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Abstract

In this paper we present what we believe to be the first
systematic approach for extending the framework for de-
feasible entailment first presented by Kraus, Lehmann, and
Magidor—the so-called KLM approach. Drawing on the
properties for KLM, we first propose a class of basic defea-
sible entailment relations. We characterise this basic frame-
work in three ways: (i) semantically, (ii) in terms of a class
of properties, and (iii) in terms of ranks on statements in a
knowlege base. We also provide an algorithm for computing
the basic framework. These results are proved through vari-
ous representation results. We then refine this framework by
defining the class of rational defeasible entailment relations.
This refined framework is also characterised in thee ways: se-
mantically, in terms of a class of properties, and in terms of
ranks on statements. We also provide an algorithm for com-
puting the refined framework. Again, these results are proved
through various representation results.
We argue that the class of rational defeasible entail-
ment relations—a strengthening of basic defeasible entail-
ment which is itself a strengthening of the original KLM
proposal—is worthy of the term rational in the sense that
all of them can be viewed as appropriate forms of defeasi-
ble entailment. We show that the two well-known forms of
defeasible entailment, rational closure and lexicographic clo-
sure, fall within our rational defeasible framework. We show
that rational closure is the most conservative of the defeasi-
ble entailment relations within the framework (with respect
to subset inclusion), but that there are forms of defeasible en-
tailment within our framework that are more “adventurous”
than lexicographic closure.

1 Introduction
The approach by Kraus, Lehmann and Magidor (1990)
(a.k.a. KLM) is a well-known framework for defeasible rea-
soning. The KLM properties can be viewed as constraints on
appropriate forms of defeasible entailment. Currently there
are two well-known forms of defeasible entailment satisfy-
ing those properties: rational closure (Lehmann and Magi-
dor 1992) and lexicographic closure (Lehmann 1995). Both
forms of defeasible entailment can be characterised in three
ways: semantically, in terms of ranks, and algorithmically.
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In this paper we present what we believe to be the first
systematic approach for extending the framework for de-
feasible entailment originally proposed by Kraus, Lehmann,
and Magidor. Our first proposal for doing so is referred to
as basic defeasible entailment. This framework can be ob-
tained by a strengthening of the KLM properties, that is,
adding additional properties to those initially proposed by
KLM. We then proceed to characterise basic defeasible en-
tailment in two other ways. The first is a semantic character-
isation in terms of a class of ranked interpretations. The sec-
ond is a characterisation in terms of a class of functions that
rank propositional (and defeasible) statements in a knowl-
edge base according to their level of typicality. We then pro-
vide an algorithm for computing the framework. Given a
rank function, we present an algorithm for computing ba-
sic defeasible entailment. The algorithm is a generalisation
of one that has been proposed for computing rational closure
(Freund 1998).

Having defined basic defeasible entailment, we identify
a crucial shortcoming it possesses, and propose a further
strengthening via an additional property; one that requires
any defeasible entailment relation to extend rational closure.
In doing so we ensure that rational closure is viewed as the
most conservative form of defeasible entailment. We refer to
the resulting class of defeasible entailment relations as ratio-
nal and argue that the class as a whole is worthy of further
investigation. Part of this justification is that both rational
and lexicographic closure are rational defeasible entailment
relations. But while rational closure is the most conserva-
tive form of rational defeasible entailment, it turns out there
are forms of rational defeasible entailment that are “bolder”
than lexicographic closure.

We show that rational defeasible entailment can also be
characterised in two other ways: a semantic characterisation
in terms of a further restricted class of ranked interpreta-
tions, and a characterisation in terms of a further restricted
class of ranks. We also provide an algorithm for comput-
ing rational defeasible entailment. As expected, given one
of the restricted rank functions, the algorithm computes ra-
tional defeasible entailment.

We argue that the framework for rational defeasible en-
tailment is reminiscent of the AGM framework for belief
change (Alchourrón, Gärdenfors, and Makinson 1985), es-
pecially when viewed from the semantic perspective. Ratio-



nal closure is analogous to full-meet revision (and contrac-
tion); there are defeasible entailment relations analogous to
(linear) maxi-choice revision (and contraction), and the se-
mantic construction of the class of rational defeasible en-
tailment relations bears a close resemblance to transitively
relation partial-meet revision (and contraction) (Gärdenfors
1988).

The remainder of the paper is structured as follows.
Section 2 fixes the notation and terminology we use, and
contains a summary of the necessary technical background:
an introduction to KLM-style defeasible implication
(Section 2.1), defeasible entailment for propositional lan-
guages enriched with a defeasible implication connective
(Section 2.2), and an overview of rational closure (Sec-
tion 2.3). Then, in Section 3 we present and discuss our
notion of basic defeasible entailment. This is followed in
Section 4 with an investigation into rational defeasible
entailment. Section 5 is devoted to lexicographic closure
and its relation to rational defeasible entailment, while
Section 6 provides an overview of related work. Finally,
in Section 7 we conclude and briefly point to future di-
rections for this line of research. [N/A: The reviewers can
download a pdf with the sketches of the proofs at https:
//www.dropbox.com/sh/jvkudtbft7z8rgo/
AAAbQ9HZKDL3A65Vry-4k4xBa?dl=0].

2 Background
Let P be a finite set of propositional atoms. We use p, q, . . .
as meta-variables for atoms. Propositional sentences are de-
noted by α, β, . . ., and are recursively defined in the usual
way: α ::= > | ⊥ | p | ¬α | α∧α | α∨α | α→ α | α↔ α.
With L we denote the set of all propositional sentences.

