
A Scalable Database Model of RFI Data for the MeerKAT Radio
Telescope

Gerald Nathan Balekaki
Department of Computer Science

University of Cape Town
Cape Town, South Africa
nbalekaki@cs.uct.ac.za

Michelle Kuttel
Department of Computer Science

University of Cape Town
Cape Town, South Africa
mkuttel@cs.uct.ac.za

Anja Schroeder
South African Astronomical

Observatory
Cape Town, South Africa

anja@saao.ac.za

Sarah Blyth
Department of Astronomy
University of Cape Town
Cape Town, South Africa
sblyth@ast.uct.ac.za

Sonia Berman
Department of Computer Science

University of Cape Town
Cape Town, South Africa

sonia@cs.uct.ac.za

ABSTRACT
In radio astronomy, radio frequency interference (RFI) refers to any
signal captured by a radio telescope that did not originate from the
observed target in the sky. As RFI corrupts observational data and
may even damage radio telescope equipment, astronomers seek to
store data on RFI, with the aim of mitigating or preventing future
interference events. This is a concern for the MeerKAT telescope,
precursor to the Square Kilometer Array and one of the largest and
most sensitive radio telescope in the world to date. Currently, RFI
data at MeerKAT is collected in many different file formats that
do not fit into traditional database models created to store data in
a fixed schema. Therefore, we have designed a scalable database
model for RFI storage, that supports many databases and many data
models. The database is deployed in a Dockerized environment.
Preliminary testing of our design shows linearly scaling of data
ingestion as data sizes increases, as well as fast query processing.

CCS CONCEPTS
• Information systems→ Semi-structured data;Databaseman-
agement system engines; Database design and models; • Ap-
plied computing → Astronomy.

KEYWORDS
Radio Frequency Interference, emerging database models, NoSQL,
polystores

ACM Reference Format:
Gerald Nathan Balekaki, Michelle Kuttel, Anja Schroeder, Sarah Blyth,
and Sonia Berman. 2019. A Scalable Database Model of RFI Data for the
MeerKAT Radio Telescope. In Conference of the South African Institute of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAICSIT ’19, September 17–18, 2019, Skukuza, South Africa
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7265-7/19/09. . . $15.00
https://doi.org/10.1145/3351108.3351127

Computer Scientists and Information Technologists 2019 (SAICSIT ’19), Septem-
ber 17–18, 2019, Skukuza, South Africa. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3351108.3351127

1 INTRODUCTION
The Square Kilometre Array (SKA) project aims to construct the
largest andmost sensitive telescope in theworld, with the first phase
(10% of the full SKA) expected to produce early science observations
in 2020. The core of the array will be located at the site of South
Africa’s SKA precursor MeerKAT [1], which has only about 1% of
the final SKA’s sensitivity but is already one of the most sensitive
radio telescopes in the world. The full SKA is expected to produce
data volumes equating to the current global total internet traffic [2].
In radio astronomy, radio frequency interference (RFI) refers to any
signal captured by a radio telescope that did not originate from the
observed target in the sky. RFI contamination of the radio signal is
unfortunately growing due to technological advancements.

The biggest sources of RFI are human generated and often stronger
(many billions of times) than the weak celestial signals of interest,
drowning them out and corrupting observational data [3]. Some
of the potential sources of RFI likely to interfere with radio ob-
servations in a typical modern radio observatory are: television
(TV), FM radio, digital audio broadcast (DAB), satellite communica-
tion, cellular networks (GSM, UMTS), wireless computer networks
such as the WLAN, and air navigation systems (DME) (Figure 1),
although the majority of RFI sources are unidentified. One source
of RFI is from legally allocated communication services licensed by
regulatory authorities, such as ICASA in South Africa [4].

Radio astronomers seek to collect, store, and quickly analyse RFI
to assist in identifying or removing RFI sources before or during
observations, thus keeping the telescope site clean from interfer-
ence. Currently, there is no complete remedy for RFI, but several
approaches have been introduced to reduce the damage on the
signal [6, 7]. These approaches range from regulatory to technical
methods. The first approach in RFI mitigation is prevention: this is
explicitly provided for in the Astronomy Geographical Act (AGA)
of South Africa, which protects areas suited to radio astronomy
[4]. The second approach involves monitoring and detection of
RFI signals. Monitoring of RFI at MeerKAT is implemented using
two devices: 1) a fixed monitoring system that provides continuous

https://doi.org/10.1145/3351108.3351127
https://doi.org/10.1145/3351108.3351127


SAICSIT ’19, September 17–18, 2019, Skukuza, South Africa Balekaki and Kuttel, et al.

