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Abstract

The social brain hypothesis posits that the evolution of big
brains (neural complexity) in groups of social organisms
is the evolutionary result of cognitive challenges associated
with various complex interactions and the need to process and
solve complex social tasks. This study aims to investigate
the environmental and evolutionary conditions under which
neural complexity evolves without sacrificing collective be-
havioral efficacy. Using an evolutionary collective robotics
system this research evaluates the impact of imposing a fit-
ness cost on evolving increased neural complexity in robot
groups that must operate (accomplish cooperative tasks) in
environments of varying complexity. Results indicate that for
all environments tested, imposing a cost on neural complex-
ity induces the evolution of smaller neural controllers that are
comparably effective to more complex controllers.

Introduction
The fitness costs of evolving neural complexity (neural
tissue) needed for socially adaptive behaviour are critically
important to brain evolution (Azevedoand and Houzel,
2012). Various neuroscience studies have demonstrated
that increased neural complexity is metabolically expen-
sive (Laughlin et al., 1998), though there are conflicting
hypotheses about how the increased fitness costs of larger
brain sizes (increased neural complexity) is compensated
for in evolution (Armstrong, 1983), (Isler and van Schaik,
2009). Also, the environmental and evolutionary conditions
driving the evolution of such complexity in the first place
remains an open question (Fisher, 1930).

In some species of organisms it is hypothesized that
evolved brain size (neural complexity) is correlated to the
size, structure and complexity of social groups formed
by such species (Dunbar and Shultz, 2007). The social
brain hypothesis posits that the evolution of such neural
complexity is a result of the cognitive challenges associated
with varied and complex interactions and the need to
process complex social information (Dunbar, 2009).

Studies of various social organisms including ant colonies
(Kamhi et al., 2016), have supported the social brain hy-

pothesis via demonstrating that socially complex behavior
such as division of labor and cooperation (collective
intelligence) are likely driving forces of brain complexity
evolution. However, there is also contradictory evidence in
such studies as related work on other ant species (Feinerman
and Traniello, 2016) elucidated the evolution of smaller
brains (lower neural complexity) in groups of workers that
were still able to collectively perform complex collective
behaviors that supported and benefited the colony. In both
cases, the exact impact of the environment and complexity
of cooperative tasks (supporting group survival), on the
evolution individual neural complexity and thus the group’s
social complexity, remains little investigated and unclear in
the context of natural and artificial life (Yaeger, 2009).

This research takes inspiration from such evolutionary
biology studies, and uses collective evolutionary robotics
(Doncieux et al., 2015) as an experimental platform to test
the impact of varying environment complexity (collective
behavior task difficulty) on the evolution of neural com-
plexity. This study tests the social brain hypothesis using
robot groups, where behaviors are specified by evolved
neural controllers and robots interact to cooperatively solve
collective gathering tasks. Thus, we evaluate the impact
of imposing fitness costs on evolving neural complexity in
robot groups that must solve increasingly difficult collective
gathering tasks, where task difficulty is the degree of
cooperation needed for task accomplishment.

In this study, the cost of evolving increased robot neural
controller complexity is tantamount to metabolic energy
costs associated with increased brain sizes in nature (Arm-
strong, 1983; Laughlin et al., 1998; Isler and van Schaik,
2009). This study’s core motivation is the general lack of
understanding (across various fields including evolutionary
biology and robotics) of how environment driven necessity
for social complexity (for example, emergent collective
behaviors and social structure in groups) impacts brain size
and structure (Farris, 2016).



Various approaches for evolving neural complexity have
been studied in related research topics such as computa-
tional ecologies, where for example, Williams and Yaeger
(2017) demonstrated complexity evolution without explicit
fitness costs. Fitness cost impact on complexity evolution
has also been demonstrated in simulated sensor systems
(Seth and Edelman, 2004), and with neural modularity
(Clune et al., 2013; Lowell and Pollack, 2014). However,
there are few evolutionary collective robotics studies that
investigate the impact of environment complexity on evolv-
ing controllers given a complexity cost (Doncieux et al.,
2015). This is significant as evolutionary collective robotics
(Bredeche et al., 2018) allow experimenters to investigate
competing hypotheses pertinent to, but not readily testable
in natural social systems. That is, the social brain hypothesis
is more suitably evaluated in embodied cognition systems
such as evolutionary robotics given that such systems can
readily implement controlled and testable distributed and
embodied theories of cognition (Barrett et al., 2007).