With U ≡def {0, 1}P we denote the set of all proposi-
tional valuations, with 1 representing truth and 0 represent-
ing falsity. We use u, v . . . to denote valuations. Whenever it
eases the presentation, we represent valuations as sequences
of atoms (e.g., p) and barred atoms (e.g., p), with the un-
derstanding that the presence of a non-barred atom indicates
that the atom is true (has the value 1) in the valuation, while
the presence of a barred atom indicates that the atom is false
(has the value 0) in the valuation. Thus, for the logic gener-
ated from P = {p, q}, the valuation in which p is true and q
is false will be represented as pq. Satisfaction of a sentence
α ∈ L by v ∈ U is defined in the usual truth-functional way
and is denoted by v  α. The models of a set of sentencesX
is defined as: JXK ≡def {v ∈ U | v  α for every α ∈ X}.

2.1 KLM-style defeasible implication
In the logic proposed by Kraus et al. (1990), often referred
to as the KLM approach, we are interested in defeasible im-
plications (or DIs) of the form α |∼ β, read as “typically,
if α, then β”. For instance, if P = {b, f, p}, where b, f and p
stand for, respectively, “being a bird”, “being able to fly”,
and “being a penguin”, the following are examples of defea-
sible implications: b |∼ f (birds typically fly), p ∧ b |∼ ¬f
(penguins that are birds typically do not fly).

The semantics of KLM-style rational defeasible implica-
tions is given by structures referred to as ranked interpreta-

tions (Lehmann and Magidor 1992). In this work we adopt
the following alternative representation thereof:
Definition 1 A ranked interpretation R is a function from
U to N ∪ {∞} such that R(u) = 0 for some u ∈ U , and
satisfying the following convexity property: for every i ∈ N,
if R(v) = i, then, for every j s.t. 0 ≤ j < i, there is a
u ∈ U for which R(u) = j.
In a ranked interpretation, we call R(v) the rank of v
w.r.t. R. The intuition is that valuations with a lower rank are
deemed more normal (or typical) than those with a higher
rank, while those with an infinite rank are regarded as so
atypical as to be impossible. With U R ≡def {v ∈ U |
R(v) <∞} we denote the possible valuations in R. Given
α ∈ L, we let JαKR ≡def {v ∈ U R | v  α}. R satisfies
(is a ranked model of) α (denoted R  α) if U R ⊆ JαKR.

Note that R generates a total preorder (a connected, tran-
sitive ordering) �R on U as follows: v �R u if and only
if R(v) ≤ R(u). Moreover, given any total preorder �
on V ⊆ U , we can use its strict version ≺ to generate a
ranked interpretation. To see how, first let the height h(v)
of v ∈ V be the length of the ≺-path between any one of
the ≺-minimal elements of V and v (where the length of the
≺-path between any of the ≺-minimal elements and a ≺-
minimal element is 0).
Definition 2 For V ⊆ U and a total preorder � on V, the
ranked interpretation R� generated from � is defined as
follows: for every v ∈ U , R�(v) = h(v) if v ∈ V, and
R�(v) =∞ otherwise.

Given a ranked interpretation R and α, β ∈ L, we say R
satisfies (is a ranked model of) the conditional α |∼ β (de-
noted R  α |∼ β) if all the ≺-minimal α-valuations also
satisfy β, i.e., if min≺JαKR ⊆ JβKR. We say R satisfies a
set of conditionals K if R  α |∼ β for every α |∼ β ∈ K.

Figure 1 depicts an example of a ranked interpretation for
P = {b, f, p} satisfying K = {p→ b, b |∼ f, p |∼ ¬f}.1

2 pbf

1 pbf pbf

0 pbf pbf pbf

Figure 1: A ranked interpretation for P = {b, f, p}.

An important property of ranked interpretations is that all
classical propositional sentences can be expressed as DIs.
More precisely, we have the following result: for every R
and every α ∈ L, R  α if and only if R  ¬α |∼ ⊥. The
logic of defeasible implications can therefore be viewed as
an extension of propositional logic.

2.2 Defeasible Entailment
Let a knowledge base K be a finite set of defeasible impli-
cations. One of the central questions is to determine what

1For brevity, we shall omit the valuations with rank ∞ in our
graphical representations of ranked interpretations.



entailment means in this context. That is, we aim to specify
what it means for a defeasible implication to be entailed by
a fixed knowledge K. This is the main question with which
we concern ourselves in this paper. We refer to this type of
reasoning as defeasible entailment and denote it by |≈. It is
important to note that, for the purposes of this paper, we as-
sume K to be fixed.2 Strictly speaking, we should therefore
refer to defeasibleK-entailment. However, where there is no
ambiguity, we frequently drop the K prefix, and just refer to
defeasible entailment.

It is well-accepted that defeasible entailment (unlike
classical entailment) is not unique. Lehmann and Magi-
dor (1992) put forward rational closure as an appropriate
form of defeasible entailment, while Lehmann (1995) pro-
posed lexicographic closure as an alternative. We consider
both of these in more detail below.

More generally, in studying different forms of defeasible
entailment, the position advocated by Lehmann and Magi-
dor (1992), and one we adopt here as well, is to consider
a number of rationality properties, referred to as the KLM
properties, for defeasible entailment.

(Ref) K |≈ α |∼ α

(LLE)
α ≡ β, K |≈ α |∼ γ
K |≈ β |∼ γ

(RW)
K |≈ α |∼ β, β |= γ

K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ

(Or)
K |≈ α |∼ γ, K |≈ β |∼ γ
K |≈ α ∨ β |∼ γ

(CM)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ, K 6|≈ α |∼ ¬β

K |≈ α ∧ β |∼ γ
Lehmann and Magidor argue that defeasible entailment

ought to satisfy all the above KLM properties. We refer to
this as LM-rationality.

We can refer to defeasible entailment as being generated
from single ranked interpretations.