Figure 1: Potential RFI near the typical radio spectrum [5].

monitoring, and 2) a mobile monitoring system that resides on a
vehicle that can be deployed anywhere within the telescope array
and beyond [8]. Currently, RFI is stored as unstructured data: it is
detected, measured and collected at the MeerKAT site in a range of
different file formats, including measurement sets, arrays, tables,
spectral images and JSON files (Figure 2). The advantage of collect-
ing RFI in different formats is that it provides a subtle and detailed
picture of the nature and source of the interference. However, the
variety of formats also creates a storage and access concern for the
RFI data. It is clear that working with multiple heterogeneous files
limits data analysis and is also very cumbersome. In addition, RFI
data collected in isolation (from MeerKAT as well as other inter-
national radio telescopes) hinders data coordination [9]. Moreover,
this problem will be exacerbated with the huge volumes of data
generated at high speeds during large survey observations at the
SKA in the future.

Figure 2: RFI data collected in different formats

In recent decades, radio astronomers have seen the introduction
of structured file systems such as HDF5 and NetCDF, as a solution
for storing huge and diverse datasets [10]. A key feature of such file
systems is that they consist of multi-dimensional arrays that act as
granules which encapsulate a number of observations over space

and time as a single data unit. This kind of composition does not
fit into traditional 2D model of rows and columns [11]. In addition,
they lack the ability to provide full functionality of a DBMS in terms
of indexing, cross-querying and structured languages. Such tools
therefore cannot support data intensive scientific applications like
real-time data support, deep analytics, and data visualisation [11,
12]. The limitations of such tools have stimulated the development
of innovative database models.

Traditional databasemodels, such as relational database (RDBMS)
developed by Codd [13], have been around for close to five decades.
Although these have been the bedrock of most data management
solutions, they strictly rely on organising data in tables of fixed
rows and columns. A key challenge faced by the relational models
is the inability to scale and integrate data in multiple formats, with-
out compromising the essential READ and WRITE data operations.
This is a problem, because a large component of scientific data in
general comprises multi-dimensional structures that are inappro-
priate for relational models. In particular, the use of a RDBMS for
storing RFI would imply that only well-structured data that fits
well in tables would be able to be stored, while semi-structured or
unstructured data would have to be discarded, in spite of all the
valuable information they might contain.

New SQL models such as SciDB have been developed to support
scientific applications [14]. They particularly strive to provide hor-
izontal scalability without abandoning SQL and consistency [15].
Horizontal scalability refers to the ability to distribute both the data
and the operations over several simple servers, with no sharing
of RAM or disk space (also known as shared nothing), among the
servers.

In 2006, the Google Big Table project led to the birth of non-
relational SQL models (i.e NoSQL), also regarded as not only SQL,
to store and manage large volumes of unstructured data such as
user session data from chats; messaging; log data, time series data;
video and images [16, 17]. Non-relational SQL models aim for im-
proved scalability and performance over both traditional and new
SQL models. A key difference between NoSQL and SQLs models is
that NoSQLs isolate data storage and management. This provides
improved flexibility over SQLs since they do not rely on normalised
data that is fixed in rows and columns [18].

Table 1: Comparison of performance metrics for current
database models.

SQL NoSQL NewSQL Polystore
Example PostgreSQL Accumulo SciDB BigDAWG
Application Transactions Search Analysis All

Data Model Relational
Tables

Key-Value
Pairs

Sparse
Matrices

Associative
Arrays

Math Set
Theory

Graph
Theory

Linear
Algebra

Associative
Algebra

Consistency X X
Volume X X X
Velocity X X X
Variety X X
Analytics X X
Usability X X



A Scalable Database Model of RFI Data for the MeerKAT Radio Telescope SAICSIT ’19, September 17–18, 2019, Skukuza, South Africa

Currently emerging database models are based on the concept of
using a range of models, databases, and languages to provide for a
variety of storage needs (often termed polyglot persistence) [19, 20])
as different kinds of data fit well with different data stores. Polystore
database systems are relatively new approach that shows promise
in addressing the volume challenges and unstructured nature of
scientific data [21] in comparison to previous approaches (Table
1). One significant development of a polystore is the capability
to match and query data across multiple and distinct storage en-
gines (an engine is a core component of our database management
system). The fundamental element for a polystore is a central com-
ponent (middleware) that supports single modality, with the ability
to submit queries that may be executed in different data engines,
while supporting the competing notions of location transparency
and semantic completeness [22, 23]. Researchers at the Intel Science
and Technology Center (ISTC) at MIT have developed a prototype
database on the polystore database model [22], but much work is
still needed to fully develop the concept into a standard for handling
scientific datasets [24].

In this work, we aim to address the RFI data storage challenge at
MeerKAT, investigating the use of a polystore database model for
storing RFI data. We focus on a developing a scalable model that
supports a large and diverse range of data formats and enables rapid
search. Such a data store is expected to support subsequent efforts
in RFI mitigation at the MeerKAT site, such as source classification
and statistical analysis.

2 RELATEDWORK
Scientists typically prefer storing data in traditional flat files, such
as the CSV format. Flat files have no structure for indexing, which
limits cross-file connections. However, there are advantages to this
approach: many studies show that it works with small numbers
of small files and has a modest storage requirement [11, 12]. It is
obviously easier to access or manipulate smaller files with simple
file commands (e.g. ls, find, vi, cat, or grep in Linux/Unix) than rather
run a batch of SQL SELECT queries. However, as the number or size
of files grows, such file manipulation becomes more cumbersome.