This study thus aims to elucidate the advantages and
disadvantages of imposing a fitness cost on evolving con-
troller complexity (neural connectivity) in an evolutionary
collective robotics system (Doncieux et al., 2015). Neural
complexity is defined by evolved controller topology (con-
nectivity between sensory, hidden and output nodes) and
evaluation was evolved collective gathering behavior task
performance. Given this and the social brain hypothesis, we
formulated the following research objective.

To evaluate the impact of fitness costs on evolving neural
controller complexity given increasing collective behavior
task difficulty in collective robotics. We thus aim to ascer-
tain if the social brain hypothesis holds for an evolutionary
collective robotics system that must operate and accomplish
cooperative tasks in environments of varying complexity.

Methods
This study evaluated NEAT-M (Hewland and Nitschke,
2015) controller-morphology neuro-evolution versus the
NEAT-M-MODS multi-objective extension. Both methods
co-adapted robot Artificial Neural Network (ANN) con-
trollers and sensory-morphologies for given tasks. Groups
were homogenous as the same behavior-morphology adap-
tations were applied to all robots in a group. Behavior-
morphology evolution with NEAT-M-MODS included a
neural complexity cost (section: Neural Complexity), im-
posed during neuro-evolution. This was represented as the
minimization of neural complexity, in company with the
maximization of collective gathering task performance, as
part of multi-objective optimization. These objectives thus
encouraged the evolution of minimally complex and behav-
iorally effective neural controllers. NEAT-M was compara-
tively evaluated, where it only maximized collective gather-

ing task performance, in order to ascertain the impact of a
neural complexity cost during evolution.

NEAT-M-MODS: Overview
Neuro-Evolution for Augmenting Topologies (NEAT)-M-
MODS is a multi-objective extension of NEAT-M (Hewland
and Nitschke, 2015) and NEAT-MODS (Abramovich and
Moshaiov, 2016). NEAT-M evolves a direct encodings
of both robot ANN controllers and morphologies (ANN
connections to sensory input nodes constituting a robot’s
sensory configuration). NEAT-M-MODS supersedes the
core functionality of NEAT-M (Hewland and Nitschke,
2015) via including an NSGA-II based Multi-Objective
Evolutionary Algorithm (Abramovich and Moshaiov, 2016),
that uses multiple objectives to direct the evolutionary pro-
cess of NEAT (Stanley and Miikkulainen, 2002).

NEAT-M-MODS initializes a genotype (controller-
sensor) population, computes each genotype’s score vector
(multi-objective fitness), speciates the population and com-
putes a rank for each genotype based on non-dominated
sorting and crowding distance comparisons (Doncieux and
Mouret, 2014). This process, evolutionary operators and
parameters are detailed in Furman et al. (2019) and NEAT-
MODS is described in Abramovich and Moshaiov (2016).

Neural Controller-Sensor Evolution
For both neuro-evolution methods (NEAT-M, NEAT-M-
MODS), robots began with a minimal sensory configuration
of five sensors (one of each type), each sensor corre-
sponding to a controller input node. Input nodes were
fully connected to two motor output nodes (figure 1, left).
Connections were randomly initialized and without any
hidden layers and controllers subject to complexification
during neuro-evolution. Controllers used sigmoidal (Hertz
et al., 1991) hidden and output nodes and all sensory inputs
were normalized to the range: [0.0, 1.0].

Figure 1 (center-left) presents the initial robot controller-
sensory configuration used as an evolutionary starting
point for both NEAT-M and NEAT-M-MODS. This initial
controller-sensor configuration (motor outputs were fixed
during evolution) was selected so as robots performed some
useful behaviors at the start of the evolutionary process.
The possible sensor types were: (1) Ultrasonic, (2) Infrared
Proximity, (3) Color, (4) Low Resolution Camera, and (5)
Gathering Zone Detector (table 1). These sensors were
selected as they are typically available for the Khepera III
mobile robot (Lambercy and Tharin, 2013). Parameters
for all sensor types were perturbable by mutation operators
that add and remove sensors (of a given type), as well as
modify, add and remove ANN connection weight values,
add and remove weight connections to sensors, and change
sensor positions and orientations (on the robot’s periphery).



