
Investigating the effectiveness of client-side
search/browse without a network connection

Hussein Suleman

University of Cape Town, South Africa
hussein@cs.uct.ac.za

http://dl.cs.uct.ac.za/

Abstract. Search and browse, incorporating elements of information re-
trieval and database operations, are core services in most digital reposi-
tory toolkits. These are often implemented using a server-side index, such
as that produced by Apache SOLR. However, sometimes a small collec-
tion needs to be static and portable, or stored client-side. It is proposed
that, in these instances, browser-based search and browse is possible,
using standard facilities within the browser. This was implemented and
evaluated for varying behaviours and collection sizes. The results show
that it was possible to achieve fast performance for typical queries on
small- to medium-sized collections.

Keywords: search · browse · client-side · offline · browser-based.

1 Introduction

Digital library systems are often created by using a toolkit for this purpose, with
many popular toolkits currently available as open source software [7]. DSpace [8]
is a popular example of a toolkit that is often used for institutional repositories
while AtoM [12] is a popular example of a toolkit that is often used for heritage
collection management. Many users are satisfied with the functionality provided
by such toolkits and need look no further for their repository systems.

However, there are particular circumstances where these systems do not work
well. Firstly, in some parts of the world, network access is not as reliable as it
is elsewhere, so purely online systems will be inaccessible to some potential
users (e.g., judges in remote parts of African countries, trying to access case law
on tablets). Secondly, most digital repository tools require technical expertise
for installation and configuration and some users do not have this expertise
or access to experts or the resources to hire expertise (e.g., historians in most
South African universities). Thirdly, in low-resource environments (such as most
poor countries), there is a higher risk with more complex software systems as
long-term maintenance of systems and data collections is more difficult with less
funding and few experts. Fourthly, not everyone needs DSpace - it is clearly
overkill to install DSpace to manage your personal photo album.

The Five Hundred Year Archive (FHYA) [1] is a project attempting to create
an exemplar of material that relates to pre-colonial history in Southern Africa.



2 H. Suleman

The number of resources contemplated is of the order of 10000, and a prototype
AtoM system was configured for this. The project had some difficulty in finding
ongoing developer support as its focus was the data and not the continuing
maintenance of software systems. Arguably, many owners of small archives face
similar problems, as their collections and resources are not large enough to justify
investment in typical repository systems.

This raised the question of whether or not a simpler archiving tool would
suffice for such projects. The development of such a prototype simple archiving
tool began with the central search and browse interface as an experiment to
determine if this could be done without the need for a server at all, using all re-
sources hosted locally and using only the browser for all computation. An earlier
project [9] included a simple HTML search using Javascript, but performance
was not evaluated and the functionality was restricted to Web pages.

This paper reports on the development and evaluation of a general-purpose
offline client-side metadata search and browse system, also referred to as a
faceted search system. The research focus was on feasibility and efficiency. From
a feasibility perspective, the offline tool worked correctly for a small amount of
FHYA test data (approximately 100 items), but it was not known how well this
would work for larger realistic-sized collections. The key research question there-
fore addressed in this paper is: how scalable is this alternative off-line client-side
architecture for search and browse systems?

2 System Design

The search implementation, using an extended Boolean model, was designed in
accordance with typical information retrieval principles, as described in Manag-
ing Gigabytes [14], with browse operations supported through the addition of
database-style indices of all items matching a given term.

Thus, there are 2 sets of indices, both stored as XML documents so they
can be processed using built-in browser facilities. The search index for the term
”study” will contain a listing of identifiers of all items that include the term. The
browse index for the field ”date” with a value of ”1977” will contain a listing
of identifiers of all items where the date field has the value ”1977”. In both
cases, titles for documents are included to support fast single queries without a
separate title listing. Table 1 shows a snippet of a typical browse index. Search
indices are similar, with the inclusion of a weight for each document.

The search system was comprised of 2 applications:

– create index.pl is a Perl script to build the indices required for search/browse
operations. All metadata is read into memory and processed using various
data structures to create inverted indices as well as lists of items for each
browsable field.

– search.js is a Javascript script to execute a search/browse operation and
display results within the browser window. The query is extracted from the
browser’s search form. The necessary search and browse indices are then



Client-side search/browse without a network 3

Table 1. Snippet of typical browse index

<index>

<bif id="571" file="32000/record303578.xml" title="The wages-prices spiral

: a study in distributive shares"/>

<bif id="26332" file="32000/record215502.xml" title="Cerebral palsy"/>

<bif id="1423" file="32000/record212306.xml" title="The waveforms of

atmospherics and the propagation of very low frequency radio waves"/>

<bif id="21682" file="32000/record480241.xml" title="The attitude of the

Tractarians to the Roman Catholic Church, 1833-1850"/>

...

loaded and processed to generate a list of results in order of probable rele-
vance and filtered by the specified browse fields.