Recentlymore structured files – such asHDF5, HDFS, andNetCDF
– have been introduced as a solution for storing large and diverse
structures [25, 26]. Although structured files support storage of
multi-dimensional data, their underlying hierarchical architecture
is still file-based, implying that it is still somewhat cumbersome to
combine data from several observations [26].

Currentlymulti-dimensional array-based databases, such as SciDB
and Rasdaman, have been developed with a goal to do for the sci-
ence community what RDBMS accomplished in the business world
[25]. SciDB is a highly scalable database system that supports multi-
dimensional array storage and complex analysis. Multi-dimensional
array-based databases show enormous potential for the storage and
analysis of scientific data, however the challenges lie in the loading
of the data and its practical application. For Image analysis, SciDB
has been demonstrated to outperform not only traditional DBMS,
but also other Big Data tools. A case study is EarthDB, which en-
capsulates the the Moderate Resolution Imaging Spectroradiometer
(MODIS) dataset from NASA [27]. This dataset was generated by
orbiting satellites (Terra MODIS and Aqua MODIS) that scan the

entire surface of the Earth every 1 to 2 days aross 36 spectral bands,
with an aim of understanding of global dynamics and processes
occurring on the land, in the oceans, and in the lower atmosphere.
EarthDB is built upon the SciDB database platform in order to pro-
vide the data model, query language, and user defined features. The
EarthDB system was demonstrated to meet key expectations of
Earth scientists, including support for massive data loading, faster
filtering, unified schema representation, and rapid ad hoc analysis.

Case studies on the polystore model indicate that it is a suit-
able model for complex scientific datasets. The MIMIC II medical
dataset contains unidentified health data collected from thousands
of critical care patients in Intensive Care Units, including the pa-
tient metadata, free text form data (such as notes taken by medical
professionals), semi-structured data (such as prescriptions and lab
results) and waveform data (e.g. measurements from bedside de-
vices such as heart rate, pulse) [28]. The metagenomics data set
contains data on bacteria found in samples of sea water, to study the
relationship between the diversity of marine cyanobacteria such as
Prochlorococcus and environmental variables [21, 29]. This diverse
dataset comprises sample and sensor metadata, genome sequences
of about 20 million sequences per sample, cruise reports and stream-
ing sea flow data. For both of these cases, the polystore database
model was demonstrated to be effective, with significant speedup
over traditional approaches based on a single storage engine [22].

3 DATABASE DESIGN
We began our design process for the RFI database by gathering
user requirements. These were then used to develop a conceptual
database model, which was followed by a logical model. Finally, we
mapped the logical model onto a physical model using a polystore
architecture.

3.1 Requirements Gathering
As a preliminary step, we gathered users’ requirements from a
group of radio astronomers, engineers and computer scientists
with the aid of an online questionnaire. We collated responses from
23 participants on large Google spreadsheet, categorising similar
responses under the same requirement. These requirements were
then mapped onto the database components necessary to support
them, as shown in Table 2.

Table 2: A summary of the RFI database user requirements
and corresponding required database components.

User requirements Database component
1. Input adhoc queries
2. Load raw files Standard API

3. Store metadata
4. Store monitoring data
5. Store archive and reports

Integrated storage

6. Discover unknown RFI
7. Flag and update RFIs Rapid RFI classification

8. Generate occupancy plots
9. Compare new vs. old RFI tests
10. Plan measurements and observations

Timely statistics

Meeting all the user requirements thus requires a standard data-
base API, integrated data stores, rapid RFI classification algorithms



SAICSIT ’19, September 17–18, 2019, Skukuza, South Africa Balekaki and Kuttel, et al.

and computing timely statistics on the RFI data. The first two design
components have to be achieved first, in order to support the other
two. In other words, for rapid classification and timely statistical
analysis to be successful, RFI data needs to be stored effectively in
a database. Therefore, we decided to focus this work on the first
two design components: setting up an integrated RFI database and
building a basic interface using a standard RESTful API.

3.2 Conceptual design
Our conceptualmodel shows a global view of the entire RFI database.
It is used to give a relatively low level understanding of the RFI
data environment. Our design philosophy is to leave data in its
native format, as we model the data to fit the data store. This is
useful because it limits unnecessary transformation of data into
different formats, hence preventing data deterioration. There is
no store for all data structures “one size does not fit all”, therefore
different data structures require distinct store types [21]. The reason
for representing the conceptual model as an embedded structure
which appear as single entity is to provide a simple view of data
in multiple types and, furthermore, to speed up search results as
the number of indexes reduce as both the objects and sub-object
use the same index, unlike in conventional structure where each
object requires a separate index. This implies that both designers
and end-users have fewer objects to deal with, thus reducing the
complexity of the data environment.