Table 1: Experiment and Simulation Parameters

Block size
Small 0.01 x 0.01
Medium 0.015 x 0.015
Large 0.02 x 0.02

Sensor types : Range / FOV

Ultrasonic (0.0, 1.0] / (0.0, π)
Infrared Proximity (0.0, 0.4] / (π/6, 5π/6)
Color (0.0, 0.4] / (π/6, 5π/6)
Low Res Camera (0.0, 0.8] / (π/9, 8π/9)
Gathering Zone Detection Bottom facing

Sensor bearing range [−π, π] Radians
Sensor orientation range [−π/2, π/2] Radians
Robot lifetime (Time-steps per simulation task trial) 10000
Robot group size 20
Robot size (Diameter) / Gripping distance / Speed (per time step) 0.004 / 0.002 / 0.013
Initial robot / block positions Random (Outside gathering zone)
Environment width x height / Gathering zone size 1.0 x 1.0 / 0.5 x 0.2
Minimum / Maximum number of sensors 1 / 10

Task environments (Blocks: small, medium, large)
Simple 10, 5, 0
Medium 5, 5, 5
Difficult 0, 5, 10

Cooperation needed for block pushing
Small 1 Robot
Medium 2 Robots
Large 3 Robots

Figure 1: Left: Initial robot controller connecting 5 sensors to 2 actuators. Center-Left: Robots were initialized with one ultrasonic, infrared
proximity, color, gathering zone detector (bottom proximity) sensor and one low-resolution camera. Wheel motors were fixed throughout
controller evolution. Center-Right: Example robot with one sensor. Position determines sensor location on the robot’s chassis with respect to
the robot’s heading. Orientation is then sensor direction with respect to this position. By default, a robot’s heading is forward facing (parallel
to its wheels). Right: Environment with 20 robots and distributed blocks. The gathering zone containing gathered blocks (blue squares) is
highlighted at the bottom. Sensory parameters (type, position, orientation, field of view and range) are highlighted as shaded semi-circles.

Mutation operators are presented in Furman et al. (2019).
The parameter-set for each sensory input node is: Sensor
Type, Field of View (FOV), Range, Position, and Orienta-
tion. Figure 1 (center), presents an example robot with one
sensor and an illustration of sensor parameters.

Neuro-evolution was driven by genetic, that is, crossover
and mutation operators. These operators adapted ANN
connection weights and added or removed hidden or input
nodes. This adapted the number of sensors or otherwise per-
turbed sensor parameters. At each generation (of NEAT-M
and NEAT-M-MODS), either crossover or mutation oper-
ators were applied with a given degree of probability. The
crossover and mutation operators are described in previous
work (Hewland and Nitschke, 2015; Furman et al., 2019).
If a new sensor was added (add sensor operator) it was
placed at a given minimum position distance between two
randomly selected sensors already on the robot’s chassis.
If there was only one sensor currently on the robot’s body
the new sensor was placed randomly to the left or right of
this one sensor. The same procedure was followed for the

remove sensor operator, where at least one sensor had to be
positioned on a robot’s chassis.

Two wheel motors controlled a robot’s heading at con-
stant speed. Movement was calculated in terms of real val-
ued vectors (dx and dy). Wheel motors (figure 1, center-
left, center-right) were explicitly activated by the ANN and
a robot’s heading was determined by normalizing and scal-
ing output values by the maximum movement distance for
one simulation time-step (Hewland and Nitschke, 2015).

Neural Complexity Definition
Neural complexity1 is defined as the number of connections
n (n ∈ [0, 120]) in an evolved neural controller (at gen-
eration g) and thus includes all connection weights link-
ing sensory input nodes to hidden and output nodes. This
neural complexity definition was adapted from related work
(Nitschke and Didi, 2017) and selected for its simplicity
and accounting of sensory (morphology) complexity with

1Neural simplicity is synonymous in this article’s discussion.



respect to the neural controller. Thus, the more complex a
robot’s sensory morphology, the higher its controller’s neu-
ral complexity will be. That is, this definition assumes sen-
sory input nodes are connected to hidden or output nodes.