Definition 3 A ranked interpretation R is said to generate a
defeasible K-entailment relation |≈R by setting K |≈R α |∼
β if and only if R  α |∼ β. (If there isn’t any ambiguity,
we drop the subscript R.)

Lehmann and Magidor proved the following useful result.

Observation 1 (Lehman & Magidor (1992)) A defeasible
entailment relation is LM-rational if and only if it can be
generated from a ranked interpretation.3

2For an investigation of the case where K may vary, the reader
is invited to consult the work of Casini and Meyer (2017).

3This result was originally phrased as a representation result
about non-monotonic consequence relations on propositional state-
ments (Kraus, Lehmann, and Magidor 1990), but were subse-
quently applied to defeasible entailment relations for propositional

Using LM-rationality as a starting point, it is easy to see
that the most obvious attempt at defining defeasible entail-
ment does not make the grade (Lehmann and Magidor 1992,
Sect. 4.2).
Definition 4 A defeasible implication α |∼ β is rank en-
tailed by a knowledge base K (denoted as K |≈R α |∼ β) if
every ranked model of K is also a ranked model of α |∼ β.

Rank entailment is an application of the classical Tarskian
tradition of entailment to ranked interpretations, but it does
not satisfy rational monotonicity (RM) and is therefore not
rational (Lehmann and Magidor 1992, Th. 4.2). Despite this,
rank entailment plays an important part in defining accept-
able versions of defeasible entailment, since it can be viewed
as the monotonic core of any appropriate form of defeasible
entailment (Casini and Meyer 2017).

2.3 Rational Closure
The first version of defeasible entailment satisfying LM-
rationality that we consider is rational closure (Lehmann
and Magidor 1992). Given a knowledge baseK, consider the
ordering �K on all ranked models of K, which is defined as
follows: R1 �K R2 if for every v ∈ U , R1(v) ≤ R2(v).
Intuitively, ranked models lower down in the ordering are
more typical. It is easy to see that �K is a weak partial or-
der. Giordano et al. (2015) showed that there is a unique
�K-minimal element. The rational closure of K is defined
in terms of this minimum ranked model.
Definition 5 Consider a knowledge baseK, and let RRC

K be
the minimum element of the ordering �K on ranked models
of K. A defeasible implication α |∼ β is in the rational clo-
sure of K (denoted as K |≈RC α |∼ β) if RRC

K  α |∼ β.
Observe that there are two levels of typicality at work for

rational closure, namely within ranked models of K, where
valuations lower down are viewed as more typical, and be-
tween ranked models of K, where ranked models lower
down in the ordering are viewed as more typical. Essentially,
the most typical ranked model RRC

K is the one in which val-
uations are as typical as K allows them to be.

Since rational closure is defined in terms of a single
ranked interpretation, it follows from Observation 1 that it
is LM-rational (it satisfies all the KLM properties).

It will prove useful to be able to refer to the possible val-
uations w.r.t. a knowledge base.
Definition 6 We refer to U KR ≡def U \ {u ∈ JαK | K |≈R
¬α |∼ ⊥} as the set of possible valuations w.r.t. K.

Informally U KR refers to all the valuations not in conflict
with rank entailment w.r.t. K. From results by Lehmann and
Magidor (1992) (Lemmas 24 and 30, to be precise) it follows
that the possible valuations in the minimal model RRC

K are
precisely the possible valuations w.r.t. K: U KR = U RRC

K .
Rational closure can also be defined in terms of the base

rank of a statement w.r.t. K.4 Given a knowledge base K, a

logic enriched with defeasible implication. Section 6 explains this
in more detail.

4In the literature, the base rank of a sentence is just referred to
as its rank, but for reasons that will become clear we have opted for
the term base rank here.



propositional sentence α is said to be exceptional w.r.t. K if
K |≈R > |∼ ¬α (i.e., α is false in all the most typi-
cal valuations in every ranked model of K). Let ε(K) =
{α |∼ β | K |≈R > |∼ ¬α}. Now define a sequence
of knowledge bases EK0 , . . . , EK∞ as follows: EK0 ≡def K,
EKi ≡def ε(EKi−1), for 0 < i < n, and E∞ ≡def EKn ,
where n is the smallest k for which EKk = EKk+1 (since K
is finite, n must exist). The base rank brK(α) of a proposi-
tional statement α w.r.t. a knowledge base K is defined to
be the smallest r for which α is not exceptional w.r.t. EKr .
brK(α) ≡def min{r | EKr 6|≈R > |∼ ¬α}.
Observation 2 (Giordano et al. (2015)) K |≈RC α |∼ β if
and only if brK(α) < brK(α ∧ ¬β) or brK(α) =∞.

It turns out that there is a fundamental connection between
the base ranks of propositional statements w.r.t. a knowledge
base K and the ranks of valuations in the minimal ranked
model RRC

K .

Observation 3 (Giordano et al. (2015)) For every knowl-
edge base K and α ∈ L, brK(α) = min{i | there is a
v ∈ JαK s.t. RRC

K (v) = i}.
From Observation 3 it also follows immediately that a

classical statement α (or its defeasible representation ¬α |∼
⊥) is in the rational closure of K if and only if the base rank
of ¬α w.r.t. K is∞, as intuitively expected.

The definition of base rank can be extended to defeasible
implications as follows: brK(α |∼ β) ≡def brK(α).

Assigning base ranks to defeasible implications in this
way forms the basis of an algorithm for computing ratio-
nal closure; an algorithm that can be reduced to a number of
classical entailment checks. Define the materialisation of a
knowledge base K as

−→
K ≡def {α → β | α |∼ β ∈ K}. It

can be shown (Lehmann and Magidor 1992) that a sentence
α is exceptional w.r.t. K if and only if

−→
K |= ¬α. From this

we can define a procedure BaseRank which partitions the
materialisation of K into n + 1 equivalence classes accord-
ing to base rank: i = 0, . . . n−1,∞, Ri ≡def {α→ β | α |∼
β ∈ K, brK(α) = i}.