Our conceptual design follows a top-down design strategy [17],
identifying the dataset first, and then defining the required data
objects. In this case, our RFI dataset is organised in four main ob-
jects with sub-objects (Figure 3). The main objects are RFI receiver,
FRI transmitter, RFI event and RFI permit. An RFI permit is a docu-
ment issued locally by SKA engineers after thorough measurements
have been taken on a given device emitting RFI; the permit states
the strict conditions under which that device can be used on the
telescope site.

Figure 3: Our conceptual model for an RFI database.

Embedded in each object are sub-objects to store data of similar
structure or type, but under the one entity or container. These sub-
objects represent data of different modality within an object i.e.
relational tables, sparse matrices or array and key-value. All well-
structured RFI data, such as the RFI metadata or ICASA transmitter

data, is represented in relational tables. Text (such as scientists RFI
notes) and images (such as RFI spectral images) are represented as
key-value stores. Time series, spectral domain or multi-dimensional
data (such as RFI spectra data) can be represented in a sparse matrix
model or an array data store.

3.3 Logical design
We represent the logical model with a Unified Modelling Language
(UML) class diagram. UML modelling is widely applied as a stan-
dard which database designers use to represent data graphically.
Further, the UML data modelling method applies well to an object-
oriented modelling problem [30], which is the case for many com-
plex datasets, including RFI data. The UML representation of at-
tributes along with the relationships and participation constraints,
is helpful when designing the physical schema and supports basic
database functionalities like create, read, update and delete (CRUD)
operations. At this stage, we translate the conceptual design into
the logical model and also show class hierarchy among data objects
(Figure 4).

Figure 4: The UML class diagram representing the logical
model of our RFI database.

We show the four main objects, but also show three RFI transmit-
ter categories: intentional, culprit and unknown. These sub-objects
inherit the properties of transmitter objects via transmitter_id,
which acts as both primary and foreign key. Intentional transmitters
are licensed nationally and can legally transmit (except in the radio
quiet zone), culprit transmitters have been detected at the site and
their measurements are taken to establish their harmfulness, these
are allowed to transmit under strict permissions, while unknown
transmitter is one whose source of transmission is unknown, but
we however store related information that might guide us to an
accurate identification. Note that a transmitter can only be of one



A Scalable Database Model of RFI Data for the MeerKAT Radio Telescope SAICSIT ’19, September 17–18, 2019, Skukuza, South Africa

of these three types and only culprits that have been measured
and thoroughly studied can be issued permits. The receiver object
contains receiver metadata, and uniquely identifies each record by
receiver_id. The RFI event object stores event details, such as flags,
timestamps and the frequencies at which these events have been
detected.

Our logical model also represents the design constraints set
by astronomers and engineers regarding RFI data environment at
MeerKAT. For example, a RECEIVER is more likely to capture one
or more RFI EVENTs, whereas an EVENT may be captured by one
or more RECEIVERs; an RFI EVENT belongs to a TRANSMITTER
of either type intentional, culprit or unknown, but each TRANS-
MITTER may emit several RFI EVENTs. A PERMIT can be issued
to a specific TRANSMITTER of type CULPRIT, although each CUL-
PRIT may or may not have a PERMIT. We formulate a sample of
representative queries based on user requirements analysis.

3.3.1 Q1: Return all RFI events in a given band or time period. The
essence of the query is to find the existing RFI events in a given
frequency band or at a particular time period at the site. We specify
a time period or frequency band and return all possible events both
from known sources and unknown sources.

3.3.2 Q2: For a particular RFI event detected, show me related permit
and transmitter details. The output of the query seeks to provide
astronomers with the permit detail for a particular RFI event, and
its likely source.

3.3.3 Q3: Given a receiver, return all captured RFI events in a given
time frame or frequency band. The essence of the query seek to
enable users to study the behaviour of RFI events that are captured
by two or more receivers.

3.3.4 Q4: Return all RFI events whose transmission is unknown. This
process assists astronomers to quickly build related information on
any unknown events.

3.4 Physical model: polystore architecture
A polystore architecture spans many data stores, and many data
models. We adopt the polystore prototype developed at MIT known
as BIGDAWG polystore [22]. The bigdawg store comes has three
categories for data stores: PSQL, Accumulo, and SciDB. RFI data
is stored in each of the data stores, while being exposed to an in-
tegrated API. The polystore communicates to each of these stores
the help of shims, which translate transactions to and from a com-
mon middleware language, whereas casts are used to move datasets
or intermediate results from one system to another as a result of
cross-platform querying. In other words, polystore queries select
the system that will be responsible for executing different clauses
in a query.

Figure 5 illustrates the polystore architecture that we used for
RFI storage. We categorise the RFI dataset depending on its native
structure (i.e. structured, semi or unstructured). All structured data,
like RFI metadata, is stored in relational tables with Postgres (PSQL).
Semi or unstructured RFI data (such as text, images and reports)
are stored in key-value stores with accumulo. Spectral and time
series data are stored in the SciDB array database. Engineers load

Figure 5: A polystore database prototype for storing RFI
data.

the data during RFI monitoring and detection, while scientists can
perform quick searches and detailed analyses.