The system is configurable in that fields for searching and browsing can
be specified in a configuration file. Nominally, search operations collapse all
fields into a single unstructured piece of text during indexing. The system also
includes the ability to specify/index individual fields and subsets of individual
fields, allowing queries such as “name:Jak” where the source metadata might
have fields named “creator” and “contributor”. This field-based search was not
evaluated in this paper as the specification of a field simply creates a separate
index for that field and this will not affect performance differently from non-
fielded queries.

Figure 1 shows a screen snapshot of the search/browse interface used for
these experiments.

3 Evaluation

A multi-factor design was adopted to evaluate the performance of the system,
considering: size of collection; complexity of search query; complexity of browse
query; and variability in queries.

3.1 Dataset

A dataset with human-assigned metadata fields covering a wide range of topics,
and with some fields having controlled vocabularies, was deemed necessary.

Many heritage collections have somewhat skewed datasets with more items
on some topics than on others.

Electronic thesis metadata, however, has a large amount of variety, as every
record is, to some degree, created by a different individual and the records span



4 H. Suleman

Fig. 1. Screen snapshot of search/browse interface.

many disciplines. ETD metadata was harvested using the Open Archive Initia-
tive Protocol for Metadata Harvesting (OAI-PMH)[4] from the NDLTD Union
Archive1.

517854 records from UK universities were collected – the UK collection was
used because it is a complete record due to a national mandate – in the Dublin
Core format. Records were then randomly extracted to create experimental col-
lection with sizes of 32000, 16000, 8000, 4000 and 2000. For comparability, each
subset was a proper superset of the next smaller subset - so all records in the
2000 item set were contained in the 4000 item set.

Data was stored in individual XML files and each subset was separately
indexed.

3.2 Experimental Design

Table 2 lists the queries used for the search and browse aspects of the experi-
ments. These queries were manually selected such that, in each case, the first
2 returned were moderately popular (at about the 30th percentile), the second
2 were highly popular (at about the 80th percentile) and the final query was
among the most popular terms within the index. These were all chosen by in-

1 NDLTD Union Archive, http://union.ndltd.org/OAI-PMH/



Client-side search/browse without a network 5

specting the index for the 2000 item collection, thus ensuring that the results
would also appear in every other collection.

Table 2. Queries used in experiments. S1-S5 are search terms used. B1-B5 are browse
fields used.

Search/Browse Query terms

Search (single term)

S1: comparative
S2: simple
S3: study
S4: london

S5: university

Search (multiple term)

S1: comparative study
S2: simple relationship
S3: clinical education
S4: disease multiple

S5: london university

Browse (single field)

B1: date=1954
B2: date=1959
B3: date=1977
B4: date=1986
B5: date=2011

Browse (multiple field)

B1: date=1954 and univ=University of Wolverhampton
B2: date=1959 and univ=University of the West of Scotland

B3: date=1977 and univ=University of Southampton
B4: date=1986 and univ=University College London

B5: date=2011 and univ=University of Oxford

For each collection size, 8 experiments were conducted. For each of the ex-
periments, 5 queries appropriate to the experiment were used. Every query was
submitted 5 times, and an average measurement was recorded.

The 8 experiments resulted from varying the complexity of search – either no
term, one term or two terms – and the complexity of the browse – either no fields
constrained, one field constrained or 2 fields constrained. As no experiment was
conducted with neither search nor browse terms, this yielded 8 combinations.

The search system code was instrumented to execute experiments with-
out user involvement but with a simulation of user selection (by manipulating
the HTML DOM to set form values) and unchanged result display within the
browser. Measurement error was minimised by recording times automatically
(using the Javascript Date object) and determining the complete time for all
repititions, followed by finding the average. Results were reported in a browser
window at the end of the process and recorded.



6 H. Suleman

3.3 Results and Discussion

All experiments were run on a Macbook with a 1,3 GHz Intel Core i5 processor, 8
GB of 1867 MHz LPDDR3 RAM, and a solid-state hard drive. Waterfox v56.2.10
was used as a browser - this is a derivative of Mozilla’s Firefox, which allows for
greater developer control. All background applications were kept constant during
the experiments.

After a brief indexing discussion, the detailed results for one collection are
presented and discussed, followed by a comparison of performance across collec-
tions.