Algorithm 1: BaseRank
Input: A knowledge base K
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 i := 0;
2 E0 :=

−→
K ;

3 repeat
4 Ei+1 := {α→ β ∈ Ei | Ei |= ¬α};
5 Ri := Ei \ Ei+1;
6 i := i+ 1;
7 until Ei−1 = Ei;
8 R∞ := Ei−1;
9 if Ei−1 = ∅ then

10 n := i− 1;
11 else
12 n := i;
13 return (R0, . . . ,Rn−1,R∞, n)

We can use the BaseRank procedure to define an al-
gorithm for computing rational closure. It takes as input a
knowledge base K and a DI α |∼ β, and returns true if and
only if α |∼ β is in the rational closure of K.

Algorithm 2: RationalClosure
Input: A knowledge base K and a DI α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := BaseRank(K);
2 i := 0;
3 R :=

⋃j<n
i=0 Rj ;

4 while R∞ ∪ R |= ¬α and R 6= ∅ do
5 R := R \ Ri;
6 i := i+ 1;
7 return R∞ ∪ R |= α→ β;

Informally, the algorithm keeps on removing (materiali-
sations of) defeasible implications from (the materialisation
of) K, starting with the lowest base rank, and proceeding
base rank by base rank, until it finds the first R which is clas-
sically consistent with α (and therefore α is not exceptional
w.r.t. the defeasible version of R). α |∼ β is then taken to be
in the rational closure ofK if and only if R classically entails
the materialisation of α |∼ β.

Observation 4 (Freund (1998)) Given a knowledge
base K and a defeasible implication α |∼ β, the algo-
rithm RationalClosure returns true if and only if
K |≈RC α |∼ β.

To conclude this section, we observe that algorithm
RationalClosure involves a number of calls to a
classical-entailment checker that is polynomial in the size
of K. Computing rational closure is therefore no harder than
checking classical entailment.

3 Basic Defeasible Entailment
As discussed in the previous section, the departure point for
defining defeasible entailment is that it ought to be LM-
rational. The central question we address in this paper is
whether LM-rationality is sufficient. The immediate answer
to this question is that it is not. For starters, we require |≈ to
satisfy Inclusion and Classic Preservation.
(Inclusion) K |≈ α |∼ β for every α |∼ β ∈ K
(Classic Preservation) K |≈ α |∼ ⊥ if and only if K |≈R
α |∼ ⊥
Inclusion simply requires all elements of K to be defeasi-

bly entailed by K. Classic Preservation states that the classi-
cal defeasible implications (those corresponding to classical
sentences) defeasibly entailed by K should correspond ex-
actly to those in the monotonic core of K (i.e., those that are
rank entailed by K). An easy corollary of Classic Preserva-
tion is Classic Consistency, requiring that a knowledge base
is consistent if and only if it is consistent w.r.t. rank entail-
ment.
(Classic Consistency) K |≈ > |∼ ⊥ if and only if K |≈R
> |∼ ⊥



We refer to a defeasible entailment relation satisfying
LM-rationality, Inclusion, and Classic Preservation as a ba-
sic defeasible entailment relation.

We shall see below (using Theorem 1) that rational clo-
sure is a basic defeasible entailment relation. However, since
ranked entailment does not satisfy RM, it is not LM-rational,
and is therefore not a basic defeasible entailment relation.

We now proceed with presenting our first fundamental re-
sult, a semantic characterisation of basic defeasible entail-
ment relations in which we consider a class of ranked mod-
els we refer to as K-faithful ranked.
Definition 7 A ranked model R ofK is said to beK-faithful
if the possible valuations in R are precisely the possible val-
uations w.r.t. K: U R = U KR .

Note that the minimal model RRC
K isK-faithful. This brings

us to our first representation result.
Theorem 1 Every basic defeasible K-entailment relation
can be generated from a K-faithful ranked model. Con-
versely, every K-faithful ranked model generates a defea-
sible K-entailment relation.

From this it follows immediately that basic defeasible en-
tailment satisfies the following property.
(Rank Extension) If K |≈R α |∼ β, then K |≈ α |∼ β
To see why, note that ifK |≈R α |∼ β then α |∼ β is satisfied
by every ranked model ofK, and in particular, by the ranked
model used to generate |≈.

Rank Extension requires |≈ to extend its monotonic core
(i.e., it is required to extend the rank entailment of K).

We can also characterise basic defeasible entailment by
generalising the notion of base rank.
Definition 8 Let r : L −→ N ∪ {∞} be a rank function
such that r(>) = 0 and satisfying the following convexity
property: for every i ∈ N, if r(α) = i then, for every j such
that 0 ≤ j < i, there is a β ∈ L for which r(β) = j. r is
referred to as entailment preserving if α |= β implies that
r(α) ≥ r(β). Given a knowledge base K, r is said to be K-
faithful if (i) it is entailment preserving; (ii) r(α) < r(α ∧
¬β) or r(α) = ∞, for every α |∼ β ∈ K, and (iii) r(α) =
∞ if and only if K |≈R α |∼ ⊥.

Observe that the base rank brK(·) is K-faithful.
Definition 9 A rank function r generates a defeasible en-
tailment relation |≈ whenever K |≈ α |∼ β if r(α) <
r(α ∧ ¬β) or r(α) =∞.

We can now present our second representation result.
Theorem 2 Every basic defeasible K-entailment relation
can be generated by a K-faithful rank function r. Con-
versely, every K-faithful rank function r generates a basic
defeasible K-entailment relation.