4 IMPLEMENTATION
We use Docker containers to deploy the database model. Docker is
a container-based virtualisation technology where isolated appli-
cations are created, deployed and executed [31]. This technology
enables creation of a system that houses several Docker containers
working under the same cluster and able to interact with each other
or even between applications. Docker containers are preferable to
a Virtual Machine (VM) because several containers can run on the
same host and share the OS kernel with other containers, without
affecting the host machine. A VM environment requires more time
and space, since it has to fully boot the individual OS kernel per VM.
Docker has other advantages too: it is portable (an application and
all its dependencies can be bundled into a single container that is
independent from the host OS kernel version, platform distribution
or deployment model), lightweight (Docker requires minimal re-
sources, as its images are very small) and fast. This facilitates rapid
delivery and reduces the time to deploy an application. Docker is
considered to be the most efficient environment for running multi-
ple applications which suffer from integration and interoperability
complexities [32].

We use Docker (version 18.09.3, build 774a1f4) to house three
databases applications as single network cluster, where multiple
containers are distinct database systems, on a single Ubuntu ma-
chine of 8GB RAM and 1TB disk capacity. We set up the polystore
cluster using bigdawg as provided on the github repository. The
cluster comes with a number of containers, each with a distinct
image of the database application. Docker helps us to emulate an
environment where RFI data is processed using several applications
and stored in many locations or machines. This setup is the most
suitable option for deploying the RFI database model.

4.1 Storage setup
Each data store is setup using Docker containers with container_id,
image, status and ports on our prototype bigdawg cluster, as follows.



SAICSIT ’19, September 17–18, 2019, Skukuza, South Africa Balekaki and Kuttel, et al.

CONTAINER ID IMAGE STATUS PORTS
----------------------------------------------------------------------
00c7b470b91b bigdawg/accumulo Up 2 days 0.0.0.0:42424->42424/tcp
bda4cdd25c55 bigdawg/accumulo Up 2 days 0.0.0.0:9999->9999/tcp,
0.0.0.0:50095->50095/tcp
f603766fc514 bigdawg/accumulo Up 2 days 0.0.0.0:9997->9997/tcp
7f6028a02169 bigdawg/accumulo Up 2 days 0.0.0.0:2181->2181/tcp
0acad648c758 bigdawg/accumulo Up 2 days
a0205e6d792f bigdawg/scidb Up 2 days 0.0.0.0:1239->1239/tcp
f42f3eccc818 bigdawg/postgres Up 2 days 0.0.0.0:5402->5402/tcp
120e6d7700ea bigdawg/postgres Up 2 days 0.0.0.0:5401->5401/tcp
b6ce75af201e bigdawg/postgres Up 2 days 0.0.0.0:5400->5400/tcp,
0.0.0.0:8080->8080/tcp

Each container must be up and running to enable access of data
within, or between, containers. The bigdawg cluster comes with
list of 9 containers of three database categories i.e postgres, scidb or
accumulo. Being a cluster of containers, we can have as many con-
tainers as possible and we can tailor each container as a data store
to match our data requirement. We keep record of the data store
or container_id as we create as many databases and data objects
as possible. This is helpful especially when queries are fetching
data, as a transaction is mapped by store and engine_id. Each is
container is identified by the data store and engine number. Table
?? shows a list of data stores with their corresponding engines. We
have up to six data stores and four engines, each identified by dbid
and engine_id, respectively. Each data store can be accessed locally
or remotely through the RESTful API, using CURL commands.

dbid engine_id name userid password
0 0 rfi_catalog postgres test
1 0 rfi_schemas postgres test
2 1 rfi_data1 postgres test
3 2 rfi_data2 postgres test
4 3 scidb_local scidb scidb123
5 4 accumulo bigdawg bigdawg

We also set up the catalog to store not only RFI data, but also clus-
ter information or a system catalog. For example, inside a system
catalog we derive information on engines, databases, data mod-
els whereas data about RFI data objects can also be found in the
same catalog. In practice, most of the RFI data is stored in the ac-
cumulo and scidb data store. For example, in accumulo data store,
we maintain 2500 rows of data, each row has a key, columnfamily,
columnqualifier, timestamp and value. For scidb, we maintain four
2-dimensional array tables i.e. 1st array matrix 158,351 by 8, 2nd
316,703 by 8, 3rd 633,407 by 8 and 4th 1,266,814 by 8.

Table 3: showing database objects each location

oid object_name logical_db physical_db
1 rfi1.metadata 0 1
2 rfi1.permit 4 5
3 rfi1.transmitter 4 5
4 rfi1.receiver 4 5
5 rfi1.rfievent 4 5
6 rfi1.measurement 3 4

The physical_id specifies the database number where the object
resides, while the logical_id signifies the number of the engine of

the corresponding data store. For example, transmitter data can be
found in the accumulo data stores running on the acummulo engine.
RFI metadata is found in the catalog database running on postgres.
The importance of providing location information about each data
object in the database is to ensure a self-describing database.