Collective Gathering Task
Collective gathering requires robots to locate distributed
resources (blocks) in a bounded environment and trans-
port them, via cooperative pushing, to a gathering zone
(Nitschke et al., 2012). This task was selected given that
relatively sophisticated collective behaviors (enabled by
suitably complex controller-morphology couplings of inter-
acting individuals) are required to solve such cooperative
tasks (Nitschke, 2005). Also, collective gathering is an
established collective evolutionary robotics benchmark task
and is thus a suitable experimental platform for evaluating
neural controller evolution (Doncieux et al., 2015).

Cooperation was defined as the number of robots required
to push given block types and task difficulty was a func-
tion of the number of blocks, block types and cooperation
needed. Block types were small, medium, or large, to be
pushed by at least one, two and three robots, respectively
(table 1). Task difficulty was calibrated via initializing en-
vironments (simple, medium, difficult) with varying combi-
nations of block types (table 1). For example, the simple en-
vironment contains 10 small and 5 medium sized blocks, so
robots could work concurrently with minimal cooperation to
move all blocks into the gathering zone. Collective gather-
ing task performance was the total number of blocks pushed
into the gathering zone during the robots’ lifetime (table 1).

Experiments
Experiments measured the impact of a neural complexity
(fitness) cost versus no such complexity cost imposed during
controller-sensor (morphology) evolution in robot groups
tasked with solving collective gathering tasks of increasing
difficulty. NEAT-M-MODS used multi-objective controller
evolution (task performance maximization and complexity
minimization), and NEAT-M used single objective (task
performance) optimization. The experimental platform
was a collective robotics simulator (Hewland and Nitschke,
2015) implementing the collective gathering task (figure
1, right). Robots emulated the Khepera III (Lambercy
and Tharin, 2013), with co-adapting controllers and sensor
configurations2. Experiments ran simulations of 20 robots
in bounded two dimensional continuous environments with
distributions of small, medium, and large blocks (table 1).

Blocks were randomly distributed throughout an en-
vironment, excluding the gathering zone. Block type

2Simulator & NEAT-M & NEAT-M-MODS source-code is on-
line: https://github.com/costcomplex/anonymous

distributions given in table 1 correspond to increasing en-
vironment complexity (simple, medium, difficult) designed
to test the impact of environment complexity on con-
troller evolution with and without a neural complexity cost.
Robots were initially randomly placed in the gathering zone.

To test this study’s research objective we designed two
experiment sets. Experiment set 1 evaluated the impact of
a neural complexity cost on controller evolution via evalu-
ating NEAT-M-MODS evolved groups in all environments
(table 1). Comparatively, experiment set 2 evaluated con-
troller evolution without a neural complexity cost. That is,
NEAT-M evolved groups were evaluated in the same envi-
ronments. Only homogenous teams were tested, meaning
that at each NEAT-M and NEAT-M-MODS generation, se-
lected controller-sensor adaptations were copied 20 times
(representing group sizes of 20 robots).

Fitness Function
In experiment set 1, task performance was maximized
and neural complexity minimized. This second objective
encouraged lower neural complexity, thereby imposing a
fitness cost on controller complexity. In experiment set 2,
only task performance was maximized. Task performance
was the average value of blocks pushed into the gathering
zone over five robot lifetimes comprising each generation.

We defined vc as total value of resources (blocks) in the
gathering zone, vt as total value of all resources in the envi-
ronment, se as the number of simulation time-steps in the
robots’ lifetime and st as number of trial evaluations per
genotype (controller-sensor configuration). As such, task
performance T was maximised using equation 1:

T = 100× vc
vt

+ 20× (1.0− se
st
) (1)

In equation 1, 100 was the maximum number of blocks
that could be gathered during an experiment run, and 20 was
an experimentally determined weighting (boosting fitness
for efficient individual and cooperative gatherers).