Next, we present algorithm DefeasibleEntailment
that computes the defeasible entailment relation generated
by a K-faithful rank function. It is a modified version of the
RationalClosure algorithm presented earlier, differing
from that algorithm in that the call to the BaseRank al-
gorithm is replaced with a call to the Rank algorithm de-
scribed below. As for the Rank algorithm, it receives as

input, not just a knowledge base K as BaseRank does,
but also a K-faithful rank function r, and then produces as
output a sequence (R0, . . . ,Rn−1,R∞, n) where the Ris are
sentences, unlike the BaseRank algorithm, which produces
sets of sentences. DefeasibleEntailment is then ad-
justed accordingly.

Algorithm 3: DefeasibleEntailment
Input: A knowledge base K, a K-faithful rank

function r, and a DI α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := Rank(K,r);
2 i := 0;
3 R :=

⋃j<n
i=0 {Rj};

4 while {R∞} ∪ R |= ¬α and R 6= ∅ do
5 R := R \ {Ri};
6 i := i+ 1;
7 return {R∞} ∪ R |= α→ β;

Like the RationalClosure algorithm, the Defea-
sibleEntailment algorithm keeps on removing state-
ments, starting with the lowest rank, and proceeding rank by
rank, until it finds the first R which is classically consistent
with α. α |∼ β is then taken to be defeasibly entailed byK if
and only if R classically entails the materialisation of α |∼ β.
Intuitively, the Ris correspond to classical representations of
defeasible information, with different Ris representing in-
formation with different levels of typicality, and with R∞
corresponding to information that is classical, rather than de-
feasible. In fact, the set containing all the Ris is equivalent
to the materialisation of K.

For α ∈ L, let [α] be a canonical representative of the
set {β | β ≡ α}. The Rank algorithm receives as input
a knowledge base K and a K-faithful rank function r and,
as mentioned above, produces as output an ordered tuple of
sentences (R0, . . . ,Rn−1,R∞, n).

Algorithm 4: Rank
Input: A knowledge base K and a K-faithful rank

function r
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 R∞ := ¬
(∨

r([α]=∞)[α]
)

;

2 n := max{i ∈ N | r(α) = i for all α ∈ L};
3 if n = 0 then
4 R0 := >;n := 1;
5 else
6 for i := 0 to n− 1 do
7 Ri ≡def ¬

(∨
r([α])=i+1[α]

)
8 return (R0, . . . ,Rn−1,R∞, n)

Note that if there is no α such that r(α) = ∞, then R∞
will be set to>. This corresponds to the case where all infor-
mation is defeasible. Note also that if n = 0, it corresponds



to the case where there is no defeasible information. In this
case we set n to 1 and set R0 to>. Also, as mentioned above,
the set consisting of all the Ris is equivalent to K.
Lemma 1 Let (R0, . . . ,Rn−1,R∞, n) be the output ob-
tained from the Rank algorithm, given a knowledge base
K and a K-faithful ranking function r. Then {R∞} ∪⋃j<n
i=0 {Rj} ≡

−→
K .

To get a sense of how the algorithm works, consider the
following examples.
Example 1 Let K = {p → b, b |∼ f, p |∼ ¬f}. It can be
shown that there is only one ranking function r for which
r((b → f) → p) = 1, r(p ∧ (b → f)) = 2, and
r(¬(p → b)) = ∞. Moreover, for r it will be the case
that for every α ∈ L, r(α) = ∞ or r(α) ≤ 2. Given K
and r, the Rank algorithm will output the ordered tuple
(R0,R1,R∞, 2), where R∞ ≡ p→ b,

R1 ≡ ¬(p ∧ (b→ f)) ≡ p→ (b ∧ ¬f), and

R0 ≡ ¬((b→ f)→ p) ≡ (b→ f) ∧ ¬p.
Given K, r, and (p↔ b) ∧ (b↔ f) |∼ ¬f, Defeasible-
Entailment will return true. It will do so by first veri-
fying that {R0,R1,R∞} 6|= ¬((p ↔ b) ∧ (b ↔ f)) and
then checking whether {R0,R1,R∞} |= ((p ↔ b) ∧ (b ↔
f))→ ¬f (which it does). It is worth noting that, given this r,
algorithm DefeasibleEntailment computes the ratio-
nal closure of K.

Example 2 Consider again K = {p → b, b |∼ f, p |∼ ¬f}.
It can be shown that there is only one ranking function r s.t.
r(f → p) = 1, r((b ∨ f) → (p ∧ f)) = 2, and r(¬(p →
b)) = ∞, and that r is K-faithful. Moreover, for r it will
be the case that for every α ∈ L, r(α = ∞) or r(α) ≤ 2.
Given K and r, the Rank algorithm will output the ordered
tuple (R0,R1,R∞, 2) where R∞ ≡ p→ b,

R1 ≡ ¬((b ∨ f)→ (p ∧ f)) ≡ (¬b→ f) ∧ (p→ ¬f), and

R0 ≡ ¬(f → p) ≡ f ∧ ¬p.
Given K, r, and the DI (p↔ b) ∧ (b↔ f) |∼ ¬f, algorithm
DefeasibleEntailment will return false. It will do so
by first removing R0 (since {R0,R1,R∞} |= ¬((p ↔ b) ∧
(b ↔ f))), then removing R1 (since {R1,R∞} |= ¬((p ↔
b)∧ (b↔ f))), and then, since {R∞} 6|= ¬((p↔ b)∧ (b↔
f)), it will check whether {R∞} |= ((p↔ b) ∧ (b↔ f))→
¬f (which it does not).

Definition 10 Algorithm DefeasibleEntailment is
said to compute a defeasible entailment relation |≈ for a
knowledge baseK and a rank functon r wheneverK |≈ α |∼
β if DefeasibleEntailment, when presented with K,
r, and α |∼ β, returns true.