4.2 Standard API
The Docker API is set up on the docker containers to be accessible
remotely as well as locally. We test the API’s ability to pick data
from a native data model (native-island) and across different models
(i.e. cross-island). We use the standard RESTful CURL command
to POST our query criteria in form of data through a URL to and
from a docker cluster, while specifying a client’s local or remote IP
address and port number. For example:

4.2.1 Native island query: Return all transmitters and their related
permits details like issue and expiry date. The essence of the query
is to assist astronomers to retrieve information on transmitters that
are not permitted to transmit, and, if allowed, look up the permit
restrictions.

curl -trace-time -X POST -d "bdtext(
'op' : 'scan', 'table' : 'testdb1', 'range' :
'start' : ['t001','',''], 'end' : ['t004','',''] );"
http://localhost:8080/bigdawg/query/

The query will post data to respective data objects with the help
information stored in the islands. In this case, the data returned
is categorised by column family of transmitter type i.e. culprit,
intentional or unknown. Some of the information returned includes
transmitter’s name, type, band, permit’s expiry date as well as
transmitter gps location.

t001 culprit:band hera
t001 culprit:endfreq 120
t001 culprit:name Electric Fences at Klipkolk and Lynxkolk
t001 culprit:number cul01
t001 culprit:permitid pmt01
t001 culprit:reportdate 27/03/2013
t001 culprit:reporturl https://drive.google.com/open?id=0B2RwlFv0BXHqZTN1QVc5WDJWbGM
t001 culprit:startfreq 150
t001 gps:Klipkolk -30.438867, 21.120959
t001 gps:Lynxkolk 30.438762, 21.120238
t001 permit:certificate A
t001 permit:startdate 01/01/2013
t001 permit:startexpiry 01/01/2014
t002 intentional:band Broadcasting (FM radio) band
t002 intentional:endfreq 108
t002 intentional:name sabc radio - KFM
t002 intentional:number int01
t002 intentional:startfreq 87.5
t003 unknown:band broadcasting
t003 unknown:endfreq 109
t003 unknown:name unknown
t003 unknown:notes this transmitter is unknown since 2009
t003 unknown:number unk01
t003 unknown:startfreq 106

4.2.2 Cross-island query: Display each transmitter with measure-
ment details, where transmitter type is culprit. The purpose of this
query is to assist in assessing the measurement carried out on each
culprit transmitter before it is issued a permit and allowed on the
site.

curl -X POST -d "bdrel(
SELECT * FROM bdcast(
bdarray(filter(culprit_measurement,i<=6)), resultant,
'(culpritNo int64, testNo int, startFreq double,
endFreq double, band string)', relational))"
http://localhost:8080/bigdawg/query/



A Scalable Database Model of RFI Data for the MeerKAT Radio Telescope SAICSIT ’19, September 17–18, 2019, Skukuza, South Africa

The query will first filter from culprit measurement array data, then
cast the resultant into a relational table showing culprit number,
test number, start frequency, end frequency and frequency band. In
this case, the query utilises two different islands i.e the array and
relational in which the final result is displayed.

culpritNo | testNo | startFreq | endFreq | band
------+-----------+-----------------+----------+----------

c001 | 1 | 30 | 40 | none
c001 | 2 | 80 | 70 | none
c001 | 3 | 90 | 80 | none
c001 | 4 | 180 | 67 | Hera
c002 | 1 | 30 | 300 | none
c002 | 2 | 756 | 756 | none

5 RESULTS
We test the database on prototype for query speed and ingest speed.
Ingest speed refers to the speed at which data of different sizes is
loaded into a table or data object. Table 4 illustrates the number of
inserts an object can take per second. We conducted four tests to
measure how themodel scales as the data size grows. In the first test,
test1, we created a text file with 250 lines of insert commands. Each
command inserted different data type. In test2, test3 and test4, we
increased the inserts to 500, 750 and 1000 inserts, respectively. Each
file is executed with a command at the accumulo terminal. Each
successful insert returns a timestamp, which we use to compute the
time between the first and last insert. This test aims to real-time
inserts, such as data from onsite RFI monitoring. We find an average
of 16 insert rate (inserts per second), which implies 960 inserts in
a minute. However, as the number of inserts increases, the insert
rate also increase, as shown in Figure 6b.

Table 4: Showing number of inserts per seconds

test inserts seconds inserts/second
test1 250 15.79 15.83
test2 500 31.20 16.03
test3 750 45.86 16.35
test4 1000 60.92 16.41

average 16.15

Similarly, we tested ingest speed for our prototype by loading
measurement data of varying size into array stores. In test5, 5 MB
of measurement data was modelled into a CSV file, which loads
directly into an array schema. This was repeated in test6, test7
and test8 with file size doubling with each successive test i.e 5 MB,
10 MB, 20 MB and 40 MB (Table 5). On average, we observe that

Table 5: Showing ingest rate as load increases

test load size (MBs) seconds ingest rate (MBits/sec)
test5 5.07 0.328 15.46
test6 10.15 0.678 14.97
test7 20.29 1.249 16.24
test8 40.58 2.087 19.44

average 16.53

about 1GB data file can load in a minute, and as file size doubles,

ingest time increases by a similar magnitude, thus load size varies
proportionally with ingest time. This observation is in accordance
with the inherent principles on which scalable databases have been
built i.e to be able to scale with the load, unlike conventional model
where the behaviour is expected to show a deterioration as the load
ingested increases. In general for these databases, the ingest rate
increases as the load size increases, as shown in Figure 6a.