Each experiment applied NEAT-M or NEAT-M-MODS to
evolve collective gathering behavior for 200 generations. A
generation comprised five robot lifetimes, where each life-
time was 10000 simulation iterations. Each lifetime was a
simulated collective gathering task scenario that tested dif-
ferent robot starting positions, orientations, and block loca-
tions in either a simple, medium or difficult environment (ta-
ble 1). Average collective gathering task performance was
calculated at each run’s end and averaged over 20 runs. All
simulation and neuro-evolution parameters (table 1) were
experimentally determined, where those not reported here
used the same settings as in previous work (Hewland and
Nitschke, 2015; Abramovich and Moshaiov, 2016).



Figure 2: Left: Average maximum neural simplicity for Single Objective (SO): NEAT-M, Multi Objective (MO): NEAT-M-MODS (knee-
points) for simple, medium and difficult environments, respectively. Neural simplicity ∼ 1.0 indicates low evolved neural complexity. Right:
Average maximum task performance of SO: NEAT-M versus MO: NEAT-M-MODS evolved groups.

Figure 3: Left: Average Multi-Objective (MO: NEAT-M-MODS) Pareto front and Single Objective (SO: NEAT-M) scores. SO points are
maximum task performance and corresponding neural simplicity scores. MO points are the 3 best knee-points. Averages were computed over
all runs. Right: Progression of average neural simplicity for MO and SO over neuro-evolution.

Results & Discussion
Experiments evaluated the impact of a fitness cost on neural
complexity versus no cost during neural network controller
evolution in robot groups. Evolved robots were evaluated in
terms of collective gathering task performance for increas-
ing difficult environments: simple, medium and difficult. To
enable analysis of the neural versus environment complex-
ity trade-off, average neural complexity (and co-adapted
sensory-morphology complexity) of the fittest controllers
evolved in each environment was also computed. Figure 2
presents average neural complexity and task performance
results. Figure 3 presents Pareto-front and evolutionary
progression of neural complexity. Results compare these
metrics for group behavior evolved with (NEAT-M-MODS)
and without (NEAT-M) a neural complexity cost, across
increasingly difficult tasks. Averages were calculated for
each environment and over 20 runs for each method.

Figure 2 (left) presents the average neural complexity3 of

3Note that the term simplicity is used in figure 2 for clarity and
consistency with related work (Auerbach and Bongard, 2014).

the fittest controllers evolved by NEAT-M and NEAT-M-
MODS in each environment. Neural controller evolution in
NEAT-M had a Single Objective (SO) of maximizing task
performance (fitness), whereas, NEAT-M-MODS had the
Multiple Objectives (MO) of maximizing task performance
and minimizing neural complexity. A neural complexity
value of 1.0 indicates the simplest possible controller (one
sensor connected to motor outputs) and 0.0 indicates the
most complex controller (10 sensors connected to 10 hidden
nodes4 and outputs, table 1). Figure 2 (right) presents
average maximum task performance of NEAT-M (SO)
versus NEAT-M-MODS (MO) groups evolved in each
environment. Calculations for the latter used the three
knee-points with the highest-task performance and lowest
neural-simplicity on the Pareto front (figure 3, left).

Figure 3 (left) presents the best three knee-points for
each Pareto front. A knee-point was defined as that yielding
the highest value for both objectives, where such values

4Fixed topology parameter tuning experiments indicated negli-
gible fitness increases in all environments for > 10 hidden nodes.



were closest to the utopia point for the simplest and most
effective controllers. For comparison, the best SO points
(average maximum task performance and matching neural
complexity) of NEAT-M evolved groups are also presented.
Figure 3 (right) presents the evolutionary progressions of
neural simplicity for NEAT-M-MODS and NEAT-M groups
evolved in each environment. Values close to 1.0 and 0.0
indicate low and high neural complexity, respectively.

Figure 3 (right) illustrates that groups evolved with a neu-
ral complexity cost (NEAT-M-MODS) in all environments
were consistently comparable, in terms of neural simplicity,
throughout neuro-evolution. For clarity, exemplar genera-
tions 125 to 150 in figure 3 (right) are enlarged to highlight
that the medium environment encouraged the evolution of
simpler neural controllers (though this difference was not
statistically significant). Whereas, groups evolved without a
neural complexity cost became increasingly complex over
the course of neuro-evolution, for all environments. This
is supported by statistically significant neural simplicity
differences between groups evolved (in all environments)
with and without neural complexity costs (table 2).