Indexing Table 3 shows the time taken to index the different collections. The
indexing time is roughly proportional to the collection size. This is not a major
issue as, in practice, a collection is only indexed after changes are made and
many collections, such as historical collections, are not changed often.

Table 3. Index creation time

Collection Size time (in seconds)

2000 23.57
4000 55.82
8000 68.51
16000 134.99
32000 254.13

Collection Size 16000 Figure 2 illustrates the performance results for the
single/multiple term search and single/multiple field browse for the 16000 item
collection.

For the search queries, the highly popular term “university” appears in al-
most every result, hence takes a long time to process, given the complexity of
the search algorithm. The moderately-popular search terms return results much
faster. Browse operations all take a similar amount of time because the browsing
operation filters the complete list so the work performed is similar in every case.
All operations, including those that process most/all the items in the collection,
return results in less than 500ms.

Table 4 displays the full set of results with all measurements corresponding
to the 16000 item collection. The first 2 columns indicate the complexity of the
search and browse respectively, and the individual entries are for specific query
combinations.

The final column in Table 4 indicates average times for operations with dif-
ferent complexities. These range from 114-213 milliseconds, which is typically



Client-side search/browse without a network 7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1
S

2
S

1
B

2
B

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

queries clustered by complexity

1
2
3
4
5

Fig. 2. Average times for queries of difference complexities. 1S/2S/1B/2B are the query
complexities while the 5 data points within each cluster are the different queries tested.



8 H. Suleman

T
a
b
le

4
.

D
eta

iled
p

erfo
rm

a
n
ce

m
ea

su
rem

en
ts

(in
m

illiseco
n
d
s)

fo
r

a
ll

q
u
ery

co
m

b
in

a
tio

n
s

fo
r

1
6
0
0
0

reco
rd

test
size.

S
=

N
u
m

b
er

o
f

sea
rch

q
u
ery

term
s.

B
=

N
u
m

b
er

o
f

b
row

se
fi
eld

s.
S
1
-S

5
a
re

sea
rch

term
s

u
sed

.
B

1
-B

5
a
re

b
row

se
fi
eld

s
u
sed

.
A

v
g
=

A
v
era

g
e

tim
e

a
cro

ss
a
ll

term
s/

fi
eld

s
fo

r
a

g
iv

en
co

m
p
lex

ity.