This provides us with the material for our third represen-
tation result.
Theorem 3 Given a K-faithful rank function r, the ba-
sic defeasible entailment relation generated by r is ex-
actly the defeasible entailment relation computed by the
DefeasibleEntailment algorithm when given K
and r as input.

The results obtained for basic defeasible entailment can
therefore be summarised in the following theorem.
Theorem 4 The following statements are equivalent.
• |≈ is a basic defeasible K-entailment relation.
• There is a K-faithful ranked model R and a K-faithful

rank function r such that:
1. r(α) = min{i | there is a v ∈ JαK s.t. R(v) = i};
2. |≈ can be generated from R;
3. |≈ can be generated from r;
4. |≈ can be computed by algorithm Defeasible

Entailment, given K and r as input.
Note that point 1 in Theorem 4 establishes a connection

between R and r via a result that is a generalisation of Ob-
servation 3.

Finally, observe that DefeasibleEntailment in-
volves a number of calls to a classic entailment checker that
is linear in n times the size of K (where n is the number re-
turned by the Rank algorithm). But note also that n may be
exponential in the size of K.

4 Rational Defeasible Entailment
Having analysed basic defeasible entailment in the previous
section, we now proceed by contending that it is too permis-
sive. In particular, we first show that it does not satisfy the
following property.
(RC Extension) If K |≈RC α |∼ β, then K |≈ α |∼ β

RC Extension requires of |≈ to extend the rational closure
ofK. To see that basic defeasible entailment does not satisfy
RC Extension, consider the following example.
Example 3 Figure 2 depicts the (K-faithful) minimal
ranked model RRC

K of K = {p → b, b |∼ f, p |∼ ¬f}.
Note that RRC

K  ¬p ∧ ¬f |∼ ¬b. From Definition 5 it then
follows that K |≈RC ¬p ∧ ¬f |∼ ¬b. But also note that for
the K-faithful ranked model R in Figure 3 below it follows
that R 6 ¬p ∧ ¬f |∼ ¬b. And from Theorem 4 it follows
that for the basic defeasible K-entailment relation |≈ gener-
ated from R, K 6|≈ ¬p ∧ ¬f |∼ ¬b. So RC Extension does
not hold.

2 pbf

1 pbf pbf

0 pbf pbf pbf

Figure 2: The minimal K-faithful ranked model RRC
K

If a basic defeasible entailment relation satisfies RC Ex-
tension as well, we refer to it as rational defeasible entail-
ment. We propose the class of rational defeasible entailment
relations as those worthy of the term rational and analyse
them further in the remainder of this section.

We start by showing that rational defeasible entailment
can be characterised semantically in terms of a subset of the
K-faithful ranked models.
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Figure 3: The K-faithful ranked model R

Definition 11 A K-faithful ranked model R is said to be
rank preserving if the following condition holds: for all
v, u ∈ U , if RRC

K (v) < RRC
K (u), then R(v) < R(u).

Informally, rank preservation requires the total preorder
�R generated from R to respect the relative positions as-
signed to valuations in the minimal model RRC

K of K.
Theorem 5 Every rational defeasibleK-entailment relation
can be generated by a rank preserving K-faithful model.
Conversely, every rank preserving K-faithful model gener-
ates a rational defeasible K-entailment relation.

We can also characterise rational defeasible entailment
using a subclass of K-faithful rank functions.
Definition 12 A K-faithful rank function r is said to be
base rank preserving if the following condition holds: for
all α, β ∈ L, if brK(α) < brK(β), then r(α) < r(β).

As the name indicates, base rank preserving rank func-
tions (or rather, the relations< derivable from base rank pre-
serving rank functions) respect the base rank (or rather, the
relation < derivable from the base rank).
Theorem 6 Every rational defeasibleK-entailment relation
can be generated by a K-faithful base rank preserving rank
function. Conversely, every K-faithful base rank preserving
rank function generates a rational defeasible K-entailment
relation.

The following result shows that the algorithm
DefeasibleEntailment described in the previ-
ous section can also be used to compute rational defeasible
entailment, provided it receives base rank preserving rank
functions as input.
Theorem 7 The defeasible entailment relation computed
from algorithm DefeasibleEntailment, given a
knowledge base K and a K-faithful base rank pre-
serving rank function, is a rational defeasible K-
entailment relation. Conversely, every rational defeasible
K-entailment relation can be computed from algorithm
DefeasibleEntailment when given K and a K-
faithful base rank preserving rank function as input.

The results obtained for rational defeasible entailment can
therefore be summarised in the following theorem.
Theorem 8 The following statements are equivalent.
• |≈ is a rational defeasible K-entailment relation.
• There is a rank preservingK-faithful ranked model R and

a K-faithful base rank preserving rank function r s.t.:
1. r(α) = min{i | v ∈ JαK and R(v) = i};
2. |≈ can be generated from R;

3. |≈ can be generated from r;
4. |≈ can be computed from algorithm Defeasible

Entailment, given K and r as input.

Analogous to the case for basic defeasible entailment,
Point 1 of Theorem 8 establishes a connection between R
and r via a result that is a generalisation of Observation 3.

5 Lexicographic Closure
In this section we turn our attention to lexicographic closure,
a second form of defeasible entailment, other than rational
closure, that has been studied in the literature (Lehmann
1995). Our central result is that lexicographic closure is a
rational defeasible entailment relation, confirming our con-
tention that rational defeasible entailment is a class of defea-
sible relations worth investigating. We also show that lexico-
graphic closure can be characterised in three different ways:
semantically via a rank preserving K-faithful ranked model,
in terms of a base preserving K-faithful rank function r,
and via the DefeasibleEntailment algorithm when
it is presented with r (and a knowledge base K) as input.
While the semantic construction of lexicographic closure
is known (Lehmann 1995), the other two constructions are
new. Finally, we show that there are rational defeasible en-
tailment relations that extend lexicographic closure, which
means that lexicographic closure is not the “boldest” form
of rational defeasible entailment, as has been the conjecture
in the literature.