Statistical comparisons used Shapiro-Wilk (to confirm
data normality) and independent two-tailed t-tests (Flannery
et al., 1986) to test for significant differences (p < 0.05) in
average task performance and neural complexity (simplic-
ity). Statistical tests were run between respective results of
NEAT-M and NEAT-M-MODS evolved groups. The latter
used averages calculated from the three best knee-points on
each Pareto front (figure 3, left).

Statistical comparisons (table 2) of average neural sim-
plicity5 indicated that for all environments, groups evolved
with a neural complexity cost comprised significantly
simpler controllers compared to those evolved without a
complexity cost. Thus, neuro-evolution with a complexity
cost given increasing environment complexity consistently
resulted in low selection pressure for complex controller
evolution. Environment complexity (task difficulty) was a
function of the number of blocks and block types, where
some degree of cooperation was needed for optimal gath-
ering in all environments (section: Collective Gathering
Task). Figure 3 (right: evolving average neural simplicity)
and figure 2 (left: average maximum evolved neural
complexity) further support this result, indicating that
neural complexity costs consistently enable the evolution of
significantly simpler controllers (versus evolution with no
complexity cost). This result is also supported by related
work (Lowell and Pollack, 2014) similarly finding that
fitness costs on connection weights in NEAT evolved net-
works produced smaller networks that were just as effective

5Simplicity instead of complexity is used in this discussion.

as the best evolved networks without such a complexity cost.

Also, figures 2 and 3 indicate groups evolved without a
neural complexity cost resulted in higher neural complexity
which in turn enabled higher group task performance
(for all environments). However, these task performance
differences were negligible for the simple environment
(SO: 0.96 versus MO: 0.95 in table 2) and minimal for the
medium (SO: 0.86 versus MO: 0.78 in table 2) and difficult
(SO: 0.61 versus MO: 0.49 in table 2) environments. Thus,
in the medium and difficult environments, there was an
average task performance difference of only 10% between
groups evolved with and without a neural complexity cost.

The complexity-fitness trade-off for these minimal task
performance differences were significantly less complex
neural controllers. Groups evolved with a complexity cost
in the simple, medium and difficult environments, were
27%, 15% and 22% simpler (table 2, right), respectively.
The complexity cost also enabled the evolution of signif-
icantly simpler (independent two-tailed t-test, p < 0.05)
sensor-morphologies coupled with evolved controllers.
Sensor-morphologies of groups evolved with the complex-
ity cost were on average, 32%, 35% and 27% simpler, in the
simple, medium and difficult environments (respectively).
This was compared to the sensory-morphologies of groups
evolved without a complexity cost in the same environments.

Sensor-morphology complexity (simplicity) was a func-
tion of sensors (number and type) and sensor parameters
coupled to evolved neural controllers (Furman et al.,
2019). For consistency, values were calculated according to
sensory-system simplicity, where a value of 1.0 indicated
one sensor with minimal range and Field of View (FOV)
and 0.0 indicated a controller with 10 sensors (maximum
number) of all types with maximal range and FOV (table 1).

Also, observing the best knee-point (figure 3, left) con-
trollers evolved with multi-objective neuro-evolution (in-
corporating the complexity cost), one notes such controllers
had comparable task performances (no statistical difference)
in all environments. Thus, even though having no neural
complexity cost enabled the evolution of increasingly com-
plex neural controllers6 (and coupled sensor-morphologies),
the added neural and sensor-morphology complexity was
largely redundant and unnecessary. This was especially the
case when considering the best knee-point controllers that
evolved to be simple yet effective.

The collective behavior effectiveness of such simple
controllers is further theorized to be a result of the nature
of task (environment) complexity. Consider that optimal

6Controller topologies evolved with and without complexity
costs are online: https://github.com/costofcomplexity/ALIFE2019



Table 2: Left: Statistical comparisons for task performance (fitness) and neural complexity of fittest controllers evolved by NEAT-M
(SO: Highest task performance) versus NEAT-M-MODS (MO: 3 Knee-points on Pareto-front, figure 3). > : Greater than with statistical
significance. Right: Average task performance and neural simplicity values for groups evolved without (SO) and with (MO) a neural
complexity cost. Neural complexity (simplicity) is defined in section: Neural Complexity Definition.