S
B

S
1

S
2

S
3

S
4

S
5

A
v
g

B
1

B
2

B
3

B
4

B
5

B
1

B
2

B
3

B
4

B
5

B
1

B
2

B
3

B
4

B
5

B
1

B
2

B
3

B
4

B
5

B
1

B
2

B
3

B
4

B
5

0
1

1
4
2

1
3
7

1
3
3

1
3
9

1
4
2

1
5
5

1
9
0

1
4
8

1
4
3

2
1
8

2
4
1

2
8
5

1
7
2

1
4
2

1
6
0

1
3
8

4
8
9

1
3
7

1
5
5

1
3
5

1
5
4

1
7
2

1
2
9

1
3
0

1
5
4

1
7
4

0
2

1
7
1

3
4
3

5
4
5

1
1
8

1
5
8

1
5
5

1
9
3

3
0
6

1
7
5

1
9
0

2
5
9

1
6
9

1
5
7

1
3
9

3
1
4

1
8
4

1
5
6

1
7
9

2
6
4

1
9
3

1
6
6

1
8
7

3
0
0

1
3
3

1
7
7

2
1
3

1
0

2
4

2
0

2
5

4
4

2
1

2
9

3
8

3
5

3
0

7
6

1
3
4

6
7

6
3

6
8

8
3

5
8

5
1

5
2

5
8

5
1

4
4
2

3
6
6

3
4
4

3
3
2

3
4
9

1
1
4

1
1

2
6

2
0

2
0

3
6

2
6

2
1

3
1

3
8

2
4

4
0

8
8

8
1

2
0
2

1
4
6

2
2
3

1
6
2

7
2

5
6

9
0

8
3

4
1
0

3
7
2

3
9
8

3
9
4

3
6
1

1
3
7

1
2

1
6

1
3

1
8

1
9

2
5

1
4

1
5

1
9

2
0

2
7

1
0
1

5
8

5
4

5
7

6
8

6
0

6
7

8
7

7
7

7
0

7
7
2

3
5
7

4
6
2

4
0
3

5
0
3

1
3
5

2
0

1
1
9

8
0

8
9

8
0

7
8

6
7

5
6

5
9

1
2
4

3
6

3
2

3
1

3
0

3
2

3
4

3
4

3
0

4
5

3
3

3
2

3
9
2

4
8
0

4
7
0

5
1
3

4
5
4

1
3
7

2
1

1
5
4

1
1
9

8
5

9
9

1
2
7

5
3

5
6

7
7

6
3

4
1

2
8

2
2

2
9

3
1

4
0

2
9

4
4

3
4

3
9

4
9

4
8
0

4
3
1

4
5
9

5
0
7

3
9
0

1
3
9

2
2

6
8

7
6

7
2

1
1
7

9
4

9
5

3
9

8
5

1
5
0

1
8
2

2
5

2
3

2
7

2
9

3
6

2
9

2
8

3
2

4
7

5
0

4
9
8

4
2
2

5
2
7

4
1
0

5
5
3

1
4
9



Client-side search/browse without a network 9

adequate as a response time for users. The highest values in the table are re-
lated to the S5 (“university”) columns , and the first 2 browse operation rows
with no preceding search filter; these all process the largest number of items
before returning results to the user so the performance is understandable.

All Collections Figure 3 illustrates the performance results for the single/multiple
term search for all collections, for the specific terms “study” and “clinical educa-
tion”. The “study” broader term appears in most documents in larger collections
and therefore there is a clear increase in processing time. The more specific query
appears in fewer documents and therefore has a less predictable outcome. Over-
all, all results are processed within 150ms.

 0

 20

 40

 60

 80

 100

 120

 140

 160

2
0

0
0

4
0

0
0

8
0

0
0

1
6

0
0

0

3
2

0
0

0

ti
m

e
 i
n

 m
ill

is
e

c
o

n
d

s

collection size

study
clinical education

Fig. 3. Average times for search queries of difference complexities across all collection
sizes.

Figure 4 illustrates the performance results for the single/multiple field browse
for all collections, for the queries “year=1977” and “year=1977 and univ=University
of Southampton”. There is a general trend towards increasing times for larger
collections, with some specific variation because of the random sample. Overall,
all responses are processed within 350ms. This longer time is due to the entire
list of results being filtered, with no pre-filtering from a search query.

Figure 5 illustrates the performance results for combinations of single/multiple
term search and single/multiple field browse for all collections, for the same
queries as in the prior figures. The single generic search term “study”, when



10 H. Suleman

 0

 50

 100

 150

 200

 250

 300

 350

2
0

0
0

4
0

0
0

8
0

0
0

1
6

0
0

0

3
2

0
0

0

ti
m

e
 i
n

 m
ill

is
e

c
o

n
d

s

collection size

1977
(1977, University of Southampton)

Fig. 4. Average times for browse queries of difference complexities across all collection
sizes.

combined with one or more browse fields, yields longer processing times in many
cases. The specific search query “clinical education” is more constrained, with far
lower processing times, irrespective of the browse fields specified. All operations
are, however, completed within 300ms.

On average, even for collections with 32000 items, complex search and browse
combination queries were successfully processed in less than half a second. Clearly,
the query outliers will result in longer times, but this performance is likely to be
adequate for most users interacting with a faceted search system.

4 Related Work

One of the earliest works that demonstrates the notion of simple and static
repositories is Project Gutenberg [2], which is an online repository to distribute
out-of-print and free ebooks. The core system that manages the data is simple
and does not rely on typical archiving tools. All data is required to be in simple
formats, even though more advanced formats may be included as well.

The Greenstone project [13] pioneered the idea of a digital library system
that could be used offline, where collections were indexed and distributed on
CDROM. The technology used to create this experience required the installation
of a specific operating system’s Web server on the user’s computer. While the
Greenstone approach was innovative and addressed the needs of low-resource



Client-side search/browse without a network 11

 0

 50

 100

 150

 200

 250

 300

2
0

0
0

4
0

0
0

8
0

0
0

1
6

0
0

0

3
2

0
0

0

ti
m

e
 i
n

 m
ill

is
e

c
o

n
d

s

collection size

study,1977
study,1977,University of Southampton

clinical education,1977
clinical education,1977,University of Southampton

Fig. 5. Average times for faceted search/browse queries of difference complexities
across all collection sizes.

environments, it predated the advanced browser technology currently available
and exploited in this project.

The SimplyCT project [5][10] tried to define an alternative design approach
for digital repositories in low resource environments, such as most African coun-
tries. This was exemplified in the Bleek and Lloyd archive, which was completely
static and contained a simple HTML-based search service that worked within
the browser [9]. Additional experiments with different repositories showed that
static file stores could work for a wide range of repository requirements [11][6].