For a knowledge baseK, let CK be a function from U to N
s.t. CK(v) = #{α |∼ β ∈ K | v  α → β}.5 So CK(v) is
the number of DIs in K whose materialisations are satisfied
by v. In defining lexicographic closure, the goal is to refine
the ordering on U obtained from the minimal model RRC

K
with CK: in comparing two valuations with the same rank
w.r.t. RRC

K , the one with a higher number will be viewed as
more typical.

Given a knowledge base K, we define an ordering �KLC
on U as follows: v �KLC u if RRC

K (u) =∞, or RRC
K (v) <

RRC
K (u), or RRC

K (v) = RRC
K (u) and CK(v) ≥ CK(u).

Then we let RLC
K be the ranked interpretation generated

from �KLC . We refer to RLC
K as the lexicographic ranked

model of K.

Definition 13 The lexicographic closure |≈LC of K is de-
fined as follows: K |≈LC α |∼ β if RLC

K  α |∼ β.

The next result shows that the lexicographic ranked model
of K is K-faithful and rank preserving.

Proposition 1 RLC
K is a K-faithful and rank preserving

ranked model.

From this result it follows immediately from Theorems 8
and 4 that lexicographic closure is a rational and basic de-
feasible entailment relation. In fact, Lehmann (1995, The-
orem 3) already showed that lexicographic closure satis-
fies RC Extension.

To appreciate some of the differences between rational
and lexicographic closure, consider the following example.

5#X denotes the cardinality of the set X .



Example 4 Figure 4 depicts the minimal ranked model
RRC
K of K = {p → b, b |∼ f, p |∼ ¬f, b |∼ w}, while

Figure 5 depicts the lexicographic ranked model RLC
K of K.

From these two models we can see that p |∼ w (penguins
usually have wings) is not in the rational closure of K, but
is in the lexicographic closure of K. This is indicative of the
difference between, what Lehmann refers to as Prototypical
Reasoning and Presumptive Reasoning (1995). Presumptive
Reasoning states that properties of a class are presumed to
hold for all members of that class unless we have knowl-
edge to the contrary. So, because birds usually have wings
we assume that penguins, being birds, usually have wings
as well, since we don’t have information to the contrary.
Contrast this with Prototypical Reasoning which states that,
while typical members of a class are presumed to inherit the
properties of that class, the same does not hold for atypical
members. According to Prototypical Reasoning, since pen-
guins are atypical members of the class of birds (they usu-
ally don’t fly), they do not inherit the property of having
wings. Rational closure operates according to Prototypical
Reasoning, while lexicographic closure adheres to Presump-
tive Reasoning.
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Figure 4: The minimal modelK-faithful ranked model RRC
K
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Figure 5: The lexicographic ranked model RLC
K

We have already seen that lexicographic closure (|≈LC)
can be generated from a K-faithful rank preserving model.
From Theorem 8 it then follows that there is a K-faithful
base rank preserving rank function r from which |≈LC can
be generated. Furthermore, it can be generated by algorithm
DefeasibleEntailment, given K and r as input. We
now show how to construct theK-faithful base rank preserv-
ing rank function r mentioned above.
Definition 14 The lexicographic rank w.r.t. a knowledge
base K is defined as rLCK (α) ≡def min{RLC

K (v) | v ∈ JαK}.

First we show that rLCK is K-faithful and base rank pre-
serving.
Proposition 2 The lexicographic rank rLCK w.r.t. a knowl-
edge base K is K-faithful and base rank preserving.

Next, we show that rLCK generates the same rational de-
feasible entailment relation as RLC

K .

Proposition 3 RLC
K  α |∼ β if and only if rLCK (α) <

rLCK (α ∧ ¬β) or rLCK (α) =∞.
Finally, we show that the DefeasibleEntailment

algorithm computes the same (rational) defeasible entail-
ment relation as RLC

K does when given the inputK and rLCK .
Proposition 4 Given a knowledge base K and a defeasible
implication α |∼ β, the DefeasibleEntailment algo-
rithm returns true when given the input K, rLCK , and α |∼ β
if and only if rLCK (α) < rLCK (α ∧ ¬β), or rLCK (α) =∞.

We conclude this section by showing that, while lexico-
graphic closure extends rational closure, it is not (always)
the “boldest” form of rational defeasible entailment. To do
so, we give an example of a knowledge base for which there
is a rational defeasible entailment relation that extends lexi-
cographic closure.
Example 5 Consider the knowledge base K in Example 4
and let a K-faithful ranked model R be as depicted in Fig-
ure 5 below. It is easy to see that R is a refinement of the lex-
icographic ranked model RLC

K in Figure 6. It can be shown
that R is rank base preserving, and therefore it generates
a rational defeasible K-entailment relation |≈, and that |≈
strictly extends lexicographic closure: If K |≈LC α |∼ β,
then K |≈ α |∼ β, and there is at least one defeasible impli-
cation α |∼ β such that K |≈ α |∼ β, but K 6|≈LC α |∼ β.
For example, observe that K |≈ b ∧ ¬f ∧ w |∼ ¬p, but
K 6|≈LC b ∧ ¬f ∧ w |∼ ¬p
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Figure 6: The ranked model R of Example 5.

