion and Discussion
	References

	Abstraction for Non-ground Answer Set Programs
	1 Introduction
	2 Domain Abstraction for ASP
	3 Towards an Abstract Program
	3.1 Lifted Built-in Relations

	4 Abstract Program Construction
	5 Abstract Answer Set Computation
	5.1 Implementation

	6 Applications
	7 Experiments
	8 Conclusion
	References

	The Hexlite Solver
	1 Introduction
	2 Preliminaries
	2.1 HEX Syntax
	2.2 Semantics

	3 The Pragmatic HEX Fragment (PHF)
	3.1 Properties
	3.2 Amenable Application Scenarios

	4 Hexlite Solver Design and Architecture
	5 Experimental Evaluation
	5.1 Cost-Based Abduction Benchmark
	5.2 RDF Benchmark
	5.3 Experimental Setup
	5.4 Results

	6 Discussion and Conclusion
	References

	Epistemic Answer Set Programming
	1 Introduction
	2 Epistemic Specifications (ES) and Its World View Semantics 
	2.1 The Language of ES ( LES )
	2.2 The Semantics of ES

	3 Fariñas et al.'s Approach: Autoepistemic Equilibrium Models
	3.1 Epistemic Here-and-There Logic (EHT) and Its Equilibrium Models

	4 Shen and Eiter's Approach: Epistemic Negation
	5 Our Approach: Epistemic ASP (E-ASP) and Its Epistemic Views
	5.1 Motivation and Novelty
	5.2 The Language of Epistemic ASP ( LE-ASP )
	5.3 The Semantics of Epistemic ASP
	5.4 Comparison of Epistemic Views with World Views and AEEMs

	6 Splitting Epistemic Logic Programs
	7 Conclusion
	References

	Modal and Default Logic
	A Logic of Objective and Subjective Oughts
	1 Introduction
	2 Action, Knowledge, and Obligation in Stit
	2.1 Horty's Puzzles

	3 A Logic of Objective and Subjective Oughts
	3.1 Solution to Horty's Puzzles

	4 Axiomatization and Some Logical Properties
	4.1 Soundness
	4.2 Completeness

	5 Conclusion
	References

	On the Complexity of Graded Modal Logics with Converse
	1 Introduction
	2 Preliminaries
	2.1 Languages, Kripke Structures and Satisfiability
	2.2 Standard Translation

	3 Euclidean Frames: Counting Successors and Predecessors
	3.1 The Shape of Euclidean Frames
	3.2 The Upper Bound for Graded Two-Way K5 and D5
	3.3 Lower Bounds for Two-Way Graded K5 and D5
	3.4 Transitive Euclidean Frames

	4 Transitive Frames: Counting Successors, Accessing Predecessors
	References

	The Dynamic Logic of Policies and Contingent Planning
	1 Introduction
	2 Background: PDL and Sequential Plans
	3 Policies and Strong Solutions to Planning Tasks
	4 Extending PDL by the Modal Operator ([  ])  
	5 From Programs to Policies
	6 From Policies to Programs 
	References

	Interpolation and Beth Definability in Default Logics
	1 Introduction
	2 What Is a Default Logic?
	2.1 Preliminary Definitions
	2.2 Default Logics
	2.3 Traditional Default Logics
	2.4 Intermediate Default Logics

	3 Interpolation and Beth Definability
	3.1 Interpolation
	3.2 Interpolation in Default Logics
	3.3 Definability
	3.4 Definability in Default Logics

	4 Final Remarks
	A  Selected Proofs
	References

	Axiomatising Logics with Separating Conjunction and Modalities
	1 Introduction
	2 Preliminaries About Modal Separation Logics
	3 Axiomatising MSL(,) with Core Formulae
	4 Hilbert-Style Proof System for MSL(,"426830A = "526930B )
	5 Concluding Remarks
	References

	Nested Sequents for the Logic of Conditional Belief
	1 Introduction
	2 Multi-agent Conditional Logic CDL
	3 Nested Sequent Calculus  NCDL
	4 Completeness of  NCDL
	5 Relationship with  S5i
	6 Conclusions
	References

	Reasoning About Cognitive Attitudes in a Qualitative Setting
	1 Introduction
	2 Dynamic Logic of Cognitive Attitudes
	3 Formalization of Cognitive Attitudes
	3.1 Epistemic Attitudes
	3.2 Motivational Attitudes
	3.3 From comparative desirability to choice

	4 Axiomatization 
	5 Conclusion
	A  Proofs
	A.1  Proof of Lemma 2
	A.2  Proof of Lemma 3
	A.3  Proof of Lemma 4 
	A.4  Proof of Lemma 6

	References

	Computational Complexity of Core Fragments of Modal Logics T, K4, and S4
	1 Introduction
	2 Syntax and Semantics
	3 Pre-linear Models
	4 Computational Complexity
	4.1  Core Fragment of T
	4.2 Core Fragment of K4
	4.3 Core Fragment of S4

	5 Algorithms
	6 Correspondence to Linear Temporal Logic
	7 Conclusions and Future Work
	References

	Temporal Logic
	Axiomatic Systems and Topological Semantics for Intuitionistic Temporal Logic
	1 Introduction
	2 Syntax and Axiomatics
	3 Dynamic Topological Systems
	4 Semantics
	5 Soundness
	6 Independence
	7 Concluding Remarks
	References

	Interval Temporal Logic Decision Tree Learning
	1 Introduction
	2 Preliminaries
	3 Motivations
	4 Learning Interval Temporal Logic Decision Trees
	5 Conclusions
	References

	Stable-Ordered Models for Propositional Theories with Order Operators
	1 Introduction
	2 Preliminaries
	3 Stable-Ordered Models
	4 Applications
	5 Discussion
	References

	Cut-Free Calculi and Relational Semantics for Temporal STIT Logics
	1 Introduction
	2 The Logic Ldm
	2.1 Axioms and Relational Semantics for Ldm
	2.2 A Cut-Free Labelled Calculus for Ldm

	3 The Logic Tstit
	3.1 Axiomatization for Tstit
	3.2 A Cut-Free Labelled Calculus for Tstit

	4 The Logic Xstit
	4.1 Axioms and Relational Semantics for Xstit
	4.2 A Cut-Free Labelled Calculus for Xstit

	5 Conclusion and Future Work
	References

	Author Index