(a) Ingest speed

(b) Inserts per seconds

(c) Query execution time

Figure 6: Performancemeasurements on the database proto-
type.



SAICSIT ’19, September 17–18, 2019, Skukuza, South Africa Balekaki and Kuttel, et al.

Finally, Figure 6c graphs the query speeds for different categories
of query i.e queries that select or scan all records, queries that
project a specific table view and queries that return records while
certain conditions hold. It is evident that the selects all command
that scans the entire records requires longer execution time than the
other two queries. However, on second and third test, the execution
time drops, while it remains constant for the other categories. The
reduction in execution time may be explained in form of memtables
that are designed in distributed databases built on shared-nothing
architecture. They provide temporary memory to hold data indexed
for some time before being flushed out.

6 CONCLUSIONS
In order to address the challenges astronomers at MeerKAT en-
counter while trying to store and access RFI datasets, we have
provided both conceptual and logical designs for a database based
on the underlying principle of many databases, many data models.
We have implemented a prototype of the database model into the
Docker environment. Preliminary tests showing linearly scaling
of data ingestion as data sizes increases and fast queries. These
preliminary tests are limited to that of a single Linux Box loaded
with Docker, however we plan to expand this to multiple machines
or multiple cloud try to emulate a real-life data intensive environ-
ment. Further tests on our database model will aim to establish
the number of users database can support and test for how eas-
ily a database that is distributed across a number of nodes either
on cloud or servers can be updated. Finally, we find the polystore
model to be a good choice for scalable datasets such as RFI data.

REFERENCES
[1] F. Camilo., et al. Revival of the Magnetar PSR J1622–4950: Observations with

MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR. The Astro-
physical Journal, 856(2):180, apr 2018. doi: 10.3847/1538-4357/aab35a. URL
https://doi.org/10.3847%2F1538-4357%2Faab35a.

[2] UN Task Team. The Big Data Revolution for Sustainable Development. UN stats,
March 2017.

[3] R. D. Ekers and J. F. Bell. Radio Frequency Interference. In The Universe at Low
Radio Frequencies, IAU Symposium, volume 199. IAU, February 2000.

[4] Independent Communications Authority of South Africa (ICASA). National
Radio Frequency Plan 2013. Technical Report 36336, Republic of South Africa.

[5] G. Bianchi. Medicina Radio Astronomical Station, May 2016. URL http://www.
med.ira.inaf.it.

[6] John M. Ford and Kaushal D. Buch. RFI mitigation techniques in radio astronomy.
In 2014 IEEE Geoscience and Remote Sensing Symposium, pages 231–234, July 2014.
doi: 10.1109/IGARSS.2014.6946399.

[7] Fridman, P. A. and Baan, W. A. RFI mitigation methods in radio astronomy.
Astronomy & Astrophysics, 378(1):327–344, 2001. doi: 10.1051/0004-6361:20011166.
URL https://doi.org/10.1051/0004-6361:20011166.

[8] R. P. Millenaar and A. J. Otto. Innovations in instrumentation for RFI monitoring.
In 2016 Radio Frequency Interference (RFI), pages 65–68, October 2016. doi: 10.
1109/RFINT.2016.7833533.

[9] Prashant Kumar. An overview of architectures and techniques for integrated
data systems (IDS) implementation. 2012.

[10] Kamalpreet Singh and Ravinder Kaur. Hadoop: Addressing challenges of Big
Data. In 2014 IEEE International Advance Computing Conference (IACC), pages
686–689, February 2014. doi: 10.1109/IAdCC.2014.6779407.

[11] Peter Buneman. Why Scientists Don't Use Databases. April 2002.
[12] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt,

and Gerd Heber. Scientific Data Management in the Coming Decade. SIGMOD
Rec., 34(4):34–41, December 2005. ISSN 0163-5808. doi: 10.1145/1107499.1107503.
URL http://doi.acm.org/10.1145/1107499.1107503.

[13] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun.
ACM, 13(6):377–387, June 1970. ISSN 0001-0782. doi: 10.1145/362384.362685. URL
http://doi.acm.org/10.1145/362384.362685.

[14] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush,
P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier,

S. Madden, J. Patel, M. Stonebraker, and S. Zdonik. A Demonstration of SciDB: A
Science-oriented DBMS. Proc. VLDB Endow., 2(2):1534–1537, August 2009. ISSN
2150-8097. doi: 10.14778/1687553.1687584. URL https://doi.org/10.14778/1687553.
1687584.