6 Related Work
The original work in the KLM style (Kraus, Lehmann, and
Magidor 1990) was inspired by the work of Shoham (1988),



and investigated a class of non-monotonic consequence re-
lations, where the defeasible implication |∼ was viewed as
the (non-monotonic) form of entailment. This approach was
subsequently adapted by Lehmann and Magidor (1992) to
the case where |∼ is viewed as an object-level connective
for defeasible implication, and where the focus then shifts
to defeasible entailment (i.e., |≈) for a logic language that
extends propositional logic with the defeasible implication
connective |∼.6

When it comes to defeasible entailment, we are aware
of four instances that have been studied: ranked entailment
(Lehmann and Magidor 1992) which is not LM-rational and
is judged to be too weak, rational closure (Lehmann and
Magidor 1992) and lexicographic closure (Lehmann 1995)
which are both regarded as appropriate forms of defeasible
entailment, and relevant closure (Casini et al. 2014) which
is also not LM-rational. Of these, rational closure is by far
the best studied form of defeasible entailment (Booth et al.
2015; Booth and Paris 1998; Giordano et al. 2015).

Despite the work mentioned above, the present paper is,
to the best of our knowledge, the first systematic attempt
to characterise appropriate classes of defeasible entailment
relations (to be distinguished from the original work by
Kraus et al. (1990), which is a study of |∼ as a form of non-
monotonic consequence).

Our investigation here is reminiscent of the AGM
framework for belief change (Alchourrón, Gärdenfors, and
Makinson 1985; Gärdenfors 1988), where classes of appro-
priate belief change operators are studied. Taking the anal-
ogy further, rational closure can be viewed as the defeasible
entailment equivalent of full-meet belief contraction or re-
vision since, by virtue of the property of RC Extension, it
is the most conservative of those defeasible entailment rela-
tions we regard as appropriate. And taking this line of rea-
soning even further, the boldest forms of rational defeasible
entailment can be regarded as analogous to maxichoice be-
lief contraction and revision. To see this, observe that maxi-
choice operators are obtained by imposing a linear ordering
on the propositional valuations that are counter-models of a
belief set. Similarly, from a semantic perspective, the bold-
est forms of rational defeasible entailment are obtained by
imposing a linear ordering on U KR , the set of possible val-
uations w.r.t. a knowledge base K and then considering the
defeasible entailment relations generated from the base rank
preservingK-faithful ranked models obtained from such lin-
ear orderings.

Studies of defeasible entailment have also started to move
beyond the propositional case, and now includes cases in-
volving versions of defeasible implication in more expres-
sive languages, most notably description logics (Bonatti
et al. 2015; Bonatti and Sauro 2017; Britz, Meyer, and
Varzinczak 2011b; Britz and Varzinczak 2018b; Casini and
Straccia 2013; Giordano et al. 2013; Quantz and Royer
1992; Pensel and Turhan 2017) and modal logics (Boutilier

6Recall that a ranked interpretation satisfies a propositional
statement α if and only if it satisfies the defeasible implication
¬α |∼ ⊥, which means that the latter can be viewed as a syntactic
representation of the former.

1994; Britz, Meyer, and Varzinczak 2011a; 2012). A slightly
different type of extension is one in which defeasible im-
plication is enriched by either introducing an explicit no-
tion of typicality in propositional logic (Booth, Meyer,
and Varzinczak 2012; 2013; Booth et al. 2015) or a no-
tion of defeasible modality (Britz and Varzinczak 2017;
2018a).

7 Conclusion
The central focus of this paper is the question of determining
what (defeasible) entailment means for propositional logic
enriched with a defeasible implication connective. The short
answer to this question provided here is that a defeasible en-
tailment relation needs to be rational in the technical sense
described in Section 4. In arriving at this conclusion we have
made a detour through the more permissive class of basic
defeasible entailment relations defined in Section 3. Both
basic and rational defeasible entailment are characterised
in four different ways, through sets of properties, semanti-
cally via ranked interpretations, in terms of ranks assigned
to (propositional and defeasible) statements, and algorithmi-
cally. While basic defeasible entailment tightens the require-
ments imposed by KLM-style defeasible entailment some-
what, rational defeasible entailment goes further by requir-
ing that the form of defeasible entailment known as rational
closure ought to be viewed as the most basic form of defea-
sible entailment. Part of the argument in favour of rational
defeasible entailment is that, as is the case for rational clo-
sure, lexicographic closure (the other well-known form of
defeasible entailment) is also rational.

There are at least three important lines of research to
which the work in this paper can lead. First on the agenda
is an analysis of concrete forms of rational defeasible entail-
ment other than rational and lexicographic closure.

Secondly, the description of both basic and rational defea-
sible entailment in this paper can be viewed as being on the
knowledge level (Gärdenfors 1988) in the sense that the syn-
tactic form of knowledge bases are, for the most part, irrele-
vant. But there is a strong case to be made for defining defea-
sible implication where syntax matters. Roughly speaking,
this is analogous to the distinction between belief change
on belief sets (sets closed under classical consequence) and
base change (Hansson 1999), where the structure of the set
of beliefs of an agent plays a role in determining how change
ought to occur. In fact, although lexicographic closure is an
instance of rational defeasible entailment, it is an example of
a form of entailment where the structure of the knowledge
base matters. Our current conjecture is that a syntax-based
class of defeasible entailment will form a strict subclass of
the class of rational defeasible entailment relations, and that
lexicographic closure will be the strongest form of syntax-
based rational defeasible entailment.

And finally, syntax-based defeasible entailment also
opens the door for studying the computation of defeasible
entailment in more detail. While we have presented an algo-
rithm for computing any rational defeasible entailment rela-
tion, the algorithm depends on the provision of a knowledge
base K, as well as a function that ranks all propositional
(and therefore all defeasible implication) statements. With



a syntax-based approach, it may be possible to use the struc-
ture of K to rank statements, in the way that the BaseRank
algorithm in Section 2.3 does in the process of computing
rational closure.
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