The Open Archives Initiative encouraged the use of simple solutions. While
its flagship OAI-PMH standard is considered to embody many of the simplicity
principles, the OAI also showed that this could be taken a step further to create
static repository snapshots, enabling interoperability among even participants
with little infrastructure [3].

5 Conclusions and Future Work

This experiment sought to investigate the performance of a search and browse
system based completely within a browser, with no network connection and no
software installation necessary. Using Javascript, such a system is clearly possible
with data that is pre-indexed and stored in XML files. The results from extensive
experimentation show that such a system has reasonable performance for typical
operations on a small- to medium-sized collection.



12 H. Suleman

Most operations completed within half a second, even on a 32000 item col-
lection. This suggests that this offline approach may even work on collections
of up to 100000 items in an acceptable amount of time. Given its advantages
of portability, simplicity and network-independence, this can provide a useful
alternative to indexing systems like Apache SOLR in specific situations.

On reflection, this experiment exploits advances in hardware and browser
software in order to overcome other environmental limitations, like expertise,
funding and Internet connectivity. It is an attempt to use the latest technological
advances to address the limitations of low-resource environments.

Future work may include the use of JSON instead of XML for data storage.
This may result in a constant factor improvement, due to small data sizes and
faster parsing. Also, partitioning of the index files is being considered to support
faster loading of initial results for simpler queries; this may help to address some
of the slow browse operations that filter large result sets.

Acknowledgements

This research was partially funded by the National Research Foundation of South
Africa (Grant numbers: 85470 and 105862) and University of Cape Town. The
authors acknowledge that opinions, findings and conclusions or recommendations
expressed in this publication are that of the authors, and that the NRF accepts
no liability whatsoever in this regard.

References

1. Culture, A..P.: The five hundred year archive,
www.apc.uct.ac.za/apc/research/projects/five-hundred-year-archive

2. Hart, M.: The history and philosophy of project gutenberg. Project Gutenberg 3,
1–11 (1992)

3. Hochstenbach, P., Jerez, H., Van de Sompel, H.: The oai-pmh static repository
and static repository gateway. In: Proceedings of the 3rd ACM/IEEE-CS joint
conference on Digital libraries. pp. 210–217. IEEE Computer Society (2003)

4. Lagoze, C., Van de Sompel, H.: The open archives initiative: Building a low-barrier
interoperability framework. In: Proceedings of the 1st ACM/IEEE-CS joint con-
ference on Digital libraries. pp. 54–62. ACM (2001)

5. Phiri, L.: Simple digital libraries. Ph.D. thesis, University of Cape Town (2013)
6. Phiri, L., Williams, K., Robinson, M., Hammar, S., Suleman, H.: Bonolo: A general

digital library system for file-based collections. In: International Conference on
Asian Digital Libraries. pp. 49–58. Springer (2012)

7. Pyrounakis, G., Nikolaidou, M., Hatzopoulos, M.: Building digital collections using
open source digital repository software: A comparative study. International Journal
of Digital Library Systems (IJDLS) 4(1), 10–24 (2014)

8. Smith, M., Barton, M., Bass, M., Branschofsky, M., McClellan, G., Stuve, D., Tans-
ley, R., Walker, J.H.: Dspace: An open source dynamic digital repository (2003)

9. Suleman, H.: Digital libraries without databases: The bleek and lloyd collection. In:
International Conference on Theory and Practice of Digital Libraries. pp. 392–403.
Springer (2007)



Client-side search/browse without a network 13

10. Suleman, H.: An african perspective on digital preservation. In: Multimedia Infor-
mation Extraction And Digital Heritage Preservation, pp. 295–306. World Scien-
tific (2011)

11. Suleman, H., Bowes, M., Hirst, M., Subrun, S.: Hybrid online-offline digital collec-
tions. In: Proceedings of the 2010 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists. pp. 421–425. ACM
(2010)

12. Van Garderen, P.: The ica-atom project and technology. In: Third Meeting on
Archival Information Databases.(16-17 julio 2009: Rio de Janeiro). Trabajos pre-
sentados. Rio de Janeiro: Association of Brazilian Archivists (2009)

13. Witten, I.H., McNab, R.J., Boddie, S.J., Bainbridge, D.: Greenstone: a compre-
hensive open-source digital library software system (2000)

14. Witten, I.H., Witten, I.H., Moffat, A., Bell, T.C., Bell, T.C., Bell, T.C.: Managing
gigabytes: compressing and indexing documents and images. Morgan Kaufmann
(1999)