Environment Task Performance Neural Simplicity
Simple SO > MO MO > SO
Medium SO > MO MO > SO
Difficult SO > MO MO > SO

Environment Task Performance Neural Simplicity
Simple 0.96 (SO) 0.95 (MO) 0.67 (SO) 0.94 (MO)
Medium 0.86 (SO) 0.78 (MO) 0.77 (SO) 0.92 (MO)
Difficult 0.61 (SO) 0.49(MO) 0.71 (SO) 0.93 (MO)

task accomplishment required the group to gather all blocks
distributed throughout the environment into a gathering
zone, within the group’s lifetime. However, all environ-
ments required some cooperation to achieve an optimal or
near optimal task performance. For example, the simple
environment contained five medium-sized blocks requiring
two robots to cooperatively push. The medium environment
also contained five large-sized blocks requiring three
robots to cooperatively push and the difficult environment
included only medium-sized and large-sized blocks. In
all environments the efficacy of an emergent cooperative
problem-solving behavior was determined by the neural and
morphological (sensor) complexity of evolved controllers.

As demonstrated in related work (Waibel et al., 2009;
Nitschke et al., 2012; Duarte et al., 2016), we posit that the
emergence of effective collective behaviors was enabled
by evolved interactions of relatively simple individual con-
trollers. Furthermore, other evolutionary robotics studies
have demonstrated evolving increased neural complexity
often yields negligible benefits as collective behavior task
complexity increases (Nitschke and Didi, 2017).

The overall implication of this study’s results is two-
fold. First, it indicates that neuro-evolution with a neural
complexity cost facilitates efficient neural controllers
comprising minimal connectivity and simple coupled
sensor-morphologies. These controllers were consistently
effective for increasing environment complexity (addressing
the research objective). Second, results indicated neuro-
evolution without a neural complexity cost supports the
social brain hypothesis in the context of groups surviving
in environments of varying complexity. That is, for all
environments, groups evolved without a neural complexity
cost evolved both significantly larger neural controllers and
coupled sensor-morphologies, compared to those evolved
with a neural complexity cost. However, the pertinence of
the social brain hypothesis was limited in that these more
complex neural structures (and sensor-morphology cou-
plings) did not yield clear benefits across all environments.

Specifically, there was negligible group task performance
differences in the simple environment and minimal differ-

ences (∼10%) in the medium and difficult environments. As
presented in figure 3 (left), the best groups (knee-point con-
trollers on the Pareto front) evolved with a complexity cost
yielded comparable task performances to groups evolved
without a complexity cost, though did so with less neural
complexity and simpler sensor-morphologies. Hence, the
neural complexity cost was able to suitably complement the
complexification and speciation mechanisms of NEAT-M
(Hewland and Nitschke, 2015) via enabling the evolution
of simple yet effective controllers. However, without such
a complexity cost, NEAT-M complexification ensured the
evolution of increasingly complex controllers and coupled
sensor-morphologies, where the speciation mechanism was
unable to mitigate this evolution of neural complexity.

This study’s contribution was two-fold. First, using evolu-
tionary collective robotics to test the impact of a complexity
cost, the study supported related work demonstrating that
greater evolved social complexity correlates with smaller
brains coupled to less complex sensory-systems (Gronen-
berg and Riveros, 2009). In this study, social complexity was
the efficacy of evolved collective behavior across increas-
ingly difficult task environments. Second, results lent empir-
ical support to the use of distributed and embodied cognition
systems (Barrett et al., 2007), in this case for the purpose of
elucidating the impact of a complexity cost on evolving neu-
ral and morphological complexity in social systems.

Conclusion
This study investigated how imposing fitness costs on
evolving neural controller complexity impacted evolving
collective behaviors in an evolutionary collective robotics
system. Experiments evaluated the impact of evolving neu-
ral controllers, with and without a neural complexity cost,
on robot group task performance in increasingly complex
environments. In this study environment complexity was
equated with collective behavior task difficulty. Results
indicated that a neural complexity cost enabled the evolu-
tion of simpler controllers, where the best of such simple
controllers produced collective behaviors comparable to
that of more complex controllers evolved without any
complexity cost. This result held for collective behavior
evolution in task environments of increasingly complexity.
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