[15] R. Zafar, E. Yafi, M. F. Zuhairi, and H. Dao. Big Data: The NoSQL and RDBMS
review. In 2016 International Conference on Information and Communication Tech-
nology (ICICTM), pages 120–126, May 2016. doi: 10.1109/ICICTM.2016.7890788.

[16] Rick Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec., 39(4):12–27,
May 2011. ISSN 0163-5808. doi: 10.1145/1978915.1978919. URL http://doi.acm.
org/10.1145/1978915.1978919.

[17] Carlos Coronel and Steven Morris. Database Systems: Design, Implementation,
and Management. Cengage Learning, 12 edition, 2016.

[18] T. Li, Y. Liu, Y. Tian, S. Shen, andW. Mao. A Storage Solution for Massive IoT Data
Based on NoSQL. In 2012 IEEE International Conference on Green Computing and
Communications, pages 50–57, November 2012. doi: 10.1109/GreenCom.2012.18.

[19] K. Srivastava and N. Shekokar. A Polyglot Persistence approach for E-Commerce
business model. In 2016 International Conference on Information Science (ICIS),
pages 7–11, August 2016. doi: 10.1109/INFOSCI.2016.7845291.

[20] S. Prasad and S. B. Avinash. Application of polyglot persistence to enhance
performance of the energy data management systems. In 2014 International
Conference on Advances in Electronics Computers and Communications, pages 1–6,
October 2014. doi: 10.1109/ICAECC.2014.7002444.

[21] Zuohao She Adam Dziedzic Tim Mattson, Vijay Gadepally and Jeff Parkhurst.
Demonstrating the BigDAWG Polystore. System for Ocean Metagenomic Analy-
sis. In Creative Commons Attribution, 2017.

[22] V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes, J. Kepner, S. Madden,
T. Mattson, andM. Stonebraker. The BigDAWG polystore system and architecture.
In 2016 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6,
September 2016. doi: 10.1109/HPEC.2016.7761636.

[23] P. Chen, V. Gadepally, and M. Stonebraker. The BigDawg monitoring framework.
In 2016 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6,
9 2016. doi: 10.1109/HPEC.2016.7761642.

[24] Tim Kraska SamMadden TimMattson Jennie Duggan, Aaron Elmore andMichael
Stonebraker. The BigDawg Architecture and Reference Implementation. In New
England Database Day, 2015.

[25] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A Database Manage-
ment System for Applications with Complex Analytics. Computing in Science
Engineering, 15(3):54–62, May 2013. ISSN 1521-9615. doi: 10.1109/MCSE.2013.19.

[26] Wouter Buytaert Marius Appel, Florian Lahn and Edzer Pebesma. Open and
scalable analytics of large Earth observation datasets: From scenes to multidi-
mensional arrays using SciDB and GDAL. ISPRS Journal of Photogrammetry and
Remote Sensing, 138:47–56, April 2018.

[27] Michael Stonebraker Gary Planthaber and James Frew. EarthDB: Scalable Analy-
sis of MODIS Data Using SciDB. In BigSpatial@SIGSPATIAL, 2012.

[28] J. Lee, D. J. Scott, M. Villarroel, G. D. Clifford, M. Saeed, and R. G. Mark. Open-
access MIMIC-II database for intensive care research. In 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pages 8315–
8318, August 2011. doi: 10.1109/IEMBS.2011.6092050.

[29] GEOTRACES. Geotraces.org, January 2017. URL http://www.geotraces.org.
[30] S. de Fatima Poppi Borba. Extending the UML for dimensional models in object-

oriented database. In 16th International Workshop on Database and Expert Systems
Applications (DEXA’05), pages 1150–1154, August 2005. doi: 10.1109/DEXA.2005.
90.

[31] N. Naik. Docker container-based big data processing system in multiple clouds
for everyone. In 2017 IEEE International Systems Engineering Symposium (ISSE),
pages 1–7, October 2017. doi: 10.1109/SysEng.2017.8088294.

[32] W. Velásquez, A. Munoz-Arcentales and J. S. Rodriguez. A case study: Ingestion
analysis of wsn data in databases using docker. In 2018 1st International Conference
on Computer Applications Information Security (ICCAIS), pages 1–6, April 2018.
doi: 10.1109/CAIS.2018.8441979.

https://doi.org/10.3847%2F1538-4357%2Faab35a
http://www.med.ira.inaf.it
http://www.med.ira.inaf.it
https://doi.org/10.1051/0004-6361:20011166
http://doi.acm.org/10.1145/1107499.1107503
http://doi.acm.org/10.1145/362384.362685
https://doi.org/10.14778/1687553.1687584
https://doi.org/10.14778/1687553.1687584
http://doi.acm.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/1978915.1978919
http://www.geotraces.org

	Abstract
	1 Introduction
	2 Related work
	3 Database design
	3.1 Requirements Gathering
	3.2 Conceptual design
	3.3 Logical design
	3.4 Physical model: polystore architecture

	4 Implementation
	4.1 Storage setup
	4.2 Standard API

	5 Results
	6 Conclusions
	References

